
15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 1/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 5. RecordsChapter 5. Records
One of OCaml's best features is its concise and expressive system for declaring new data types,

and records are a key element of that system. We discussed records brie�y in Chapter 1, A Guided

Tour, but this chapter will go into more depth, covering the details of how records work, as well

as advice on how to use them e�ectively in your software designs.

A record represents a collection of values stored together as one, where each component is

identi�ed by a di�erent �eld name. The basic syntax for a record type declaration is as follows:

type <record-name> =
 { <field> : <type> ;
 <field> : <type> ;
 ...
 }

Syntax ∗ records/record.syntax ∗ all code

Note that record �eld names must start with a lowercase letter.

Here's a simple example, a host_info record that summarizes information about a given

computer:

type host_info =
 { hostname : string;
 os_name : string;
 cpu_arch : string;
 timestamp : Time.t;
 };;
type host_info = {
 hostname : string;
 os_name : string;
 cpu_arch : string;
 timestamp : Time.t;
}

OCaml Utop ∗ records/main.topscript ∗ all code

We can construct a host_info just as easily. The following code uses the Shell module from

Core_extended to dispatch commands to the shell to extract the information we need about the

computer we're running on. It also uses the Time.now call from Core's Time module:

#require "core_extended";;

open Core_extended.Std;;

let my_host =
 let sh = Shell.sh_one_exn in
 { hostname = sh "hostname";
 os_name = sh "uname -s";
 cpu_arch = sh "uname -p";
 timestamp = Time.now ();
 };;
val my_host : host_info =
 {hostname = "flick.local"; os_name = "Darwin"; cpu_arch = "i386";
 timestamp = 2013-11-05 08:49:38.850439-05:00}

OCaml Utop ∗ records/main.topscript , continued (part 1) ∗ all code

You might wonder how the compiler inferred that my_host is of type host_info. The hook that

the compiler uses in this case to �gure out the type is the record �eld name. Later in the chapter,

we'll talk about what happens when there is more than one record type in scope with the same

�eld name.

Once we have a record value in hand, we can extract elements from the record �eld using dot

notation:

my_host.cpu_arch;;
- : string = "i386"

OCaml Utop ∗ records/main.topscript , continued (part 2) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
http://github.com/realworldocaml/examples/blob/master/code/records/record.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 2/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

When declaring an OCaml type, you always have the option of parameterizing it by a

polymorphic type. Records are no di�erent in this regard. So, for example, here's a type one

might use to timestamp arbitrary items:

type 'a timestamped = { item: 'a; time: Time.t };;
type 'a timestamped = { item : 'a; time : Time.t; }

OCaml Utop ∗ records/main.topscript , continued (part 3) ∗ all code

We can then write polymorphic functions that operate over this parameterized type:

let first_timestamped list =
 List.reduce list ~f:(fun a b -> if a.time < b.time then a else b)
 ;;
val first_timestamped : 'a timestamped list -> 'a timestamped option = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 4) ∗ all code

PATTERNS AND EXHAUSTIVENESSPATTERNS AND EXHAUSTIVENESS

Another way of getting information out of a record is by using a pattern match, as in the

de�nition of host_info_to_string:

let host_info_to_string { hostname = h; os_name = os;
 cpu_arch = c; timestamp = ts;
 } =
 sprintf "%s (%s / %s, on %s)" h os c (Time.to_sec_string ts);;
val host_info_to_string : host_info -> string = <fun>
host_info_to_string my_host;;
- : string = "flick.local (Darwin / i386, on 2013-11-05 08:49:38)"

OCaml Utop ∗ records/main.topscript , continued (part 5) ∗ all code

Note that the pattern we used had only a single case, rather than using several cases separated by

|'s. We needed only one pattern because record patterns are irrefutable, meaning that a record

pattern match will never fail at runtime. This makes sense, because the set of �elds available in a

record is always the same. In general, patterns for types with a �xed structure, like records and

tuples, are irrefutable, unlike types with variable structures like lists and variants.

Another important characteristic of record patterns is that they don't need to be complete; a

pattern can mention only a subset of the �elds in the record. This can be convenient, but it can

also be error prone. In particular, this means that when new �elds are added to the record, code

that should be updated to react to the presence of those new �elds will not be �agged by the

compiler.

As an example, imagine that we wanted to add a new �eld to our host_info record called

os_release:

type host_info =
 { hostname : string;
 os_name : string;
 cpu_arch : string;
 os_release : string;
 timestamp : Time.t;
 } ;;
type host_info = {
 hostname : string;
 os_name : string;
 cpu_arch : string;
 os_release : string;
 timestamp : Time.t;
}

OCaml Utop ∗ records/main.topscript , continued (part 6) ∗ all code

The code for host_info_to_string would continue to compile without change. In this

particular case, it's pretty clear that you might want to update host_info_to_string in order to

include os_release, and it would be nice if the type system would give you a warning about the

change.

Happily, OCaml does o�er an optional warning for missing �elds in a record pattern. With that

warning turned on (which you can do in the toplevel by typing #warnings "+9"), the compiler

will warn about the missing �eld:

#warnings "+9";;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 3/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ records/main.topscript , continued (part 7) ∗ all code

We can disable the warning for a given pattern by explicitly acknowledging that we are ignoring

extra �elds. This is done by adding an underscore to the pattern:

let host_info_to_string { hostname = h; os_name = os;
 cpu_arch = c; timestamp = ts; _
 } =
 sprintf "%s (%s / %s, on %s)" h os c (Time.to_sec_string ts);;
val host_info_to_string : host_info -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 8) ∗ all code

It's a good idea to enable the warning for incomplete record matches and to explicitly disable it

with an _ where necessary.

Compiler WarningsCompiler Warnings

The OCaml compiler is packed full of useful warnings that can be enabled and

disabled separately. These are documented in the compiler itself, so we could have

found out about warning 9 as follows:

$ ocaml -warn-help | egrep '\b9\b'
 9 Missing fields in a record pattern.
 R Synonym for warning 9.

Terminal ∗ records/warn_help.out ∗ all code

You should think of OCaml's warnings as a powerful set of optional static analysis

tools, and you should eagerly enable them in your build environment. You don't

typically enable all warnings, but the defaults that ship with the compiler are pretty

good.

The warnings used for building the examples in this book are speci�ed with the

following �ag: -w @A-4-33-41-42-43-34-44.

The syntax of this can be found by running ocaml -help, but this particular

invocation turns on all warnings as errors, disabling only the numbers listed

explicitly after the A.

Treating warnings as errors (i.e., making OCaml fail to compile any code that

triggers a warning) is good practice, since without it, warnings are too often ignored

during development. When preparing a package for distribution, however, this is a

bad idea, since the list of warnings may grow from one release of the compiler to

another, and so this may lead your package to fail to compile on newer compiler

releases.

FIELD PUNNINGFIELD PUNNING

When the name of a variable coincides with the name of a record �eld, OCaml provides some

handy syntactic shortcuts. For example, the pattern in the following function binds all of the

�elds in question to variables of the same name. This is called �eld punning:

let host_info_to_string { hostname; os_name; cpu_arch; timestamp; _ } =
 sprintf "%s (%s / %s) <%s>" hostname os_name cpu_arch
 (Time.to_string timestamp);;
val host_info_to_string : host_info -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 9) ∗ all code

let host_info_to_string { hostname = h; os_name = os;
 cpu_arch = c; timestamp = ts;
 } =
 sprintf "%s (%s / %s, on %s)" h os c (Time.to_sec_string ts);;

Characters 24-139:
Warning 9: the following labels are not bound in this record pattern:
os_release
Either bind these labels explicitly or add '; _' to the pattern.val host_info_to_str

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/warn_help.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 4/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Field punning can also be used to construct a record. Consider the following code for generating

a host_info record:

let my_host =
 let sh cmd = Shell.sh_one_exn cmd in
 let hostname = sh "hostname" in
 let os_name = sh "uname -s" in
 let cpu_arch = sh "uname -p" in
 let os_release = sh "uname -r" in
 let timestamp = Time.now () in
 { hostname; os_name; cpu_arch; os_release; timestamp };;
val my_host : host_info =
 {hostname = "flick.local"; os_name = "Darwin"; cpu_arch = "i386";
 os_release = "13.0.0"; timestamp = 2013-11-05 08:49:41.499579-05:00}

OCaml Utop ∗ records/main.topscript , continued (part 10) ∗ all code

In the preceding code, we de�ned variables corresponding to the record �elds �rst, and then the

record declaration itself simply listed the �elds that needed to be included.

You can take advantage of both �eld punning and label punning when writing a function for

constructing a record from labeled arguments:

let create_host_info ~hostname ~os_name ~cpu_arch ~os_release =
 { os_name; cpu_arch; os_release;
 hostname = String.lowercase hostname;
 timestamp = Time.now () };;
val create_host_info :
 hostname:string ->
 os_name:string -> cpu_arch:string -> os_release:string -> host_info = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 11) ∗ all code

This is considerably more concise than what you would get without punning:

let create_host_info
 ~hostname:hostname ~os_name:os_name
 ~cpu_arch:cpu_arch ~os_release:os_release =
 { os_name = os_name;
 cpu_arch = cpu_arch;
 os_release = os_release;
 hostname = String.lowercase hostname;
 timestamp = Time.now () };;
val create_host_info :
 hostname:string ->
 os_name:string -> cpu_arch:string -> os_release:string -> host_info = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 12) ∗ all code

Together, labeled arguments, �eld names, and �eld and label punning encourage a style where

you propagate the same names throughout your codebase. This is generally good practice, since

it encourages consistent naming, which makes it easier to navigate the source.

REUSING FIELD NAMESREUSING FIELD NAMES

De�ning records with the same �eld names can be problematic. Let's consider a simple example:

building types to represent the protocol used for a logging server.

We'll describe three message types: log_entry, heartbeat, and logon. The log_entry message

is used to deliver a log entry to the server; the logon message is sent to initiate a connection and

includes the identity of the user connecting and credentials used for authentication; and the

heartbeat message is periodically sent by the client to demonstrate to the server that the client

is alive and connected. All of these messages include a session ID and the time the message was

generated:

type log_entry =
 { session_id: string;
 time: Time.t;
 important: bool;
 message: string;
 }
 type heartbeat =
 { session_id: string;
 time: Time.t;
 status_message: string;
 }
 type logon =

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 5/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 { session_id: string;
 time: Time.t;
 user: string;
 credentials: string;
 }
;;
type log_entry = {
 session_id : string;
 time : Time.t;
 important : bool;
 message : string;
}
type heartbeat = {
 session_id : string;
 time : Time.t;
 status_message : string;
}
type logon = {
 session_id : string;
 time : Time.t;
 user : string;
 credentials : string;
}

OCaml Utop ∗ records/main.topscript , continued (part 13) ∗ all code

Reusing �eld names can lead to some ambiguity. For example, if we want to write a function to

grab the session_id from a record, what type will it have?

let get_session_id t = t.session_id;;
val get_session_id : logon -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 14) ∗ all code

In this case, OCaml just picks the most recent de�nition of that record �eld. We can force OCaml

to assume we're dealing with a di�erent type (say, a heartbeat) using a type annotation:

let get_heartbeat_session_id (t:heartbeat) = t.session_id;;
val get_heartbeat_session_id : heartbeat -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 15) ∗ all code

While it's possible to resolve ambiguous �eld names using type annotations, the ambiguity can be

a bit confusing. Consider the following functions for grabbing the session ID and status from a

heartbeat:

let status_and_session t = (t.status_message, t.session_id);;
val status_and_session : heartbeat -> string * string = <fun>
let session_and_status t = (t.session_id, t.status_message);;
Characters 44-58:
Error: The record type logon has no field status_message
let session_and_status (t:heartbeat) = (t.session_id, t.status_message);;
val session_and_status : heartbeat -> string * string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 16) ∗ all code

Why did the �rst de�nition succeed without a type annotation and the second one fail? The

di�erence is that in the �rst case, the type-checker considered the status_message �eld �rst

and thus concluded that the record was a heartbeat. When the order was switched, the

session_id �eld was considered �rst, and so that drove the type to be considered to be a logon,

at which point t.status_message no longer made sense.

We can avoid this ambiguity altogether, either by using nonoverlapping �eld names or, more

generally, by minting a module for each type. Packing types into modules is a broadly useful

idiom (and one used quite extensively by Core), providing for each type a namespace within

which to put related values. When using this style, it is standard practice to name the type

associated with the module t. Using this style we would write:

module Log_entry = struct
 type t =
 { session_id: string;
 time: Time.t;
 important: bool;
 message: string;
 }
 end
 module Heartbeat = struct

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 6/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 type t =
 { session_id: string;
 time: Time.t;
 status_message: string;
 }
 end
 module Logon = struct
 type t =
 { session_id: string;
 time: Time.t;
 user: string;
 credentials: string;
 }
 end;;
module Log_entry :
 sig
 type t = {
 session_id : string;
 time : Time.t;
 important : bool;
 message : string;
 }
 end
module Heartbeat :
 sig
 type t = { session_id : string; time : Time.t; status_message : string; }
 end
module Logon :
 sig
 type t = {
 session_id : string;
 time : Time.t;
 user : string;
 credentials : string;
 }
 end

OCaml Utop ∗ records/main.topscript , continued (part 17) ∗ all code

Now, our log-entry-creation function can be rendered as follows:

let create_log_entry ~session_id ~important message =
 { Log_entry.time = Time.now (); Log_entry.session_id;
 Log_entry.important; Log_entry.message }
 ;;
val create_log_entry :
 session_id:string -> important:bool -> string -> Log_entry.t = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 18) ∗ all code

The module name Log_entry is required to qualify the �elds, because this function is outside of

the Log_entry module where the record was de�ned. OCaml only requires the module

quali�cation for one record �eld, however, so we can write this more concisely. Note that we are

allowed to insert whitespace between the module path and the �eld name:

let create_log_entry ~session_id ~important message =
 { Log_entry.
 time = Time.now (); session_id; important; message }
 ;;
val create_log_entry :
 session_id:string -> important:bool -> string -> Log_entry.t = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 19) ∗ all code

This is not restricted to constructing a record; we can use the same trick when pattern matching:

let message_to_string { Log_entry.important; message; _ } =
 if important then String.uppercase message else message
 ;;
val message_to_string : Log_entry.t -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 20) ∗ all code

When using dot notation for accessing record �elds, we can qualify the �eld by the module

directly:

let is_important t = t.Log_entry.important;;
val is_important : Log_entry.t -> bool = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 21) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 7/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The syntax here is a little surprising when you �rst encounter it. The thing to keep in mind is that

the dot is being used in two ways: the �rst dot is a record �eld access, with everything to the right

of the dot being interpreted as a �eld name; the second dot is accessing the contents of a module,

referring to the record �eld important from within the module Log_entry. The fact that

Log_entry is capitalized and so can't be a �eld name is what disambiguates the two uses.

For functions de�ned within the module where a given record is de�ned, the module

quali�cation goes away entirely.

FUNCTIONAL UPDATESFUNCTIONAL UPDATES

Fairly often, you will �nd yourself wanting to create a new record that di�ers from an existing

record in only a subset of the �elds. For example, imagine our logging server had a record type

for representing the state of a given client, including when the last heartbeat was received from

that client. The following de�nes a type for representing this information, as well as a function for

updating the client information when a new heartbeat arrives:

type client_info =
 { addr: Unix.Inet_addr.t;
 port: int;
 user: string;
 credentials: string;
 last_heartbeat_time: Time.t;
 };;
type client_info = {
 addr : UnixLabels.inet_addr;
 port : int;
 user : string;
 credentials : string;
 last_heartbeat_time : Time.t;
}
let register_heartbeat t hb =
 { addr = t.addr;
 port = t.port;
 user = t.user;
 credentials = t.credentials;
 last_heartbeat_time = hb.Heartbeat.time;
 };;
val register_heartbeat : client_info -> Heartbeat.t -> client_info = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 22) ∗ all code

This is fairly verbose, given that there's only one �eld that we actually want to change, and all the

others are just being copied over from t. We can use OCaml's functional update syntax to do this

more tersely. The syntax of a functional update is as follows:

{ <record> with <field> = <value>;
 <field> = <value>;
 ...
}

Syntax ∗ records/functional_update.syntax ∗ all code

The purpose of the functional update is to create a new record based on an existing one, with a

set of �eld changes layered on top.

Given this, we can rewrite register_heartbeat more concisely:

let register_heartbeat t hb =
 { t with last_heartbeat_time = hb.Heartbeat.time };;
val register_heartbeat : client_info -> Heartbeat.t -> client_info = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 23) ∗ all code

Functional updates make your code independent of the identity of the �elds in the record that are

not changing. This is often what you want, but it has downsides as well. In particular, if you

change the de�nition of your record to have more �elds, the type system will not prompt you to

reconsider whether your code needs to change to accommodate the new �elds. Consider what

happens if we decided to add a �eld for the status message received on the last heartbeat:

type client_info =
 { addr: Unix.Inet_addr.t;
 port: int;
 user: string;
 credentials: string;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/functional_update.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 8/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 last_heartbeat_time: Time.t;
 last_heartbeat_status: string;
 };;
type client_info = {
 addr : UnixLabels.inet_addr;
 port : int;
 user : string;
 credentials : string;
 last_heartbeat_time : Time.t;
 last_heartbeat_status : string;
}

OCaml Utop ∗ records/main.topscript , continued (part 24) ∗ all code

The original implementation of register_heartbeat would now be invalid, and thus the

compiler would e�ectively warn us to think about how to handle this new �eld. But the version

using a functional update continues to compile as is, even though it incorrectly ignores the new

�eld. The correct thing to do would be to update the code as follows:

let register_heartbeat t hb =
 { t with last_heartbeat_time = hb.Heartbeat.time;
 last_heartbeat_status = hb.Heartbeat.status_message;
 };;
val register_heartbeat : client_info -> Heartbeat.t -> client_info = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 25) ∗ all code

MUTABLE FIELDSMUTABLE FIELDS

Like most OCaml values, records are immutable by default. You can, however, declare individual

record �elds as mutable. In the following code, we've made the last two �elds of client_info

mutable:

type client_info =
 { addr: Unix.Inet_addr.t;
 port: int;
 user: string;
 credentials: string;
 mutable last_heartbeat_time: Time.t;
 mutable last_heartbeat_status: string;
 };;
type client_info = {
 addr : UnixLabels.inet_addr;
 port : int;
 user : string;
 credentials : string;
 mutable last_heartbeat_time : Time.t;
 mutable last_heartbeat_status : string;
}

OCaml Utop ∗ records/main.topscript , continued (part 26) ∗ all code

The <- operator is used for setting a mutable �eld. The side-e�ecting version of

register_heartbeat would be written as follows:

let register_heartbeat t hb =
 t.last_heartbeat_time <- hb.Heartbeat.time;
 t.last_heartbeat_status <- hb.Heartbeat.status_message
 ;;
val register_heartbeat : client_info -> Heartbeat.t -> unit = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 27) ∗ all code

Note that mutable assignment, and thus the <- operator, is not needed for initialization because

all �elds of a record, including mutable ones, are speci�ed when the record is created.

OCaml's policy of immutable-by-default is a good one, but imperative programming is an

important part of programming in OCaml. We go into more depth about how (and when) to use

OCaml's imperative features in the section called “Imperative Programming”.

FIRST-CLASS FIELDSFIRST-CLASS FIELDS

Consider the following function for extracting the usernames from a list of Logon messages:

let get_users logons =
 List.dedup (List.map logons ~f:(fun x -> x.Logon.user));;
val get_users : Logon.t list -> string list = <fun>

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html#imperative-programming

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 9/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ records/main.topscript , continued (part 28) ∗ all code

Here, we wrote a small function (fun x -> x.Logon.user) to access the user �eld. This kind

of accessor function is a common enough pattern that it would be convenient to generate it

automatically. The fieldslib syntax extension that ships with Core does just that.

The with fields annotation at the end of the declaration of a record type will cause the

extension to be applied to a given type declaration. So, for example, we could have de�ned Logon

as follows:

module Logon = struct
 type t =
 { session_id: string;
 time: Time.t;
 user: string;
 credentials: string;
 }
 with fields
 end;;
module Logon :
 sig
 type t = {
 session_id : string;
 time : Time.t;
 user : string;
 credentials : string;
 }
 val credentials : t -> string
 val user : t -> string
 val time : t -> Time.t
 val session_id : t -> string
 module Fields :
 sig
 val names : string list
 val credentials :
 ([< `Read | `Set_and_create], t, string) Field.t_with_perm
 val user :
 ([< `Read | `Set_and_create], t, string) Field.t_with_perm
 val time :
 ([< `Read | `Set_and_create], t, Time.t) Field.t_with_perm
 val session_id :
 ([< `Read | `Set_and_create], t, string) Field.t_with_perm

 [... many definitions omitted ...]

 end
 end

OCaml Utop ∗ records/main-29.rawscript ∗ all code

Note that this will generate a lot of output because fieldslib generates a large collection of

helper functions for working with record �elds. We'll only discuss a few of these; you can learn

about the remainder from the documentation that comes with fieldslib.

One of the functions we obtain is Logon.user, which we can use to extract the user �eld from a

logon message:

let get_users logons = List.dedup (List.map logons ~f:Logon.user);;
val get_users : Logon.t list -> string list = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 30) ∗ all code

In addition to generating �eld accessor functions, fieldslib also creates a submodule called

Fields that contains a �rst-class representative of each �eld, in the form of a value of type

Field.t. The Field module provides the following functions:

Field.name

Returns the name of a �eld

Field.get

Returns the content of a �eld

Field.fset

Does a functional update of a �eld

Field.setter

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main-29.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 10/11

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Returns None if the �eld is not mutable or Some f if it is, where f is a function for mutating that

�eld

A Field.t has two type parameters: the �rst for the type of the record, and the second for the

type of the �eld in question. Thus, the type of Logon.Fields.session_id is (Logon.t,

string) Field.t, whereas the type of Logon.Fields.time is (Logon.t, Time.t) Field.t.

Thus, if you call Field.get on Logon.Fields.user, you'll get a function for extracting the user

�eld from a Logon.t:

Field.get Logon.Fields.user;;
- : Logon.t -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 31) ∗ all code

Thus, the �rst parameter of the Field.t corresponds to the record you pass to get, and the

second parameter corresponds to the value contained in the �eld, which is also the return type of

get.

The type of Field.get is a little more complicated than you might naively expect from the

preceding one:

Field.get;;
- : ('b, 'r, 'a) Field.t_with_perm -> 'r -> 'a = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 32) ∗ all code

The type is Field.t_with_perm rather than Field.t because �elds have a notion of access

control that comes up in some special cases where we expose the ability to read a �eld from a

record, but not the ability to create new records, and so we can't expose functional updates.

We can use �rst-class �elds to do things like write a generic function for displaying a record �eld:

let show_field field to_string record =
 let name = Field.name field in
 let field_string = to_string (Field.get field record) in
 name ^ ": " ^ field_string
 ;;
val show_field :
 ('a, 'b, 'c) Field.t_with_perm -> ('c -> string) -> 'b -> string = <fun>

OCaml Utop ∗ records/main.topscript , continued (part 33) ∗ all code

This takes three arguments: the Field.t, a function for converting the contents of the �eld in

question to a string, and a record from which the �eld can be grabbed.

Here's an example of show_field in action:

let logon = { Logon.
 session_id = "26685";
 time = Time.now ();
 user = "yminsky";
 credentials = "Xy2d9W"; }
 ;;
val logon : Logon.t =
 {Logon.session_id = "26685"; time = 2013-11-05 08:49:43.946365-05:00;
 user = "yminsky"; credentials = "Xy2d9W"}
show_field Logon.Fields.user Fn.id logon;;
- : string = "user: yminsky"
show_field Logon.Fields.time Time.to_string logon;;
- : string = "time: 2013-11-05 08:49:43.946365-05:00"

OCaml Utop ∗ records/main.topscript , continued (part 34) ∗ all code

As a side note, the preceding example is our �rst use of the Fn module (short for "function"),

which provides a collection of useful primitives for dealing with functions. Fn.id is the identity

function.

fieldslib also provides higher-level operators, like Fields.fold and Fields.iter, which let

you walk over the �elds of a record. So, for example, in the case of Logon.t, the �eld iterator has

the following type:

Logon.Fields.iter;;
- : session_id:(([< `Read | `Set_and_create], Logon.t, string)
 Field.t_with_perm -> 'a) ->
 time:(([< `Read | `Set_and_create], Logon.t, Time.t) Field.t_with_perm ->

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 5. Records / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/records.html 11/11

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 'b) ->
 user:(([< `Read | `Set_and_create], Logon.t, string) Field.t_with_perm ->
 'c) ->
 credentials:(([< `Read | `Set_and_create], Logon.t, string)
 Field.t_with_perm -> 'd) ->
 'd
= <fun>

OCaml Utop ∗ records/main.topscript , continued (part 35) ∗ all code

This is a bit daunting to look at, largely because of the access control markers, but the structure is

actually pretty simple. Each labeled argument is a function that takes a �rst-class �eld of the

necessary type as an argument. Note that iter passes each of these callbacks the Field.t, not

the contents of the speci�c record �eld. The contents of the �eld, though, can be looked up using

the combination of the record and the Field.t.

Now, let's use Logon.Fields.iter and show_field to print out all the �elds of a Logon record:

let print_logon logon =
 let print to_string field =
 printf "%s\n" (show_field field to_string logon)
 in
 Logon.Fields.iter
 ~session_id:(print Fn.id)
 ~time:(print Time.to_string)
 ~user:(print Fn.id)
 ~credentials:(print Fn.id)
 ;;
val print_logon : Logon.t -> unit = <fun>
print_logon logon;;

session_id: 26685
time: 2013-11-05 08:49:43.946365-05:00
user: yminsky
credentials: Xy2d9W
- : unit = ()

OCaml Utop ∗ records/main.topscript , continued (part 36) ∗ all code

One nice side e�ect of this approach is that it helps you adapt your code when the �elds of a

record change. If you were to add a �eld to Logon.t, the type of Logon.Fields.iter would

change along with it, acquiring a new argument. Any code using Logon.Fields.iter won't

compile until it's �xed to take this new argument into account.

Field iterators are useful for a variety of record-related tasks, from building record-validation

functions to sca�olding the de�nition of a web form from a record type. Such applications can

bene�t from the guarantee that all �elds of the record type in question have been considered.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Frecords.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/records/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/variants.html

