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Hand-crafted vs learned feature extraction
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Perceptron: general formulation

* Binary classification:

Z =Wy + W1 X4 + ...+ ann
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Vectors xfi) and labels yfi)

* Vectors xl/) are real valued where ||x||, = 1
Find vector w = (W, Wy ,... , Wy)

* Each w;is a real number



Activation functions

* The perceptron was initially
proposed with the step function.
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 Historically, other activation fndion
functions have been studied.
* The perceptron with the sigmoid activation function
corresponds to the logistic regression model.
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Multi-layer classifiers

* Multi-layer classifiers allow to learn non-linear relations, i.e. complex
relationships such as exclusive-OR.

* Usually one to two hidden layers produce the best results.

* Trained with the back-propagation algorithm
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Compute derivatives

Back-prop

Compute loss
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Traditional neural network architectures

* Traditionally, neural networks receive input features that are
extracted from data (text, images, etc.) and are task independent.

* This creates a bottleneck: only so much can you learn from those task
independente features.
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Low-level data representations

* Deep architectures were introduced to learn data representations
that were better suited to each task.

* Deep architectures look at the most basic data element, i.e., an
image pixel or a text character, to learn new data representations.

Learned ,
low-level § O T output

feature
extractor




A

Convolution filters

* A convolution filter applies a kernel to the all image by performing
the convolution operation.
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Low-pass convolution filters

* The low-pass convolution filter applies a

gaussian filter to the input image.

* The Gaussian filter is approximated by a kernel

with a given width.

* Example:
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High-pass convolution filters

1 1 1
* High pass filters aim to detect the image edges " (i.)) = [ 0 0 O ‘

-1 -1 -1
* Different kernels are used to detect such 1 0 -1
edges at diferent scales and orientations. hy(i,j) =1 0 -1
1 0 -1
Inbut image Output image after Output image after
pu g applying horizontal filter applying vertical filter
255 255 0 0 00 0 0 0 255 255 0
255 255 0 0 00 0 0 0 255 255 0
A(x,y) =1255 255 0 O gnlx,y) =10 0 0 O gy(x,y) =10 255 255 0
255 255 0 0 00 0 0 0 255 255 0
255 255 0 0 00 0 0 0 255 255 0.




Example

1 0 -1 1 1 1
h,(i,j))=[1 0 -1 hp(,j)=10 0 0
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Convolution filter kernels

There are many diferent convolution filter kernels
that were studied over decades in the past.
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Can we learn the convolution kernels?

Yes, we can!



Convolutional Networks

* Scale up neural networks to process very large images / video
sequences
» Sparse connections
* Parameter sharing

* Automatically generalize across spatial translations of inputs

» Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)



Convolutional Network Components

Simple layer terminology

Next layer

Pooling layer

3

Detector layer: Nonlinearity

e.g., rectified linear

A

Convolution layer:

Affine transform

?

Input to layers

Figure 9.7

Convolved
Feature




2D Convolution
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Types of connectivity

Kernel: | 1 | 1

Local connection:
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Sparse connectivity viewed from below

Y c
© C
Q 0O

etoe

UV c o
S5 0 W

Figure 9.2



Sparse connectivity viewed from above
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Parameter Sharing

Convolution shares the same
parameters across all spatial
locations

Traditional matrix multiplication does
not share any parameters
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Convolution with Stride
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Exercise: draw the NN of this convolution
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Convolutional Network Components

Simple layer terminology

Next layer

Pooling layer

3

Detector layer: Nonlinearity

e.g., rectified linear

A

Convolution layer:

Affine transform 1)1(3)0|0
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Softmax

* The softmax function was quite popular as the activation
function of neural networks.

* It is diferentiable in all points
* It is convenient from a mathematical point of view

* |t can easlily saturate for high values of inputs

* Prevents passing information
between layers




Rectified linear unit (RelLU)

* Rectified linear activation:

g(z) = max{0, z}

 Brings several advantages over traditional softmax for hidden
layers:
* Never saturates, i.e. never

looses information between layers

[0, =}

* Gradient is constant,
l.e. faster training

» Forces sparsity, thus removes
contribution from noisy units




Convolutional Network Components

Simple layer terminology

Next layer

Convolved Pooled
feature feature

Pooling layer

3

Detector layer: Nonlinearity

e.g., rectified linear
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Convolution layer:
Affine transform \

1K1 1K0 1K1 0 0
OXCI 1X1 1)(0 1 0 4
0)(1 OKO 1K1 1 1
T o|0j1|1]|0
o|1|1(0]|0
Input to layers Image Convolved
Feature

27
Figure 9.7



Pooling layers

Convolved
feature

Pooled
feature



Max Pooling and Invariance to Translation
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Convolutional Network Components

Simple layer terminology

Next layer

. 1

Convolved Pooled
feature feature

Pooling layer
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Learning deep data representations

* Deep learning architectures stack multiple layers of
convolutions.

* These architecures learn hierarchies of data
representations

* Traditionally, training neural networks with many
layers did not produce good results.

* Some of the many hidden layers would force the model
to get stuck in a local minima.
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ImageNet competition

* A total of 1.43 million images
annotated with 1.000 object classes

http://image-net.org/explore.php

IMa GENET
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* The goal is to annotated a test sample
and be as accurate as possible.

T | e | g 7 e g | S W aEE

eiEEEET EsmwaEl T lal

. wEEmiEE Dl anmaE v Y

=v-!=ﬁl aBRIsE i m=wam

- = 8 R T B o g e | i e e |l e ‘w
; =E';=:E T W g .

: 0¥ - | ==
] P :ii

e Human error is 5.1%

‘
Sleddi Cyclins pr

el | W B E o P | B
« | om T 5, .

- PS .
—1 CCT B P-i!l!‘=w'r e
ik mmms B o L gy

B

=0ENAmE - —— (=
TREL mm R, e

o ~
e T
g = 1
—

e Great impact in advancing the state of
the art.

‘ ¥
=
=2
hig
|
=

Stanford Vision Lab, Stanford University, Princeton University Simage-ns Capyright infringement

33


http://image-net.org/explore.php

Examples of CNN architectures

Output neurons
correspond to
ImageNet concepts

Inpuc layer (51} 4 feacure maps

1 1 {C1) 4 feature maps (52) 6 feature maps {C2) & feature maps
] '

convolution layer I sub-sampling layer l convolution layer l sub-sampling layer l fully connected MLPl
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Gabor-like Learned Kernels

Figure 9.19
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Gabor-like Learned Kernels

Figure 9.18
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Low level CNN kernels

Example for
face detection




Features are translation invariant
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High-level features are composed of low-level
features
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Example for multiple classes

Elephants Chairs Faces, cars, airplanes, motorbikes

High-level
Conv Kernels

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2011). Unsupervised learning of hierarchical
representations with convolutional deep belief networks. Communications of the ACM, 54(10), 95-103.
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AlexNet
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Krizhevsky, A., Sutskever, |., & Hinton, G. E. (2012). Imagenet classification with deep convolutional

neural networks. In Advances in neural information processing systems (pp. 1097-1105).
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VGG 16 architecture
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Example

from tensorflow.keras.applications.vgglé import VGG16

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.vgglé import preprocess_input
from tensorflow.keras.models import Model

import numpy as np

Output neurons
base_model = VGG16(weights='imagenet') d
base_model. summary () correspon to

ImageNet concepts
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model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4 pool®).output)
model. summary()
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Visualizing VGG16

https://github.com/yosuah/vgg deconv vis

High level neuron from the fifth convolution block
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https://github.com/yosuah/vgg_deconv_vis

Other major architectures

 Spatial Transducer Net: input size scales with output size, all layers
are convolutional

 All Convolutional Net: no pooling layers, just use strided convolution
to shrink representation size

* Inception: complicated architecture designed to achieve high
accuracy with low computational cost

* ResNet: blocks of layers with same spatial size, with each layer’s
output added to the same buffer that is repeatedly updated. Very
many updates = very deep net, but without vanishing gradient.



VGG-19 3d-layer plain 3d-layer residual
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He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. ;
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
https://arxiv.org/pdf/1512.03385.pdf




ImageNet Challenge top-5 error

Groundbreaking discovery
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Summary and readings

* Learning data representations
» Convolution operation
* RelU activation
* Pooling
* Residual Networks

* Understand visual data representations:
* low-level layers, mid-level layers and high-level layers

* Bibliography:

* http://d2l.ai/chapter convolutional-neural-networks/index.html|

* http://d2l.ai/chapter convolutional-modern/index.html
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