
2o Teste de Análise e Desenho de Algoritmos
Departamento de Informática, FCT NOVA

11 de Junho de 2019
Duração: 2 horas e 15 minutos

Tem de entregar os 2 cadernos, cada um com 2 folhas.

Os cadernos não podem ser desagrafados.

Identifique os cadernos com o seu número e o seu nome.

Número: Nome:

Pergunta 1 Suponha que se executa o algoritmo de Edmonds-Karp com o grafo G esquemati-
zado na figura, a fonte 0 e o dreno 5.

0�����������11 1

PPPPPPPq1 1

1����
-

1

Z
Z
Z
Z
Z
ZZ~

1

1
3�������

�
�
��>

2����
PPPPPPPq

4����
��

��
���1

5����

Assuma que o método outIncidentEdges itera sempre os arcos por ordem crescente de vértice
destino. Por exemplo, G.outIncidentEdges(0) produz os arcos (0, 1) e (0, 3), por esta ordem,
ambos com peso 1.

(a) [3 valores] Indique a sequência de caminhos da fonte para o dreno que são encontrados pelo
algoritmo.

0 1 2 5

0 3 2 1 4 5

(b) [0.5 valores] Qual é o valor do fluxo máximo? 2

(c) [0.5 valores] Indique, na figura abaixo (à esquerda de “/”), o fluxo de cada arco de G quando
o algoritmo termina:

0�����������11/1 1/1

PPPPPPPq1/1 1/1

1����
-

0/1

Z
Z
Z
Z
Z
ZZ~

1/1

1/1
3�������

�
�
��>

2����
PPPPPPPq

4����
��

��
���1

5����

1

Pergunta 2 O Problema da Soma de Subconjunto formula-se da seguinte forma. Dados
um conjunto finito C de números inteiros e um inteiro t, existe um subconjunto S ⊆ C tal que:∑

e∈S

e = t ?

Por exemplo, a solução da instância ({1, 2,−7, 3,−10,−5}, 0) é sim, porque a soma dos elementos
de {2, 3,−5} é 2 + 3 + (−5) = 0.

(a) [3.8 valores] Prove que o Problema da Soma de Subconjunto é NP.

O Problema da Soma de Subconjunto é NP pelos dois seguintes motivos.

1. Existe um algoritmo polinomial que, dados:

– um conjunto finito C de números inteiros,

– um inteiro t e

– um subconjunto S ⊆ C,

verifica se
∑
e∈S

e = t.

O algoritmo percorre o conjunto S e calcula a soma dos seus elementos. Retorna true

se, e só se, essa soma for igual a t.

A complexidade temporal do algoritmo é polinomial no número de elementos de S:

Θ(|S|).

2. O tamanho do conjunto S é polinomial no tamanho de (C, t), porque S é um subcon-

junto de C.

2

(b) [1.4 valores] Prove que o Problema da Soma de Subconjunto é NP-dif́ıcil.

O Problema da Soma de Subconjunto é NP-dif́ıcil porque o Problema da Partição de Con-

junto é NP-completo e a seguinte redução é polinomial.

φ : Partição de Conjunto −→ Soma de Subconjunto

K 7−→ (K,
1

2

∑
x∈K

x)

(c) [0.3 valores] O Problema da Soma de Subconjunto é NP-completo? Justifique a sua resposta,
assumindo que resolveu as duas aĺıneas anteriores.

O Problema da Soma de Subconjunto é NP-completo porque é NP e NP-dif́ıcil.

3

NOTA: O que escrever nesta página não será avaliado.

Pergunta 3 A classe LazyExpression implementa expressões aritméticas inteiras (com somas,
diferenças e produtos) avaliadas de forma “lazy”.

public class LazyExpress ion {

private int value ; // Resu l t o f the e va l ua t ed opera t i ons
private Pair<Character , Integer > [] expr ; // Non−eva l ua t ed opera t i ons
private int s i z e ; // Number o f non−eva l ua t ed opera t i ons

@SuppressWarnings (”unchecked”)
public LazyExpress ion (int capac i ty , int f irstNum) {

value = firstNum ;
expr = new Pair [capac i ty] ;
s i z e = 0 ;

}

public int getValue () {
i f (s i z e > 0)

this . eva luate () ;
return value ;

}

public void addOper (char op , int num) {
i f (s i z e == expr . l ength)

this . eva luate () ;
expr [s i z e++] = new Pair<>(op , num) ;

}

private void eva luate () {
for (int i = 0 ; i < s i z e ; i++) {

Pair<Character , Integer> pa i r = expr [i] ;
char op = pa i r . g e t F i r s t () ;
int num = pa i r . getSecond () ;
switch (op) {

case ’+ ’ : va lue += num;
break ;

case ’∗ ’ : va lue ∗= num;
break ;

default : va lue −= num;
break ;

}
}
s i z e = 0 ;

}

}

Considere a função Φ(E), que atribui a cada objeto E da classe LazyExpression o número de
operações ainda não efetuadas:

Φ(E) = E.size .

4

Número: Nome:

(a) [1 valor] Prove que Φ é uma função potencial válida.

Φ(E0) = 0, porque o valor da variável size é 0 quando E é criada.

Φ(E) ≥ 0, porque a variável size só é incrementada ou colocada a 0.

(b) [4.5 valores] Calcule as complexidades amortizadas dos métodos getValue e addOper, justifi-
cando. No estudo da complexidade amortizada dos dois métodos, analise separadamente os
casos em que a condição do if é: falsa; verdadeira. Assuma que o construtor e os métodos
da classe Pair têm complexidade constante.

Operação c Φ(E ′)− Φ(E) ĉ = c+ ∆Φ

getValue
if F 1 s′ − s = s− s = 0 1 + 0 = 1

}
O(1)

if T s s′ − s = 0− s = −s s− s = 0

addOper
if F 1 s′ − s = (s+ 1)− s = 1 1 + 1 = 2

}
O(1)

if T s s′ − s = 1− s s+ (1− s) = 1

5

Pergunta 4 Na cidade da Juventude só há praças (como o Rossio ou a Praça do Comércio) e
ruas pedonais (com dois sentidos) que ligam duas praças distintas. Para a juventude poder andar
à vontade, algumas ruas são só para jovens (com menos de 30 anos); as restantes são só para
cotas (30 ou mais anos). Portanto, os encontros entre jovens e cotas têm de ocorrer numa praça.
Dadas as localizações do Jaime (um jovem) e da Carla (uma cota), pretende-se descobrir quanto
tempo é necessário para se encontrarem.

Praças Restrição Tempo (min)

0 1 J 7

0 2 J 15

0 3 C 8

0 4 C 5

1 2 C 8

1 3 C 11

1 4 J 10

1 5 J 30

2 3 J 5

2 4 C 9

3 4 J 20

3 5 C 25

Suponhamos que a cidade tem seis praças (identificadas pelos números 0, 1, . . . , 5) e que a tabela
acima descreve as ruas existentes, as suas restrições (só para jovens (J) ou só para cotas (C)) e o
tempo que demora a percorrer cada uma (em minutos). Se, num dado instante, o Jaime estiver
na Praça 1 e a Carla na Praça 5, só conseguem encontrar-se decorridos 27 minutos (na Praça 3):

• Da Praça 1, o Jaime terá de ir para a Praça 0 (7 min), depois para a Praça 2 (15 min) e
dáı para a Praça 3 (5 min). Portanto, chega à Praça 3 ao fim de 27 minutos.

• A Carla chega à Praça 3 em 25 minutos, percorrendo a rua que liga as praças 5 e 3.

Note que há outras alternativas, mas nenhuma é melhor do que a descrita. Por exemplo, o Jaime
poderia chegar à Praça 3 através da 4, mas por áı demoraria meia hora. Se o ponto de encontro
fosse na Praça 5 (bastando à Carla esperar pelo Jaime), encontrar-se-iam ao fim de 30 minutos.

Neste problema, pretende-se que implemente uma função, minTime(P , R, M , J , C), que recebe:

• Dois inteiros positivos, P e R, que representam o número de praças e o número de ruas.
As praças são identificadas pelos inteiros 0, 1, . . . , P − 1.

• Uma matriz M de inteiros, com R linhas e 4 colunas. Cada linha tem informação sobre uma
rua: as duas praças que a rua liga, o número 0 ou 1 (consoante a rua seja só para jovens ou
só para cotas) e o tempo que demora a percorrer (um número positivo, em minutos).
Garante-se que, entre duas quaisquer praças diferentes, há no máximo uma rua.

• Dois inteiros, J e C (ambos entre 0 e P − 1), que representam as praças em que o Jaime e
a Carla estão (no instante zero).

A função deve retornar o número mı́nimo de minutos que têm de passar até que o Jaime e a Carla
se encontrem (em alguma praça). O corpo da função minTime deve chamar:

• uma ou várias funções que constroem grafos;

• um ou vários algoritmos de grafos estudados, como se eles estivessem numa biblioteca
(mesmo que esses algoritmos retornem resultados que não interessam para resolver este
problema e sejam menos eficientes do que poderiam ser para este caso).

6

(a) [1.5 valores] Que grafo(s) construiria para resolver este problema com o exemplo dado?
Ou seja, se T for a matriz que corresponde à tabela da página anterior, desenhe apenas
o(s) grafo(s) que seria(m) constrúıdo(s) durante a execução de minTime(6, 12, T , 1, 5).
Desenhar um grafo é representá-lo da forma habitual (como na Pergunta 1).

Grafo dos Jovens

0����
-7

?

15 10 10

1����
-30

�
7 @

@
@
@
@
@
@
@R

5����
�

30

2����
-5

6

15

3����
-20

�
5

4����
�

20

@
@
@

@
@

@
@
@I

Grafo dos Cotas

0����
-8

?

5 11 11

3����
-25

�
8 @

@
@
@
@
@
@
@R

5����
�

25

4����
-9

6

5

2����
-8

�
9

1����
�

8

@
@
@

@
@
@

@
@I

(b) [3.5 valores] Implemente a função minTime (em pseudo-código). Chame a ou as várias
funções que constroem grafos, mas não a(s) implemente (porque já ilustrou o(s) grafo(s)
criado(s) na aĺınea anterior). Não implemente nenhum algoritmo de grafos; recorra aos
algoritmos estudados, chamando as respetivas funções, sem as alterar.

int minTime(int P, int R, int[][] M, int J, int C) {
Digraph<Integer> g = createGraph(P, M, 0);

Integer[] tJ = dijkstra(g, J).getFirst();

g = createGraph(P, M, 1);

Integer[] tC = dijkstra(g, C).getFirst();

int res = +∞;

for (int i = 0; i < P; i++) {
int val = Math.max(tJ[i], tC[i]);

if (val < res)

res = val;

}
return res;

}

7

