Fundamentos de Sistemas de Opera¢ao MIEI 2018/2019
22 Teste, 11 de dezembro 2018, 2 horas

Ne Nome

Avisos: Sem consulta; a interpretacdo do enunciado é da responsabilidade do aluno; se necessdrio indique a sua
interpretacdo. No fim deste enunciado encontra os protétipos de funcées que lhe podem ser titeis.

Questao 1 (1.5 valores)

Considere um sistema de ficheiros baseado nos principios do UNIX/LINUX e a operacgdo
mount(nome_do_disco, nome_diretoria) . Explique porque é que esta operacdo é necessdaria, e que
accgoes sao feitas pelo sistema operativo quando ela é invocada.

Questao 2 (2,5 valores)

Para um sistema de ficheiros UNIX/LINUX indique as leituras e escritas que sao feitas no disco, quer
na zona de dados quer na zona de meta-dados, quando no shell (interpretador de comandos) se da o
comando para apagar um ficheiro:

rm /tmp/XX
Suponha que
- o utilizador que da o comando tem permissdes para ler e escrever em todas as diretorias envolvidas

- o contador de referéncia no i-node de /tmp/XX esta a 1.

Questao 3 (1,5 valores) Considere o i-node de um sistema UNIX em que em cada i-node estdo 15
enderecgos de blocos. Ha 13 enderecos diretos e 2 blocos com enderecos de blocos, que por sua vez
contém enderecos (enderecamento indireto simples). Sabendo que cada bloco tem 2048 bytes e cada
enderego de bloco ocupa 8 bytes, calcule o tamanho maximo que um ficheiro pode ter.

Questao 4 (2,0 valores) Os programas de verificacdo de consisténcia do sistema de ficheiros, como o
fsck do UNIX/LINUX fazem varias verificagdes, nomeadamente envolvendo o conteddo do mapa de
ocupacao de blocos com o contetido da tabela de i-nodes. Explique qual a verificacdo que é feita e diga
como sdo resolvidas as inconsisténcias encontradas.

Questao 5 (2,5 valores) Considere que num sistema informatico com discos de grande dimensio
houve um crash por motivo desconhecido e o sistema esta a arrancar de novo; uma das fases do
arranque é verificar a consisténcia dos discos que vdo ser montados. Os sistemas de ficheiros
contidos nos discos tém journal. Explique como é que, neste caso, vai ser garantido que o sistema de
ficheiros estd consistente e quais sdo as vantagens em relacdo a um programa de verificacdo de

consisténcia tradicional (isto é, sem journal).

Questao 6 (3 valores) Pretende-se usar uma maquina com multiplos processadores para verificar quantos
numeros gerados aleatoriamente e guardados num vetor sdo primos. O cddigo a usar é o seguinte em que
NPROCS representa o nimero de threads a usar. Suponha que SIZE é multiplo de NPROCS.

#include <pthread.h>
#tdefine NPROCS 4

#tdefine SIZE (10*1024*1024)
int *array;

int count = 9;

int is_prime(int n) {
for (int i = 2; i <= sqrt(n); i++)
if (n % i == 0)
return 0;
return 1;

}

void *func(void *arg) { // preencher o corpo da fun¢do executada por cada thread

}

int main(int argc, char *argv[]){
pthread_t tids[NPROCS];

array= (int *)malloc(SIZE*sizeof(int));
srand(9);
for (int i=0; i < SIZE; i++) { array[i] = rand() % 5000;}

for(int i=@; i < NPROCS; i++)
pthread_create(&tids[i], NULL, func ,)

for(int i=@; i < NPROCS; i++)

pthread_join(tids[i],)s

printf(“Numero de numeros primos no vetor = %d\n”, count);
return 0;

}

Complete o cddigo acima. Serdo valorizadas solu¢des que minimizem o nimero de operacdes de sincronizagao
realizadas.

Questdo 7 (2,5 valores)

Considere a biblioteca mySocketTCP para uso de sockets TCP com as operag¢des seguintes

Operacao Parametros de entrada Retorno

s = serverSocket(port) port é a porta TCP em que sdo aceites ligagdes s é o canal de entrada /
saida associado ao socket
criado

sc = acceptServerSocket(ss) ss é o canal retornado pela fungio serverSocket sc é o canal de entrada

saida que permite dialogar
com o cliente

s = connectSocket(maquina, p) | Maquina é o nome simbélico da maquina onde estd | S é o canal usado para
o servidor; p é a porta onde o servidor aguarda | dialogar com o servidor
ligacdes

nw = writeSocket(s, b, n) s é o canal a usar; b é o endereco inicial da | nw é o n? de bytes
sequéncia de bytes a escrever; n o n? de bytes a | efetivamente escrito
escrever

nr = readSocket(s, b, n) s é o canal a usar; b é o endereco inicial do buffer | nr é o n? de bytes
de bytes onde se recebe; n o n2 maximo de de bytes | efetivamente lido
areceber

closeSocket(s) s é o canal usado na liga¢do Nio tem

Pretende-se escrever o cédigo de um servidor de eco concorrente usando a biblioteca anterior e a API dos
Pthreads. Um servidor de eco tem um ciclo eterno em que recebe ligacdes dos clientes, 1é uma sequéncia de

bytes do socket e envia esses bytes de volta. Um cliente de eco teria o seguinte c6digo

#include “mySocketTPC.h”
char msg[10]=123456789";
char buf[11];
int main(){
int s =
writeSocket(s, msg, 10);

connectSocket(“www.di.fct.unl.pt”, 12345);

int n = readSocket(s, buf, 190);

closeSocket(s);

buf[n]="\n’; write(1, buf, n+l);

exit(9);
}

Complete o codigo do servidor que corre na maquina www.di.fct.unl.pt e que estd atento a porta 12345:

#include <pthread.h>
#include “mySocketTPC.h”

void *func(void *arg) { // preencher o corpo da fun¢do executada por cada thread

}

int main(int argc, char *argv[]){

int pthread_t tid;

int s = serverSocket(12345);
while(1){
int sc = acceptServerSocket(s);

pthread_create(&tid, NULL, func,)
}
// resto do cédigo do servidor. Nao se pretende que escreva nada aqui
return 0;

}

Questao 8 (2.5 valores)

Recorde o TPC2; usando a API dos Pthreads pretende-se implementar o mecanismo de sincronizagdo
barreira. Sobre uma barreira estao definidas duas operagodes

e init_barrier (B, nProc) que cria a barreira B e define que esta vai ser usada por nProc threads
e Dbarrier (B) bloqueia o thread invocador até que nProc threads tenham chamado esta operacao.

Uma barreira sera definida da seguinte forma:

struct barrier {
pthread_mutex_t mutex; // mutex para acesso exclusivo ao estado da barreira

pthread_cond_t cond; // Condic3do em que se bloqueiam os threads a espera da

chegada
// dos outros
int number_threads; // Numero de threads que usam a barreira para
sincronizacao

int threads_waiting; // Numero de threads que ja chamaram barrier.

1

typedef struct barrier barrier_t;

Implemente as duas seguintes fungdes:
void initBarrier(barrier_t* bar, int nProcs){
// Inicializa a estrutura de dados bar, preparando-a para ser usada por nProcs threads

}
void barrier(barrier_t* bar){
// Bloqueia-se se ainda nem todos o0s nProcs chamaram a fun¢do. Caso contrario,

prossegue // e acorda os restantes nProc -1 threads

Questao 9 (2 valores) Dado um sistema de ficheiros com uma tinica directoria, guardada num tinico bloco
em disco, complete a implementacao da funcdo fs_size que calcula o espaco (em bytes) ocupado por todos
os ficheiros no sistema de ficheiros. Cada ficheiro é representado por uma instancia da estrutura fs_dirent
em que o campo st contém o valor FILE (valores diferentes de FILE indicam que a entrada na directoria nao
esta em uso).

#tdefine BLOCKSZ 1024 // block size
t#tdefine FNAMESZ 11 // file name size
t#tdefine FBLOCKS 8 // 8 block indexes in each dirent

#tdefine DIRENTS_PER_BLOCK (BLOCKSZ/sizeof(struct fs_dirent))

struct fs_sblock { // the super block
uintl6_t magic; // the magic number
uintlée_t fssize; // total number of blocks (including the superblock)
uintlée_t dir; // the number of the block storing the directory
¥
struct fs_dirent { // a directory entry (dirent/extent)
uint8_t st; // st = FILE if the dirent contains a file
char name[FNAMESZ]; // the name of the file
uintlée_t size; // the size of the file
uintl6_t blocks[FBLOCKS]; // disk blocks with file content (zero value = empty)
¥
union fs_block { // generic fs block. Can be seen with all these formats
struct fs_sblock super;
struct fs_dirent dirent[DIRENTS_PER_BLOCK];
char data[BLOCKSZ];
¥

int fs_size() {
if (superB.magic != FS_MAGIC)
return -1; // not mounted

disk_read(superB.dir,); // reads the block storing the directory
// from disk to memory

}

ANEXO - fungdes uteis

int open(char *fname, int flags,... /*int mode*/)
int close(int fd)

int read(int fd, wvoid *buff, int size)

int write(int fd, void *buff, int size)

int pipe(int f£d4d[2])

int dup(int fd)

int dup2(int fd, int fd2)

pid t fork(void)

int execve(char *exfile, char *argv[], char*envpl[])
int execvp(char *exfile, char *argvl[])
int execlp(char *exfile, char *arg0O, ... /*NULL*/)
int wait(int *stat)

int waitpid(pid t pid, int *stat, int opt)

void* memcpy (void* dst, const void* src, size t n);

int pthread create(pthread t *tid, pthread attr t *attr,
void * (*function) (void*), void *arg)

int pthread join(pthread t tid, void **ret)

int pthread mutex init(pthread mutex t *mut, pthread mutexattr t *attr)
ou mut = PTHREAD MUTEX INITIALIZER

int pthread mutex lock(pthread mutex t *mut)

int pthread mutex unlock(pthread mutex t *mut)

int pthread cond init(pthread cond t *vcond, pthread condattr t *attr)
ou vcond = PTHREAD COND INITIALIZER

int pthread cond wait (pthread cond t *vcond, pthread mutex t *mut)

int pthread cond signal(pthread cond t *vcond)

int pthread cond broadcast(pthread cond t *vcond)

