
Distributed Systems 19/20 – DI/FCT/NOVA / 1

DISTRIBUTED SYSTEMS

Lab 1

Nuno Preguiça, João Leitão, Pedro Fouto, Luís Silva

Distributed Systems 19/20 – DI/FCT/NOVA / 2

GOAL

In the end of this lab you should be able to:
• Use maven to compile, assembly and create a docker image
• Understand how docker works
• Use multicast to discover servers in Java

Distributed Systems 19/20 – DI/FCT/NOVA / 3

GOAL

In the end of this lab you should be able to:
• Use maven to compile, assembly and create a docker image
• Understand how docker works
• Use multicast to discover servers in Java

Distributed Systems 19/20 – DI/FCT/NOVA / 4

BUILDING TOOLS

Maven is a software project management tool used for building
Java projects.

Simplifies the use of dependencies needed by a program.

We will be using maven for building all projects in this course.

When using your preferred IDE, make sure you import the
code provided as a Maven project.

Distributed Systems 19/20 – DI/FCT/NOVA / 5

POM.XML – CONFIGURATION FILE

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>sd1920</groupId>

<artifactId>sd1920-aula1</artifactId>

<version>1.0</version>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<authors>xxxxx-yyyyy</authors>

</properties> This property will be used to
name the docker container image.

Change it for the numbers of
your group.

Distributed Systems 19/20 – DI/FCT/NOVA / 6

POM.XML – CONFIGURATION FILE (CONT)

<build>

<sourceDirectory>src</sourceDirectory>

<plugins>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.0</version>

<configuration>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin> Allow to define the
java version to use

Distributed Systems 19/20 – DI/FCT/NOVA / 7

POM.XML – CONFIGURATION FILE (CONT)

<plugin>

<artifactId>maven-assembly-plugin</artifactId>

<configuration>

<archive>

</archive>

<descriptorRefs>

<descriptorRef>jar-with-dependencies</descriptorRef>

</descriptorRefs>

</configuration>

</plugin>
Used to create a single

file with all code.

Distributed Systems 19/20 – DI/FCT/NOVA / 8

POM.XML – CONFIGURATION FILE (CONT)
<plugin>

<groupId>io.fabric8</groupId>
<artifactId>docker-maven-plugin</artifactId>
<version>0.33.0</version>
<executions>

<execution>
<id>build-dockerimage</id>
<phase>install</phase>
<goals>

<goal>build</goal>
</goals>

</execution>
</executions>
<configuration>

<images>

</images>

</configuration>
</plugin>

Creates a docker image.
The name uses the

property defined before.

Distributed Systems 19/20 – DI/FCT/NOVA / 9

RUNNING MAVEN

mvn clean - cleans the project, removing generated files

mvn compile – compiles the project

mvn assembly:single – creates a single file with all compiled
classes and dependencies

mvn dockerfile:build – builds a docker image using the
Dockerfile in the current directory.

Note: you can run all at once, by doing:

mvn clean compile assembly:single docker:build

Distributed Systems 19/20 – DI/FCT/NOVA / 10

GOAL

In the end of this lab you should be able to:
• Use maven to compile, assembly and create a docker image
• Understand how docker works
• Use multicast to discover servers in Java

Distributed Systems 19/20 – DI/FCT/NOVA / 11

DOCKER

Docker is a system/platform for running applications using
container technology.

A container includes all software necessary to run the
application and each container executes isolated from the other
containers.

Distributed Systems 19/20 – DI/FCT/NOVA / 12

DOCKER ENGINE

• Docker daemon (dockerd)
manages Docker objects
such as images, containers,
networks, and volumes.

• The docker client sends
requests to docker daemon.

Distributed Systems 19/20 – DI/FCT/NOVA / 13

DOCKER ENGINE (2)

A Docker registry stores
Docker images. Docker is
configured to search in Docker
Hub by default.

An image is a read-only
template with instructions for
creating a Docker container.
Often, an image is based
on another image, with some
additional customization.

A Docker image can be
created from the specification
in a Dockerfile.

Distributed Systems 19/20 – DI/FCT/NOVA / 14

DOCKERFILE

FROM defines the image that will be extended

openjdk:8 is an image with the open jdk v.8 software

FROM openjdk:8

WORKDIR defines the directory to be used in the following instructions

WORKDIR /home/sd

COPY copies the jar to the docker image

COPY target/*jar-with-dependencies.jar sd1920.jar

CMD defines the program that will run by default

CMD ["java", "-cp", "/home/sd/sd1920.jar", "sd1920.aula1.Discovery"]

Distributed Systems 19/20 – DI/FCT/NOVA / 16

CREATING A CONTAINER IMAGE

With the provided maven project, to buildi the image based on
the Dockerfile, run:

mvn dockerfile:build

It is also possible to build the container image using the docker
build command:

docker build -t name dir_of_dockerfile

docker build -t sd1920-aula1-xxxxx-yyyyy .

-t is used to define the name of the image.

Distributed Systems 19/20 – DI/FCT/NOVA / 17

DOCKER: USEFUL COMMANDS

Docker run command:

docker run [params] imagename [cmd]

Start an image and run the default command:

docker run sd1920-aula1-xxxxx-yyyyy

Start an image, but run an alternative command – e.g. the
bash:

docker run -it sd1920-aula1-xxxxx-yyyyy /bin/bash

Distributed Systems 19/20 – DI/FCT/NOVA / 18

DOCKER NETWORKING

By default, all containers started in a machine will be able to
connect to each other through a virtual network.

Each container is assigned an IP and a hostname. The
hostname is only known locally. The hostname can be changed
using the –h option as show below:

docker run -h myhostname sd1920-aula1-xxxxx-yyyyy

Distributed Systems 19/20 – DI/FCT/NOVA / 19

DOCKER NETWORKING (2)

It is possible to create a bridge network that connect
containers in a machine with hostname resolution. To create a
bridged network named sdnet, run:

docker network create -d bridge sdnet

When running the container, specify the network (--network
sdnet), the name and hostname (--name srv1 --hostname
srv1):

docker run -h srv1 --name srv1 --network sdnet
sd1920-aula1-xxxxx-yyyyy

Distributed Systems 19/20 – DI/FCT/NOVA / 20

DOCKER: MORE USEFUL COMMANDS
docker ps [OPTIONS]

Lists containers.

docker exec [OPTIONS] CONTAINER cmd

Executes a command in a running image (e.g.:
docker exec -it 001b898b6d23 /bin/bash).

docker logs [OPTIONS] CONTAINER

Fetch the logs of a running container; -f options keeps connected (e.g.:
docker logs -f 001b898b6d23).

(this command is useful if the container was executed in background with
the option –d on the command run)

Distributed Systems 19/20 – DI/FCT/NOVA / 21

DOCKER: MORE USEFUL COMMANDS

docker kill [OPTIONS] CONTAINER [CONTAINER...]

Kills one or more containers.

docker rm [OPTIONS] CONTAINER [CONTAINER...]

Cleans up one or more exited containers.

docker system prune

Cleans up all unused data (incl. exited containers).

Distributed Systems 19/20 – DI/FCT/NOVA / 22

DOCKER: MORE USEFUL COMMANDS (2)

docker images [OPTIONS] [REPOSITORY[:TAG]]

Lists images.

Distributed Systems 19/20 – DI/FCT/NOVA / 24

GOAL

In the end of this lab you should be able to:
• Use maven to compile, assembly and create a docker image
• Understand how docker works
• Use multicast to discover servers in Java

Distributed Systems 19/20 – DI/FCT/NOVA / 25

HOW TO PERFORM SERVICE DISCOVERY?

How does a client discover a server?

How does a server discover other servers?

TimeWebServiceFileServerWebService

ChatWebService

???
???

Distributed Systems 19/20 – DI/FCT/NOVA / 26

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

(There are two flavors)

TimeWebServiceChatWebService FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 27

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

1st Alternative: Server Initiated

TimeWebServiceChatWebService FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 28

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

1st Alternative: Server Initiated

TimeWebServiceChatWebService

ChatWebService
URL-CWS

FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 29

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

1st Alternative: Server Initiated

TimeWebServiceChatWebService

FileServerWebService
URL-FSWS

FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 30

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

1st Alternative: Server Initiated

TimeWebServiceChatWebService

TimeWebService
URL-TWS

FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 31

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

1st Alternative: Server Initiated

TimeWebServiceChatWebService FileServerWebService

Use: URL-FSWS

Distributed Systems 19/20 – DI/FCT/NOVA / 32

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

2nd Alternative: Client Initiated

TimeWebServiceChatWebService FileServerWebService

Distributed Systems 19/20 – DI/FCT/NOVA / 33

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

2nd Alternative: Client Initiated

TimeWebServiceChatWebService FileServerWebService

Who has the
FileServerWebService?

Distributed Systems 19/20 – DI/FCT/NOVA / 34

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

2nd Alternative: Client Initiated

TimeWebServiceChatWebService FileServerWebService

FileServerWebService
URL-FSWS

Distributed Systems 19/20 – DI/FCT/NOVA / 35

HOW TO PERFORM SERVICE DISCOVERY?

One solution is to use IP Multicast

2nd Alternative: Client Initiated

TimeWebServiceChatWebService FileServerWebService

Use: URL-FSWS

We will be using the first
alternative, where

servers announce their
service and URL

Distributed Systems 19/20 – DI/FCT/NOVA / 36

SERVICE DISCOVERY

byte[] annBytes = String.format("%s%s%s", serviceName, DELIMITER,
serviceURI).getBytes();
DatagramPacket announcePkt = new DatagramPacket(annBytes, annBytes.length, addr);

try {
MulticastSocket ms = new MulticastSocket(addr.getPort());
ms.joinGroup(addr.getAddress());

// start thread to send periodic announcements
new Thread(() -> {

for (;;) {
try {

ms.send(announcePkt);
Thread.sleep(DISCOVERY_PERIOD);

} catch (Exception e) {
e.printStackTrace();
// do nothing

}
}

}).start();

Distributed Systems 19/20 – DI/FCT/NOVA / 37

SERVICE DISCOVERY

byte[] annBytes = String.format("%s%s%s", serviceName, DELIMITER,
serviceURI).getBytes();
DatagramPacket announcePkt = new DatagramPacket(annBytes, annBytes.length, addr);

try {
MulticastSocket ms = new MulticastSocket(addr.getPort());
ms.joinGroup(addr.getAddress());

// start thread to send periodic announcements
new Thread(() -> {

for (;;) {
try {

ms.send(announcePkt);
Thread.sleep(DISCOVERY_PERIOD);

} catch (Exception e) {
e.printStackTrace();
// do nothing

}
}

}).start();

Create the multicast
socket and join the group

to receive messages.

Distributed Systems 19/20 – DI/FCT/NOVA / 38

SERVICE DISCOVERY

byte[] annBytes = String.format("%s%s%s", serviceName, DELIMITER,
serviceURI).getBytes();
DatagramPacket announcePkt = new DatagramPacket(annBytes, annBytes.length, addr);

try {
MulticastSocket ms = new MulticastSocket(addr.getPort());
ms.joinGroup(addr.getAddress());

// start thread to send periodic announcements
new Thread(() -> {

for (;;) {
try {

ms.send(announcePkt);
Thread.sleep(DISCOVERY_PERIOD);

} catch (Exception e) {
e.printStackTrace();
// do nothing

}
}

}).start();

Periodically send the
announcement message.

Distributed Systems 19/20 – DI/FCT/NOVA / 39

SERVICE DISCOVERY (2)

// start thread to collect announcements
new Thread(() -> {

DatagramPacket pkt = new DatagramPacket(new byte[1024], 1024);
for (;;) {

try {
pkt.setLength(1024);
ms.receive(pkt);
String msg = new String(pkt.getData(), 0, pkt.getLength());
String[] msgElems = msg.split(DELIMITER);
if(msgElems.length == 2) { //periodic announcement

System.out.printf("FROM %s (%s) : %s\n",
pkt.getAddress().getCanonicalHostName(),
pkt.getAddress().getHostAddress(), msg);

//TODO: to complete by recording the received information
}

} catch (IOException e) {
// do nothing

}
}

}).start();

Distributed Systems 19/20 – DI/FCT/NOVA / 40

SERVICE DISCOVERY (2)

// start thread to collect announcements
new Thread(() -> {

DatagramPacket pkt = new DatagramPacket(new byte[1024], 1024);
for (;;) {

try {
pkt.setLength(1024);
ms.receive(pkt);
String msg = new String(pkt.getData(), 0, pkt.getLength());
String[] msgElems = msg.split(DELIMITER);
if(msgElems.length == 2) { //periodic announcement

System.out.printf("FROM %s (%s) : %s\n",
pkt.getAddress().getCanonicalHostName(),
pkt.getAddress().getHostAddress(), msg);

//TODO: to complete by recording the received information
}

} catch (IOException e) {
// do nothing

}
}

}).start();

Receive and process
message.

Distributed Systems 19/20 – DI/FCT/NOVA / 41

EXERCISE

1. Run multiple container images and verify that each
container will receive announcement from its own and other
containers.

2. Complete the code to record information about running
services. Suggestion: store the time of received
announcement to know which servers are currently
reachable.

NOTE: this code will be used in your project for discovering
servers.

