
15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 1/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 21. Understanding the GarbageChapter 21. Understanding the Garbage
CollectorCollector
We've described the runtime format of individual OCaml variables earlier, in Chapter 20, Memory

Representation of Values. When you execute your program, OCaml manages the lifecycle of these

variables by regularly scanning allocated values and freeing them when they're no longer

needed. This in turn means that your applications don't need to manually implement memory

management, and it greatly reduces the likelihood of memory leaks creeping into your code.

The OCaml runtime is a C library that provides routines that can be called from running OCaml

programs. The runtime manages a heap, which is a collection of memory regions that it obtains

from the operating system. The runtime uses this memory to hold heap blocks that it �lls up with

OCaml values in response to allocation requests by the OCaml program.

MARK AND SWEEP GARBAGE COLLECTIONMARK AND SWEEP GARBAGE COLLECTION

When there isn't enough memory available to satisfy an allocation request from the pool of

allocated heap blocks, the runtime system invokes the garbage collector (GC). An OCaml program

can't explicitly free a value when it is done with it. Instead, the GC regularly determines which

values are live and which values are dead, i.e., no longer in use. Dead values are collected and

their memory made available for reuse by the application.

The GC doesn't keep constant track of values as they are allocated and used. Instead, it regularly

scans them by starting from a set of root values that the application always has access to (such as

the stack). The GC maintains a directed graph in which heap blocks are nodes, and there is an

edge from heap block b1 to heap block b2 if some �eld of b1 is a pointer to b2.

All blocks reachable from the roots by following edges in the graph must be retained, and

unreachable blocks can be reused by the application. The algorithm used by OCaml to perform

this heap traversal is commonly known as mark and sweep garbage collection, and we'll explain

it further now.

GENERATIONAL GARBAGE COLLECTIONGENERATIONAL GARBAGE COLLECTION

The usual OCaml programming style involves allocating many small variables that are used for a

short period of time and then never accessed again. OCaml takes advantage of this fact to

improve performance by using a generational GC.

A generational GC maintains separate memory regions to hold blocks based on how long the

blocks have been live. OCaml's heap is split into two such regions:

A small, �xed-size minor heap where most blocks are initially allocated

A larger, variable-size major heap for blocks that have been live longer

A typical functional programming style means that young blocks tend to die young and old

blocks tend to stay around for longer than young ones. This is often referred to as the

generational hypothesis.

OCaml uses di�erent memory layouts and garbage-collection algorithms for the major and minor

heaps to account for this generational di�erence. We'll explain how they di�er in more detail

next.

The Gc Module and OCAMLRUNPARAMThe Gc Module and OCAMLRUNPARAM

OCaml provides several mechanisms to query and alter the behavior of the runtime system. The

Gc module provides this functionality from within OCaml code, and we'll frequently refer to it in

the rest of the chapter. As with several other standard library modules, Core alters the Gc

interface from the standard OCaml library. We'll assume that you've opened Core.Std in our

explanations.

You can also control the behavior of OCaml programs by setting the OCAMLRUNPARAM

environment variable before launching your application. This lets you set GC parameters without

recompiling, for example to benchmark the e�ects of di�erent settings. The format of

OCAMLRUNPARAM is documented in the OCaml manual.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
http://caml.inria.fr/pub/docs/manual-ocaml/manual024.html

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 2/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

THE FAST MINOR HEAPTHE FAST MINOR HEAP

The minor heap is where most of your short-lived values are held. It consists of one contiguous

chunk of virtual memory containing a sequence of OCaml blocks. If there is space, allocating a

new block is a fast, constant-time operation that requires just a couple of CPU instructions.

To garbage-collect the minor heap, OCaml uses copying collection to move all live blocks in the

minor heap to the major heap. This takes work proportional to the number of live blocks in the

minor heap, which is typically small according to the generational hypothesis. The minor

collection stops the world (that it, halts the application) while it runs, which is why it's so

important that it complete quickly to let the application resume running with minimal

interruption.

Allocating on the Minor HeapAllocating on the Minor Heap

The minor heap is a contiguous chunk of virtual memory that is usually a few megabytes in size

so that it can be scanned quickly.

 <---- size ---->
 base --- start ---------------- end
 limit ptr <------
 blocks

Diagram ∗ gc/minor_heap.ascii ∗ all code

The runtime stores the boundaries of the minor heap in two pointers that delimit the start and

end of the heap region (caml_young_start and caml_young_end, but we will drop the

caml_young pre�x for brevity). The base is the memory address returned by the system malloc,

and start is aligned against the next nearest word boundary from base to make it easier to store

OCaml values.

In a fresh minor heap, the limit equals the start, and the current ptr will equal the end. ptr

decreases as blocks are allocated until it reaches limit, at which point a minor garbage

collection is triggered.

Allocating a block in the minor heap just requires ptr to be decremented by the size of the block

(including the header) and a check that it's not less than limit. If there isn't enough space left for

the block without decrementing past limit, a minor garbage collection is triggered. This is a very

fast check (with no branching) on most CPU architectures.

You may wonder why limit is required at all, since it always seems to equal start. It's because

the easiest way for the runtime to schedule a minor heap collection is by setting limit to equal

end. The next allocation will never have enough space after this is done and will always trigger a

garbage collection. There are various internal reasons for such early collections, such as handling

pending UNIX signals, and they don't ordinarily matter for application code.

Setting the Size of the Minor HeapSetting the Size of the Minor Heap

The default minor heap size in OCaml is normally 2 MB on 64-bit platforms, but this

is increased to 8 MB if you use Core (which generally prefers default settings that

improve performance, but at the cost of a bigger memory pro�le). This setting can

be overridden via the s=<words> argument to OCAMLRUNPARAM. You can change it

after the program has started by calling the Gc.set function:

let c = Gc.get () ;;
val c : Gc.control =
 {Core.Std.Gc.Control.minor_heap_size = 1000000;
 major_heap_increment = 1000448; space_overhead = 100; verbose = 0;
 max_overhead = 500; stack_limit = 1048576; allocation_policy = 0}
Gc.tune ~minor_heap_size:(262144 * 2) () ;;
- : unit = ()

OCaml Utop ∗ gc/tune.topscript ∗ all code

Changing the GC size dynamically will trigger an immediate minor heap collection.

Note that Core increases the default minor heap size from the standard OCaml

installation quite signi�cantly, and you'll want to reduce this if running in very

memory-constrained environments.

THE LONG-LIVED MAJOR HEAPTHE LONG-LIVED MAJOR HEAP

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/minor_heap.ascii
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 3/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The major heap is where the bulk of the longer-lived and larger values in your program are

stored. It consists of any number of noncontiguous chunks of virtual memory, each containing

live blocks interspersed with regions of free memory. The runtime system maintains a free-list

data structure that indexes all the free memory that it has allocated, and uses it to satisfy

allocation requests for OCaml blocks.

The major heap is typically much larger than the minor heap and can scale to gigabytes in size. It

is cleaned via a mark-and-sweep garbage collection algorithm that operates in several phases:

The mark phase scans the block graph and marks all live blocks by setting a bit in the tag of

the block header (known as the color tag).

The sweep phase sequentially scans the heap chunks and identi�es dead blocks that weren't

marked earlier.

The compact phase relocates live blocks into a freshly allocated heap to eliminate gaps in the

free list. This prevents the fragmentation of heap blocks in long-running programs and

normally occurs much less frequently than the mark and sweep phases.

A major garbage collection must also stop the world to ensure that blocks can be moved around

without this being observed by the live application. The mark-and-sweep phases run

incrementally over slices of the heap to avoid pausing the application for long periods of time,

and also precede each slice with a fast minor collection. Only the compaction phase touches all

the memory in one go, and is a relatively rare operation.

Allocating on the Major HeapAllocating on the Major Heap

The major heap consists of a singly linked list of contiguous memory chunks sorted in increasing

order of virtual address. Each chunk is a single memory region allocated via malloc(3) and

consists of a header and data area which contains OCaml heap chunks. A heap chunk header

contains:

The malloced virtual address of the memory region containing the chunk

The size in bytes of the data area

An allocation size in bytes used during heap compaction to merge small blocks to defragment

the heap

A link to the next heap chunk in the list

Each chunk's data area starts on a page boundary, and its size is a multiple of the page size (4 KB).

It contains a contiguous sequence of heap blocks that can be as small as one or two 4 KB pages,

but are usually allocated in 1 MB chunks (or 512 KB on 32-bit architectures).

Controlling Major Heap GrowthControlling Major Heap Growth

The Gc module uses the major_heap_increment value to control the major heap

growth. This de�nes the number of words to add to the major heap per expansion

and is the only memory allocation operation that the operating system observes

from the OCaml runtime after initial startup (since the minor is �xed in size).

If you anticipate allocating some large OCaml values or many small values in one

go, then setting the heap increment to a larger value will improve performance by

reducing the amount of heap resizing required in order to satisfy the allocation

requests. A small increment may result in lots of smaller heap chunks spread

across di�erent regions of virtual memory that require more housekeeping in the

OCaml runtime to keep track of them:

Gc.tune ~major_heap_increment:(1000448 * 4) () ;;
- : unit = ()

OCaml Utop ∗ gc/tune.topscript , continued (part 1) ∗ all code

Allocating an OCaml value on the major heap �rst checks the free list of blocks for a suitable

region to place it. If there isn't enough room on the free list, the runtime expands the major heap

by allocating a fresh heap chunk that will be large enough. That chunk is then added to the free

list, and the free list is checked again (and this time will de�nitely succeed).

Remember that most allocations to the major heap will go via the minor heap and only be

promoted if they are still used by the program after a minor collection. The one exception to this

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 4/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

is for values larger than 256 words (that is, 2 KB on 64-bit platforms). These will be allocated

directly on the major heap, since an allocation on the minor heap would likely trigger an

immediate collection and copy it to the major heap anyway.

Memory Allocation StrategiesMemory Allocation Strategies

The major heap does its best to manage memory allocation as e�ciently as possible and relies on

heap compaction to ensure that memory stays contiguous and unfragmented. The default

allocation policy normally works �ne for most applications, but it's worth bearing in mind that

there are other options, too.

The free list of blocks is always checked �rst when allocating a new block in the major heap. The

default free list search is called next-�t allocation, with an alternative �rst-�t algorithm also

available.

Next-�t allocationNext-�t allocation

Next-�t allocation keeps a pointer to the block in the free list that was most recently used to

satisfy a request. When a new request comes in, the allocator searches from the next block to the

end of the free list, and then from the beginning of the free list up to that block.

Next-�t allocation is the default allocation strategy. It's quite a cheap allocation mechanism, since

the same heap chunk can be reused across allocation requests until it runs out. This in turn

means that there is good memory locality to use CPU caches better.

First-�t allocationFirst-�t allocation

If your program allocates values of many varied sizes, you may sometimes �nd that your free list

becomes fragmented. In this situation, the GC is forced to perform an expensive compaction

despite there being free chunks, since none of the chunks alone are big enough to satisfy the

request.

First-�t allocation focuses on reducing memory fragmentation (and hence the number of

compactions), but at the expense of slower memory allocation. Every allocation scans the free list

from the beginning for a suitable free chunk, instead of reusing the most recent heap chunk as

the next-�t allocator does.

For some workloads that need more real-time behavior under load, the reduction in the

frequency of heap compaction will outweigh the extra allocation cost.

Controlling the Heap Allocation PolicyControlling the Heap Allocation Policy

You can set the heap allocation policy via the Gc.allocation_policy �eld. A value

of 0 (the default) sets it to next-�t, and 1 to the �rst-�t allocator.

The same behavior can be controlled at runtime by setting a=0 or a=1 in

OCAMLRUNPARAM.

Marking and Scanning the HeapMarking and Scanning the Heap

The marking process can take a long time to run over the complete major heap and has to pause

the main application while it's active. It therefore runs incrementally by marking the heap in

slices. Each value in the heap has a 2-bit color �eld in its header that is used to store information

about whether the value has been marked so that the GC can resume easily between slices.

Table 21.1. Tag color statusesTable 21.1. Tag color statuses

Tag colorTag color Block statusBlock status
Blue On the free list and not currently in use
White (during marking) Not reached yet, but possibly reachable
White (during sweeping) Unreachable and can be freed
Gray Reachable, but its �elds have not been scanned
Black Reachable, and its �elds have been scanned

The color tags in the value headers store most of the state of the marking process, allowing it to

be paused and resumed later. The GC and application alternate between marking a slice of the

major heap and actually getting on with executing the program logic. The OCaml runtime

calculates a sensible value for the size of each major heap slice based on the rate of allocation and

available memory.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 5/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The marking process starts with a set of root values that are always live (such as the application

stack). All values on the heap are initially marked as white values that are possibly reachable but

haven't been scanned yet. It recursively follows all the �elds in the roots via a depth-�rst search,

and pushes newly encountered white blocks onto an intermediate stack of gray values while it

follows their �elds. When a gray value's �elds have all been followed, it is popped o� the stack

and colored black.

This process is repeated until the gray value stack is empty and there are no further values to

mark. There's one important edge case in this process, though. The gray value stack can only

grow to a certain size, after which the GC can no longer recurse into intermediate values since it

has nowhere to store them while it follows their �elds. If this happens, the heap is marked as

impure and a more expensive check is initiated once the existing gray values have been

processed.

To mark an impure heap, the GC �rst marks it as pure and walks through the entire heap block-

by-block in increasing order of memory address. If it �nds a gray block, it adds it to the gray list

and recursively marks it using the usual strategy for a pure heap. Once the scan of the complete

heap is �nished, the mark phase checks again whether the heap has again become impure and

repeats the scan until it is pure again. These full-heap scans will continue until a successful scan

completes without over�owing the gray list.

Controlling Major Heap CollectionsControlling Major Heap Collections

You can trigger a single slice of the major GC via the major_slice call. This

performs a minor collection �rst, and then a single slice. The size of the slice is

normally automatically computed by the GC to an appropriate value and returns

this value so that you can modify it in future calls if necessary:

Gc.major_slice 0 ;;
- : int = 280015
Gc.full_major () ;;
- : unit = ()

OCaml Utop ∗ gc/tune.topscript , continued (part 2) ∗ all code

The space_overhead setting controls how aggressive the GC is about setting the

slice size to a large size. This represents the proportion of memory used for live

data that will be "wasted" because the GC doesn't immediately collect unreachable

blocks. Core defaults this to 100 to re�ect a typical system that isn't overly memory-

constrained. Set this even higher if you have lots of memory, or lower to cause the

GC to work harder and collect blocks faster at the expense of using more CPU time.

Heap CompactionHeap Compaction

After a certain number of major GC cycles have completed, the heap may begin to be fragmented

due to values being deallocated out of order from how they were allocated. This makes it harder

for the GC to �nd a contiguous block of memory for fresh allocations, which in turn would

require the heap to be grown unnecessarily.

The heap compaction cycle avoids this by relocating all the values in the major heap into a fresh

heap that places them all contiguously in memory again. A naive implementation of the algorithm

would require extra memory to store the new heap, but OCaml performs the compaction in place

within the existing heap.

Controlling Frequency of CompactionsControlling Frequency of Compactions

The max_overhead setting in the Gc module de�nes the connection between free

memory and allocated memory after which compaction is activated.

A value of 0 triggers a compaction after every major garbage collection cycle,

whereas the maximum value of 1000000 disables heap compaction completely. The

default settings should be �ne unless you have unusual allocation patterns that are

causing a higher-than-usual rate of compactions:

Gc.tune ~max_overhead:0 () ;;
- : unit = ()

OCaml Utop ∗ gc/tune.topscript , continued (part 3) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/tune.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 6/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Intergenerational PointersIntergenerational Pointers

One complexity of generational collection arises from the fact that minor heap sweeps are much

more frequent than major heap collections. In order to know which blocks in the minor heap are

live, the collector must track which minor-heap blocks are directly pointed to by major-heap

blocks. Without this information, each minor collection would also require scanning the much

larger major heap.

OCaml maintains a set of such intergenerational pointers to avoid this dependency between a

major and minor heap collection. The compiler introduces a write barrier to update this so-called

remembered set whenever a major-heap block is modi�ed to point at a minor-heap block.

The mutable write barrierThe mutable write barrier

The write barrier can have profound implications for the structure of your code. It's one of the

reasons using immutable data structures and allocating a fresh copy with changes can

sometimes be faster than mutating a record in place.

The OCaml compiler keeps track of any mutable types and adds a call to the runtime

caml_modify function before making the change. This checks the location of the target write and

the value it's being changed to, and ensures that the remembered set is consistent. Although the

write barrier is reasonably e�cient, it can sometimes be slower than simply allocating a fresh

value on the fast minor heap and doing some extra minor collections.

Let's see this for ourselves with a simple test program. You'll need to install the Core

benchmarking suite via opam install core_bench before you compile this code:

open Core.Std
open Core_bench.Std

type t1 = { mutable iters1: int; mutable count1: float }
type t2 = { iters2: int; count2: float }

let rec test_mutable t1 =
 match t1.iters1 with
 |0 -> ()
 |_ ->
 t1.iters1 <- t1.iters1 - 1;
 t1.count1 <- t1.count1 +. 1.0;
 test_mutable t1

let rec test_immutable t2 =
 match t2.iters2 with
 |0 -> ()
 |n ->
 let iters2 = n - 1 in
 let count2 = t2.count2 +. 1.0 in
 test_immutable { iters2; count2 }

let () =
 let iters = 1000000 in
 let tests = [
 Bench.Test.create ~name:"mutable"
 (fun () -> test_mutable { iters1=iters; count1=0.0 });
 Bench.Test.create ~name:"immutable"
 (fun () -> test_immutable { iters2=iters; count2=0.0 })
] in
 Bench.make_command tests |> Command.run

OCaml ∗ gc/barrier_bench.ml ∗ all code

This program de�nes a type t1 that is mutable and t2 that is immutable. The benchmark loop

iterates over both �elds and increments a counter. Compile and execute this with some extra

options to show the amount of garbage collection occurring:

$ corebuild -pkg core_bench barrier_bench.native
$./barrier_bench.native -ascii name alloc
Estimated testing time 20s (change using -quota SECS).

 Name Time/Run Minor Major Promoted % of max
 ----------- ----------- ----------- ------- ---------- ----------
 mutable 4_862_333 2_000_005 9.58 9.58 100.00
 immutable 4_558_309 5_000_006 0.56 0.56 93.75

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/barrier_bench.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 7/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Terminal ∗ gc/run_barrier_bench.out ∗ all code

There is a stark space/time trade-o� here. The mutable version takes signi�cantly longer to

complete than the immutable one but allocates many fewer minor-heap words than the

immutable version. Minor allocation in OCaml is very fast, and so it is often better to use

immutable data structures in preference to the more conventional mutable versions. On the other

hand, if you only rarely mutate a value, it can be faster to take the write-barrier hit and not

allocate at all.

The only way to know for sure is to benchmark your program under real-world scenarios using

Core_bench and experiment with the trade-o�s. The command-line benchmark binaries have a

number of useful options that a�ect garbage collection behavior:

$./barrier_bench.native -help
Benchmark for mutable, immutable

 barrier_bench.native [COLUMN ...]

Columns that can be specified are:
 name - Name of the test.
 cycles - Number of CPU cycles (RDTSC) taken.
 time - Number of nano secs taken.
 confidence - 95% confidence interval and R^2 error for predictors.
 alloc - Allocation of major, minor and promoted words.
 gc - Show major and minor collections per 1000 runs.
 percentage - Relative execution time as a percentage.
 speedup - Relative execution cost as a speedup.
 samples - Number of samples collected for profiling.

R^2 is the fraction of the variance of the responder (such as runtime)
that is accounted for by the predictors (such as number of runs).
More informally, it describes how good a fit we're getting, with
R^2 = 1 indicating a perfect fit and R^2 = 0 indicating a horrible
fit. Because we expect runtime to be very highly correlated with our
predictors, values very close to 1 are typical; a value less than 0.99
should cause some suspicion, and a value less than 0.9 probably
indicates either a shortage of data or that the data is erroneous or
peculiar in some way.
Also see: http://en.wikipedia.org/wiki/Coefficient_of_determination

GC stats indicate how many collections or compactions happen per 1000
runs of the benchmarked function.

The following columns will be displayed by default:
 name time +percentage

By default, columns that have no values are suppressed. To force
displaying empty columns, prefix the column name with a '+'.

Experimental feature: Internally, the library does a linear
regression between the time taken as the predicted value and the
number of runs as the predictor. This can be changed to include
one or more of the additional predictors below, using the
flag called "-predictors":
 m : the number of minor collections
 c : the number of compactions

=== flags ===

 [-ascii] Display data in simple ascii based tables.
 [-ci-absolute] Display 95% confidence interval in absolute numbers
 [-clear-columns] Don't display default columns. Only show user specified
 ones.
 [-display STYLE] Table style (short, tall, line, blank or column). Default
 short.
 [-fork] Fork and run each benchmark in separate child-process
 [-geometric SCALE] Use geometric sampling. (default 1.01)
 [-linear INCREMENT] Use linear sampling to explore number of runs, example 1.
 [-load FILE] Analyze previously saved data files and
 don't run tests. [-load] can be specified multiple times.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/run_barrier_bench.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 8/9

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 [-no-compactions] Disable GC compactions.
 [-predictors m,c] Include additional predictors in regression (see help).
 [-quota SECS] Time quota allowed per test (default 10s).
 [-save] Save benchmark data to <test name>.txt files.
 [-stabilize-gc] Stabilize GC between each sample capture.
 [-v] High verbosity level.
 [-width WIDTH] width limit on column display (default 170).
 [-build-info] print info about this build and exit
 [-version] print the version of this build and exit
 [-help] print this help text and exit
 (alias: -?)

Terminal ∗ gc/show_barrier_bench_help.out ∗ all code

The -no-compactions and -stabilize-gc options can help force a situation where your

application has fragmented memory. This can simulate the behavior of a long-running

application without you having to actually wait that long to re-create the behavior in a

performance unit test.

ATTACHING FINALIZER FUNCTIONS TO VALUESATTACHING FINALIZER FUNCTIONS TO VALUES

OCaml's automatic memory management guarantees that a value will eventually be freed when

it's no longer in use, either via the GC sweeping it or the program terminating. It's sometimes

useful to run extra code just before a value is freed by the GC, for example, to check that a �le

descriptor has been closed, or that a log message is recorded.

What Values Can Be Finalized?What Values Can Be Finalized?

Various values cannot have �nalizers attached since they aren't heap-allocated.

Some examples of values that are not heap-allocated are integers, constant

constructors, Booleans, the empty array, the empty list, and the unit value. The

exact list of what is heap-allocated or not is implementation-dependent, which is

why Core provides the Heap_block module to explicitly check before attaching the

�nalizer.

Some constant values can be heap-allocated but never deallocated during the

lifetime of the program, for example, a list of integer constants. Heap_block

explicitly checks to see if the value is in the major or minor heap, and rejects most

constant values. Compiler optimizations may also duplicate some immutable values

such as �oating-point values in arrays. These may be �nalized while another

duplicate copy is being used by the program.

For this reason, attach �nalizers only to values that you are explicitly sure are heap-

allocated and aren't immutable. A common use is to attach them to �le descriptors

to ensure they are closed. However, the �nalizer normally shouldn't be the primary

way of closing the �le descriptor, since it depends on the GC running in order to

collect the value. For a busy system, you can easily run out of a scarce resource

such as �le descriptors before the GC catches up.

Core provides a Heap_block module that dynamically checks if a given value is suitable for

�nalizing. This block is then passed to Async's Gc.add_finalizer function that schedules the

�nalizer safely with respect to all the other concurrent program threads.

Let's explore this with a small example that �nalizes values of di�erent types, some of which are

heap-allocated and others which are compile-time constants:

open Core.Std
open Async.Std

let attach_finalizer n v =
 match Heap_block.create v with
 | None -> printf "%20s: FAIL\n%!" n
 | Some hb ->
 let final _ = printf "%20s: OK\n%!" n in
 Gc.add_finalizer hb final

type t = { foo: bool }

let main () =
 let alloced_float = Unix.gettimeofday () in
 let alloced_bool = alloced_float > 0.0 in

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/show_barrier_bench_help.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 21. Understanding the Garbage Collector / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html 9/9

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 let alloced_string = String.create 4 in
 attach_finalizer "immediate int" 1;
 attach_finalizer "immediate float" 1.0;
 attach_finalizer "immediate variant" (`Foo "hello");
 attach_finalizer "immediate string" "hello world";
 attach_finalizer "immediate record" { foo=false };
 attach_finalizer "allocated float" alloced_float;
 attach_finalizer "allocated bool" alloced_bool;
 attach_finalizer "allocated variant" (`Foo alloced_bool);
 attach_finalizer "allocated string" alloced_string;
 attach_finalizer "allocated record" { foo=alloced_bool };
 Gc.compact ();
 return ()

let () =
 Command.async_basic ~summary:"Testing finalizers"
 Command.Spec.empty main
 |> Command.run

OCaml ∗ gc/finalizer.ml ∗ all code

Building and running this should show the following output:

$ corebuild -pkg async finalizer.native
$./finalizer.native
 immediate int: FAIL
 immediate float: FAIL
 immediate variant: FAIL
 immediate string: FAIL
 immediate record: FAIL
 allocated bool: FAIL
 allocated record: OK
 allocated string: OK
 allocated variant: OK
 allocated float: OK

Terminal ∗ gc/run_finalizer.out ∗ all code

The GC calls the �nalization functions in the order of the deallocation. If several values become

unreachable during the same GC cycle, the �nalization functions will be called in the reverse

order of the corresponding calls to add_finalizer. Each call to add_finalizer adds to the set

of functions, which are run when the value becomes unreachable. You can have many �nalizers

all pointing to the same heap block if you wish.

After a garbage collection determines that a heap block b is unreachable, it removes from the set

of �nalizers all the functions associated with b, and serially applies each of those functions to b.

Thus, every �nalizer function attached to b will run at most once. However, program termination

will not cause all the �nalizers to be run before the runtime exits.

The �nalizer can use all features of OCaml, including assignments that make the value reachable

again and thus prevent it from being garbage-collected. It can also loop forever, which will cause

other �nalizers to be interleaved with it.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Funderstanding-the-garbage-collector.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/gc/finalizer.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/gc/run_finalizer.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html

