Ensemble methods

Streams processing

Bagging (Bootstrap aggregating)

Wisdom of crowds

- Leverages independent weak models
- Commonly used to reduce variance within a noisy dataset
- Batch version proposed by Leo Breiman
 - Bootstrapping
 - Parallel training
 - Aggregation

Stage one: Bootstrapping

 Bagging leverages a bootstrapping sampling technique to create diverse samples.

 This resampling method generates different subsets of the training dataset by selecting data points at random and with replacement.

• This means that each time you select a data point from the training dataset, you are able to select the same instance multiple times.

• As a result, a value/instance repeated twice (or more) in a sample.

Example: Bootstrapping the training data

Dataset

$$\mathcal{D} = \{A, B, C, D\}$$

Provide six bootstrapped datasets from D.

Stage two: parallel training

 These bootstrap samples are then trained independently and in parallel with each other using weak or base learners.

Why can we run training in parallel?

Stage three: Aggregation

• Finally, depending on the task (i.e. regression or classification), an average or a majority of the predictions are taken to compute a more accurate estimate.

• In the case of regression, an average is taken of all the outputs predicted by the individual classifiers; this is known as soft voting.

• For classification problems, the class with the highest majority of votes is accepted; this is known as hard voting or majority voting.

Aggregation for regression

$$f(x) = \frac{1}{N} \sum_{n=1}^{N} f_n(x)$$

• Example: Compute prediction f from four regressors

$$\{f_1(x_0) = 4, f_2(x_0) = 3.5, f_3(x_0) = 3, f_4(x_0) = 3.2\}$$

Aggregation for classification

Aggregated (binary) classification

$$f(x) = \operatorname{sign}\left(\sum_{n=1}^{N} f_n(x)\right)$$

Example: Compute prediction f from four classifiers

$$\{f_1(x_0) = 0.3, f_2(x_0) = -0.01, f_3(x_0) = -0.04, f_4(x_0) = -0.03\}$$

Majority vote

$$f(x) = \operatorname{sign}\left(\sum_{n=1}^{N} \operatorname{sign}\left(f_n(x)\right)\right)$$

• Example: Compute prediction f from four classifiers

Bagging in a nutshell (batch)

- Given a training dataset
- Sample T sets of n elements from D (with replacement)
- Train a weak learner on each dataset and obtain a sequence of T outputs
- Prediction by aggregation
 - Regression
 - Classification

Online bagging for streams

- How to draw a sample with replacement from a stream?
- What happens to the loss when we sample with replacement?
- In bootstrapping, the number of repeated samples K in the dataset with N data points follows a binomial distribution

$$P(K=k) = {N \choose k} \frac{1}{N}^k \left(1 - \frac{1}{N}\right)^{N-k}$$

• For large N, the binomial tends to the Poisson(1)

Simulating sampling with replacement

 Instead of resampling with replacement, we will weigh each new point in the stream according to the Poisson(1)

Poisson(1) distribution

The algorithm

- Initialize base models h_m for all m ∈ {1, 2, ..., M}
 for all training examples do
 for m = 1, 2, ..., M do
 Set w = Poisson(1)
 Update h_m with the current example with weight w
- 6: anytime output:
- 7: **return** hypothesis: $h_{fin}(x) = \arg \max_{y \in Y} \sum_{t=1}^{T} I(h_t(x) = y)$

In river: BaggingClassifier

Bagging with a change detector: ADWIN bagging

- Uses M instances of ADWIN
- When one of the M ADWIN detects a change
 - The worst classifier is removed
 - A new one is trained
- In river, implemented as ADWINBaggingClassifier

Adaptive Random Forest

- Effective resampling method
- Adaptive operators that can cope with different types of concept drift
- The parallel implementation
- Shows no degradation in terms of classification performance compared to a serial implementation, since trees and adaptive operators are independent of one another.

• In river: AdaptiveRandomForestClassifier

Regression in river

- BaggingRegressor
- AdaptiveRandomForestRegressor
- EWARegressor