

1

Fundamentos de Sistemas de Operação MIEI 2018/2019

2º Teste, 11 de dezembro 2018, 2 horas

Nº _________________________ Nome ___

Avisos: Sem consulta; a interpretação do enunciado é da responsabilidade do aluno; se necessário indique a sua
interpretação. No fim deste enunciado encontra os protótipos de funções que lhe podem ser úteis.

Questão 1 (1.5 valores)

Considere um sistema de ficheiros baseado nos princípios do UNIX/LINUX e a operação
mount(nome_do_disco, nome_diretoria) . Explique porque é que esta operação é necessária, e que
acções são feitas pelo sistema operativo quando ela é invocada.

Questão 2 (2,5 valores)

Para um sistema de ficheiros UNIX/LINUX indique as leituras e escritas que são feitas no disco, quer
na zona de dados quer na zona de meta-dados, quando no shell (interpretador de comandos) se dá o
comando para apagar um ficheiro:

 rm /tmp/XX

Suponha que

- o utilizador que dá o comando tem permissões para ler e escrever em todas as diretorias envolvidas

- o contador de referência no i-node de /tmp/XX está a 1.

2

Questão 3 (1,5 valores) Considere o i-node de um sistema UNIX em que em cada i-node estão 15
endereços de blocos. Há 13 endereços diretos e 2 blocos com endereços de blocos, que por sua vez
contêm endereços (endereçamento indireto simples). Sabendo que cada bloco tem 2048 bytes e cada
endereço de bloco ocupa 8 bytes, calcule o tamanho máximo que um ficheiro pode ter.

Questão 4 (2,0 valores) Os programas de verificação de consistência do sistema de ficheiros, como o
fsck do UNIX/LINUX fazem várias verificações, nomeadamente envolvendo o conteúdo do mapa de
ocupação de blocos com o conteúdo da tabela de i-nodes. Explique qual a verificação que é feita e diga
como são resolvidas as inconsistências encontradas.

Questão 5 (2,5 valores) Considere que num sistema informático com discos de grande dimensão

houve um crash por motivo desconhecido e o sistema está a arrancar de novo; uma das fases do
arranque é verificar a consistência dos discos que vão ser montados. Os sistemas de ficheiros
contidos nos discos têm journal. Explique como é que, neste caso, vai ser garantido que o sistema de
ficheiros está consistente e quais são as vantagens em relação a um programa de verificação de
consistência tradicional (isto é, sem journal).

3

Questão 6 (3 valores) Pretende-se usar uma máquina com múltiplos processadores para verificar quantos

números gerados aleatoriamente e guardados num vetor são primos. O código a usar é o seguinte em que
NPROCS representa o número de threads a usar. Suponha que SIZE é múltiplo de NPROCS.

#include <pthread.h>
#define NPROCS 4
#define SIZE (10*1024*1024)
int *array;
int count = 0;

int is_prime(int n) {
 for (int i = 2; i <= sqrt(n); i++)
 if (n % i == 0)
 return 0;
 return 1;
}
void *func(void *arg) { // preencher o corpo da função executada por cada thread

}

int main(int argc, char *argv[]){
 pthread_t tids[NPROCS];

 array= (int *)malloc(SIZE*sizeof(int));
 srand(0);
 for (int i=0; i < SIZE; i++) { array[i] = rand() % 5000;}

 for(int i=0; i < NPROCS; i++)
 pthread_create(&tids[i], NULL, func , _____________);

for(int i=0; i < NPROCS; i++)

 pthread_join(tids[i], _____________);

 printf(“Numero de numeros primos no vetor = %d\n”, count);
 return 0;
}

Complete o código acima. Serão valorizadas soluções que minimizem o número de operações de sincronização
realizadas.

4

Questão 7 (2,5 valores)

Considere a biblioteca mySocketTCP para uso de sockets TCP com as operações seguintes

Operação Parâmetros de entrada Retorno

s = serverSocket(port) port é a porta TCP em que são aceites ligações s é o canal de entrada /
saída associado ao socket
criado

sc = acceptServerSocket(ss) ss é o canal retornado pela função serverSocket sc é o canal de entrada
saída que permite dialogar
com o cliente

s = connectSocket(maquina, p) Máquina é o nome simbólico da máquina onde está
o servidor; p é a porta onde o servidor aguarda
ligações

S é o canal usado para
dialogar com o servidor

nw = writeSocket(s, b, n) s é o canal a usar; b é o endereço inicial da
sequência de bytes a escrever; n o nº de bytes a
escrever

nw é o nº de bytes
efetivamente escrito

nr = readSocket(s, b, n) s é o canal a usar; b é o endereço inicial do buffer
de bytes onde se recebe; n o nº máximo de de bytes
a receber

nr é o nº de bytes
efetivamente lido

closeSocket(s) s é o canal usado na ligação Não tem

Pretende-se escrever o código de um servidor de eco concorrente usando a biblioteca anterior e a API dos
Pthreads. Um servidor de eco tem um ciclo eterno em que recebe ligações dos clientes, lê uma sequência de
bytes do socket e envia esses bytes de volta. Um cliente de eco teria o seguinte código

#include “mySocketTPC.h”
char msg[10]=”123456789”;
char buf[11];
int main(){

int s = connectSocket(“www.di.fct.unl.pt”, 12345);
writeSocket(s, msg, 10);
int n = readSocket(s, buf, 10);
closeSocket(s);
buf[n]=’\n’; write(1, buf, n+1);
exit(0);

}

Complete o código do servidor que corre na máquina www.di.fct.unl.pt e que está atento à porta 12345:

#include <pthread.h>
#include “mySocketTPC.h”

void *func(void *arg) { // preencher o corpo da função executada por cada thread

}

int main(int argc, char *argv[]){
 int pthread_t tid;

5

int s = serverSocket(12345);
while(1){
 int sc = acceptServerSocket(s);

 pthread_create(&tid, NULL, func, _________________);

 }
 // resto do código do servidor. Não se pretende que escreva nada aqui
 return 0;
}

Questão 8 (2.5 valores)

Recorde o TPC2; usando a API dos Pthreads pretende-se implementar o mecanismo de sincronização
barreira. Sobre uma barreira estão definidas duas operações

● init_barrier (B, nProc) que cria a barreira B e define que esta vai ser usada por nProc threads
● barrier (B) bloqueia o thread invocador até que nProc threads tenham chamado esta operação.

Uma barreira será definida da seguinte forma:
struct barrier {
 pthread_mutex_t mutex; // mutex para acesso exclusivo ao estado da barreira
 pthread_cond_t cond; // Condição em que se bloqueiam os threads à espera da
chegada
 // dos outros
 int number_threads; // Número de threads que usam a barreira para
sincronização
 int threads_waiting; // Número de threads que já chamaram barrier.
};

typedef struct barrier barrier_t;

Implemente as duas seguintes funções:
void initBarrier(barrier_t* bar, int nProcs){

// Inicializa a estrutura de dados bar, preparando-a para ser usada por nProcs threads

}
void barrier(barrier_t* bar){

// Bloqueia-se se ainda nem todos os nProcs chamaram a função. Caso contrário,
prossegue // e acorda os restantes nProc -1 threads

}

6

Questão 9 (2 valores) Dado um sistema de ficheiros com uma única directoria, guardada num único bloco

em disco, complete a implementação da função fs_size que calcula o espaço (em bytes) ocupado por todos
os ficheiros no sistema de ficheiros. Cada ficheiro é representado por uma instância da estrutura fs_dirent
em que o campo st contém o valor FILE (valores diferentes de FILE indicam que a entrada na directoria não
está em uso).

#define BLOCKSZ 1024 // block size
#define FNAMESZ 11 // file name size
#define FBLOCKS 8 // 8 block indexes in each dirent
#define DIRENTS_PER_BLOCK (BLOCKSZ/sizeof(struct fs_dirent))

struct fs_sblock { // the super block
 uint16_t magic; // the magic number
 uint16_t fssize; // total number of blocks (including the superblock)
 uint16_t dir; // the number of the block storing the directory
};

struct fs_dirent { // a directory entry (dirent/extent)
 uint8_t st; // st = FILE if the dirent contains a file
 char name[FNAMESZ]; // the name of the file
 uint16_t size; // the size of the file
 uint16_t blocks[FBLOCKS]; // disk blocks with file content (zero value = empty)
};

union fs_block { // generic fs block. Can be seen with all these formats
 struct fs_sblock super;
 struct fs_dirent dirent[DIRENTS_PER_BLOCK];
 char data[BLOCKSZ];
};

int fs_size() {
 if (superB.magic != FS_MAGIC)
 return -1; // not mounted

 disk_read(superB.dir, ______________________); // reads the block storing the directory
 // from disk to memory

}

ANEXO - funções úteis

7

int open(char *fname, int flags,... /*int mode*/)

int close(int fd)

int read(int fd, void *buff, int size)

int write(int fd, void *buff, int size)

int pipe(int fd[2])

int dup(int fd)

int dup2(int fd, int fd2)

pid_t fork(void)

int execve(char *exfile, char *argv[], char*envp[])

int execvp(char *exfile, char *argv[])

int execlp(char *exfile, char *arg0, ... /*NULL*/)

int wait(int *stat)

int waitpid(pid_t pid, int *stat, int opt)

void* memcpy(void* dst, const void* src, size_t n);

int pthread_create(pthread_t *tid, pthread_attr_t *attr,

void *(*function)(void*), void *arg)

int pthread_join(pthread_t tid, void **ret)

int pthread_mutex_init(pthread_mutex_t *mut, pthread_mutexattr_t *attr)

 ou mut = PTHREAD_MUTEX_INITIALIZER

int pthread_mutex_lock(pthread_mutex_t *mut)

int pthread_mutex_unlock(pthread_mutex_t *mut)

int pthread_cond_init(pthread_cond_t *vcond, pthread_condattr_t *attr)

 ou vcond = PTHREAD_COND_INITIALIZER

int pthread_cond_wait(pthread_cond_t *vcond, pthread_mutex_t *mut)

int pthread_cond_signal(pthread_cond_t *vcond)

int pthread_cond_broadcast(pthread_cond_t *vcond)

