15/01/2019

OREILLY

AN
Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

Chapter 21. Understanding the Garbage
Collector

We've described the runtime format of individual OCaml variables earlier, in Chapter 20, Memory
Representation of Values. When you execute your program, OCaml manages the lifecycle of these
variables by regularly scanning allocated values and freeing them when they're no longer

needed. This in turn means that your applications don't need to manually implement memory
management, and it greatly reduces the likelihood of memory leaks creeping into your code.

The OCaml runtime is a C library that provides routines that can be called from running OCaml
programs. The runtime manages a heap, which is a collection of memory regions that it obtains
from the operating system. The runtime uses this memory to hold heap blocks that it fills up with
OCaml values in response to allocation requests by the OCaml program.

MARK AND SWEEP GARBAGE COLLECTION

When there isn't enough memory available to satisfy an allocation request from the pool of
allocated heap blocks, the runtime system invokes the garbage collector (GC). An OCaml program
can't explicitly free a value when it is done with it. Instead, the GC regularly determines which
values are live and which values are dead, i.e., no longer in use. Dead values are collected and
their memory made available for reuse by the application.

The GC doesn't keep constant track of values as they are allocated and used. Instead, it regularly
scans them by starting from a set of root values that the application always has access to (such as
the stack). The GC maintains a directed graph in which heap blocks are nodes, and there is an
edge from heap block b1 to heap block b2 if some field of b1 is a pointer to b2.

All blocks reachable from the roots by following edges in the graph must be retained, and
unreachable blocks can be reused by the application. The algorithm used by OCaml to perform
this heap traversal is commonly known as mark and sweep garbage collection, and we'll explain
it further now.

GENERATIONAL GARBAGE COLLECTION

The usual OCaml programming style involves allocating many small variables that are used for a
short period of time and then never accessed again. OCaml takes advantage of this fact to
improve performance by using a generational GC.

A generational GC maintains separate memory regions to hold blocks based on how long the
blocks have been live. OCaml's heap is split into two such regions:

« A small, fixed-size minor heap where most blocks are initially allocated
« Alarger, variable-size major heap for blocks that have been live longer

A typical functional programming style means that young blocks tend to die young and old
blocks tend to stay around for longer than young ones. This is often referred to as the
generational hypothesis.

OCaml uses different memory layouts and garbage-collection algorithms for the major and minor
heaps to account for this generational difference. We'll explain how they differ in more detail
next.

The Ge Module and OCAMLRUNPARAM

OCaml provides several mechanisms to query and alter the behavior of the runtime system. The
Ge module provides this functionality from within OCaml code, and we'll frequently refer to it in
the rest of the chapter. As with several other standard library modules, Core alters the Gc
interface from the standard OCaml library. We'll assume that you've opened Core.std in our
explanations.

You can also control the behavior of OCaml programs by setting the OCAMLRUNPARAM
environment variable before launching your application. This lets you set GC parameters without
recompiling, for example to benchmark the effects of different settings. The format of
OCAMLRUNPARAM is documented in the OCaml manual.

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

1/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual024.html

15/01/2019

OREILLY"

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml
THE FAST MINOR HEAP

The minor heap is where most of your short-lived values are held. It consists of one contiguous
chunk of virtual memory containing a sequence of OCaml blocks. If there is space, allocating a
new block is a fast, constant-time operation that requires just a couple of CPU instructions.

To garbage-collect the minor heap, OCaml uses copying collection to move all live blocks in the
minor heap to the major heap. This takes work proportional to the number of live blocks in the
minor heap, which is typically small according to the generational hypothesis. The minor
collection stops the world (that it, halts the application) while it runs, which is why it's so
important that it complete quickly to let the application resume running with minimal
interruption.

Allocating on the Minor Heap

The minor heap is a contiguous chunk of virtual memory that is usually a few megabytes in size
so that it can be scanned quickly.

<---- size ---->

base --- start --—---------———- end
limit ptr <-—-----
blocks

Diagram * gc/minor_heap.ascii * all code

The runtime stores the boundaries of the minor heap in two pointers that delimit the start and
end of the heap region (caml_young start and caml_young end, but we will drop the
caml_young prefix for brevity). The base is the memory address returned by the system nalloc,
and start is aligned against the next nearest word boundary from base to make it easier to store
OCaml values.

In a fresh minor heap, the 1imit equals the start, and the current pt r will equal the end. ptr
decreases as blocks are allocated until it reaches 1imit, at which point a minor garbage
collection is triggered.

Allocating a block in the minor heap just requires ptr to be decremented by the size of the block
(including the header) and a check that it's not less than 1imit. If there isn't enough space left for
the block without decrementing past 1imit, a minor garbage collection is triggered. This is a very
fast check (with no branching) on most CPU architectures.

You may wonder why 1imit is required at all, since it always seems to equal start. It's because
the easiest way for the runtime to schedule a minor heap collection is by setting 1imit to equal
end. The next allocation will never have enough space after this is done and will always trigger a
garbage collection. There are various internal reasons for such early collections, such as handling
pending UNIX signals, and they don't ordinarily matter for application code.

Setting the Size of the Minor Heap

The default minor heap size in OCaml is normally 2 MB on 64-bit platforms, but this
is increased to 8 MB if you use Core (which generally prefers default settings that
improve performance, but at the cost of a bigger memory profile). This setting can
be overridden via the s=<words> argument to OCAMLRUNPARAM. You can change it
after the program has started by calling the Gc. set function:

let ¢ = Gec.get () ;;

val ¢ : Gc.control =
{Core.Std.Gc.Control.minor_heap_size = 1000000;
major_heap_increment = 1000448; space_overhead = 100; verbose = 0;
max_overhead = 500; stack_Limit = 1048576; allocation_policy = 0}

Gc.tune ~minor_heap_size: (262144 * 2) () ;;
- runit = ()

OCaml Utop * gc/tune.topscript = all code
Changing the GC size dynamically will trigger an immediate minor heap collection.
Note that Core increases the default minor heap size from the standard OCaml

installation quite significantly, and you'll want to reduce this if running in very
memory-constrained environments.

THE LONG-LIVED MAJOR HEAP

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

2/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/minor_heap.ascii
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

o

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

The major heap is where the bulk of the longer-lived and larger values in your program are
stored. It consists of any number of noncontiguous chunks of virtual memory, each containing
live blocks interspersed with regions of free memory. The runtime system maintains a free-list
data structure that indexes all the free memory that it has allocated, and uses it to satisfy
allocation requests for OCaml blocks.

The major heap is typically much larger than the minor heap and can scale to gigabytes in size. It
is cleaned via a mark-and-sweep garbage collection algorithm that operates in several phases:

« The mark phase scans the block graph and marks all live blocks by setting a bit in the tag of
the block header (known as the color tag).

« The sweep phase sequentially scans the heap chunks and identifies dead blocks that weren't
marked earlier.

« The compact phase relocates live blocks into a freshly allocated heap to eliminate gaps in the
free list. This prevents the fragmentation of heap blocks in long-running programs and
normally occurs much less frequently than the mark and sweep phases.

A major garbage collection must also stop the world to ensure that blocks can be moved around
without this being observed by the live application. The mark-and-sweep phases run
incrementally over slices of the heap to avoid pausing the application for long periods of time,
and also precede each slice with a fast minor collection. Only the compaction phase touches all
the memory in one go, and is a relatively rare operation.

Allocating on the Major Heap

The major heap consists of a singly linked list of contiguous memory chunks sorted in increasing
order of virtual address. Each chunk is a single memory region allocated via malloc(3) and
consists of a header and data area which contains OCaml heap chunks. A heap chunk header
contains:

« The malloced virtual address of the memory region containing the chunk
« The size in bytes of the data area

« An allocation size in bytes used during heap compaction to merge small blocks to defragment
the heap

« Alink to the next heap chunk in the list

Each chunk's data area starts on a page boundary, and its size is a multiple of the page size (4 KB).
It contains a contiguous sequence of heap blocks that can be as small as one or two 4 KB pages,
but are usually allocated in 1 MB chunks (or 512 KB on 32-bit architectures).

Controlling Major Heap Growth

The Gc module uses the major heap increment value to control the major heap
growth. This defines the number of words to add to the major heap per expansion
and is the only memory allocation operation that the operating system observes
from the OCaml runtime after initial startup (since the minor is fixed in size).

If you anticipate allocating some large OCaml values or many small values in one
go, then setting the heap increment to a larger value will improve performance by
reducing the amount of heap resizing required in order to satisfy the allocation
requests. A small increment may result in lots of smaller heap chunks spread
across different regions of virtual memory that require more housekeeping in the
OCaml runtime to keep track of them:

Gc.tune ~major_heap_increment: (1000448 * 4) () ;;
- unit = ()

OCaml Utop * gc/tune.topscript , continued (part 1) * all code

Allocating an OCaml value on the major heap first checks the free list of blocks for a suitable
region to place it. If there isn't enough room on the free list, the runtime expands the major heap
by allocating a fresh heap chunk that will be large enough. That chunk is then added to the free
list, and the free list is checked again (and this time will definitely succeed).

Remember that most allocations to the major heap will go via the minor heap and only be
promoted if they are still used by the program after a minor collection. The one exception to this

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

3/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

o

Real World
OCaml

ickey

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

is for values larger than 256 words (that is, 2 KB on 64-bit platforms). These will be allocated
directly on the major heap, since an allocation on the minor heap would likely trigger an
immediate collection and copy it to the major heap anyway.

Memory Allocation Strategies

The major heap does its best to manage memory allocation as efficiently as possible and relies on
heap compaction to ensure that memory stays contiguous and unfragmented. The default
allocation policy normally works fine for most applications, but it's worth bearing in mind that
there are other options, too.

The free list of blocks is always checked first when allocating a new block in the major heap. The
default free list search is called next-fit allocation, with an alternative first-fit algorithm also
available.

Next-fit allocation

Next-fit allocation keeps a pointer to the block in the free list that was most recently used to
satisfy a request. When a new request comes in, the allocator searches from the next block to the
end of the free list, and then from the beginning of the free list up to that block.

Next-fit allocation is the default allocation strategy. It's quite a cheap allocation mechanism, since
the same heap chunk can be reused across allocation requests until it runs out. This in turn
means that there is good memory locality to use CPU caches better.

First-fit allocation

If your program allocates values of many varied sizes, you may sometimes find that your free list
becomes fragmented. In this situation, the GC is forced to perform an expensive compaction
despite there being free chunks, since none of the chunks alone are big enough to satisfy the
request.

First-fit allocation focuses on reducing memory fragmentation (and hence the number of
compactions), but at the expense of slower memory allocation. Every allocation scans the free list
from the beginning for a suitable free chunk, instead of reusing the most recent heap chunk as
the next-fit allocator does.

For some workloads that need more real-time behavior under load, the reduction in the
frequency of heap compaction will outweigh the extra allocation cost.

Controlling the Heap Allocation Policy

You can set the heap allocation policy via the Gc.allocation policy field. A value
of 0 (the default) sets it to next-fit, and 1 to the first-fit allocator.

The same behavior can be controlled at runtime by setting a=0 or a=1 in
OCAMLRUNPARAM.

Marking and Scanning the Heap

The marking process can take a long time to run over the complete major heap and has to pause
the main application while it's active. It therefore runs incrementally by marking the heap in
slices. Each value in the heap has a 2-bit color field in its header that is used to store information
about whether the value has been marked so that the GC can resume easily between slices.

Table 21.1. Tag color statuses

Tag color Block status

Blue On the free list and not currently in use

White (during marking) Not reached yet, but possibly reachable

White (during sweeping) Unreachable and can be freed

Gray Reachable, but its fields have not been scanned
Black Reachable, and its fields have been scanned

The color tags in the value headers store most of the state of the marking process, allowing it to
be paused and resumed later. The GC and application alternate between marking a slice of the
major heap and actually getting on with executing the program logic. The OCaml runtime
calculates a sensible value for the size of each major heap slice based on the rate of allocation and
available memory.

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 4/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml

15/01/2019

OREILLY"

y

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

The marking process starts with a set of root values that are always live (such as the application
stack). All values on the heap are initially marked as white values that are possibly reachable but
haven't been scanned yet. It recursively follows all the fields in the roots via a depth-first search,
and pushes newly encountered white blocks onto an intermediate stack of gray values while it
follows their fields. When a gray value's fields have all been followed, it is popped off the stack
and colored black.

This process is repeated until the gray value stack is empty and there are no further values to
mark. There's one important edge case in this process, though. The gray value stack can only
grow to a certain size, after which the GC can no longer recurse into intermediate values since it
has nowhere to store them while it follows their fields. If this happens, the heap is marked as
Impure and a more expensive check is initiated once the existing gray values have been
processed.

To mark an impure heap, the GC first marks it as pure and walks through the entire heap block-
by-block in increasing order of memory address. If it finds a gray block, it adds it to the gray list
and recursively marks it using the usual strategy for a pure heap. Once the scan of the complete
heap is finished, the mark phase checks again whether the heap has again become impure and
repeats the scan until it is pure again. These full-heap scans will continue until a successful scan
completes without overflowing the gray list.

Controlling Major Heap Collections

You can trigger a single slice of the major GC via the major slice call. This
performs a minor collection first, and then a single slice. The size of the slice is
normally automatically computed by the GC to an appropriate value and returns
this value so that you can modify it in future calls if necessary:

Gc.major_slice 0 ;;

- : int = 280015
Gc.full_major () ;;
- runit = ()

OCaml Utop * gc/tune.topscript , continued (part 2) * all code

The space_overhead setting controls how aggressive the GC is about setting the
slice size to a large size. This represents the proportion of memory used for live
data that will be "wasted" because the GC doesn't immediately collect unreachable
blocks. Core defaults this to 100 to reflect a typical system that isn't overly memory-
constrained. Set this even higher if you have lots of memory, or lower to cause the
GC to work harder and collect blocks faster at the expense of using more CPU time.

Heap Compaction

After a certain number of major GC cycles have completed, the heap may begin to be fragmented
due to values being deallocated out of order from how they were allocated. This makes it harder
for the GC to find a contiguous block of memory for fresh allocations, which in turn would
require the heap to be grown unnecessarily.

The heap compaction cycle avoids this by relocating all the values in the major heap into a fresh
heap that places them all contiguously in memory again. A naive implementation of the algorithm
would require extra memory to store the new heap, but OCaml performs the compaction in place
within the existing heap.

Controlling Frequency of Compactions

The max_overhead setting in the Gc module defines the connection between free
memory and allocated memory after which compaction is activated.

A value of 0 triggers a compaction after every major garbage collection cycle,
whereas the maximum value of 1000000 disables heap compaction completely. The
default settings should be fine unless you have unusual allocation patterns that are
causing a higher-than-usual rate of compactions:

Gc.tune ~max_overhead:0 () ;;
- runit = ()

OCaml Utop * gc/tune.topscript , continued (part 3) * all code

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

5/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

Intergenerational Pointers

One complexity of generational collection arises from the fact that minor heap sweeps are much
more frequent than major heap collections. In order to know which blocks in the minor heap are
live, the collector must track which minor-heap blocks are directly pointed to by major-heap
blocks. Without this information, each minor collection would also require scanning the much
larger major heap.

OCaml maintains a set of such intergenerational pointers to avoid this dependency between a
major and minor heap collection. The compiler introduces a write barrier to update this so-called
remembered set whenever a major-heap block is modified to point at a minor-heap block.

The mutable write barrier

The write barrier can have profound implications for the structure of your code. It's one of the
reasons using immutable data structures and allocating a fresh copy with changes can
sometimes be faster than mutating a record in place.

The OCaml compiler keeps track of any mutable types and adds a call to the runtime

caml modify function before making the change. This checks the location of the target write and
the value it's being changed to, and ensures that the remembered set is consistent. Although the
write barrier is reasonably efficient, it can sometimes be slower than simply allocating a fresh
value on the fast minor heap and doing some extra minor collections.

Let's see this for ourselves with a simple test program. You'll need to install the Core
benchmarking suite via opam install core bench before you compile this code:

open Core.Std
open Core_bench.Std

type t1 = { mutable itersl: int; mutable countl: float }
type t2 = { iters2: int; count2: float }

let rec test_mutable t1 =
match tl.itersl with
o -> ()
| ->
tl.itersl <- tl.itersl - 1;
tl.countl <- tl.countl +. 1.0;
test_mutable t1

let rec test_immutable t2 =
match t2.iters2 with
[e -> ()
In ->
let iters2 = n - 1 in
let count2 = t2.count2 +. 1.0 in
test_immutable { iters2; count2 }

let () =
let iters = 1000000 in
let tests = [
Bench.Test.create ~name:"mutable"
(fun () -> test_mutable { itersl=iters; countl=0.0 });
Bench.Test.create ~name:"immutable"
(fun () -> test_immutable { iters2=iters; count2=0.0 })
1 in
Bench.make_command tests |> Command.run

OCaml * gc/barrier_bench.ml * all code

This program defines a type t1 that is mutable and t2 that is immutable. The benchmark loop
iterates over both fields and increments a counter. Compile and execute this with some extra
options to show the amount of garbage collection occurring:

$ corebuild -pkg core_bench barrier_bench.native
$./barrier_bench.native -ascii name alloc

Estimated testing time 20s (change using -quota SECS).

Name Time/Run Minor Major Promoted % of max
mutable 4 _862_333 2_009_005 9.58 9.58 100.00
immutable 4 558 309 5 000 006 0.56 0.56 93.75

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

6/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/barrier_bench.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

Terminal * gc/run_barrier_bench.out * all code

OREILLY"

There is a stark space/time trade-off here. The mutable version takes significantly longer to
complete than the immutable one but allocates many fewer minor-heap words than the
immutable version. Minor allocation in OCaml is very fast, and so it is often better to use
immutable data structures in preference to the more conventional mutable versions. On the other
hand, if you only rarely mutate a value, it can be faster to take the write-barrier hit and not
allocate at all.

The only way to know for sure is to benchmark your program under real-world scenarios using
Buy in print and eBook. Core bench and experiment with the trade-offs. The command-line benchmark binaries have a

Table of Contents number of useful options that affect garbage collection behavior:

Prologue
I. Language Concepts
I1. Tools and Techniques

III. The Runtime System barrier_bench.native [COLUMN ...]
19. Foreign Function Interface

20. Memory Representation of

$./barrier_bench.native -help
Benchmark for mutable, immutable

Columns that can be specified are:

Values
21. Understanding the Garbage nhame - Name of the test.
Collector cycles - Number of CPU cycles (RDTSC) taken.
22. The Compiler Frontend: time - Number of nano secs taken.
Parsing and Type Checking confidence - 95% confidence interval and R"2 error for predictors.
23. The Compiler Backend: alloc - Allocation of major, minor and promoted words.
Bytecode and Native code gc - Show major and minor collections per 1000 runs.
Index percentage - Relative execution time as a percentage.
speedup - Relative execution cost as a speedup.
samples - Number of samples collected for profiling.

R”"2 is the fraction of the variance of the responder (such as runtime)
that is accounted for by the predictors (such as number of runs).

More informally, it describes how good a fit we're getting, with

R”2 = 1 1indicating a perfect fit and R*2 = 0 indicating a horrible
fit. Because we expect runtime to be very highly correlated with our
predictors, values very close to 1 are typical; a value less than .99
should cause some suspicion, and a value less than 0.9 probably
indicates either a shortage of data or that the data is erroneous or
peculiar in some way.

Also see: http://en.wikipedia.org/wiki/Coefficient_of determination

GC stats indicate how many collections or compactions happen per 1000
runs of the benchmarked function.

The following columns will be displayed by default:
name time +percentage

By default, columns that have no values are suppressed. To force
displaying empty columns, prefix the column name with a '+'.

Experimental feature: Internally, the library does a Linear
regression between the time taken as the predicted value and the
number of runs as the predictor. This can be changed to include
one or more of the additional predictors below, using the
flag called "-predictors”:

m : the number of minor collections

c : the number of compactions

=== flags ===

[-ascii] Display data in simple ascii based tables.

[-ci-absolute] Display 95% confidence interval in absolute numbers

[-clear-columns] Don't display default columns. Only show user specified
ones.

[-display STYLE] Table style (short, tall, Line, blank or column). Default
short.

[-fork] Fork and run each benchmark in separate child-process

[-geometric SCALE] Use geometric sampling. (default 1.01)
[-Llinear INCREMENT] Use Llinear sampling to explore number of runs, example 1.
[-load FILE] Analyze previously saved data files and

don't run tests. [-load] can be specified multiple times.

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 719

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/run_barrier_bench.out
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

ey

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

[-no-compactions] Disable GC compactions.
[-predictors m,c] Include additional predictors in regression (see help).
[-quota SECS] Time quota allowed per test (default 10s).
[-save] Save benchmark data to <test name>.txt files.
[-stabilize-gc] Stabilize GC between each sample capture.
[-v] High verbosity Llevel.
[-width WIDTH] width Limit on column display (default 170).
[-build-info] print info about this build and exit
[-version] print the version of this build and exit
[-help] print this help text and exit

(alias: -?)

Terminal * gc/show_barrier_bench_help.out * all code

The -no-compactions and -stabilize-gc options can help force a situation where your
application has fragmented memory. This can simulate the behavior of a long-running
application without you having to actually wait that long to re-create the behavior in a
performance unit test.

ATTACHING FINALIZER FUNCTIONS TO VALUES

OCaml's automatic memory management guarantees that a value will eventually be freed when
it's no longer in use, either via the GC sweeping it or the program terminating. It's sometimes
useful to run extra code just before a value is freed by the GC, for example, to check that a file
descriptor has been closed, or that a log message is recorded.

What Values Can Be Finalized?

Various values cannot have finalizers attached since they aren't heap-allocated.
Some examples of values that are not heap-allocated are integers, constant
constructors, Booleans, the empty array, the empty list, and the unit value. The
exact list of what is heap-allocated or not is implementation-dependent, which is
why Core provides the Heap block module to explicitly check before attaching the
finalizer.

Some constant values can be heap-allocated but never deallocated during the
lifetime of the program, for example, a list of integer constants. Heap block
explicitly checks to see if the value is in the major or minor heap, and rejects most
constant values. Compiler optimizations may also duplicate some immutable values
such as floating-point values in arrays. These may be finalized while another
duplicate copy is being used by the program.

For this reason, attach finalizers only to values that you are explicitly sure are heap-
allocated and aren't immutable. A common use is to attach them to file descriptors
to ensure they are closed. However, the finalizer normally shouldn't be the primary
way of closing the file descriptor, since it depends on the GC running in order to
collect the value. For a busy system, you can easily run out of a scarce resource
such as file descriptors before the GC catches up.

Core provides a Heap_block module that dynamically checks if a given value is suitable for
finalizing. This block is then passed to Async's Gc.add finalizer function that schedules the
finalizer safely with respect to all the other concurrent program threads.

Let's explore this with a small example that finalizes values of different types, some of which are
heap-allocated and others which are compile-time constants:

open Core.Std
open Async.Std

let attach_finalizer n v =
match Heap_block.create v with
| None -> printf "%20s: FAIL\n%!" n
| Some hb ->
let final _ = printf "%20s: OK\n%!" n in
Gc.add_finalizer hb final

type t = { foo: bool }
let main () =

let alloced_float = Unix.gettimeofday () in
let alloced_bool = alloced_float > 0.0 in

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

8/9

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/show_barrier_bench_help.out
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(Gl

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 21. Understanding the Garbage Collector / Real World OCaml

let alloced_string = String.
attach_finalizer "immediate
attach_finalizer "immediate
attach_finalizer "immediate
attach_finalizer "immediate
attach_finalizer "immediate
attach_finalizer "allocated
attach_finalizer "allocated
attach_finalizer "allocated
attach_finalizer "allocated

create 4 in

int" 1;

float" 1.0;

variant" ("Foo "hello");
string” "hello world";
record" { foo=false };

float" alloced_float;

bool" alloced_bool;

variant" (" Foo alloced_bool);
string" alloced_string;

attach_finalizer "allocated record" { foo=alloced_bool };
Gc.compact ();
return ()

let () =
Command.async_basic ~summary:"Testing finalizers"
Command.Spec.empty main
|> Command.run

Logjin wiith GitHulb to view
2nd adid commeanis

OCaml * gc/finalizer.ml * all code

Building and running this should show the following output:

$ corebuild -pkg async finalizer.native
$./finalizer.native

immediate int: FAIL
immediate float: FAIL
immediate variant: FAIL
immediate string: FAIL
immediate record: FAIL
allocated bool: FAIL
allocated record: OK
allocated string: OK
allocated variant: OK
allocated float: OK

Terminal * gc/run_finalizer.out * all code

The GC calls the finalization functions in the order of the deallocation. If several values become
unreachable during the same GC cycle, the finalization functions will be called in the reverse
order of the corresponding calls to add_finalizer. Each callto add finalizer adds to the set
of functions, which are run when the value becomes unreachable. You can have many finalizers
all pointing to the same heap block if you wish.

After a garbage collection determines that a heap block b is unreachable, it removes from the set
of finalizers all the functions associated with b, and serially applies each of those functions to b.
Thus, every finalizer function attached to b will run at most once. However, program termination
will not cause all the finalizers to be run before the runtime exits.

The finalizer can use all features of OCaml, including assignments that make the value reachable
again and thus prevent it from being garbage-collected. It can also loop forever, which will cause
other finalizers to be interleaved with it.

< Previous

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

Next >

9/9

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/finalizer.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/run_finalizer.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html

