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; Preface

- About this book

The aim of this book is to take you through the process of object-oriented
(OO) analysis and design using the Unified Modeling Language (UML) and
the Unified Process (UP).

UML provides the visual modeling language for OO modeling, and UP
provides the software engineering process framework that tells you how to
perform OO analysis and design.

There is a lot to UP, and in this book we present only those aspects
directly pertinent to the work of the OO analyst/designer. For details on the
other aspects of UP, you should refer to [Rumbaugh 1] and the other UP
books in the bibliography.

In this book we show you enough UML and associated analysis and
design techniques so that you can apply modeling effectively on a real
project. According to Stephen J Mellor [Mellor 1], there are three approaches
to UML modeling.

® UML as a sketch - this is an informal approach to UML where diagrams
are sketched out to help visualize a software system. It’s a bit like sketch-
ing an idea for something on the back of a napkin. The sketches have
little value beyond their initial use, are not maintained, and are finally
discarded. You typically use whiteboards or drawing tools such as Visio
and PowerPoint (www.microsoft.com) to create the informal sketches.

# UML as a blueprint - this is a more formal and precise approach whereby
UML is used to specify a software system in detail. This is like a set of
architect’s plans or a blueprint for a machine. The UML model is actively
maintained and becomes an important deliverable of the project. This
approach demands the use of a real modeling tool such as Rational Rose
(www.rational.com) or MagicDraw UML (www.magicdraw.com).

UML as executable - using Model Driven Architecture (MDA), UML mod-
els may be used as a programming language. You add enough detail to
UML models so that the system can be compiled from the model. This is
the most formal and precise use of UML, and, in our view, it is the future
of software development. In this approach, you need an MDA-enabled
UML tool such as ArcStyler (www.arcstyler.com). MDA is beyond the
scope of this book, although we discuss it briefly in Section 1.4.

Xix
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XX Preface

Notes indicate
important
information.

Our focus in this book is on UML as a blueprint. The techniques you learn
will also apply to using UML as an executable. Having learned UML as a blue-
print, you will naturally be able to use UML as a sketch should you need to.

We have tried to make our presentation of UML and UP as straightfor-
ward and accessible as possible.

To help you navigate through the book we have provided each chapter with
a roadmap in the form of a UML activity diagram. These diagrams indicate
reading activities and the order in which sections might be read. We cover
activity diagrams in detail in Chapter 14, but Figure 1 should be sufficient to
let you understand the roadmaps.

start here
this is an activity — something that you do

a condition — take this path if the condition is true

branch -
take one path or
the other \

else

¢ [learn about types of composite stales]J
(2221 Simple composite states )

Ie — -
{2122 0rthog I stales)

else

flearn flearn about submachine communication]

[learn abouyt history]

a fork — the (22.3 Submachine states) (22.4 Submachine communicaﬁon) 22.5 History
flow divides
into parallel 22.5.1 Shallow history
streams of
activiies you can perform these

activities in parallel 22.5.2 Deep history
a join — back 22.6 What we have learned

to a single flow
" finish here
Figure 1

Most of the diagrams in this book are UML diagrams. The annotations,
in blue, are not part of UML syntax.

We have provided notes in the margin to highlight important informa-
tion. We have used the UML note icon for this. An example is shown in the
margin.
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Preface XXi

We have used different fonts throughout the book:

This font is for UML modeling elements.
This font is for code.

‘Who should read this book
We can think of several possible readers for this book.
@ You are an analyst/designer who needs to learn how to perform OO

analysis and design.

® You are an analyst/designer who needs to learn how to perform OO
analysis and design within the framework of the Unified Process.

You are a student taking a UML course at a university.

You are a software engineer who needs a UML reference.

You are a software engineer taking a UML training course, and this is your
course book.

Clear View Training provides a four-day UML training course based on this
book. This course is given throughout Europe by our partners, Zithlke Engi-
neering (www.zuhlke.com), and is available for licensing. If you are an
academic institution using this book as your course book, you can use our
training course for free. See www.clearviewtraining.com for more on com-
mercial and academic licensing.

How to read this book

So many books, so little time to read them alll With this in mind we have
designed this book so that you can read it in several different ways (as well as
cover to cover) according to your needs.

Fast track
Choose Fast Track if you just want an overview of the whole book or a

particular chapter. This is also the “management summary”.

@ Choose a chapter.

@ Read the chapter roadmap so that you know where you're going.

@ Go through the chapter looking at the figures and reading the margin notes.
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Preface

©® Read the “What we have learned” section.
® Go back to any section that takes your interest and read it.

Fast Track is a quick and efficient way to read this book. You may be
pleasantly surprised at how much you can pick up! Note that Fast Track
works best if you can first formulate a clear idea of the information you want
to obtain. For example “I want to understand how to do use case modeling.”

Reference

If you need to know a particular part of UML or learn a particular technique,
we have provided a detailed index and table of contents that should help
you locate the information you need quickly and efficiently. The text is care-
fully cross-referenced to help you to do this.

Revision
There are two strategies for revision with this text.

@ If you need to refresh your knowledge of UML as quickly and efficiently
as possible, read the outline summaries of each chapter in the “What we
have learned” section. When you don’t understand something, go back
and read the appropriate section.

@ If you have more time, you can also browse through each chapter study-
ing the diagrams and reading the margin notes.

Dipping

If you have a few minutes to spare, you might pick up the book and open it
at random. We have tried to ensure that there is something interesting on
every page. Even if you already know UML quite well, you may still discover
new things to learn.

Figure 2 shows a roadmap for this book. We have indicated where chapters
may be read in any order and where there are advanced techniques that you
may choose to skip on first reading.
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,jycyhapter 1

14

What is UML?

Chapter roadmap

This chapter provides a brief overview of the history and high-level structure
of the UML. We mention many topics that will be expanded in later chapters.

Beginners should start by learning about UML history and principles. If
you have experience in UML, or are satisfied that you already know enough
about UML history, you can skip straight to Section 1.7 and the discussion of
UML structure. There are three main strands to this discussion, which may
be read in any order. You can find out about UML building blocks (1.8), UML
common mechanisms (1.9), and architecture and UML (1.10).
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What is UML? -

The Unified Modeling Language (UML) is a general-purpose visual modeling
language for systems. Although UML is most often associated with modeling
OO software systems, it has a much wider application than this due to its
inbuilt extensibility mechanisms.

UML was designed to incorporate current best practice in modeling tech-
niques and software engineering. As such, it is explicitly designed to be
implemented by UML modeling tools. This is in recognition of the fact that
large, modern software systems generally require tool support. UML diagrams are
human-readable and yet are easily rendered by computers.

It is important to realize that UML does not give us any kind of modeling
methodology. Naturally, some aspects of methodology are implied by the
elements that comprise a UML model, but UML itself just provides a visual
syntax that we can use to construct models.

The Unified Process (UP) is a methodology—it tells us the workers,
activities, and artifacts that we need to utilize, perform, or create in order to
model a software system.

UML is not tied to any specific methodology or life cycle, and indeed it is
capable of being used with all existing methodologies. UP uses UML as its un-
derlying visual modeling syntax and you can therefore think of UP as being
the preferred method for UML, as it is the best adapted to it, but UML itself can
(and does) provide the visual modeling support for other methods. For a
specific example of a mature methodology that also uses UML as its visual
syntax, see the OPEN (Object-oriented Process, Environment, and Notation)
method at www.open.org.au.

The goal of UML and UP has always been to support and encapsulate
best practice in software engineering based on the experience of the last
decade. To do this UML and UP unify previous attempts at visual modeling
languages and software engineering processes into a best-of-breed solution.

~ The birthof UML

Prior to 1994, the OO methods world was a bit of a mess. There were several
competing visual modeling languages and methodologies all with their
strengths and weaknesses and all with their supporters and detractors. In
terms of visual modeling languages (summarized in Figure 1.2), the clear
leaders were Booch (the Booch Method) and Rumbaugh (Object Modeling
Technique or OMT), who between them had over half the market. On the
methodologies side, Jacobson had by far the strongest case as although many
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Figure 1.2
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authors claimed to have a “method”, all that many of them actually had was
a visual modeling syntax and a collection of more or less useful aphorisms
and guidelines.

There was a very early attempt at unification in 1994 with Coleman’s
fusion method. However, although laudable, this attempt did not involve
the original authors of the constituent methods (Booch, Jacobson, and
Rumbaugh) and was also quite late to market with a book explaining the
approach. Fusion was rapidly overtaken by the course of events when, in
1994, Booch and Rumbaugh joined Rational Corporation to work on UML.
This worried a lot of us at the time, as it gave Rational over half the methods
market. However, these fears have proved to be entirely unfounded and UML
has since become an open industry standard.

In 1996, the Object Management Group (OMG) produced a request-for-
proposal (RFP) for an OO visual modeling language, and UML was submitted.
In 1997, OMG accepted the UML and the first open, industry-standard OO
visual modeling language was born. Since then, all of the competing methods
have faded away and UML stands unchallenged as the industry standard OO
modeling language.

In 2000, UML 1.4 introduced a significant extension to UML by the
addition of action semantics. These describe the behavior of a set of primi-
tive actions that may be implemented by specific action languages. Action
semantics plus an action language allow the detailed specification of the
behavioral elements of UML models (such as class operations) directly in the
UML model. This was a very significant development as it made the UML
specification computationally complete and thus it became possible to make
UML models executable. For an example of a UML implementation that has
an action semantics-compliant action language, see XUML from Kennedy
Carter (www.kc.com).
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As we update this book to its second edition, it is 2005 and the UML 2.0
specification has been finalized. UML is now a very mature modeling lan-
guage. It has been almost seven years since its initial release, and it has
proven its value in thousands of software development projects worldwide.

UML 2 introduces quite a lot of new visual syntax. Some of this replaces
(and clarifies) existing 1.x syntax, and some of it is completely new and
represents new semantics added to the language. UML has always provided
many options about how a particular model element may be displayed, and
not all of these will be supported by every modeling tool. We try to use the
most common syntactic variants consistently throughout this book, and
highlight other variants where we feel that they serve a useful purpose in com-
mon modeling situations. Some syntactic options are quite specialized and so
we mention them only in passing, if at all.

Although UML 2 makes many syntactic changes to UML compared to
UML 1.x, the good news is that the fundamental principles remain more or
less the same. Modelers who are accustomed to using previous versions of
UML should experience an easy transition to UML 2. In fact, the deepest
changes introduced in UML 2 have been to the UML metamodel and will not
be encountered directly by most modelers. The UML metamodel is a model
of the UML language that is itself expressed in a subset of UML. It precisely
defines the syntax and semantics of all of the UML modeling elements that
you will encounter in this book. These changes to the UML metamodel have
largely been about improving the precision and consistency of the UML
specification.

In one of his books, Grady Booch says “If you have a good idea then
it’s mine!” In a way this summarizes the UML philosophy—it takes the
best of that which has gone before and integrates and builds on it. This is
reuse in its broadest sense, and the UML incorporates many of the best ideas
from the “prehistoric” methods while rejecting some of their more idiosyn-
cratic extremes.

14

MDA-the future of UML

The future of UML may be defined by a recent OMG initiative called Model
Driven Architecture (MDA). Although this isn’t an MDA book, we will give a
very brief overview of MDA in this section. You can find more information
on the OMG’s MDA website (www.omg.org/mda) and in MDA Explained
[Kleppe 1] and Model Driven Architecture [Frankel 1].

MDA defines a vision for how software can be developed based on
models. The essence of this vision is that models drive the production of the
executable software architecture. To some extent this happens today, but
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MDA mandates a degree of automation of this process that is, as yet, rarely
achieved.

In MDA, software is produced through a series of model transformations
aided by an MDA modeling tool. An abstract computer-independent model
(CIM) is used as a basis for a platform-independent model (PIM). The PIM is
transformed into a platform-specific model (PSM) that is transformed into code.

The MDA notion of model is quite general, and code is considered to be
just a very concrete kind of model. Figure 1.3 illustrates the MDA model
transformation chain.

MDA
‘ ’ 1 1
“Co Platform- & - Platform- &
‘independent n independent | .- ™8P . | - specific
 model (CIM) model (PIM) model (PSM)
Figure 1.3

The CIM is a model at a very high level of abstraction that captures key
requirements of the system and the vocabulary of the problem domain in a
way that is independent of computers. It is really a model of that part of the
business that you are going to automate. Creation of this model is optional,
and if you choose to create it, you use it as a basis for producing the PIM.

The PIM is a model that expresses the business semantics of the software
system independently of any underlying platform (such as EJB, .NET, and so
on). The PIM is generally at roughly the same level of abstraction as the anal-
ysis model that we will talk about later in this book, but it is more complete.
This is necessarily so, as it has to provide a sufficiently complete basis to be
transformed into a PSM from which code can be generated. A point worth
noting is that the term “platform independent” means very little unless you
define the platform or platforms from which you wish to be independent!
Different MDA tools support different levels of platform independence.

The PIM is adorned with platform-specific information to create the
PSM. Source code is generated from the PSM against the target platform.
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In principle, 100% of the source code and ancillary artifacts such as
documentation, test harnesses, build files, and deployment descriptors can
be generated from a sufficiently complete PSM. If this is to happen, the UML
model must be made computationally complete—in other words, the seman-
tics of all operations must be specified in an action language.

As we mentioned earlier, some MDA tools already provide an action
language. For example, the iUML tool from Kennedy Carter (www.kc.com)
provides Action Specification Language (ASL) that complies with UML 2
action semantics. This action language is at a higher level of abstraction than
languages such as Java and C++, and you can use it to create computationally
complete UML models.

Other MDA tools, such as ArcStyler (www.io-software.com), allow gener-
ation of between 70% and 90% of the code and other artifacts, but operation
bodies still have to be completed in the target language (e. g., Java).

In the MDA vision, source code, such as Java and C# code, is just the
“machine code” resulting from the compilation of UML models. This code is
generated as needed directly from the PSM. As such, code has an intrinsically
lower value in MDA development than UML models. MDA shifts UML
models from their current role as precursors to manually created source code
into the primary mechanism of code production.

As we go to press, more and more modeling tool vendors are adding
MDA capabilities to their products. You should check out the OMG MDA
website for the latest details. There are also some very promising open
source. MDA initiatives, for example, the Eclipse Modeling Framework
(www.eclipse.org/emf) and AndroMDA (www.andromda.org).

In this section we have limited ourselves to the “big picture” of MDA.
There is much more to the MDA specification than we have mentioned here,
and we encourage you to check out the references we mentioned at the
beginning of this section for more information.

~ Why “unified”?

UML unification is niot just historical in scope; UML attempts (and largely
succeeds) in being unified across several different domains.

® Development life cycle - UML provides visual syntax for modeling right
through the software development life cycle from requirements engineer-
ing to implementation.

@

Application domains —~ UML has been used to model everything from
hard real-time embedded systems to management decision support
systems.
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@ Implementation languages and platforms — UML is language neutral and
platform neutral. Naturally, it has excellent support for pure 00 lan-
guages (Smalltalk, Java, C#, etc.), but it is also effective for hybrid OO
languages such as C++ and object-based languages such as Visual Basic. It
has even been used to model for non-OO languages such as C.

© Development processes — although UP and its variants are probably the
preferred development processes for OO systems, UML can (and does)
support many other software engineering processes.

© Its own internal concepts — UML valiantly tries to be consistent and uni-
form in its application of a small set of internal concepts. It doesn’t (as
yet) always succeed, but it is still a big improvement on prior attempts.

 Objects and UML

The basic premise of UML is that we can model software and other systems
as collections of interacting objects. This is clearly a great fit with OO software
systems and languages, but it also works very well for business processes and
other applications.

There are two aspects to a UML model.

© Static structure — this describes what types of objects are important for
modeling the system and how they are related.

® Dynamic behavior - this describes the life cycles of these objects and how
they interact with each other to deliver the required system functionality.

These two aspects of the UML model go hand-in-glove, and one is not truly
complete without the other.

We look at objects (and classes) in full detail in Chapter 7. Until we get
there, just think of an object as being a cohesive cluster of data and behavior.
In other words, objects contain information and can perform functions.

UMLstructure

You can begin to understand how UML works as a visual language by looking
at its structure. This is illustrated in Figure 1.4 (as you will see later, this is a
valid UML diagram). This structure consists of

building blocks — these are the basic UML modeling elements, relation-
ships, and diagrams;
© common mechanisms — common UML ways of achieving specific goals;

@ architecture — the UML view of system architecture.
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UmML

7 a
7 o
e ‘* ﬁz} :
Building blocks  Common mechanisms  Architecture

Figure 1.4

Understanding the structure of UML gives us a useful organizing principle
for the rest of the information presented in this book. It also highlights that
UML is, itself, a designed and architected system. In fact, UML has been
modeled and designed using UML! This design is the UML metamodel.

UML building blocks
According to The Unified Modeling Language User Guide [Booch 2], UML is
composed of just three building blocks (see Figure 1.5).

@ Things - these are the modeling elements themselves.

@ Relationships - these tie things together. Relationships specify how two
or more things are semantically related.

® Diagrams - these are views into UML models. They show collections of
things that “tell a story” about the software system and are our way of
visualizing what the system will do (analysis-level diagrams) or how it will
do it (design-level diagrams).

Building blocks

Things Relationships Diagrams

Figure 1.5
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We'll look at the different types of building blocks in a little more detail in
the next three sections.

Things
UML things may be partitioned into

@ structural things — the nouns of a UML model, such as class, interface,
collaboration, use case, active class, component, node;

© behavioral things - the verbs of a UML model, such as interactions, activ-
ities, state machines;

© grouping things - the package, which is used to group semantically related
modeling elements into cohesive units;

® annotational things - the note, which may be appended to the model to
capture ad hoc information, very much like a yellow sticky note.

We’ll look at these things, and how they are usefully applied in UML model-
ing, in Part 2 onwards.

Relationships

Relationships allow you to show on a model how two or more things relate
to each other. Thinking of families, and the relationships between all of the
people in a family, gives you a pretty good idea of the role relationships play
in UML models—they allow you to capture meaningful (semantic) connec-
tions between things. For example, UML relationships that apply to the
structural and grouping things in a model are summarized in Table 1.1.

Understanding the exact semantics of the different types of relationship
is a very important part of UML modeling, but we will defer a detailed explo-
ration of these semantics until later sections of the book.

Diagrams

In all UML modeling tools, when you create a new thing or new relationship,
it is added to the model. The model is the repository of all the things and
relationships that you have created to help describe the required behavior of
the software system you are trying to design.

Diagrams are windows or views into the model. The diagram is not the
model itself! This is actually a very important distinction, as a thing or rela-
tionship may be deleted from a diagram, or even from all diagrams, but may
still exist in the model. In fact, it will stay in the model until explicitly
deleted from it. A common error of novice UML modelers is to delete things
from diagrams but leave them in the model.
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Table 1.1
Typeof  UMLsyntax -
~ relationship -source target  Brief semantics o Section
Dependency = ----------- > The source element depends on the 9.5
target element and may be affected
by changes to it
Association — The description of a set of links 9.4
between objects
Aggregation < The target element is a part of the 18.4
source element
Composition & A strong (more constrained) form 18.5
of aggregation
Containment e&—— The source element contains the 11.4
target element
Generalization =~~——— > The source element is a specializa- 10.2
tion of the more general target ele-
ment and may be substituted for it
Realization =  ---------- > The source element guarantees to 12.3

carry out the contract specified by
the target element

There are thirteen different types of UML diagrams, and these are listed
in Figure 1.6. In the figure, each box represents a type of diagram. When the
text in the box is in italics, it represents an abstract category of diagram
types. So, for example, there are six different types of StructureDiagram. Normal
text indicates a concrete diagram that you could actually create. Shaded
boxes indicate concrete diagram types that are new in UML 2.

We can usefully divide this set of diagrams into those that model the
static structure of the system (the static model) and those that model the dy-
namic structure of the system (the dynamic model). The static model
captures the things and the structural relationships between things; the
dynamic model captures how things interact to generate the required behav-
ior of the software system. We'll look at both the static and dynamic models
from Part 2 onwards.

There is no specific order in which UML diagrams are created, although
you typically start with a use case diagram to define the system scope. In fact,
you often work on several diagrams in parallel, refining each one as you
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Diagram

Structure Behavior

Diagram Diagram

Class Composite lbomponent Deployment Object Package Activity Interaction UseCase | |StateMachine
Diagram Structure Diagram Diagram Diagram Diagram Diagram Diagram Diagram Diagram
Diagram

Sequence| | Communication [lnteractibnOverview Timing
Diagram Diagram Diagram. Diagram

Figure 1.6

uncover more and more information and detail about the software system
you are designing. Thus, the diagrams are both a view of the model and the
primary mechanism for entering information into the model.

UML 2 introduces a new syntax for diagrams that is illustrated in Fig-
ure 1.7. Each diagram may have a frame, a heading area, and a contents area.
The heading area is an irregular pentagon that contains the diagram's kind
(optional), name, and parameters (optional).

frame

/

heading J

contents area

heading syntax: <kind> <name> <parameters>
N.B. <kind> and <parameters> are optional

Figure 1.7

The <kind> specifies what type of diagram it is and should normally be
one of the concrete diagram types listed in Figure 1.6. The UML specification
states that <kind> may abbreviated but does not provide a list of standard ab-
breviations. You rarely need to specify <kind> explicitly because it is usually
clear from the visual syntax.

The <name> should describe the semantics of the diagram (e.g., CourseRegis-
tration), and the <parameters> supply information needed by model elements in
the diagram. You'll see examples of using <parameters> later in this book.
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Optionally, a diagram may have an implied frame. This is where the
frame is implied by a diagram area in the modeling tool. You can see an
example of an implied frame in Figure 1.8.

implied frame

Figure 1.8

__ UML common mechanisms _

UML has four common mechanisms that apply consistently throughout the
language. They describe four strategies for approaching object modeling,
which are applied repeatedly in different contexts throughout UML. Once
again, we see that UML has a simple and elegant structure (Figure 1.9).

1.9.1 Specifications
UML models have at least two dimensions: a graphical dimension that
allows you to visualize the model using diagrams and icons, and a textual
dimension that consists of the specifications of the various modeling ele-
ments. Specifications are textual descriptions of the semantics of an element.
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4

Common mechanisms

Common

Specifications divisions

Extensibility

Adornments )
mechanisms

Figure 1.9

For example, we may visually represent a class, such as a BankAccount
class, as a box with various compartments (Figure 1.10), but this representa-
tion doesn’t really tell us anything about the business semantics of that class.
The semantics behind modeling elements are captured in their specifica-
tions, and without these specifications you can only guess what a modeling
element actually represents.

Specifications are BankAccount
the meat of the UML icon or accountNumber
model. They provide m|° deling/ owner
. element balance
the semantic
withdraw()
backplane of the calculatelnterest()
model. deposit()
Deposit
.................... >
Figure 1.10

The set of specifications is the real “meat” of the model, and forms the
semantic backplane that holds the model together and gives it meaning. The
various diagrams are just views or visual projections of that backplane.

Diagrams present
views into the
backplane.
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This semantic backplane is typically maintained using a UML modeling
tool that provides ways to enter, view, and modify specifications for each
modeling element.

UML allows a great deal of flexibility in constructing models. In particu-
lar, models may be

© elided - some elements are present in the backplane, but hidden in any
particular diagram in order to simplify the view;

® incomplete — some elements of the model may be missing entirely;

@ inconsistent - the model may contain contradictions.

The fact that the completeness and consistency constraints are relaxed is
important, as you will see that models evolve over time and undergo many
changes. However, the drive is always toward consistent models that are suffi-
ciently complete to allow construction of a software system.

It is common practice in UML modeling to start with a largely graphical
model, which allows you to visualize the system, and then to add more and
more semantics to the backplane as the model evolves. However, for a model
to be considered in any way useful or complete, the model semantics must be
present in the backplane. If not, you don't have a model, just a meaningless
collection of boxes and blobs connected by lines! In fact, a common model-
ing error made by novices might be called “death by diagrams”: the model is
overdiagrammed but underspecified.

Adornments

A nice feature of UML is that every modeling element has a simple symbol to
which you may add a number of adornments that make visible aspects of the
element’s specification. Using this mechanism you can tailor the amount of
visible information on a diagram to your specific needs.

You can start by constructing a high-level diagram by using just the basic
symbols with perhaps one or two adornments. You can then refine the dia-
gram over time by adding more and more adornments until the diagram is
sufficiently detailed for your purposes.

It is important to remember that any UML diagram is only a view of the
model, and so you should only show those adornments that highlight
important features of the model and that increase the overall clarity and
readability of the diagram. There is generally no need to show everything on
a diagram—it is more important that the diagram is clear, illustrates exactly
the points you want it to make, and is easy to read.

Figure 1.11 shows that the minimal icon for a class is a box with the class
name in it. However, you can expose various features of the underlying
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model as adornments to extend this minimal view. The text in gray indicates
optional possible adornments.

Window
{author = Jim, status = tested}

+size : Area=(100,100)
#visibility : Boolean = false
+defaultSize: Rectangle
#maximumSize : Rectangle
-xptr : XWindow™

+create()
+hide()

+display( location : Point )
-attachXWindow(xwin : XWindow™)

Window

unadorned element

element with adornments

Figure 1.11

1.9.3 Common divisions

Common divisions describe particular ways of thinking about the world.
There are two common divisions in UML: classifier/instance and interface/
implementation.

1.9.3.1  Classifier and instance

UML considers that we might have the abstract notion of a type of thing
(such as a bank account) and then specific, concrete instances of that abstrac-
tion (such as “my bank account” or “your bank account”). The abstract
notion of a type of thing is a classifier, and the specific, concrete things
themselves are instances. This is a very important concept that is actually
quite easy to grasp. Classifiers and instances surround us. Just think of this
UML book—we might say that the abstract idea of the book is “UML 2 and
the Unified Process” and that there are many instances of this book, such as
m the one you are reading right now. We will see that this notion of classifier/
instance is a key concept that permeates UML.

In UML an instance usually has the same icon as the corresponding clas-
sifier, but for instances the name on the icon is underlined. At first, this can
be quite a subtle visual distinction to grasp.

UML 2 provides a rich taxonomy of thirty-three classifiers. Some of the
more common classifiers are listed in Table 1.2. We’ll look at all of these (and
others) in detail in later sections.

abstract notion, e.g., a
type of bank account.
Instance — a concrete
thing, e.g., your bank
account or my bank
account.




Table 1.2
Classifier ~ Semantics e e - . Eon Section |
Actor A role played by an outside user of the system to whom the system delivers 4.3.2
some value
Class A description of a set of objects that share the same features 7.4
Component A modular and replaceable part of a system that encapsulates its contents 19.8
Interface A collection of operations that are used to specify a service offered by a class 19.3
Oor component ’
Node A physical, runtime element that represents a computational resource, for 24.4
example, a PC
Signal An asynchronous message passed between objects 15.6
Use case A description of a sequence of actions that a system performs to yield value to 4.3.3
a user :
1.9.3.2  Interface and implementation
Interface, e.g., the |> The principle here is to separate what something does (its interface) from how
buttons on the front it does it (its implementation). For example, when you drive a car you are
of your VCR. interacting with a very simple and well-defined interface. This interface is

Implementation,
e.g., the mechanism
inside your VCR.

1.9.4

UMLis an
extensible modeling
language.

implemented in different ways by many different physical cars.

An interface defines a contract (which has much in common with a legal
contract) that specific implementations guarantee to adhere to. This separation
of what something promises to do from the actual implementation of that
promise is an important UML concept. We discuss this in detail in Chapter 17.

Concrete examples of interfaces and implementations are everywhere.
For example, the buttons on the front of a video recorder provide a (rela-
tively) simple interface to what is actually a very complex mechanism. The
interface shields us from this complexity by hiding it from us.

Extensibility mechanisms
The designers of UML realized that it was simply not possible to design a
completely universal modeling language that would satisfy everyone’s needs
present and future, so UML incorporates three simple extensibility mecha-
nisms that we summarize in Table 1.3.

We'll look at these three extensibility mechanisms in more detail in the
next three sections.
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1.9.4.1

Constraints allow

you to add new rules to
modeling elements.

Table 1.3

‘~"',,1UML extens|b|l|ty mechamsms -

Constraints  These extend the semantics of an element by allowmg us to add
new rules

Stereotypes  These allow us to define a new UML modeling element based on an
existing one — we define the semantics of the stereotype ourselves

Stereotypes add new elements to the UML metamodel

1.9.4.2

Stereotypes atlow
you to define new
modeling elements

Tagged These provide a way of extending an element’s specification by
values allowing us to add new, ad hoc information to it
Constraints

A constraint is simply a text string in braces ({}) that specifies some condition
or rule about the modeling element that must be maintained as true. In other
words, it constrains some feature of the element in some way. You'll come
across examples of constraints throughout the book.

UML defines a constraint language called OCL (Object Constraint Lan-
guage) as a standard extension. We provide an introduction to OCL in
Chapter 25.

Stereotypes

The UML Reference Manual [Rumbaugh 1] states, “A stereotype represents a
variation of an existing model element with the same form (such as attributes
and relationships) but with a modified intent.”

Stereotypes allow you to introduce new modeling elements based on
existing elements. You can do this by appending the stereotype name in
guillemets («..») to the new element. Each model element can have zero to
many stereotypes.

Each stereotype may define a set of tagged values and constraints that
apply to the stereotyped element. You can also associate an icon, color, or
texture with the stereotype. Typically, use of color and texture should be
avoided in UML models as some readers (the color-blind for example) may
have trouble interpreting the diagrams, and diagrams often have to be printed
in black and white anyway. However, it is common practice to associate a new
icon with a stereotype. This allows you to extend the UML graphical nota-
tion in a controlled manner.

Because stereotypes introduce new modeling elements with different
intent, you have to define the semantics of these new elements somewhere.
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How do you do this? Well, if the modeling tool doesn’t provide inbuilt
support for documenting stereotypes, most modelers just put a note in the
model, or insert a reference to an external document in which the stereo-
types are defined. At present, modeling tool support for stereotypes is rather
patchy—most tools support stereotypes to some degree, but not all tools
provide facilities for capturing stereotype semantics.

You can model stereotypes themselves by using the class element (Chap-
ter 7) with the special predefined UML stereotype «stereotype». This creates a
metamodel of your system of stereotypes. It is a metamodel because it is a
model of a modeling element and is on a completely different level of
abstraction from the usual UML system or business models. Because this is a
metamodel, you must never merge it with your normal models—you must
always keep it as a separate model. Creating a new model just for the stereo-
types is only really worth doing when there are a lot of stereotypes. This is
very rare, so most modelers tend to document stereotypes with a note or an
external document.

There is a lot of flexibility in how stereotypes can be displayed. However,
most modelers just use the stereotype name in « » or the icon. The other
variants don’t tend to be used that much and the modeling tool often limits
what you can do. Some examples are shown in Figure 1.12. (N.B. The stars
are not part of UML syntax—they just highlight the most useful display
options.)

«entity» «entity» .Q\

Ticket Ticket \ icon
/
stereotype
Ticket 'Q
Ticket
«control» «call»
JobManager [77TTTTTTTTTTTTTmmmmmm I > Scheduler

Figure 1.12

Notice that you can stereotype relationships as well as classes. You'll see
many uses for this throughout the book.
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1.9.4.3

Tagged values
allow you to add your
own properties to
model elements.

1.9.4.4
A UML profile l N

defines a set of
stereotypes, tags, and
constraints that
customizes UML for a

specific purpose.
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Introducing UML and UP

Tagged values

In UML, a property is any value attached to a model element. Most elements
have large numbers of predefined properties. Some of these are displayable
on diagrams, and others are just part of the semantic backplane of the model.

UML allows you to add your own properties to modeling elements by using
tagged values. A tagged value is a very simple idea—it is just a keyword that can
have a value attached. The syntax for tagged values is shown here: { tag1 = values,
tagz = valuez, ..., tagN = valueN }. This is a comma-delimited list of tag/value pairs
separated by an equal sign. The list of tags is enclosed in curly brackets.

Some tags are just extra information applied to a model element, such as
{author = Jim Arlow}. However, other tags indicate properties of new modeling
elements defined by a stereotype. You should not apply these tags directly to
model elements; rather, you should associate them with the stereotype itself.
Then, when the stereotype is applied to a model element, it also gets the tags
associated with that stereotype.

UML profiles
A UML profile is a collection of stereotypes, tagged values, and constraints.
You use a UML profile to customize UML for a specific purpose.

UML profiles allow you to customize UML so that you can apply it effec-
tively in many different domains. Profiles allow you to use stereotypes, tags,
and constraints in a consistent and well-defined manner. For example, if you
want to use UML to model a .NET application, then you could use the UML
profile for NET that is summarized in Table 1.4.

Table 1.4

: Stéreg)btypé‘_ i : Tags Constraints Eﬁend; :  ; Semantlcs o L ’ , e ’
«NETComponent» ~ None  None Component  Represents a component in the .NET framework
«NETProperty» None None Property Represents a property of a component
«NETAssembly» None  None Package A NET runtime packaging for components
«MSI» None  None Artifact A component self-installer file
«DLL» None  None Artifact A portable executable of type DLL
«EXE» None  None Artifact A portable executable of type EXE

This profile is one of the example UML profiles in the UML 2.0 specifica-
tion [UML2S], and it defines new UML modeling elements that are adapted
for modeling .NET applications.
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Fach stereotype in a profile extends one of the UML metamodel
elements (e.g., a Class or an Association) to create a new, customized element.
The stereotype can define new tags and constraints that were not part of the
original element.

1.10

You can capture l N\

the strategic aspects of
asystemina “4+1
view” of architecture:
logical view, process
view, implementation
view, deployment view,
and use case view.

Architecture

The UML Reference Manual [Rumbaugh 1] defines system architecture as “The
organizational structure of a system, including its decomposition into parts,
their connectivity, interaction, mechanisms and the guiding principles that
inform the design of a system.” The IEEE defines system architecture as “The
highest-level concept of a system in its environment.”

Architecture is all about capturing the strategic aspects of the high-level
structure of a system. There are many ways of looking at architecture, but
a very common way is the “4+1 View” described by Philippe Kruchten
[Kruchten 2]. The essential aspects of system architecture are captured in four
different views of the system: the logical view, the process view, the imple-
mentation view, and the deployment view. These are all integrated by a fifth
view, the use case view. Each of these views addresses different aspects of the
software architecture as is indicated in Figure 1.13.

Let’s look at each of these views in turn.

® Logical view - captures the vocabulary of the problem domain as a set of
classes and objects. The emphasis is on showing how the objects and
classes that compose a system implement the required system behavior.

@ Process view — models the executable threads and processes in a system as
active classes (classes that have their own thread of control). It is really a
process-oriented variation on the logical view and contains all the same

-artifacts: : B S

© Implementation view — models the files and components that make up
the physical code base of the system. It is also about illustrating depen-
dencies between components and about configuration management of
sets of components to define a version of the system.

@ Deployment view — models the physical deployment of artifacts onto a
set of physical, computational nodes such as computers and peripherals.
It allows you to model the distribution of artifacts across the nodes of a
distributed system.

@ Use case view — captures the basic requirements for the system as a set of
use cases (see Chapter 4). These use cases provide the basis for the construc-
tion of the other views.
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1A

concerns: concerns:
vocabulary End user v Programmer  system assembly
functionality - - - o configuration

logical view implementation view management

diagrams: diagrams:

( class component
composite structure
object

Tester package ;

state machine
behavior < diagrams:

use case
process view interaction |/ deployment view
diagrams: ~—T diagrams:

class : deployment

Analyst compoasite structure :
\ || object
concerns: concerns:
performance system topology
scalability System System distribution
throughput integrator ’ engineering  delivery
installation

Figure 1.13 Adapted from Figure 5.1[Kruchten 1] with permission from Addison-Wesley

As you will see in the rest of this book, UML provides excellent support for
each of the 4+1 views and UP is a requirements-driven approach that fits the
4+1 model very well.

Once you have created your 4+1 views, you have explored all of the key
aspects of the system architecture with UML models. If you follow the itera-
tive UP life cycle, this 4+1 architecture is not created in one go, but evolves
over time. The process of UML modeling within the framework of the UP is
a process of stepwise refinement towards a 4+1 architecture that captures just
enough information about the system to allow it to be built.

What we have learned

This chapter has provided an introduction to UML history, structure, concepts,
and key features. You have learned the following.

@ The Unified Modeling Language (UML) is an open, extensible, industry stan-
dard visual modeling language approved by the Object Management Group.



aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Chapter1 What is UML? 25

& UML is not a methodology.

© The Unified Process (UP), or a variant, is the type of methodology that best
complements UML.

@ Object modeling regards the world as systems of interacting objects. Ob-
jects contain information and may perform functions. UML models have:

static structure — what types of object are important and how they are
related;

dynamic behavior — how objects collaborate together to perform the
functions of the system.

® UML is composed of three building blocks:

things:

- structural things are the nouns of a UML model;

- behavioral things are the verbs of a UML model;

- there is only one grouping thing, the package - this is used to group
semantically related things;

- there is only one annotational thing, the note - this is just like a
yellow sticky note;

relationships link things together;

diagrams show interesting views of the model.

@ UML has four common mechanisms:

specifications — textual descriptions of the features and semantics of
model elements - the meat of the model;
adornments - items of information exposed on a modeling element in
a diagram to illustrate a point;
common divisions:
- classifier and instance:
- classifier - the abstract notion of a type of thing, e.g., a bank
account;
- instance - a specific instance of a type of thing, e.g., my bank
account; S
- interface and implementation:
- interface - a contract that specifies the behavior of a thing;
- implementation - the specific details of how the thing works;
extensibility mechanisms:
- constraints allow us to add new rules to modeling elements;
- stereotypes introduce new modeling elements based on old ones;
— tagged values allow us to add new properties to model elements — a
tagged value is a keyword with an associated value.
- A UML profile is a collection of constraints, stereotypes, and tagged
values - it allows you to customize UML for a specific purpose.
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® UML is based on a 4+1 view of system architecture:

logical view — system functionality and vocabulary;

process view — system performance, scalability, and throughput;
implementation view — system assembly and configuration management;
deployment view - system topology, distribution, delivery, and
installation;

these are united by the use case view, which describes stakeholder
requirements.



What is the Unified
Process?

Chapterroadmap

This chapter gives a concise overview of the Unified Process (UP). Beginners
should start by learning about UP history. If you already know this, then you
may choose to skip ahead to Section 2.4, a discussion of UP and the Rational
Unified Process (RUP), or to Section 2.5, which discusses how you can apply
UP on your project.

Our interest in UP, as far as this book is concerned, is to provide a process
framework within which the techniques of OO analysis and design can be
presented. You will find a complete discussion of UP in [Jacobson 1] and ex-
cellent discussions of the related RUP in [Kroll 1], [Kruchten 2], and also in
[Ambler 1], [Ambler 2], and [Ambler 3].

27
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2.3 The hirth of UP

]

2.7 UP is an iterative and incremental process )

(2.7 lteration workflows )

l

\ 2.7.2 Baselines and increments )

2.8 UP structure
2.9 UP phases

( 2.9.1 Inception - goals ) ( 2.9.4 Elaboration - goals ) C 2.9.7 Construction - goals ) C 2.9.10 Transition - goals )
) ) 4 l

( 2.9.2 Inception - focus ) C 2.9.5 Elaboration - focus ) C 2.9.8 Construction - focus ) ( 2.9.11 Transition - focus )

! |

C 2.9.3 Inception - milestone ) C 2.9.6 Elaboration - milestone > ( 2.9.9 Construction - milestone ) C 2.9.12 Transition - milestone >

( 2.10 What we have learned )

Figure 2.1

- 2.2 WhatisUP?.

A software engineering process (SEP), also known as a software development
process, defines the who, what, when, and how of developing software. As
illustrated in Figure 2.2, a SEP is the process in which we turn user require-
ments into software.

The Unified Software Development Process (USDP) is a SEP from the
authors of the UML. It is commonly referred to as the Unified Process or UP
[Jacobson 1]. We use the term UP throughout this book.



A software
engineering process
describes how
requirements are
turned into software.

SEP work that was
to develop into the
UP began in 1967 at
Ericsson.

Software
engineering
process

Vision and
requirements

Software

Figure 2.2

The UML project was meant to provide both a visual language and a soft-
ware engineering process. What we know today as UML is the visual
language part of the project—UP is the process part. However, it’s worth
pointing out that whereas the UML has been standardized by the OMG, the
UP has not. There is therefore still no standard SEP to complement UML.

UP is based on process work conducted at Ericsson (the Ericsson ap-
proach, 1967), at Rational (the Rational Objectory Process, 1996 to 1997)
and other sources of best practice. As such, it is a pragmatic and tested
method for developing software that incorporates best practice from its
predecessors.

The birthof UP

When we look at the history of UP, depicted in Figure 2.3, it is fair to say that
its development is intimately tied to the career of one man, Ivar Jacobson. In
fact, Jacobson is often thought of as being the father of UP. This is not to min-
imize the work of all of the other individuals (especially Booch) who have
contributed to the development of UP; rather, it is to emphasize Jacobson'’s
pivotal contribution.

UP goes back to 1967 and the Ericsson approach, which took the radical
step of modeling a complex system as a set of interconnected blocks. Small
blocks were interconnected to form larger blocks building up to a complete
system. The basis of this approach was “divide and conquer” and it was the
forerunner of what is known today as component-based development.

Although a complete system might be incomprehensible to any individ-
ual who approaches it as a monolith, when broken down into smaller blocks
it can be made sense of by understanding the services each block offers (the in-
terface to the component in modern terminology) and how these blocks
fit together. In the language of UML, large blocks are called subsystems, and
each subsystem is implemented in terms of smaller blocks called components.
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Another Ericsson innovation was a way of identifying these blocks by
creating “traffic cases” that described how the system was to be used. These
traffic cases have evolved over time and are now called use cases in UML. The
result of this process was an architecture representation that described all the
blocks and how they fitted together. This was the forerunner of the UML
static model.

As well as the requirements view (the traffic cases) and the static view
(the architecture description), Ericsson had a dynamic view that described
how all the blocks communicated with each other over time. This consisted
of sequence, communication, and state machine diagrams, all of which are
still found in UML, albeit in a much-refined form.

The next major development in OO software engineering was in 1980
with the release of the Specification and Description Language (SDL) from
the international standards body CCITT. SDL was one of the first object-

- based visual modeling languages, and in 1992 it was extended to become

object-oriented with classes and inheritance. This language was designed to
capture the behavior of telecommunications systems. Systems were mod-
eled as a set of blocks that communicated by sending signals to each other.
SDL-92 was the first widely accepted object modeling standard and it is still
used today.

In 1987, Jacobson founded Objectory AB in Stockholm. This company
developed and sold a software engineering process, based on the Ericsson
Approach, called Objectory (Object Factory). The Objectory SEP consisted of a
set of documentation, a rather idiosyncratic tool, and some probably much
needed consultancy from Objectory AB.
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Perhaps the most important innovation during this time was that the
Objectory SEP was viewed as a system in its own right. The workflows of the
process (requirements, analysis, design, implementation, and test) were ex-
pressed in a set of diagrams. In other words, the Objectory process was
modeled and developed just like a software system. This paved the way for
the future development of the process. Objectory, like UP, was also a process
framework and needed vigorous customization before it could be applied to
any specific project. The Objectory process product came with some templates
for various types of software development project, but it almost invariably
needed to be heavily customized further. Jacobson recognized that all soft-
ware development projects are different, and so a “one size fits all” SEP was
not really feasible or desirable.

When Rational acquired Objectory AB in 1995, Jacobson went to work
unifying the Objectory process with the large amount of process-related
work that had already been done at Rational. A 4+1 view of architecture
based around four distinct views (logical, process, physical, and develop-
ment) plus a unifying use case view was developed. This still forms the basis
of the UP approach to system architecture. In addition, iterative develop-
ment was formalized into a sequence of phases (Inception, Elaboration,
Construction, and Transition) that combined the discipline of the waterfall
life cycle with the dynamic responsiveness of iterative and incremental
development. The main participants in this work were Walker Royce, Rich
Reitmann, Grady Booch (inventor of the Booch method), and Philippe
Kruchten. In particular, Booch’s experience and strong ideas on architecture
were incorporated into the Rational Approach (see [Booch 1] for an excellent
discussion of his ideas).

The Rational Objectory Process (ROP) was the result of the unification of
Objectory with Rational’s process work. In particular, ROP improved areas
where Objectory was weak—requirements other than use cases, implementa-
tion, test, project management, deployment, configuration management,
and development environment. Risk was introduced as a driver for ROP, and
architecture was defined and formalized as an “architecture description”
deliverable. During this period Booch, Jacobson, and Rumbaugh were devel-
oping UML at Rational. This became the language in which ROP models, and
ROP itself, were expressed.

From 1997 onward, Rational acquired many more companies bringing in
expertise in requirements capture, configuration management, testing, and so
on. This led to the release of the Rational Unified Process (RUP) in 1998. Since
then, there have been many releases of RUP, each one consistently better than
the previous. See www.rational.com and [Kruchten 1] for more details.

In 1999, we saw the publication of an important book, the Unified Soft-
ware Development Process [Jacobson 1], which describes the Unified Process.
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Whereas RUP is a Rational process product, UP is an open SEP from the
authors of UML. Not surprisingly, UP and RUP are closely related. We have
chosen to use UP rather than RUP in this book as it is an open SEP, accessible
to all, and is not tied to any specific product or vendor.

The Rational Unified Process (RUP) is a commercial version of UP from IBM,
who took over Rational Corporation in 2003. It supplies all of the standards,
tools, and other necessities that are not included in UP and that you would
otherwise have to provide for yourself. It also comes with a rich, web-based
environment that includes complete process documentation and “tool men-
tors” for each of the tools.

Back in 1999 RUP was pretty much a straight implementation of UP.
However, RUP has moved on a lot since then and now extends UP in many
important ways. Nowadays, we should view UP as the open, general case and
RUP as a specific commercial subclass that both extends and overrides UP
features. But RUP and UP still remain much more similar than different. The
main differences are those of completeness and detail rather than semantic
or ideological differences. The basic workflows of OO analysis and design are
sufficiently similar that a description from the UP perspective will be just as
useful for RUP users. By choosing to use UP in this book, we make the text
suitable for the majority of OO analysts and designers who are not using
RUP, and also for the significant and growing minority who are.

Both UP and RUP model the who, when, and what of the software devel-
opment process, but they do so slightly differently. The latest version of RUP
has some terminological and syntactic differences to UP, although semantics
of the process elements remain essentially the same.

Figure 2.4 shows how the RUP process icons map to the UP icons we use
in this book. Notice that there is a «trace» relationship between the RUP icon
and the original UP icon. In UML a «trace» relationship is a special type of
dependency between model elements that indicates that the element at the
beginning of the «trace» relationship is a historical development of the
element pointed to by the arrow. This describes the relationship between UP
and RUP model elements perfectly.

To model the “who” of the SEP, UP introduces the concept of the worker.
This describes a role played by an individual or team within the project. Each
worker may be realized by many individuals or teams, and each individual or
team may perform as many different workers. In RUP workers are actually
called “roles”, but the semantics remain the same.
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upP RUP Semantics
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U craces played by an individual or
Worker team
Activity <o acer What — A unit of work
performed by a worker
(role) or an artifact
<.....‘f:‘.r§9.e.i’. ....... produced in the project
Artifact
e %
<. .....................
Discioline When — A sequence of
P related activities that brings
value to the project
«trace»

Workflow Detail <g---sesseececmmnmnnnns

Workflow Detall

Figure 2.4

UP models the “what” as activities and artifacts. Activities are tasks that
will be performed by individuals or teams in the project. These individuals or
teams will always adopt specific roles when they perform certain activities and
so, for any activity, UP (and RUP) can tell us the workers (roles) that partici-
pate in that activity. Activities may be broken down into finer levels of detail
as needed. Artifacts are things that are inputs and outputs to the project—
they may be source code, executable programs, standards, documentation,
and so on. They can have many different icons depending on what they are,
and in Figure 2.4 we show them with a generic document icon.

UP models the “when” as workflows. These are sequences of related ac-
tivities that are performed by workers. In RUP, high-level workflows, such as
Requirements or Test, are given a special name, disciplines. Workflows may be
broken down into one or more workflow details that describe the activities,
roles, and artifacts involved in the workflow. These workflow details are only
referred to by name in UP but have been given their own icon in RUP.
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UP and RUP must
be instantiated for
each project.

UPisamodern SEP
that is driven by user
requirements and risk.

instantiating UP or your poject

UP is a generic software development process that has to be instantiated for
an organization and then for each particular project. This recognizes that all
software projects tend to be different, and that a “one size fits all” approach
to SEP just doesn’t work. The instantiation process involves defining and
incorporating

@ in-house standards;

] document templates;
tools — compilers, configuration management tools, and so on;
databases — bug tracking, project tracking, and so on;

life cycle modifications ~ for example, more sophisticated quality control
measures for safety-critical systems.

Details of this customization process are outside the scope of this book but
are described in [Rumbaugh 1].

Even though RUP is much more complete than UP, it must still be cus-
tomized and instantiated in a similar way. However, the amount of work that
needs to be done is much less than starting from raw UP. In fact, with any
software engineering process you can generally expect to invest a certain
amount of time and money in instantiation, and you may need to budget for
some consultancy from the SEP vendor to help with this.

UP has three basic axioms. It is

@ requirements and risk driven;
@ architecture-centric;

iterative and incremental.

We look at use cases in great depth in Chapter 4, but for now let’s just say
that they are a way of capturing requirements, so we could accurately say
that UP is requirements driven.

Risk is the other UP driver because if you don't actively attack risks they
will actively attack you! Anyone who has worked in a software development
project will no doubt agree with this sentiment, and UP addresses this by
predicating software construction on the analysis of risk. However, this is
really a job for the project manager and architect, and so we don’t cover it in
any detail in this book.
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UP aims to build a
robust system
architecture
incrementally.

The UP approach to developing software systems is to develop and
evolve a robust system architecture. Architecture describes the strategic
aspects of how the system is broken down into components and how those
components interact and are deployed on hardware. Clearly, a quality sys-
tem architecture will lead to a quality system, rather than just an ad hoc
collection of source code that has been hacked together with little
forethought.

Finally, UP is iterative and incremental. The iterative aspect of UP means
that we break the project into small subprojects (the iterations) that deliver
system functionality in chunks, or increments, leading to a fully functional
system. In other words, we build software by a process of stepwise refinement
to our final goal. This is a very different approach to software construction
compared to the old waterfall life cycle of analysis, design, and build that occur
in a more or less strict sequence. In fact, we return to key UP workflows, such
as analysis, several times throughout the course of the project.

UPis an iterative and incremental process

To understand UP, we need to understand iterations. The idea is fundamen-
tally very simple—history shows that, generally speaking, human beings
find small problems easier to solve than large problems. We therefore break
a large software development project down into a number of smaller “mini
projects”, which are easier to manage and to complete successfully. Fach of
these “mini projects” is an iteration. The key point is that each iteration con-
tains all of the elements of a normal software development project:

¢ planning

@ analysis and design
& construction

@ integration and test

@ an internal or external release

Each iteration generates a baseline that comprises a partially complete version
of the final system and any associated project documentation. Baselines
build on each other over successive iterations until the final finished system
is achieved.

The difference between two consecutive baselines is known as an incre-
ment. This is why UP is known as an iterative and incremental life cycle.

As you will see in Section 2.8, iterations are grouped into phases. Phases
provide the macrostructure of UP,
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2.7.1

Iteration workflows

In each iteration, five core workflows specify what needs to be done and
what skills are needed to do it. As well as the five core workflows there will
be other workflows such as planning, assessment, and anything else specific
to that particular iteration. However, these are not covered in UP.

The five core workflows are

requirements — capturing what the system should do;

analysis - refining and structuring the requirements;

design - realizing the requirements in system architecture;

implementation — building the software;

® © ® © ©

test — verifying that the implementation works as desired.

Some possible workflows for an iteration are illustrated in Figure 2.5. We look
at the requirements, analysis, design, and implementation workflows in
more detail later in the book (the test workflow is out of scope).

UP specifies five core workflows

I N

> Requnrement>> Analysis >> Design >> lmplementatl(>> Test >

Figure 2.5

l
15

Assessment>> Plannmg>> Project specm>

other workflows

Although each iteration may contain all of the five core workflows, the
emphasis on a particular workflow depends on where the iteration occurs in
the project life cycle.

Breaking the project down into a series of iterations allows a flexible ap-
proach to project planning. The simplest approach is just a time-ordered
sequence of iterations, where each leads to the next. However, it is often
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possible to schedule iterations in parallel. This implies an understanding of
the dependencies between the artifacts of each iteration and requires an
approach to software development predicated on architecture and model-
ing. The benefit of parallel iterations is better time-to-market and perhaps
better utilization of the team, but careful planning is essential.

Baselines and increments

Every UP iteration generates a baseline. This is an internal (or external) re-
lease of the set of reviewed and approved artifacts generated by that
iteration. Each baseline

® provides an agreed basis for further review and development;
© can be changed only through formal procedures of configuration and
change management.

Increments, however, are just the difference between one baseline and the
next. They constitute a step toward the final, delivered system.

28 UPstucture

UP has four
phases, each of
which ends with a
major milestone.

Figure 2.6 shows the structure of UP. The project life cycle is divided into four
phases—Inception, Elaboration, Construction, and Transition—each of
which ends with a major milestone. Within each phase we can have one or

- more iterations, and in each iteration we execute the five core workflows and

any extra workflows. The exact number of iterations per phase depends on
the size of the project, but each iteration should last no more than two to
three months. The example is typical for a project that lasts about 18 months
and is of medium size.

. . Initial
" Life Cycle Life Cycle : Product
M
llestone Objectives Architecture Oper atip'nal Release
Capability

Phase Elaboration

lterations >Iter 2> >Iter 3> >|ter4>>ne@
Five core Z 1\

workflows 2RIAPDPIDT)

Figure 2.6
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As can be seen from Figure 2.6, UP consists of a sequence of four phases,
each of which terminates with a major milestone:

Inception - Life Cycle Objectives;

®

@ Elaboration - Life Cycle Architecture;

® Construction ~ Initial Operational Capability;
®

Transition — Product Release.

As the project shifts through the phases of the UP, so the amount of work
that is done in each of the five core workflows changes.

Figure 2.7 is really the key to understanding how UP works. Along the
top, we have the phases. Down the left-hand side, we have the five core
workflows. Along the bottom, we have some iterations. The curves show the
relative amount of work done in each of the five core workflows as the
project progresses through the phases.

The amount of
work done in each

core workflow varies
according to the phase.

lncebtion Elaboration ictic
Requirements ' : - réfmvm:
Analysis o X )
; E ’ :
Design P ;
Implementation |+ i :
ot Z *
. . .
Test a H -
Preliminary 11 12 In In+1 In+2  Im Im+1
iterations

Figure 2.7 Adapted from Figure 1.5 [Jacobson 1] with permission from Addison-Wesley

As Figure 2.7 shows, in the Inception phase most of the work is done in
requirements and analysis. In Elaboration the emphasis shifts to require-
ments, analysis, and some design. In Construction the emphasis is clearly on
design and implementation. Finally, in Transition the emphasis is on imple-
mentation and test.
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Inception is about
initiating the project.
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One of the great features of UP is that it is a goal-based process rather
than a deliverable-based process. Each phase ends with a milestone that con-
sists of a set of conditions of satisfaction, and these conditions may involve
the creation of a particular deliverable, or not, depending on the specific
needs of your project.

In the rest of this chapter, we give a brief overview of each of the UP
phases.

UP phases

Every phase has a goal, a focus of activity with one or more core workflows
emphasized, and a milestone. This will be our framework for investigating
the phases.

Inception - goals

The goal of Inception is to “get the project off the ground”. Inception
involves

© establishing feasibility - this may involve some technical prototyping to
validate technology decisions or proof of concept prototyping to validate
business requirements;

® creating a business case to demonstrate that the project will deliver quan-
tifiable business benefit;

@ capturing essential requirements to help scope the system;
@ identifying critical risks.

The primary workers in this phase are the project manager and system
architect.

Inception - focus

The primary emphasis in Inception is on requirements and analysis work-
flows. However, some design and implementation might also be done if it is
decided to build a technical, or proof-of-concept, prototype. The test workflow

is not generally applicable to this phase, as the only software artifacts are
prototypes that will be thrown away.

Inception - milestone: Life Cycle Objectives

While many SEPs focus on the creation of key artifacts, UP adopts a different
approach that is goal-oriented. Each milestone sets certain goals that must be
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2.9.4

achieved before the milestone can be considered to have been reached. Some
of these goals might be the production of certain artifacts and some might
not.

The milestone for Inception is the Life Cycle Objectives. The conditions
that must be met for this milestone to be attained are given in Table 2.1. We
also suggest a set of deliverables that you may need to create to realize these
conditions. However, please remember that you only create a deliverable
when it adds true value to your project.

Table 2.1

Conditions of satlsfactlon

' Deliverable

The stakeholders have agreed on the
project objectives

A vision document that states the
project’s main requirements, features,
and constraints

System scope has been defined and
agreed on with the stakeholders

An initial use case model (only about
10% to 20% complete)

Key requirements have been captured
and agreed on with the stakeholders

A project glossary

Cost and schedule estimates have been
agreed on with the stakeholders

An initial project plan

A business case has been raised by the
project manager

A business case

The project manager has performed a
risk assessment

A risk assessment document or database

Feasibility has been confirmed through
technical studies and/or prototyping

One or more throwaway prototypes

An architecture has been outlined

An initial architecture document

Elaboration — goals

The goals of Flaboration may be summarized as follows:

@ create an executable architectural baseline;

@ refine the risk assessment;

e define quality attributes (defect discovery rates, acceptable defect densi-

ties, and so on);
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Elaboration is about
creating a partial but
working version of the
system-—an executable
architectural baseline.

2.9.5

2.9.7

Construction
evolves the executable
architectural baseline
into a complete,
working system.
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© capture use cases to 80% of the functional requirements (you’ll see ex-
actly what this involves in Chapters 3 and 4);

@ create a detailed plan for the construction phase;
@ formulate a bid that includes resources, time, equipment, staff, and cost.

The main goal of Elaboration is to create an executable architectural base-
line. This is a real, executable system that is built according to the specified
architecture. It is not a prototype (which is throwaway), but rather the “first
cut” of the desired system. This initial executable architectural baseline will
be added to as the project progresses and will evolve into the final delivered
system during the Construction and Transition phases. Because future
phases are predicated on the results of Elaboration, this is perhaps the most
critical phase. In fact, this book focuses very much on the Elaboration
activities.

Elaboration - focus

In the Elaboration phase, the focus in each of the core workflows is as
follows:

© requirements - refine system scope and requirements;

@ analysis — establish what to build;

& design - create a stable architecture;
implementation - build the architectural baseline;
@ test - test the architectural baseline.

The focus in Elaboration is clearly on the requirements, analysis, and design
workflows, with implementation becoming very important at the end of the
phase when the executable architectural baseline is being produced.

Elaboration — milestone: Life Cycle Architecture
The milestone is the Life Cycle Architecture. The conditions of satisfaction
for this milestone are summarized in Table 2.2.

Construction - goals

The goal of Construction is to complete all requirements, analysis, and de-
sign and to evolve the architectural baseline generated in Elaboration into
the final system. A key issue in Construction is maintaining the integrity of the
system architecture. It is quite common once delivery pressure is on and cod-
ing begins in earnest for corners to be cut, leading to a corruption of the
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Table 2.2

Conditions of satisfaction

- Déli\(‘era”ble‘ :

A resilient, robust executable architectural baseline has been created

The executable
architectural baseline

The executable architectural baseline demonstrates that important risks have
been identified and resolved

UML static model
UML dynamic model
UML use case model

The vision of the product has stabilized

Vision document

The risk assessment has been revised

Updated risk assessment

The business case has been revised and agreed with the stakeholders

Updated business case

A project plan has been created in sufficient detail to enable a realistic bid to
be formulated for time, money, and resources in the next phases

The stakeholders agree to the project plan

The business case has been verified against the project plan

Updated project plan

Business case

Agreement is reached with the stakeholders to continue the project

Sign-off document

architectural vision and a final system with low-quality and high-maintenance

costs. Clearly, this outcome should be avoided.

Construction - focus

The emphasis in this phase is on the implementation workflow. Just enough
work is done in the other workflows to complete requirements capture, anal-
ysis, and design. Testing also becomes more important—as each new
increment builds on the last, both unit and integration tests are now needed.
We can summarize the kind of work undertaken in each workflow as follows:

analysis - finish the analysis model;
design - finish the design model;

e ® © ©

test — test the Initial Operational Capability.

2.9.9

requirements — uncover any requirements that had been missed;

implementation — build the Initial Operational Capability;

Construction — milestone: Initial Operational Capability

In essence, this milestone is very simple—the software system is finished
ready for beta testing at the user site. The conditions of satisfaction for this

milestone are given in Table 2.3.
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Transition is about
deploying the
completed system into
the user community.

2.9.11

Table 2.3

iCondmons ofsatisfactlon S Deliverable

The software product is sufficiently stable and of suffi- The software product
cient quality to be deployed in the user community The UML model

Test suite
The stakeholders have agreed and are ready for the User manuals
transition of the software to their environment Description of this release

The actual expenditures vs. the planned expenditures Project plan
are acceptable

Transition - goals
The Transition phase starts when beta testing is completed and the system is

fi

nally deployed. This involves fixing any defects found in the beta test and

preparing for rollout of the software to all the user sites. We can summarize
the goals of this phase as follows:

2 @ © 9 © @& ¢

T

correct defects;

prepare the user sites for the new software;

tailor the software to operate at the user sites;
modify the software if unforeseen problems arise;
create user manuals and other documentation;
provide user consultancy;

conduct a post-project review.

ransition - focus

The emphasis is on the impléméhtation and test workflows. Sufficient design
is done to correct any design errors found in beta testing. Hopefully, by this

p

oint in the project life cycle, there should be very little work being done in

the requirements and analysis workflows. If this is not the case, then the
project is in trouble.

@

@
@
@

Requirements — not applicable.
Analysis - not applicable.
Design — modify the design if problems emerge in beta testing.

Implementation - tailor the software for the user site and correct problems
uncovered in beta testing.

Test — beta testing and acceptance testing at the user site.
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Transition — milestone: Product Release

This is the final milestone: beta testing, acceptance testing, and defect repair
are finished and the product is released and accepted into the user commu-
nity. The conditions of satisfaction for this milestone are given in Table 2.4.

Table 2.4
ConditiOns‘of"ksa,tisfa'c‘tion e ‘f"?f"_{Délyi‘verable: L
Beta testing is completed, necessary changes have The software product

been made, and the users agree that the system has
been successfully deployed

The user community is actively using the product

Product support strategies have been agreed on ' User support plan
with the users and implemented Updated user manuals
What we have learned

© A software engineering process (SEP) turns user requirements into software
by specifying who does what, when.

@ The Unified Process (UP) has been in development since 1967. It is a
mature, open SEP from the authors of UML.

© Rational Unified Process (RUP) is a commercial extension of UP. It is
entirely compatible with UP but is more complete and detailed.

@ UP (and RUP) must be instantiated for any specific project by adding in-
house standards, etc.

@ UP is a modern SEP that is:
— risk and use case (requirements) driven;
— architecture centric;
— jterative and incremental.

@ UP software is built in iterations:
— each iteration is like a “mini project” that delivers a part of the system;
— iterations build on each other to create the final system.

o Every iteration has five core workflows:
— requirements - capturing what the system should do;
~ — analysis - refining and structuring the requirements;
— design - realizing the requirements in system architecture (how the
system does it);
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implementation - building the software;
test — verifying that the implementation works as desired.

® UP has four phases, each of which ends with a major milestone:

Inception - getting the project off the ground: Life Cycle Objectives;
Elaboration - evolving the system architecture: Life Cycle Architecture;
Construction - building the software: Initial Operational Capability;
Transition - deploying the software into the user environment: Product
Release.






" Requirements






- The requirements
workflow

Chapter roadma

This chapter is all about understanding system requirements. We discuss the
details of the UP requirements workflow and introduce the notion of require-
ments. We also present a UP extension for dealing with requirements without
using UML use cases.

49
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Most requirements
work is done at the
beginning of the

project inthe Inception
and Elaboration phases.

The requirements workfiow

As shown in Figure 3.2, most of the work in the requirements workflow occurs
throughout the Inception and Elaboration phases right at the beginning of
the project life cycle. This is hardly surprising, as you can’t progress beyond
Elaboration until you know roughly what you are going to build!

Inception | Elaboration | .  Transition
) 1 o 2 & 3 ik
Requirements ' : P
Analysis : :
Design P ;
S ; !
Implementation : E ;
Sy
Test N ; - o
LN
Preliminary I1 12 In In+1 Int2  Im  Im+1

iterations

Figure3.2 Adapted from Figure 1.5 [Jacobson 1] with permission from Addison-Wesley

Before you can even begin to work on OO analysis and design, you have to
have some idea of what you are trying to achieve, and this is the purpose of the
requirements workflow. From the point of view of the OO analyst/designer, the
purpose is to discover and reach agreement on what the system should do,
expressed in the language of the users of the system. Creating a high-level
specification for what the system should do is part of requirements engineering.

For any given system, there may be many different stakeholders: many
types of user, maintenance engineers, support staff, salespeople, managers,
and so on. Requirements engineering is about eliciting and prioritizing the
requirements these stakeholders have for the system. It is a process of nego-
tiation as there are often conflicting requirements that must be balanced. For
example, one group might want to add many users, which may result in un-
realistic traffic on the existing database and communications infrastructure.
This is a common conflict at the moment as more and more companies open
up parts of their system to a huge user base via the Internet.
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Some UML books (and indeed training courses) state that the UML notion
of use cases is the only way to capture requirements, but this assertion doesn’t
really stand up to close examination. Use cases can only really capture func-
tional requirements, which are statements about what the system will do.
However, there is another set of non-functional requirements that are state-
ments about constraints on the system (performance, reliability, and the like),
which are not really suitable for capture by use cases. We therefore present in
this book a robust requirements engineering approach by which we illustrate
powerful and complementary ways to capture both sets of requirements.

Figure 3.3 shows the metamodel for our approach to requirements engineer-
ing in this book. It contains quite a lot of UML syntax that we have not
covered yet. Don’t worry! We cover these things in depth later on. For now,
the following is all you need to know.

@ The icons that look like folders are UML packages. They are the UML
grouping mechanism and contain groups of UML modeling elements. In
effect, they act very much like real folders in a filing system in that they
are used to organize and group related things. When the package has a

Figure 3.3

Functional
_l requirements
Requir(-:‘mentsA TN ___._.I
model L/
Non-functional
—‘—"‘] requirements
Software L~ package
requirements
specification N anchor P1 | P3_|
icon
L | Use case
model ——'5-2——] use case

% O\%\ actor
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small triangle in its upper right-hand corner, this indicates that the pack-
age contains a model.

@ The anchor icon indicates that the thing at the circle end contains the
thing at the other end of the line.

Our metamodel shows that the Software requirements specification (SRS) contains
a Requirements model and a Use case model. These two models are different, yet
complementary, ways to capture system requirements.

You can see that the Requirements model contains Functional requirements
(requirements specifying what the system should do) and Non-functional require-
ments (requirements expressing non-functional constraints on the system).

The Use case model contains many use case packages (we only show three
here) that contain use cases (specifications of system functionality), actors
(external roles that interact directly with the system), and relationships.

The SRS is really the very beginning of the software construction process.
It is generally the initial input to OO analysis and design.

We cover requirements in detail in the rest of this chapter, and use cases
and actors in the next. :

Requirements workflow detail

Figure 3.4 shows the specific tasks for the UP requirements workflow. A diagram
such as this is known as a workflow detail as it details the component tasks
of a specific workflow.

Structure the use case model

o

Find actors and use cases
System analyst \ R

Qo

Architect Prioritize use cases
AN

N/

Jo

Use case specifier Detail a use case

User interface designer Prototype user interface

Figure 3.4 Reproduced from Figure 7.10 [Jacobson 1] with permission from Addison-Wesley
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A workflow detail
shows us the workers
and activities involved
in a particular workflow.

We extend the UP
requirements workflow
to deal with
requirements expressed
in structured English.

UP workflow details are modeled as workers (the icons on the left-hand
side) and activities (the icons that look like cogs). UP variants such as RUP
may use different icons, but the semantics are the same (see Section 2.4 for a
brief discussion of the relationship between UP and RUP). The arrows are
relationships that show the normal flow of work from one task to the next.
However, it is worth bearing in mind that this is only an approximation of
the workflow in the “average” case and might not be a particularly exact
representation of what happens in practice. In the real world, you can
expect some tasks to be done in a different order or in parallel according to
circumstances.

Because this is an analysis and design book, we focus only on the tasks
important to OO analysts and designers. In this case, we are interested in the
following tasks.

® Find actors and use cases.
© Detail a use case.

@ Structure the use case model.

The other tasks in the requirements workflow are not that relevant to us as
analyst/designers. Prioritize use cases is primarily an architecture and project
planning activity, and Prototype user interface is a programming activity. If you
need to, you can learn more about these activities in [Jacobson 1].

In Figure 3.4 you can see that the standard UP workflow focuses on use
cases to the exclusion of any other requirements elicitation techniques. This
is fine as far as it goes, but, as we have said, it doesn't really address the non-
functional aspect of requirements particularly well. In order to deal with
requirements rigorously, we make a simple extension to the UP requirements
workflow to add the following new tasks.

@ Find functional requirements.

® Find non-functional requirements.
@ Prioritize requirements.

@ Trace requirements to use cases.

We have also introduced a new worker, the requirements engineer. The new
tasks and workers are shown in Figure 3.5.
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Find functional requirements

Requirements engineer Find non-functional requirements Prioritize requirements

O

[]

Architect
Figure 3.5

Requirements
tell us what we should
build, not how we
should build it.

Defining requirements

&

Trace requirements to use cases

The importance of requirements

Requirements engineering is a term used to describe the activities involved
in eliciting, documenting, and maintaining a set of requirements for a soft-
ware system. It is about discovering what the stakeholders need the system
to do for them.

According to [Standish 1], incomplete requirements and lack of user
involvement were the two top reasons cited for project failure. Both of these
issues are failures in requirements engineering.

As the final software system is predicated on a set of requirements,
effective requirements engineering is a critical success factor in software de-
velopment projects.

We can define a requirement as “a specification of what should be imple-
mented”. There are basically two types of requirements:

© functional requirements — what behavior the system should offer;

® non-functional requirements - a specific property or constraint on the
system.

Requirements are (or at least should be) the basis of all systems. They are
essentially a statement of what the system should do. In principle, require-
ments should only be a statement of what the system should do, and not how
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it should do it. This is an important distinction. We can specify what a
system should do and what behavior a system should exhibit without neces-
sarily saying anything about how this functionality may be actually realized.

While it is certainly attractive in theory to separate the “what” from the
“how”, in practice a set of requirements will tend to be a mix of “what” and
“how”. This is partly because it is often easier to write and understand an
implementation description, rather than an abstract statement of the problem,
and partly because there may be implementation constraints that predeter-
mine the “how” of the system.

Despite the fact that system behavior and, ultimately, end-user satisfac-
tion is predicated on requirements engineering, many companies still don't
recognize this as an important discipline. As we have seen, the primary
reason that software projects fail is due to problems in requirements.

The requirements model

Many companies still have no formal notion of requirements or of a require-
ments model. Software is specified in one or more informal “requirements
documents” that are often written in natural language, and come in all shapes
and sizes, and in varying degrees of usefulness. For any requirements docu-
ment, in whatever form, the key questions are “how useful is it to me?” and
“does it help me to understand what the system should do or not?” Unfortu-
nately, many of these informal documents are of only limited usefulness.

UP has a formal approach to requirements based on a use case model,
and we extend that here with a requirements model based on traditional
ideas of functional and non-functional requirements. This extension is in
direct accordance with the more sophisticated approach to requirements
engineering in RUP. Our requirements metamodel (Figure 3.3) shows that
the SRS consists of a use case model and a requirements model.

The use case model is usually created in a UML modeling tool such as
Rational Rose. We discuss use cases in detail in Chapter 4 and Chapter 5.

The requirements model may be created in text or in special require-
ments engineering tools such as RequisitePro (www.ibm.com) or DOORS
(www.telelogic.com). We recommend that you use requirements engineering
tools if possible! We look at how to write well-formed requirements in the
next few sections.

Well-formed requirements

UML does not provide any recommendations on writing traditional require-
ments. In fact UML deals with requirements entirely by the mechanism of
use cases, which we examine later. However, many modelers (us included)
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statements to capture
requirements.
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requirement - what the
system should do.

Non-functional
requirement - a
constraint on the
system.
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believe that use cases are not enough and that we still need traditional re-
quirements and requirements management tools.

We recommend a very simple format for stating requirements (see Fig-
ure 3.6). Each requirement has a unique identifier (usually a number), a
keyword (shall) and a statement of function. The advantage of adopting a
uniform structure is that requirements management tools such as DOORS
can parse requirements more easily.

unique
identifier keyword

/ /

<id> The <system> shall <function>

/ /

name of the function to be
system performed

Figure 3.6

Functional and non-functional requirements

It is useful to divide requirements into functional and non-functional require-
ments. There are many other ways of categorizing requirements, but we will
keep things as simple as possible and work initially with these two categories.

A functional requirement is a statement of what the system should do—
it is a statement of system function. For example, if you were collecting
requirements for an automated teller machine (ATM), you might identify the
following functional requirements.

1. The ATM system shall check the validity of the inserted ATM card.

2. The ATM-system shall-validate the PIN number entered by the customer.

3. The ATM system shall dispense no more than $250 against any ATM
card in any 24-hour period.

A non-functional requirement is a constraint placed on the system. For your
ATM system, there may be the following non-functional requirements.
1. The ATM system shall be written in C++.

2. The ATM system shall communicate with the bank by using 256-bit
encryption.

3. The ATM system shall validate an ATM card in three seconds or less.
4. The ATM system shall validate a PIN in three seconds or less.
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You can see that non-functional requirements specify, or constrain, how the
system will be implemented.

Organizing requirements

If you are using a requirements management tool, you will be able to orga-
nize your requirements into a taxonomy. This is a hierarchy of requirement
types that you can use to categorize your requirements. The main reason for
using requirement types is that they can organize a large, unstructured sea of
requirements into smaller, more manageable domains. This should help you
work with the requirements more effectively.

The basic split into functional and non-functional requirements that we
describe above is a very simple taxonomy, but you could, for example, fur-
ther categorize your requirements by extending this taxonomy as shown in
Figure 3.7.

Functional requirements

Customers
Products

Orders
Sales channels

Payments

Non-functional requirements

Performance

Capacity

Availability

Compliance to standards

Security
Figure 3.7

The specific requirement types you choose depends on the type of soft-
ware you are building. This is especially true for functional requirements.
For non-functional requirements, the set of requirement types shown in Fig-
ure 3.7 is fairly standard and provides a good starting point.

Organizing requirements by type is a useful approach if you have a lot of
requirements (more than a hundred or so) to deal with. It is especially useful
if you are using a requirements engineering tool as this will let you query the
requirements model by requirement type to extract useful information.
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In principle, your hierarchy of requirement types can be as deep as you
like. In practice, about two or three levels seems to be about right unless you
are working on a very complex system.

Requirement attributes

Each requirement may have a set of attributes that captures extra informa-
tion (metadata) about the requirement.

Fach requirement attribute has a descriptive name and a value. For
example, a requirement may have an attribute called dueDate that has as its
value the date the requirement must be delivered. The requirement might
also have a source attribute that has as its value a description of where the re-
quirement originated. The precise set of attributes you choose to use depends
on the nature and needs of your project and may vary by requirement type.

Perhaps the most common requirement attribute is priority. The value of
this attribute is the priority of the requirement relative to all the other
requirements. A common scheme for assigning priority is the set of MoS-
CoW criteria described in Table 3.5.

Table 3.5

 Priority attribute values ~ Semanties

Moust have Mandatory requirements that are fundamental to
the system

Should have Important requirements that may be omitted

Could have Requirements that are truly optional (realize if there
is time)

Want to have Requirements that can wait for later releases of the
system

When MoSCoW is used, each requirement has a Priority attribute that can
take one of the values M, S, C, or W. Requirements engineering tools gener-
ally let you query the requirements model by attribute value so that you
could, for example, generate a list of all top-priority (Must have) require-
ments. This is very useful!

The virtue of MoSCoW is its simplicity. However, it does confuse two dif-
ferent attributes of a requirement: its importance and its precedence. The
importance of a requirement, once set, tends to remain relatively stable.
However, the precedence of a requirement—when it will be realized with



veaocses $ueBoBOB0sACEREENE

0 Part 2 Requirements

Keep requirement
attributes to the
minimum that benefits
your project.

respect to other requirements—can change during the course of the project
for reasons unrelated to importance. For example, the availability of re-
sources, or dependencies on other requirements.

RUP defines a more complete set of requirement attributes that separates
importance (Benefit) and precedence (TargetRelease). The RUP attributes are
summarized in Table 3.6.

Whether you use MoSCoW, RUP, or some other set of requirement
attributes depends on your particular project. The key point when defining
a set of attributes is to keep it as simple as you can. Choose only those
attributes that deliver benefit to your project. If an attribute doesn’t de-
liver benefit, don’t use it. ‘

Table 3.6

Status This can have one of the following values:
Proposed - requirements that are still under discussion and
have not been agreed
Approved - requirements that have been approved for
implementation
Rejected - requirements that have been rejected for
implementation
Incorporated - requirements that have been implemented in
a particular release

Benefit This can have one of the following values:
Critical - the requirement must be implemented; otherwise, the
system will not be acceptable to the stakeholders
Important - the requirement might be omitted, but this would
adversely affect the usability of the system and stakeholder
satisfaction
Useful - the requirement might be omitted with no significant
impact on the acceptability of the system

Effort . An estimate of the time and resources needed to implement the
feature measured in person days or some other unit such as
function points (www.ifpug.org)

Risk The risk involved in adding this feature — High, Medium, or Low

Stability An estimate of the probability the requirement will change in
some way — High, Medium, or Low

TargetRelease The product version in which the requirement should be
implemented
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3.7.1

The three filters of
deletion, distortion,
and generalization
shape natural
language.

Requirements come from the context of the system you are trying to model.
This context includes

direct users of the system;

other stakeholders (e.g., managers, maintainers, installers);
other systems with which the system interacts;

hardware devices with which the system interacts;

legal and regulatory constraints;

technical constraints;

¢ ® @ ¢ © © ©

business goals.

Requirements engineering generally starts with a vision document that out-
lines what the system is going to do, and what benefits it will deliver to a set
of stakeholders. The idea of this document is to capture the essential goals of
the system from the stakeholders’ point of view. The vision document is
produced by system analysts during the Inception phase of the UP.

After the vision document, requirements engineering begins in earnest.
We will look at some techniques for requirements elicitation in the next few
sections.

Requirements elicitation — the map is not the territory

Whenever you work with people to capture the requirements for a software
system, you are trying to elicit from them an accurate picture, or map, of
their model of the world. According to Noam Chomsky, in his 1975 book
Syntactic Structures [Chomsky 1] on transformational grammar, this map is
created by the three processes of deletion, distortion, and generalization.
This is entirely necessary, as we just don’t have the cognitive equipment to
capture every nuance and detail of the world in an infinitely detailed mental
map, so we have to be selective. We make our selection from the vast array
of possible information by applying these three filters:

deletion - information is filtered out;

@ distortion - information is modified by the related mechanisms creation
and hallucination;

® generalization"— information is abstracted into rules, beliefs, and princi-
ples about truth and falsehood.
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These filters shape natural language. It is important to know about them when
you are carrying out detailed requirements capture and analysis, as you may
need to actively identify and challenge them to recover information.

Below are some examples from a library management system. For each
there is a challenge to the filter and a possible response to that challenge.

® Example: “They use the system to borrow books” — deletion.
— Challenge: Who specifically uses the system to borrow books?
— Response: Library members, other libraries, and librarians.

© Example: “Borrowers can’t borrow another book until all overdue books
have been returned” — distortion.

— Challenge: Are there any circumstances under which someone could
borrow a new book before all overdue books had been returned?

— Response: Actually, there are two circumstances under which a bor-
rower’s right to borrow books may be restored. First, all overdue
books are returned; second, any overdue book that has not been
returned has been paid for.

© Example: “Everyone must have a ticket to borrow books” - generalization.
— Challenge: Is there any user of the system who might not need to
have a ticket?
— Response: Some users of the system, such as other libraries, may not
need a ticket or may have a special type of ticket with different terms
and conditions.

The last two cases are particularly interesting as examples of a common language
pattern: the universal quantifier. Universal quantifiers are words such as

all;
everyone;

always;

e & @ ©

never;

nobody;

@ @

nomne.

Whenever you encounter a universal quantifier, you may have found a dele-
tion, a distortion, or a generalization. They often indicate that you have
reached the limits, or bounds, of someone’s mental map. As such, when
doing analysis it is often a good idea to challenge universal quantifiers. We
almost wrote “it is always a good idea to challenge universal quantifiers”, but
then we challenged ourselves!
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Interviews

Interviewing stakeholders is the most direct way of gathering requirements.
Usually, you are better off having one-on-one interviews where possible. The
essential points are noted below.

® Don’t hallucinate a solution - you may think you have a very good idea of
what the stakeholders need, but you must set this preconception aside
during the interview. This is the only way you will ever find out what
they really need.

® Ask context-free questions — these are questions that don’t presuppose
any particular answer and encourage the interviewee to talk about the
problem. For example, “Who uses the system?” is context-free and en-
courages discussion, whereas “Do you use the system?” implies a yes/no
answer and closes discussion down.

@ Listen - this is the only way you will find out what stakeholders want, so
give them the time to talk. Allow them to talk around a question and
explore it in their own way. If you are looking for specific answers to ques-
tions, you may well have hallucinated a solution and be asking closed
questions predicated on that hallucination.

@ Don’t mind-read - in fact, we all mind-read to some extent. Mind-reading
is hallucinating that you know what someone feels, wants, or is thinking,
based on what you would feel, want, or think in a similar situation. This is
an important human skill because it is the basis of empathy. However, it
can get in your way when you are trying to elicit requirements as you may
end up with what you require rather than what the stakeholder requires.

® Have patience!

The interview context can have a big impact on the quality of the informa-
tion you receive. Personally, we prefer informal contexts, such as a coffee bar,

as they allow both interviewer and interviewee to relax and open up.

3.7:3

The best way to capture information during an interview is pen and
paper! Typing things into a laptop is distracting to both parties and can feel
quite intimidating to the interviewee. We like to use mind maps as a flexible,
nonthreatening, and graphically rich way of collecting information. You can
find out more about these at www.mind-map.com.

After an interview, you analyze the information and construct some can-
didate requirements.

Questionnaires
Questionnaires are no substitute for interviews.
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3.7:4

If you decide to use questionnaires without doing any interviews, you
may find yourself in an impossible situation where you must decide on a list
of questions before you know the right questions to ask.

Questionnaires can be a useful supplement to interviews. They are very
good at getting answers to specific, closed questions. You may uncover key
questions from interviews and incorporate these into a questionnaire that
you can then distribute to a wider audience. This can help you to validate
your understanding of the requirements.

Requirements workshop

This is one of the most efficient ways of capturing requirements. You get the
key stakeholders to participate in a workshop to identify key requirements.
The workshop should focus on brainstorming. This is a powerful tech-
nique for capturing information.
The participants in the meeting should be a facilitator, a requirements
engineer, and the key stakeholders and domain experts. The procedure is as
follows.

1. Explain that this is a true brainstorm.
1.1. All ideas are accepted as good ideas.
1.2. Ideas are recorded but not debated — never argue about something,
just write it down and then move on. Everything will be analyzed
later.

2. Ask the team members to name their key requirements for the system.
2.4. Write each requirement on a sticky note.
2.2, Stick the note on a wall or whiteboard.

3. You may then choose to iterate over the identified requirements and note
additional attributes against each one (see Section 3.6.5).

After the meeting, analyze the results and turn them into requirements as we
discussed earlier in this chapter. Circulate the results for comment.

Requirements engineering is an iterative process where you uncover
requirements as you refine your understanding of the needs of the stakehold-
ers. You may need to hold several workshops over time as your understanding
deepens.

You can find lots more information about running workshops and re-
quirements engineering in general in [Leffingwell 1] and [Alexander 1].
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This chapter has presented the UP requirements workflow and a general
discussion of software requirements. You have learned the following.

@

Most of the work in the requirements workflow occurs in the Inception
and Elaboration phases of the UP project life cycle.

Our requirements metamodel (Figure 3.3) shows that there are two ways of
capturing requirements — as functional and non-functional requirements
and as use cases and actors.

The UP requirements workflow detail contains the following activities that
are of interest to us as OO analysts and designers:

— Find actors and use cases;

— Detail a use case;

— Structure the use case model.

We extend the standard UP requirements workflow with:
— actor: Requirements engineer;

— activity: Find functional requirements;

— activity: Find non-functional requirements;

— activity: Prioritize requirements;

— activity: Trace requirements to use cases.

Most project failures are due to problems with requirements engineering.

There are two types of requirements:

— functional requirements — what behavior the system should offer;

— non-functional requirements — a specific property or constraint on the
system.

Well-formed requirements should be expressed in simple structured English
using shall statements, so that they can be easily parsed by requirements
engineering tools.

—  <id>The <system> shall <function>

The requirements model contains the functional and non-functional
requirements for a system. This may be:

— a document;

— a database in a requirements management tool.

Requirements may be organized into a taxonomy - a hierarchy of require-
ment types that categorizes the requirements.
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@ Requirements may have attributes — extra information (metadata) associ-
ated with each requirement:
— for example, priority - MoSCoW (Must have, Should have, Could have,
Want to have)
— for example, RUP attributes (Status, Benefit, Effort, Risk, Stability,
TargetRelease)
— Keep attribute requirements to the minimum that benefits your project.

@ The map is not the territory. Natural language contains:
— deletions — information is filtered out;
— distortions — information is modified;
— generalizations - information is abstracted into rules, beliefs, and
principles about truth and falsehood.

® Universal quantifiers (“all”, “every”, for example) can indicate the bound-
ary of someone’s mental map of their world - you should challenge them.

@ Techniques for finding requirements:
— interviews;
— questionnaires;
— workshops.
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Use case modeling

Chapter roadmap

In this chapter, we discuss the basics of use case modeling, which is another
form of requirements engineering. We take you through the process of use
case modeling as defined by UP. We concentrate on specific techniques and
strategies that the OO analyst/designer can use to perform use case modeling
effectively. To focus on these techniques, we keep the use cases in this section
as simple as possible. There is a complete (and more complex) worked exam-
ple on our website at www.umlandtheunifiedprocess.com.

UML does not specify any formal structure for the use case specification.
This is problematic, as different modelers adopt different standards. To help
with this, we have adopted a simple and effective standard in this chapter
and in our worked example. To help you to apply our approach, our website
provides open source XML (eXtensible Markup Language) schema for use
cases and actors that you are free to use in your projects. These templates are
based on industry best practice and provide a simple, yet effective, standard
for capturing use case specifications.

Our website also includes a very simple XSL (eXtensible Stylesheet
Language) stylesheet that transforms XML use case documents into HTML
for display in a browser. This stylesheet is a useful example that can easily be
customized to incorporate branding or other document standards for differ-
ent organizations. A detailed discussion of XML is beyond the scope of this
book, and you may need to refer to XML texts such as [Pitts 1] and [Kay 1] to
use these documents effectively.

As well as open source schema and stylesheets, we are working on a more
flexible approach called SUMR (Simple Use case Markup Restructured—
pronounced “summer”). It is a simple, open source structured text markup
language for use cases and actors. We provide sample SUMR schema, parsers,
and XML and HTML generators on our website. See Section 2.2 for more
details.
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Use cases are
a way of capturing
requirements.

Use case modeling
involves finding actors
and use cases.

| uselc'ase modelmg T

Use case modeling is a form of requirements engineering. In Section 3.6, you
saw how to create a requirements model comprising functional and non-
functional requirements in what we might call the “traditional” way. Use case
modeling is a different and complementary way of eliciting and documenting
requirements. Use case modeling typically proceeds as follows.

® Find a candidate system boundary.
@ Find the actors.

@ Find the use cases:
— specify the use case;
— identify key alternative flows.

® Iterate until use cases, actors, and system boundary are stable.

You generally begin with some initial estimate of where the system boundary
lies, to help you scope the modeling activity. The actions are then performed
iteratively and often in parallel.

The output of these activities is the use case model. There are four com-
ponents of this model.

@ System boundary - a box drawn around the use cases to denote the edge
or boundary of the system being modeled. This is known as the subject in
UML 2.

Actors - roles played by people or things that use the system.
Use cases — things that the actors can do with the system.

Relationships — meaningful relationships between actors and use cases.

‘The use case model provides a prime source for objects and classes. It is the

primary input to class modeling.

_ UPactivity: Find actors and use cases

In this section, we focus on the activity Find actors and use cases from the
requirements workflow (see Section 3.4). This is shown in Figure 4.2. We go
on in Section 4.4 to look at the activity Detail a use case.
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Figure 4.2 Adapted from Figure 7.11[Jacobson 1] with permission from Addison-Wesley

It's worth looking at the inputs to Find actors and use cases.

@

Business model — you may, or may not, have a business model available that
relates to the system you are modeling. If you do, this is an excellent
source of requirements.

Requirements model — we described creation of this model in Chapter 3.
These requirements provide useful input to the use case modeling pro-
cess. In particular, the functional requirements will suggest use cases and
actors. The non-functional requirements will suggest things you may
need to keep in mind when constructing the use case model.

Feature list — this is a set of candidate requirements that might take the
form of a vision document or similar.

In Jacobson’s original work, the requirements model (grayed in Figure 4.2 to
show it is modified from the original figure) was replaced by supplementary
requirements. This document consisted of requirements (usually non-
functional) that didn’t relate to any particular use case. The supplementary
requirements document was primarily a catch-all for non-functional
requirements that cut across use cases. In our more robust approach to re-
quirements engineering it has been subsumed by, and is a subset of, the
requirements model.
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The subject
separates the system
from the rest of the
world.

4.3.2

Actors are roles
adopted by things that
interact directly with
the system.

Arole is like a hat
that something wears
in a particular context.
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The subject (system boundary)

The first thing you need to do when you are thinking about building a
system is to decide where the boundaries of the system are. In other words,
you need to define what is part of your system (inside the system boundary)
and what is external to your system (outside the system boundary). This
sounds obvious, but we have come across many projects where severe prob-
lems arose from an uncertain system boundary. The positioning of the
system boundary typically has an enormous impact on the functional (and
sometimes non-functional) requirements, and you have already seen that
incomplete and ill-specified requirements can be the primary reason that
projects fail. In UML 2, the system boundary is referred to as the subject, and
this is the term we will use from now on.

The subject is defined by who or what uses the system (i.e., the actors) and
what specific benefits the system offers to those actors (i.e., the use cases).

The subject is drawn as a box, labeled with the name of the system, with
the actors drawn outside the boundary and the use cases inside. You will start
use case modeling with only a tentative idea of where the subject actually
lies. As you find the actors and use cases, the subject becomes more and more
sharply defined.

What are actors?

An actor specifies a role that some external entity adopts when interacting
with your system directly. It may represent a user role, or a role played by
another system or piece of hardware, that touches the boundary of your
system.

In UML 2, actors may also represent other subjects, giving you a way to
link different use case models.

To understand actors, it's important to understand the concept of roles.

. Think of a role as being like a hat a thing wears in a particular context.

Things may have many roles simultaneously and over time. This means that
a given role may be played by many different things simultaneously and
over time.

For example, if we have identified the Customer actor for our system, the
real people Jim, Ila, Wolfgang, Roland, and many others may all play that
role. These people may also play other roles. For example, Roland might also
administer the system (the SystemAdministrator actor) as well as using it as a
Customer.

The most fundamental mistake that beginners make in use case model-
ing is to confuse a role that something plays in the context of the system
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Actors are external
to the system.

4.3.2.1

To find actors ask:
“Who or what uses or
interacts with the
system?”

with the thing itself. Always ask yourself, “what role does this thing play with
respect to the system?” This way, you can find common behavior among
many different things and thereby simplify your use case model.

Actors are represented in UML as shown in Figure 4.3. They can be shown
as a class icon stereotyped «actor» or as the “stick man” actor icon. Both forms
of the actor notation are valid, but many modelers prefer to use the “stick
man” form to represent roles that are likely to be played by people, and the
class icon form to represent roles likely to be played by other systems.

«actor»
Customer

Customer

Figure 4.3

It is important to realize that actors are always external to the system. For
example, if you are using an e-commerce system such as an online bookstore
to buy a book, then you are external to that system. However, it is interesting
to note that although actors themselves are always external to the system,
systems often maintain some internal representation of one or more actors.
For example, the online bookstore would maintain a customer details object
for most customers that contains their name, address, and other informa-
tion. This is an internal system representation of the external Customer actor.
Now, it’s important to be crystal clear about this difference—the Customer ac-
tor is external to the system, but the system might maintain a CustomerDetails
class, which is an internal representation of individuals who play the role of
Customer actor.

Identifying actors

To identify the actors, you need to consider who or what uses the system,
and what roles they play in their interactions with the system. You can arrive
at the roles that people and things play in relation to a system by considering
cases of specific people and things and then generalizing. Asking the follow-
ing questions will help you identify actors.

® Who or what uses the system?
@ What roles do they play in the interaction?
® Who installs the system?

@ Who or what starts and shuts down the system?
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Who maintains the system?

What other systems interact with this system?

Who or what gets and provides information to the system?
Does anything happen at a fixed time?

In terms of modeling actors, remember the following points.

<]

Actors are always external to the system—they are therefore outside your
control.

Actors interact directly with the system—this is how they help define the
subject.

Actors represent roles that people and things play in relation to the sys-
tem, not specific people or specific things.

One person or thing may play many roles in relation to the system simul-
taneously or over time. For example, if you were writing as well as
delivering training courses, from the perspective of a course-planning sys-
tem you would play two roles—Trainer and CourseAuthor.

Each actor needs a short name that makes sense from the business
perspective.

Each actor must have a short description (one or two lines) that describes
what this actor is from a business perspective.

Like classes, actors may have compartments that show attributes of the
actor and events that the actor may receive. Typically these compart-
ments are not used that much and are rarely shown on use case diagrams.
We won't consider them any further,

Time as an actor

When you need to model things that happen to your system at a specific
point in time but which don’t seem to be triggered by any actor, you can
introduce an actor called Time as illustrated in Figure 4.4. An example of this
would be an automatic system backup that runs every evening.

Time

Figure 4.4
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A use case I N

describes behavior
that the system
exhibits to benefit one
or more actors.

4.3.3.1

To find use cases
ask “How does each
actor use the system?”
and “What does the
system do for each
actor?”

Requirements

What are use cases?

The UML Reference Manual [Rumbaugh 1] defines a use case as “A specification

of sequences of actions, including variant sequences and error sequences, that

a system, subsystem or class can perform by interacting with outside actors.”
A use case is something an actor wants the system to do. It is a “case of

use” of the system by a specific actor:

© use cases are always started by an actor;

® use cases are always written from the point of view of the actors.

We usually think of use cases at the system level but, as the definition states,

we may also apply use cases to describe “cases of use” of a subsystem (part of a
system) or even an individual class. Use cases can also be very effective in busi-
ness process modeling, although we don’t address that aspect in this book.

The UML icon for use cases is shown in Figure 4.5. The name of the use
case may be written inside or underneath the oval.

PlaceOrder GetStatus
OnOrder

Figure 4.5

Identifying use cases

The best way of identifying use cases is to start with the list of actors, and then
consider how each actor is going to use the system. Using this strategy you can
obtain a list of candidate use cases. Fach use case must be given a short, de-
scriptive name that is a verb phrase—after all, the use case is doing something!

As you identify use cases, you may also find some new actors. This is OK.
Sometimes you have to consider system functionality very carefully before
you find all the actors, or all the right actors.

Use case modeling is iterative and proceeds via a process of stepwise
refinement. You begin with just a name for a use case and fill in the details
later. These details consist of an initial short description that is refined into a
complete specification. Here is a helpful list of questions that you can ask
when trying to identify use cases.

What functions will a specific actor want from the system?

Does the system store and retrieve information? If so, which actors trigger
this behavior?

© What happens when the system changes state (e.g., system start and stop)?
Are any actors notified?
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4.3.3.2

4.3.4
Capture business
language and jargon in
the project glossary.

@ Do any external events affect the system? What notifies the system about
those events?

Does the system interact with any external system?

Does the system generate any reports?

The use case diagram

In the use case diagram you represent the subject of the use case model by a
box labeled with the name of the subject. This box is the subject and, as
we've already mentioned in Section 4.3.1, it represents the boundary of the
system modeled by the use cases. You show actors outside the subject (exter-
nal to the system) and use cases, which constitute the system behavior,
inside the subject (internal to the system). This is illustrated in Figure 4.6.

The relationship between an actor and a use case is shown by a solid line,
which is actually the UML association symbol. You'll see much more of asso-
ciations in Chapter 9. The association between actor and use case indicates
that the actor and the use case communicate in some way.

subject name

Mail order system
communication
relanonship L

PlaceOrder
/ CanceiOrder ShipProduct
\ ShippingCompany
Customer CheckOrderStatus \

\ use case
actor HequestCatalog

Figure 4.6

system boundary

Dispatcher

The project glossary

The project glossary may well be one of the most important project artifacts.
Every business domain has its own unique language, and the primary
purpose of requirements engineering and analysis is to understand and cap-
ture that language. The glossary provides a dictionary of key business terms



ooooooooooooooo

Part 2 Requirements

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

and definitions. It should be understandable by everyone in the project,
including all the stakeholders.

As well as defining key terms, the project glossary must resolve synonyms
and homonyms.

® Synonyms are different words that mean the same thing. As an OO ana-
lyst you must choose one of these words (the one that seems to be used
most widely) and stick with it. The other variants must be completely
excluded from your models. The reason is that if you allow the use of syn-
onyms, you may well end up with two classes that do more or less the
same thing but have different names. Also, if you allow the use of all the
synonyms on an ad hoc basis, you can be sure that the actual semantics
of the terms will gradually diverge over time.

@ Homonyms occur when the same word means different things to differ-
ent people. This always gives rise to difficult communication problems as
the various parties are quite literally speaking different languages when
they all believe that they are speaking the same language. Again, the way
to resolve this is to choose one meaning for the term, and perhaps intro-
duce new terms for the other homonyms.

In the project glossary, you should record the preferred term and list any syn-
onyms under the definition. This may involve encouraging some business
stakeholders to become accustomed to different terminology. It is often a
hard task to get stakeholders to change their use of language and yet, with
persistence, it can be done.

UML does not set any standards for a project glossary. It is good practice
to keep it as simple and concise as possible. Use a format like that of a dictio-
nary with an alphabetically sorted list of words and definitions. A simple
text-based document may suffice, but large projects may well require an
online HTML- or XML-based glossary or even a simple database. Remember
that the more accessible and easy the glossary is to use, the more positive an
impact it is likely to have on the project.

You can see part of an example project glossary in Table 4.1. As a matter
of style, we always write “None” if there are no synonyms oOr homonyms,
rather than leaving the fields blank or omitting them. This shows that we
have considered the question.

One issue with the project glossary is that terms and definitions in the
glossary will also be used in the UML model. You have to ensure that the two
documents are kept synchronized. Unfortunately, most UML modeling tools
do not provide any support for this and so it is usually a manual activity.
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Table 4.1

Pro;e t‘Glossary for the Clear Vlew Trammg ECP (E "’Com 1 erce Platform)

Term ,,~,5,'Def‘ mtlon

Catalog A listing of all of the products that Clear Vlew Trammg currently
offers for sale

Synonyms: None
Homonyms: None

Checkout  An electronic analogue of a real-world checkout in a supermarket

A place where customers can pay for the products in their shopping
basket

Synonyms: None
Homonyms: None

Clear A limited company specializing in sales of books and CDs

View Synonyms: CVT

Training  Homonyms: None

Credit A card such as VISA or Mastercard that can be used for paying for
card products

Synonyms: Card
Homonyms: None

Customer A party who buys products or services from Clear View Training

Synonyms: None
Homonyms: None

.4 UP activity: Detail a use c:

Having created a use case diagram and identified the actors and key use cases,
you then need to begin to specify each use case in turn. This is the UP activ-
ity known as Detail a use case; it is summarized in Figure 4.7.

It is important at this point to note that, typically, you don’t do things
in an exact sequence, and you can choose to specify some, or all, of the use
cases as you find them. It is always difficult to present parallel activities in a
book that, by its very nature, is linear!

The output of this activity is a more detailed use case. This consists of at
least the use case name and a use case specification.
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Use case model Use case specifier
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A
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Requirements g Detail a
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Project
glossary

Figure 4.7 Adapted from Figure 7.14 [Jacobson 1] with permission from Addison-Wesley

5 Use case specification

There is no UML standard for a use case specification. However, the template
shown in Figure 4.8 is in common use. There are more complex templates but,

in our experience, it is best to keep use case modeling as simple as possible.

use case name

use case identifier

brief description

the actors involved in the
use case

the system state before
the use case can begin

the actual steps of the
use case

the system state when
the use case has finished

alternative flows

Figure 4.8

Use case: PaySalesTax

ID:1

Brief description:
Pay Sales Tax to the Tax Authority at the end of the business quarter.

Primary actors:
Time

Secondary actors:
TaxAuthority

Preconditions:
1. ltis the end of the business quarter.

Main flow: implicit time actor

1. The use case starts when it is the end of the business quarter.

2. The system determines the amount of Sales Tax owed to the Tax
Authority. )

3. The system sends an electronic payment to the Tax Authority.

Postconditions:
1. The Tax Authority receives the correct amount of Sales Tax.

Alternative flows:
None.
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Decide ona
standard for use case
specifications.

Write use cases in
structured English.

4.5.1
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It’s important that your organization decides on a standard for use case
specifications that is used consistently within projects. We have worked in
organizations where there was no such standard, and it made the whole use
case modeling process unnecessarily difficult. There were many different for-
mats, levels of detail and even interpretations of what was, and was not, a
use case—even within the same project! A simple, effective standard for use
case specifications can help ensure that your project succeeds with use case
analysis. We present such a standard in this chapter and the next.

Our template for a simple use case specification contains the following
information:

use case name;
use case ID;
brief description - a paragraph that captures the goal of the use case;

actors involved in the use case;

® @ & o ©

preconditions - these are things that must be true before the use case can
execute—they are constraints on the state of the system;

© main flow - the steps in the use case;
® postconditions - things that must be true at the end of the use case;
© alternative flows - a list of alternatives to the main flow.

When we look at more complicated use cases later, we will add to the tem-
plate to accommodate extra information.

The use case in Figure 4.8 is about paying Sales Tax—a form of tax levied
on sales in many countries. In this example, the tax authority always gets its
tax one way or another, and so we state this as a postcondition of the use
case.

A good way to write a use case is to use “structured English” (or German
or whatever your native language is). Over the next few sections, we intro-
duce a simple style that you can use to express a use case effectively.

Use case name

There is no UML standard for naming use cases. We always name use cases in
UpperCamelCase. The words of the use case name are run together, and each
word starts with an uppercase letter.

Use cases describe system behavior, so the use case name should always
be a verb or verb phrase such as PaySalesTax. You should always try to choose
aname that is short, yet descriptive. A business reader of your use case model
should be able to get a clear idea of the business function or process that the
use case is modeling by the use case name alone. You will see lots of examples
of use case names throughout this chapter and the next.
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4.5.2

4.5.3

4.5.4

Primary actors
trigger the use case.

Secondary actors
do not trigger the use
case.

4.5.5
Preconditions I N\

constrain the state of
the system before the
use case can start.
Postconditions
constrain the state of
the system after the
use case has executed.

The use case name provides a unique identifier for the use case within
your use case model.

Use case ID

Although use case names must be unique within your use case model, it is
possible for them to change over time. You might wish therefore to add
another immutable identifier that uniquely identifies a particular use case
within your project. We often just use a number.

When working with alternative flows (Section 4.5.7), you may choose to
use a hierarchical numbering system so that the alternative flow can be easily
linked back to the main flow. For example, if a use case is numbered X, then
its alternative flows are numbered X.1, X.2,..., X.n.

Brief description

This should be a single paragraph that summarizes the goal of the use case.
Try to capture the essence of the use case—the business benefit it delivers to
its actors.

Actors
From the point of view of a specific use case, there are two types of actors:

e primary actors - these actors actually trigger the use case;

@ secondary actors — these actors interact with the use case after it has been
triggered.

Each use case is always triggered by a single actor. However, the same use case
may be triggered by different actors at different points in time. Each actor
that can trigger the use case is a primary actor. All the other actors are
secondary actors.

Preconditions and postconditions
Preconditions and postconditions are constraints.
@ Preconditions constrain the state of the system before the use case can

start. Think of them as gatekeepers that prevent an actor from triggering
the use case until all their conditions are met.

© Postconditions constrain the state of the system after the use case has
executed.

Another way of looking at this is that preconditions specify what must be
true before the use case can be triggered, and postconditions specify what will



The main flow
describes “perfect
world” steps in a use
case.
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be true after the use case has executed. Preconditions and postconditions
help you to design systems that function correctly.

Preconditions and postconditions should always be simple statements
about the state of the system that will evaluate to true or false—these are
known as Boolean conditions.

If your use case doesn’t have any preconditions or postconditions, then
it is good style to write “None” in the appropriate section of the use case
specification. This demonstrates that you have considered the matter, whereas
merely leaving the section blank is ambiguous.

Main flow

The steps in a use case are listed in a flow of events. You can think of a use
case as being like a river delta with many branching channels. Every use case
has one main flow that is the main channel through the delta. The other,
smaller, channels in the delta are the alternative flows. These alternative
flows can capture errors, branches, and interrupts to the main flow. The main
flow is sometimes known as the primary scenario, and the alternative flows as
secondary scenarios. A

The main flow lists the steps in a use case that capture the “happy day”,
or “perfect world”, situation where everything goes as expected and desired,
and there are no errors, deviations, interrupts, or branches.

You can model deviations to the main flow in two ways that we will
discuss shortly.

1. Simple deviations - create branches in the main flow (Section 4.5.6.1).
2. Complex deviations — write alternative flows (Section 4.5.7).

The main flow always begins by the primary actor doing something to trigger
the use case. A good way to start a flow of events is as follows:

1. The use case starts when an <actor> <function>.

Remember that time can be an actor, so the use case may also start with a
time expression in place of the actor, as in Figure 4.8.

The flow of events consists of a sequence of short steps that are declara-
tive, numbered, and time-ordered. Fach step in the use case flow should be
in the form

<number> The <something> <some action>.

The use case flow of events can also be captured as prose. However, we don’t
recommend this, as it is generally far too imprecise.
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4.5.6.1

‘ Branching withina
flow can simplify by
reducing the number
of use cases, but use
sparingly!

Here is an example of a couple of steps in a PlaceOrder use case.

1. The use case starts when the customer selects “place order”.
2. The customer enters his or her name and address into the form.

These are well-formed steps. In both cases we have a simple declarative state-
ment of some thing performing some action. An example of an ill-formed
use case step would be as follows:

2. Customer details are entered.

In fact, any step written in the passive voice is usually ill-formed. This partic-
ular step actually contains three important deletions.

@ Who is it that enters the customer details?
® Into what are the details entered?
® What specifically are the “customer details”?

It is important that you recognize and avoid deletions when you write use
case flows. Even though you may be able to tell by context, or guess what is
meant, this is not really the point. The point is that the use case should be a
precise statement of a piece of system functionality!

When you encounter vagueness, deletions, or generalizations during the
process of analysis, it is useful to ask the following questions.

@ Who specifically...?

@ What specifically...?
® When specifically...?
® Where specifically...?

Branching within a flow

The UML specification does not specify any way to show branching within a
flow.

We use an idiom that allows you to show branching in a simple way
without having to write a separate alternative flow. We use the keyword If to
indicate a branch.

It's worth knowing that some use case modelers may frown on branch-
ing within use cases. They argue that wherever there is a branch, a new
alternative flow should be written. Strictly speaking, this argument has
merit; however, we take the more pragmatic stance that a small amount of
simple branching in a flow is desirable because it reduces the total number
of alternative flows and leads to a more compact representation of the
requirements.
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Keyword If

Use the keyword If to indicate a branch in a flow. The example in Figure 4.9
shows a nicely structured flow of events with two branches. Each branch is
prefixed with the keyword If, and begins with a simple Boolean expression
such as If the user types in a new quantity, which is true or false. The indented text
under the If statement is what will happen if the Boolean expression is true.
You can clearly indicate the body of the If statement by careful use of inden-
tation and numbering without needing to introduce an endif, or some other
statement-closing syntax.

Use case: ManageBasket

ID: 2

Brief description:
The Customer changes the quantity of an item in the basket.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
1. The shopping basket contents are visible.

Main flow:

1. The use case starts when the Customer selects an item in the
basket.

2. If the Customer selects "delete item"
2.1 The system removes the item from the basket.

3. If the Customer types in a new quantity
3.1 The system updates the quantity of the item in the basket.

Postconditions:
None.

Alternative flows:
None.

Figure 4.9

Branching can reduce the number of use case postconditions. This is be-
cause steps within a branch may or may not occur, depending on the
circumstances. They can’t therefore generate postconditions, which are
things that must be true rather than things that may be true.

Repetition within a flow

Sometimes you have to repeat an action several times within a flow of
events. This doesn’t occur very often in use case modeling, but when it does,
it is useful to have a strategy to deal with it.
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The UML specification does not specify any way to show repetition
within a flow, so we introduce simple idioms using keywords For and While.

4.5.6.4

Keyword For

You can model repetition by using the keyword For. The format is as follows:

n. For (iteration expression)
n.1. Do something
n.2. Do something else

n.3..

n+1.

The iteration expression is some expression that evaluates to a positive
whole number of iterations. Each indented line after the For statement is re-
peated for the number of iterations specified in the iteration expression. An
example is given in Figure 4.10.

Use case: FindProduct

ID:3

Brief description:
The system finds some products based on Customer search criteria and displays
them to the Customer.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow:
. The use case starts when the Customer selects "find product”.
. The system asks the Customer for search criteria.
. The Customer enters the requested criteria.
. The system searches for products that match the Customer's criteria.
. If the system finds some matching products then
5.1 For each product found

5.1.1 The system displays a thumbnail sketch of the product.

5.1.2 The system displays a summary of the product details.

5.1.3 The system displays the product price.
6. Else

6.1 The system tells the Customer that no matching products could be found.

abdoONp-=

Postconditions:
None.

Alternative flows:
None.

Figure 4.10
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Keyword While

You use the While keyword to model a sequence of actions in the flow of
events that is performed while some Boolean condition is true. The format is
as follows:

n. While (Boolean condition)
n.1. Do something
n.2. Do something else
N3 ..

n+1.

Like For, the While keyword is infrequently used. An example is shown in
Figure 4.11. The sequence of indented lines after the While statement is re-
peated until the Boolean condition specified in the While clause becomes false.

Use case: ShowCompanyDetails

ID: 4

Brief description:
The system displays the company details to the Customer.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow:
1. The use case starts when the Customer selects "show company details".
2. The system displays a web page showing the company details.
3. While the Customer is browsing the company details
3.1 The system plays some background music.
3.2 The system displays special offers in a banner ad.

Postconditions:

1. The system has displayed the company details.
2. The system has played background music.

3. The system has displayed special offers.

Alternative flows:
None.

Figure 4.11

Modeling alternative flows

Each use case has a main flow and may have many alternative flows. These
are alternative paths through the use case that capture errors, branches, and
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Each use case has I N

one main flow and may
have many alternative
flows.

Alternative flows [ N

often do not return to
the use case main flow.

interrupts to the main flow. As you have seen, the use case specification con-
tains the main flow and a list of the names of the alternative flows.

The key point about alternative flows is that they frequently do not re-
turn to the main flow. This is because alternative flows often deal with errors
and exceptions to the main flow and tend to have different postconditions.
You can see alternative flows illustrated figuratively in Figure 4.12.

Use case

alternative flows

main flow

Figure 4.12

You can document alternative flows separately or append them to the
end of the use case. We prefer to document them separately.

As an example of how you can model a use case with alternative flows,
consider Figure 4.13.

You can see that this use case has three alternate flows, InvalidEmailAddress,
InvalidPassword, and Cancel. In Figure 4.14 we have documented the InvalidEmail-
Address alternative flow.

Notice that we make several changes to the use case template to accom-
modate alternative flows.

@ Name — we use the following naming convention for alternative flows:
Alternative flow: CreateNewCustomerAccount:invalidEmailAddress

This indicates that it is an alternative flow named InvalidEmailAddress for
the CreateNewCustomerAccount use case.

@ ID — notice how we have used a hierarchical numbering system to relate
the alternative flow back to the main use case.
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Figure 4.14
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Use case: CreateNewCustomerAccount

ID: 5

Brief description: }
The system creates a new account for the Customer.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow:

1. The use case begins when the Customer selects "create new
customer account”.
2. While the Customer details are invalid
2.1 The system asks the Customer to enter his or her details
comprising e-mail address, password, and password again
for confirmation.
2.2 The system validates the Customer details.
3. The system creates a new account for the Customer.

Postconditions:
1. A new account has been created for the Customer.

Alternative flows:
InvalidEmailAddress
InvalidPassword
Cancel

Alternative flow: CreateNewCustomerAccount:invalidEmailAddress

ID: 5.1

Brief description:
The system informs the Customer that he or she has entered an
invalid e-mail address.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
1. The Customer has entered an invalid e-mail address.

Alternative flow:

1. The alternative flow begins after step 2.2 of the main flow.

2. The system informs the Customer that he or she entered an
invalid e-mail address.

Postconditions:
None.

87
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® Actors — list the actors used by the alternative flow.

@ Preconditions and postconditions — alternative flows may have their own set of
preconditions and postconditions that are different from those of the use
case. If the alternative flow returns to the main flow, then its postcondi-
tions are effectively added to those of the main flow.

@ Alternative flow — the steps in the alternative flow.

© An alternative flow should not have alternative flows. Otherwise, things
rapidly get far too complex.

Alternative flows may be triggered in three different ways:

1. The alternative flow may be triggered instead of the main flow.

2. The alternative flow may be triggered after a particular step in the main
flow.

3. The alternative flow may be triggered at any time during the main flow.

When an alternative flow executes instead of the main flow, it is triggered by
the primary actor and it effectively replaces the use case entirely.

When the alternative flow is triggered after a particular step in the main
flow, you should begin it as follows:

1. The alternative flow begins after step X of the main flow.

This is a form of branch, but it is different from the branching we discussed
in Section 4.5.6.1 because it is a major deviation from the main flow and
might not return to it.

When an alternative flow can be triggered at any time during the main
flow, you should begin it as follows:

1. The alternative flow begins at any time.

You use this sort of alternative flow to model something that could happen
at any point in the main flow before the final step. For example, in the use
case CreateNewCustomerAccount, the Customer may choose to cancel account cre-
ation at any point. You can document Cancel as shown in Figure 4.15.

Should you wish the alternative flow to return to the main flow, you can
express this as follows:

N. The alternative flow returns to step M of the main flow.

In this example the alternative flow executes its last step N, and then execu-
tion of the main flow continues at step M.
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Only document
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Alternative flow: CreateNewCustomerAccount:Cancel

ID:5.2

Brief description:

The Customer cancels the account creation process.
Primary actors:

Customer

Secondary actors:

None.

Preconditions:

None.

Alternative flow:

1. The alternative flow begins at any time.
2. The Customer cancels account creation.

Postconditions:
1. A new account has not been created for the Customer.

Figure 4.15

Finding alternative flows

You can identify alternative flows by inspecting the main flow. At each step
in the main flow, look for

® possible alternatives to the main flow;

® errors that might be raised in the main flow;

e interrupts that might occur at a particular point in the main flow;
© interrupts that might occur at any point in the main flow.

Each of these is a possible source of an alternative flow.

How many alternative flows?

As we've said, there is exactly one main flow per use case. However, there
may be many alternative flows. The question is, “How many?” You should try
to limit the number of alternative flows to the necessary minimum. There
are two strategies for this.

Pick the most important alternative flows and document those.

Where there are groups of alternative flows that are all very similar, doc-
ument one member of the group as an exemplar and (if necessary) add
notes to this explaining how the others differ from it.

Going back to the river delta analogy, in addition to the main channel, there
can be many branching and twisting alternative flows through the delta. You
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| Requirements
tracing links
requirements in the
requirements model to
the use case model.

Requirements tracing

can’t really afford to map them all, so you just choose the main ones. Also,
many of these branches flow in pretty much the same direction with only
minor differences. You can therefore map one exemplar channel in detail and
just provide notes explaining how the other, smaller channels deviate from
this. This is an efficient and effective way of modeling a complex use case.

The basic principle in use case modeling is to keep the amount of infor-
mation captured to the necessary minimum. This means that many alternative
flows may never be specified at all; a one-line description of them added to
the use case may be enough detail to allow understanding of the functioning
of the system. This is an important point. It is easy to get swamped in alter-
native flows, and we have seen more than one use case modeling activity fail
because of this.

Remember that you are capturing use cases to understand the desired
behavior of the system, and not for the sake of creating a complete use case
model. You therefore stop use case modeling when you feel that you have
achieved that understanding. Also, because the UP is an iterative life cycle,
you can always go back to a use case and do more worKk if there is some aspect
of the system’s behavior that you decide you don't really understand.

With a requirements model and a use case model, you effectively have two
“databases” of functional requirements. It is important to relate the two to
find out if there is anything in your requirements model that is not covered by
the use case model, and vice versa. This is one aspect of requirements tracing.

Tracing functional requirements to use cases is complicated by the fact
that there is a many-to-many relationship between individual functional
requirements and use cases. One use case will cover many individual func-
tional requirements, and one functional requirement may be manifest in
several different use cases.

Hopefully, you will have modeling tool support for requirements trac-
ing, and indeed requirements engineering tools such as RequisitePro and
DOORS allow you to link individual requirements in their requirements da-
tabase to specific use cases, and vice versa. In fact, UML provides pretty good
support for requirements tracing. Using tagged values, you can associate a
list of requirement ID numbers with each use case. In the requirements tool,
you can link one or more use case identifiers to specific requirements.

If you have no modeling tool support, you must do the job manually. A
good approach is to create a requirements traceability matrix. This is simply
a grid with the ID numbers of individual requirements down one axis, and
use case names (and/or ID numbers) along the other. A cross is put in all cells
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where a use case and requirement intersect. Requirements traceability matri-
ces are often created in spreadsheets. An example is given in Table 4.2.

Table 4.2
. Usease o

e U U ug
R1 X

5 R2 X

£

2 R3

-

é. R4 X
RS X

A requirements traceability matrix is a useful tool for checking consis-
tency. If there is a requirement that doesn’t map to any use case, then a use
case is missing. Conversely, if there is a use case that doesn’t map to any
requirement, you know that your set of requirements is incomplete.

With the SUMR toolset that we discuss in Section 2.2, you can automate
creation of a candidate requirements traceability matrix. The idea is simple:
if a word in the project glossary occurs in a requirement and in a use case,
there is a high probability that the two are related in some way. This creates
a candidate requirements traceability matrix. We call it a “candidate” because
such simple textual analysis will have errors and omissions and the matrix
needs to be inspected manually. Still, it can be a great time saver and can
help requirements engineers to perform a laborious task that might other-
wise not get done at all.

When to apply use case modeling
Use cases capture functional requirements and so are not effective for
systems dominated by non-functional requirements.

Use cases are the best choice for requirements capture when

the system is dominated by functional requirements;

the system has many types of users to which it delivers different function-
ality (there are many actors);

@ the system has many interfaces (there are many actors).
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Use cases would be a poor choice when

@ the system is dominated by non-functional requirements;
@ the system has few users;
@ the system has few interfaces.

Examples of systems where use cases may not be appropriate are embedded
systems and systems that are algorithmically complex but with few inter-
faces. For these systems, you may well be much better off falling back on
more conventional requirements engineering techniques. It is really just a
matter of choosing the right tool for the job in hand.

This chapter has been all about capturing system requirements by use case
modeling. You have learned the following.

© The use case modeling activity is part of the requirements workflow.

® Most of the work in the requirements workflow occurs in the Inception
and Elaboration phases of the UP project life cycle.

® The key UP activities are Find actors and use cases and Detail a use case.

@ Use case modeling is another form of requirements engineering that pro-
ceeds as follows:
— find the subject;
— find actors;
— find use cases.

@ The subject defines what is part of the system and what is external to the
system.

@ Actors are roles played by things external to the system that interact
directly with the system.
— You can find actors by considering who or what uses or interacts
directly with the system.
— Time is often an actor.

® Use cases are functions that the system performs on behalf of, and to de-
liver benefit to, specific actors. You can find use cases by considering how
each actor interacts with the system.
— You can find use cases by considering what functions the system offers
to the actors.
— Use cases are always started by an actor.
— Use cases are always written from the point of view of the actors.
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® The use case diagram shows:
— the subject;
— actors;
— use cases;
— interactions.

@ The project glossary provides definitions of key business terms — it resolves
synonyms and homonyms.

© The use case specification includes:

— ause case name;

— aunique identifier;

— a brief description — the goal of the use case;

— actors:
— primary actors - trigger the use case;
- secondary actors - interact with the use case after it has been triggered.

— preconditions — system constraints that affect the execution of a use
case;

— main flow - the sequence of declarative, time-ordered steps in the use
case;

- postconditions - system constraints arising from the execution of a use
case;

— alternative flows — a list of alternatives to the main flow.

@ You can reduce the number of use cases by allowing a limited amount of
branching within the flow of events:
— use the keyword If for branches that occur at a particular step in the
flow;
— use Alternative Flow sections in the use case to capture branches that may
occur at any point in the flow.

® You can show repetition within a flow by using the keywords:
— For (jteration expression);
— While (Boolean condition).

® Each use case has one main flow — this is the “happy day” scenario where
everything goes as planned.

® More complex use cases may have one or more alternative flows — these
are paths through a use case that represent exceptions, branches, and
interrupts.

® You find key alternative flows by examining the main flow and looking
for:
— alternatives;
— €rror situations;
— interrupts.



R T R L R R AR A LA LA AR A A A A e e

1A Part 2 Requirements

@ Only decompose a use case into alternative flows when it adds value to the
model.

@ Requirements in the requirements model may be traced to use cases using
a requirements traceability matrix.

@ Use case modeling is most appropriate for systems that:
— are dominated by functional requirements;
— have many types of user;
— have many interfaces to other systems.

@ Use case modeling is least appropriate for systems that:
— are dominated by non-functional requirements;
— have few users;
— have few interfaces.



~ Advanced use case
modeling

In this chapter, we discuss some advanced aspects of use case modeling and
then finish our discussion of use cases with some hints and tips.
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[learn about actor generalization] ~ [learn about use case generalization]  [learn about «include»] [learn about «extend»]

(5.2 Actor generalization) (5.3 Use case generalization) 5.4 «include» 5.5 «extend»

@.5.1 The extension use case)

@.5.2 Multiple insertion segments)

(5.5.3 Conditional extensions)

(5.6 When to use advanced features)

(5.7 Hints and tips for writing use cases)

(5.7.1 Keep use cases short and simple) (5.7.2 Focus on the what, not the how) (5.7.3 Avoid functional decomposition)

(5.3 What we have learned)

O,

Figure 5.1

We discuss the relationships that are possible between actors and actors
and between use cases and use cases. These relationships are as follows:

@ actor generalization - a generalization relationship between a more gen-
eral actor and a more specific actor;

® use case generalization — a generalization relationship between a more
general use case and a more specific use case;

® «include» — a relationship between use cases that lets one use case include
behavior from another;

@ «extend» — a relationship between use cases that lets one use case extend its
behavior with one or more behavior fragments from another.
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Actor generalization
factors out behavior
common to two or
more actors into a
parent actor.
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It is important to keep all models as simple as possible, so use these relation-
ships with discretion and only where they improve the overall clarity of the
use case model. It is easy to go overboard with «include» and «extend» in partic-
ular, but you must avoid this.

In the example in Figure 5.2, you can see quite a lot of commonality
between the two actors, Customer and SalesAgent, in the way that they interact
with the Sales system (here, the SalesAgent can handle a sale on behalf of a
Customer). Both actors trigger the use cases ListProducts, OrderProducts, and
AcceptPayment. In fact, the only difference between the two actors is that the
SalesAgent also triggers the CalculateCommission use case. Apart from the fact
that this similarity in behavior gives lots of crossed lines on the diagram, it
seems to indicate that there is some common actor behavior that could be
factored out into a more generalized actor.

X

Customer

X

SalesAgent CalculateCommission

Sales system

ListProducts

OrderProducts

AcceptPayment

N

Figure 5.2

You can factor out this common behavior by using actor generalization
as shown in Figure 5.3. You create an abstract actor called Purchaser that inter-
acts with the use cases ListProducts, OrderProducts, and AcceptPayment. Customer
and SalesAgent are known as concrete actors because real people (or other sys-
tems) could fulfill those roles. However, Purchaser is an abstract actor as it is an
abstraction introduced simply to capture the common behavior of the two
concrete actors—that they can both act in a purchasing role.
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We canuse a
descendant anywhere
the ancestor actor is
expected.

Customer and SalesAgent inherit all of the roles and relationships to use
cases of their abstract parent. So, interpreting Figure 5.3, both Customer and
SalesAgent have interactions with the use cases ListProducts, OrderProducts, and
AcceptPayment that they inherit from their parent, Purchaser. In addition,
SalesAgent has an interaction with the use case CalculateCommission that is not
inherited—it is specific to the SalesAgent actor. You can see that judicious use
of abstract actors can simplify use case diagrams. It also simplifies the seman-
tics of your use case model because you are able to treat different things in
the same way.

ancestor or parent Sales system

abstract actor — _—

generalization \
Purchaser

\ OrderProducts

AcceptPayment

ListProducts

generalization! -

CalculateCommission

Customer SalesAgent
descendants or children

Figure 5.3

It's worth pointing out that the parent actor in actor generalization does
not always have to be abstract—it may be a concrete role that a person or sys-
tem could play. However, good style dictates that parent actors are usually
abstract in order to keep the generalization semantics simple.

What we have seen is that if two actors communicate with the same set of
use cases in the same way, we can express this as a generalization to another
(possibly abstract) actor. The descendent actors inherit the roles and relation-
ships to use cases held by the parent actor. You can substitute a descendent
actor anywhere the ancestor actor is expected. This is the substitutability
principle, which is an important test for correct use of generalization with any
classifier.

In this example, it is reasonable that you can substitute a SalesAgent or
a Customer anywhere a Purchaser is expected (i.e., interacting with use cases
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ListProducts, OrderProducts, and AcceptPayment), so actor generalization is the
correct strategy.

 Use case generalization

Use case generalization is used when you have one or more use cases that are
really specializations of a more general case. Just like actor generalization,
you should only use this when it simplifies your use case model.

In use case generalization, the child use cases represent more specific
forms of the parent. The children may

® inherit features from their parent use case;

® add new features;

® override (change) inherited features.

The child use case automatically inherits all features from its parent. How-

ever, not every type of use case feature may be overridden. The restrictions
are summarized in Table 5.1.

Table 5.1

Usecasefeature  Inherit  Add  Ovemide

Relationship Y N

Extension point

Precondition

Postcondition

Step in main flow

< =] <] =
< =]
<= = =z

Alternative flow

In UML 1.5 use cases also had attributes and operations, but in UML 2
they do not. In fact, use case attributes and operations didn’t seem to add
any real value, were rarely used, and were rarely supported in UML tools. Ac-
cording to the UML 1.5 specification, the operations of a use case were not
even callable externally, so it was hard to imagine why they were ever there
at all.

So how is use case generalization documented in use case specifications?
The UML specification remains silent on this point, but there are several
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fairly standard techniques. We prefer to use a simple tag language to high-
light the five possibilities in a child use case. There are two rules for applying
the technique.

@ Fach step number in the child is postfixed by the equivalent step number
in the parent if there is one. For example: 1. (2.). Some step.

o If the step in the child overrides a parent step, it is postfixed by “0” (for
overridden) and then the step number in the parent.
For example: 6. (06.) Another step.

Table 5.2 summarizes the syntax for the five options in child use cases.

Table 5.2

Inherited without change 3.(3.) The customer enters the requested criteria.

Inherited and renumbered 6.2 (6.1) The system tells the Customer that no
matching products could be found.

Inherited and overriddeh 1. (01.) The Customer selects “find book”.

Inherited, overridden, 5.2 (05.1) The system displays a page showing details
and renumbered of a maximum of 5 books.
Added 6.3 The system redisplays the “find book” search page.

Figure 5.4 shows an extract from the use case diagram of a Sales system.
We have the parent use case FindProduct, and then two specializations of this,

FindBook and FindCD.
Sales system
- FindProduct
Customer
Figure 5.4

Figure 5.5 shows the specification for the parent use case FindProduct.
Notice that it is expressed at a very high level of abstraction.
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Use case: FindProduct

ID: 6

Brief description:
The Customer searches for a product.

Primary actors:
Customer

Secondary actors:
None. -

Preconditions:
None.

Main flow:
1. The Customer selects "find product".
2. The system asks the Customer for search criteria.
3. The Customer enters the requested criteria.
4. The system searches for products that match the Customer's criteria.
5. If the system finds some matching products
5.1 The system displays a list of the matching products.
6. Else
6.1 The system tells the Customer that.no matching products could be found.

Postconditions:
None.

Alternative flows:
None.

Figure 5.5

One of the child use cases, FindBook, is shown in Figure 5.6. This illustrates
the application of our standard for indicating overridden or new features.

As you can see from Figure 5.6, the FindBook child use case is much more
concrete. It specializes the more abstract parent to deal with a specific type of
product, books.

If the parent use case has no flow of events or a flow of events that is in-
complete, it is an abstract use case. Abstract use cases are quite common
because you can use them for capturing behavior at the highest levels of ab-
straction. Because abstract use cases have a missing or incomplete flow of
events, they can never be executed by the system. Rather than a flow of
events, abstract use cases may have a plain text summary of the high-level
behavior that their children will be expected to implement. You can place
this in the brief description section of the use case.

As you have just seen, it’s difficult to show inherited features in child use
cases. You have to use some sort of tag language or typographic convention
that stakeholders typically find confusing. As use cases are all about communi-
cation with the stakeholders, this is a serious drawback. Another disadvantage
is that you have to manually maintain consistency between the parents and
children when one of them changes. This is a laborious and error-prone task.
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Use case: FindBook

ID:7
Parent ID: 6

Brief description:
The Customer searches for a book.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow: s
overridden | 1. (o1.) The Customer selects "find book".
overridden | 2. (02.) The system asks the Customer for book search criteria comprising author,
title, ISBN, or topic.
inherited without change | 3. (3.) The Customer enters the requested criteria.
overridden | 4. (04.) The system searches for books that match the Customer's criteria.
5

overridden | 5. (05.) If the system finds some matching books
added 5.1 The system displays the current best seller.
overridden and renumbered 5.2 (05.1) The system displays details of a maximum of five books.
added 5.3 For each book on the page the system displays the title, author, price, and ISBN.
added 5.4 While there are more books, the system gives the Customer the option to display

the next page of books.
inherited without change | 6. (6.) Else
added 6.1 The system displays the current best seller.
renumbered 6.2 (6.1) The system tells the Customer that no matching products could be found.

Postconditions:
None.

Alternative flows:
None.

Figure 5.6

One approach to this problem is to restrict the parent use case so that it
doesn’t have any main flow, but only a brief description of its semantics. In
this case, you don’t have to worry about inheritance or overriding. This
approach makes use case generalization easy and is a very effective way of
showing that one or more use cases are really just specific variants of a more
general use case. The more general use case allows you to think about the sys-
tem in an abstract way, and may indicate opportunities for streamlining the
software system.

Writing use cases can be very repetitive at times. Suppose you are writing a
Personnel system (see Figure 5.7). Almost anything you ask the system to do



«include» factors
out steps common to
several use casesintoa
separate use case that
is then included.

inclusion
use case

\(\o\‘)
DeleteEmployeeDetails \ include

relationship

FindEmployeeDetails

Manage\

Figure 5.7

will first involve locating the details of a specific employee. If you had to
write this sequence of events every time you needed employee details, your
use cases would become quite repetitive. The «include» relationship between
use cases allows you to include the behavior of one use case into the flow of
another use case.

We refer to the including use case as the base use case, and to the included
use case as the inclusion use case. The inclusion use case supplies behavior to
its base use case.

You must specify the exact point in the base use case where you need the
behavior of the inclusion use case to be included. The syntax for «include» is
a bit like a function call, and indeed it has somewhat similar semantics.

The semantics of «include» are simple (see Figure 5.8). The base use case
executes until the point of inclusion is reached, then execution passes over
to the inclusion use case. When the inclusion use case finishes, control
returns to the base use case again.

The base use case is not complete without all of its inclusion use cases.
The inclusion use cases form integral parts of the base use case. However, the
inclusion use cases may or may not be complete. If an inclusion use case is
not complete, then it just contains a partial flow of events that will only
make sense when it is included into a suitable base. We often refer to this as
a behavior fragment. In this case, we say that the inclusion use case is not in-
stantiable—that is, it can’t be triggered directly by actors, it can only execute
when included in a suitable base. If, however, the inclusion use cases are
complete in themselves, they act just like normal use cases and are instantia-
ble. It is then quite reasonable to trigger them by actors. You can see the
inclusion use case, FindEmployeeDetails, in Figure 5.9. It is incomplete and
therefore not instantiable.
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Use case: FindEmployeeDetails

ID: 4

Brief description:
The Manager finds the employee details.

Primary actors:
Manager

Secondary actors:
None.

Preconditions:
1. The Manager is logged on to the system.

Main flow:
1. The Manager enters the employee's ID.
2. The system finds the employee details.

Postconditions:
1. The system has found the employee details.

Alternative flows:
None.

Figure 5.9

55 «extends

«extend» provides a way to insert new behavior into an existing use case (see
Figure 5.10). The base use case provides a set of extension points that are
hooks where new behavior may be added, and the extension use case pro-
vides a set of insertion segments that can be inserted into the base use case
at these hooks. As you will see shortly, the «extend» relationship can be used
to specify exactly which extension points in the base use case are being

«extend» is a way
of inserting new
behavior into an
existing use case.

extended.
hase :
use case —| Library system
Return book ), extension
e use case
- ng,

< Borrow book

Librarian
Find book ex.tend .
relationship

Figure 5.10
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base use case

\/Ret;mBook Primary actors:

What is interesting about «extend» is that the base use case does not know
anything about the extension use cases—it just provides hooks for them. In
fact, the base use case is perfectly complete without its extensions. This is
very different from «include», where the base use cases were incomplete with-
out their inclusion use cases. Furthermore, the extension points are not
actually inserted into the flow of events of the base use case; rather, they are
added to an overlay on top of the flow of events.

Extension points are indicated in the flow of events of the base use case
as shown in Figure 5.11. You can also show extension points on the use case
diagram by listing them in a new compartment in the base use case icon.

Use case: ReturnBook

ID: 9

Brief description:
The Librarian returns a borrowed book.

Librarian

extension points

overdueBook Secondary actors:

None.

Preconditions:

extension point: overdueBooa
L

1. The Librarian is logged on to the system.

1
1
]
s
1
1
'
i

Main flow:

/

extension
point name

Postconditions:
/ 1. The book has been returned.

extension use case

Figure 5.11

«extend» . 1. The Librarian enters the borrower's ID number.
) extension 2. The system displays the borrower's details including the
point list of borrowed books.
3. The Librarian finds the book to be returned in the list of
books.
extension point: overdueBook
4. The Librarian returns the book.

Alternative flows:
None.

Notice that extension points in the main flow are not numbered. In-
stead, they appear between the numbered steps of the flow. In fact, UML
explicitly states that extension points actually exist on an overlay on top of
the main flow. They are therefore not part of the main flow at all. You can
think of this overlay as being like an acetate film over the main flow where
the extension points are recorded. The point of this idea of an overlay is to
make the base use case flow completely independent of the extension points.
In other words, the base use case flow doesn’t know (or care) where it is being
extended. This allows you to use «extend» to make arbitrary and ad hoc exten-
sions to a base use case flow.
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When you use «extend», the base use case acts as a modular framework
into which you can plug extensions at predefined extension points. In the
example in Figure 5.11, you can see that the ReturnBook base use case has an
extension point called overdueBook between steps 3 and 4 in its flow of events.

You can see that «extend» provides a good way of dealing with excep-
tional cases or cases in which you need a flexible framework because you
can’t predict (or just don’t know) all of the possible extensions in advance.

5.5.1 The extension use case
Extension use cases are generally not complete use cases and therefore can'’t
usually be instantiated. They normally just consist of one or more behavior
fragments known as insertion segments. The «extend» relationship specifies
the extension point in the base use case where the insertion segment will be
inserted. The following rules apply.
® The «extend» relationship must specify one or more of the extension
points in the base use case or it is assumed that the «extend» relationship
refers to all extension points.
@ The extension use case must have the same number of insertion segments
as there are extension points specified in the «extend» relationship.
® It is legal for two extension use cases to «extend» the same base use case at
the same extension point. But if this happens, the order in which the
extensions execute is indeterminate.
In the example in Figure 5.12, there is a single insertion segment in the lssue-
Fine extension use case.
/"’\ Extension Use case: IssueFine
ReturnBook D: 10
xtension poi
eove;Z‘SeB%%Ets Brief description:
Segment 1: The Librarian records and prints out a fine.
! Primary actors:
: Librarian
extension point: overdueBoo%l’ """" ' Secondary actors:
/ «extend» None.
. . . ! Segment 1 preconditions:
the single insertion segment ! ;
in IssueFineis inserted at the ; 1. The returned book is overdue.
overdueBeokinsertion point 1 Segment 1 flow:
in the ReturnBookuse case : 1. The Librarian enters details of the fine into the system.
2. The system prints out the fine.
Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

Figure 5.12
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The extension use case may also have preconditions and postconditions.
The preconditions must be fulfilled; otherwise, the segment does not execute.
The postconditions constrain the state of the system after the segment has
executed.

Extension use cases may themselves have extension use cases or inclu-
sion use cases. However, we tend to avoid this, as it can make the use case
model too complex.

5.5.2 Multiple insertion segments
You can have multiple insertion segments in an extension use case. This is
useful when you can’t capture the extension cleanly in a single segment
because you need to go back to the main flow of the base use case to do some-
thing. In the example in Figure 5.13, you can imagine that after recording
and printing a fine, we go back to the main flow to process any more overdue
Extension Use case: IssueFine
ID: 10
Brief description:
Segment 1: The Librarian records and prints out a fine.
Segment 2: The Librarian accepts payment for a fine.
Primary actors:
W Librarian
extension points Secondary actors:
overdueBook None.
payFine Segment 1 preconditions:
H 1. The returned book is overdue.
; Segment 1 flow:
extension points: overdueBook, payFine [~~"""~ [ 1. The Librarian enters details of the fine into the system.
2. The system prints out the fine.

the first segment in IssueFine is
inserted at overdueBookand the
second segment at payFine

Figure 5.13

«extend»
' Segment 1 postconditions:

1. The fine has been recorded in the system.

2. The system has printed out the fine.

Segment 2 preconditions:
1. Afine is due from the borrower.

Segment 2 flow:

1. The Librarian accepts payment for the fine from the borrower.
2. The Librarian enters the paid fine in the system.

3. The system prints out a receipt for the paid fine.

Segment 2 postconditions:
1. The fine is recorded as paid.
2. The system has printed a receipt for the fine.
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books and then, finally, at extension point payFine, we give the borrower the
option to pay the total fine. This is clearly more efficient than having to ac-
cept payment for each fine individually, which would have been the case if
we had combined the two segments in IssueFine.

When you create extension use cases with multiple segments, you have
to clearly label each segment with a number as shown in Figure 5.13. This is
because the order of the segments is important—the first segment is inserted
at the first extension point and so on. You must therefore be very careful to
write the segments in the right order, and to preserve this order.

Conditional extensions

The example in Figure 5.14 shows a slightly more benign library system in
which borrowers are given a warning the first time a book is returned over-
due and are fined only subsequently. We can model this by adding a new
extension use case, IssueWarning, and then placing conditions on the «extend»
relationships. The conditions are Boolean expressions, and the insertion is
made if, and only if, the expression evaluates to true.

ReturnBook

extension points
overdueBook

payFine condition
A ‘ l
condition: {first offense} «extend» «extend» condition: {ffirst offense}
extension points: ~ Jeeeaennnn < “ --------- extension points:
overdueBook overdueBook payFine
=>
Figure 5.14

Notice that the IssueWarning extension use case only extends at the over-
dueBook extension point. However (as before), the IssueFine extension use case
extends both at overdueBook and at payFine. This immediately tells you that
IssueWarning (Figure 5.15) contains exactly one insertion segment, whereas
Issuefine (as we have already seen) contains two.
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56

Use advanced
features only when
they simplify the model
and make it easier to
understand.

Extension Use case: IssueWarning

ID: 11

Brief description:
Segment 1: The Librarian issues a warning.

Primary actors:
Librarian

Secondary actors:
None.

Segment 1 preconditions:
1. The returned book is overdue.

Segment 1 flow:
1. The Librarian enters details of the warning into the system.

Segment 1 postconditions: |
1. The warning has been recorded in the system.

Figure 5.15

‘When to use advanced features

Use advanced features when they simplify your use case model. We have
found time and again that the best use case models are simple. Remember
that the use case model is a statement of requirements and, as such, must be
accessible to the stakeholders as well as the modelers. A simple use case
model that only uses advanced features sparingly, if at all, is in every respect
preferable to one that overuses advanced features, even if that model is in
some ways more elegant from a modeler’s perspective.

Based on our experience in use case modeling in many different compa-

nies, we have found that

generally, stakeholders can easily understand actors and use cases with
just a little training/mentoring;

stakeholders find actor generalization more difficult to grasp;

heavy use of «include» can make use case models harder to understand—
stakeholders and modelers have to look at more than one use case to get
the complete picture;

stakeholders have great difficulty with «extend»—this can be true even
with careful explanation;

a surprising number of object modelers misunderstand the semantics of
«extend»;

use case generalization should be avoided unless abstract (rather than
concrete) parent use cases are used—otherwise, it adds too much com-
plexity to the child use cases.
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Hints and tips for writing use cases

In this section we give a few hints and tips on writing use cases.

Keep use cases short and simple

Our motto for use cases is “keep them short, keep them simple”. Include
only enough detail to capture the requirements. Unfortunately, some
projects are scared of things that are short and simple and are enamored of
large quantities of documentation. Grady Booch calls this tendency “paper
envy”.

A good rule of thumb is to ensure that the main flow of a use case fits on
a single side of paper. Any more than this, and the use case is almost cer-
tainly too long. In fact, you will find that many use cases are less than half a
page in length. '

Start by simplifying the text (remember to use short declarative sen-
tences as we describe in Section 3.6.2). Remove any design details (see next
section). If it is still too long, reanalyze the problem. Perhaps there could be
more than one use case there? Perhaps you can factor out alternative flows?

Focus on the what, not the how

Remember that you are writing use cases to work out what the actors need
the system to do, not how the system should do it. The how comes later in
the design workflow. Confusing the what with the how is a problem that we
see over and over again. The use case writer hallucinates some solution when
writing the use case. For example, consider the use case fragment below.

4. The system asks the Customer to confirm the order.
5. The Customer presses the OK button. :

In this step, the use case writer has imagined some sort of user interface: a
form with an OK button. Because of this, the use case is no longer a pure state-
ment of requirements, it is a primitive design. A better way of expressing step
5 is as follows:

5. The Customer accepts the order.

Keep the details of the design (which you don’t know yet!) out of the use
case.
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5.7.3

Functional
decomposition doesn’t
work for use case
models.

Avoid functional decomposition

One common error in use case analysis is to create a set of “high level” use
cases, and then break these down into a set of lower-level use cases and so
on, until you end up with “primitive” use cases that are detailed enough to
implement. This approach to software design is known as functional decom-
position and it is invariably wrong when applied to use case modeling.

Let’s look at an example. In Figure 5.16 the analyst has defined the
operation of a library system using a single high-level use case, RunLibrary, and
then decomposed this into use cases at finer and finer levels of detail, creating
a functional decomposition.

LibrarySystem

avoid functional
decomposition «include» -\ AddBook

g

Librarian
«include» 2 ReturnBook
Figure 5.16

Many non-OO analysts would find Figure 5.16 quite plausible. However,
as a use case model, there is a lot wrong with it.

® Rather than focusing on capturing the requirements, the model focuses
on structuring those requirements in an artificial way—there are many
possible decompositions.

@ The model describes the system as a set of nested functions. However, OO
systems are really sets of cooperating objects sending messages back and
forth. There is clearly a conceptual mismatch here.
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@ Only the lowest level of use cases, AddBook, DeleteBook, AddTicket, Delete-
Ticket, LendBook, and ReturnBook, have interesting specifications. The higher
levels just call the lower ones and add nothing to the model in terms of
requirements capture.

© The model is hard for stakeholders to understand—there are several rather
abstract use cases (RunLibrary, MaintainBooks, MaintainTickets, and MaintainLoans)
and a lot of «include» relationships to lower levels.

The use of a functional decomposition approach suggests that an analyst has
been thinking about the system in the wrong way. It is often an indication
that the analyst is trained in more traditional procedural programming tech-
niques and hasn't yet grasped the OO paradigm. In this case, it’s generally a
good idea to employ an experienced use case modeler to provide mentoring
and reviews.

Not all examples of functional decomposition are as obvious as the
example in Figure 5.16. Often you find that parts of the use case model are
okay, whereas other parts have been decomposed. It’s a good idea to check
any part of the use case model that has a deep hierarchy for possible func-
tional decomposition.

Finally, we should point out that hierarchies often arise naturally in
use case modeling. However, these natural hierarchies are generally never
more than one (or at most two) levels deep, and the whole model is never
rooted in a single use case.

What wehavelear ned ’, e

You have learned about techniques for advanced use case modeling. Your

goal always should be to produce a simple, easy-to-understand use case

model that captures the necessary information as clearly and concisely as
~ possible. Personally, we always prefer to see a use case model that does not

use any of the advanced features rather than one where there is so much gen-

eralization, «include», and «extend» that it is hard to figure out what’s going on.

A good rule of thumb here is, “if in doubt, leave it out”.

You have learned the following.

@ Actor generalization allows you to factor out into a parent actor behaviors
that are common to two or more actors.
— The parent actor is more generalized than its children, and the children
are more specialized than their parent.
— You can substitute a child actor anywhere a parent actor is expected —
this is the substitutability principle.
— The parent actor is often abstract — it specifies an abstract role.
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The child actors are concrete — they specify concrete roles.
Actor generalization can simplify use case diagrams.

® Use case generalization allows you to factor out features that are common
to two or more use cases into a parent use case.

The child use cases inherit all features of their parent use case.

The child use cases may add new features.

The child use cases may override parent features except relationships
and extension points.

We use a simple tag convention in the child use cases:

— inherited without change - 3. (3);

— inherited and renumbered - 6.2 (6.1);

- inherited and overridden — 1. (01);

- inherited, overridden, and renumbered - 5.2 (05.1);

— added - 6.3. ‘

Good style indicates that the parent use case should normally be abstract.

@ «include» allows you to factor out steps repeated in several use case flows
into a separate use case that you include where needed.

include(UseCaseName) is used to include the behavior of another use case.

The including use case is the base use case.

The included use case is the inclusion use case.

The base use case is not complete without all of its inclusion use cases.

Inclusion use cases may be:

~ complete — they are just normal use cases and are instantiable;

- incomplete — they contain only a behavior fragment and are not
instantiable.

@ «extend» adds new behavior to an existing (base) use case.

The base use case has extension points in an overlay on its flow of events
— extension points occur between the steps in the flow of events.
Extension use cases provide insertion segments — these are behavior
fragments that may be “plugged into” extension points.

The «extend» relationship between the extension use cases and the base
use case specifies the extension points into which the extension use
case insertion segments are plugged.

The base use case is complete without the insertion segments — it does not
know anything about possible insertion segments, just provides hooks for
them.

The extension use case is generally not complete — usually, it just consists
of one or more insertion segments; it may also be a complete use case, but
this is rare.

If the extension use case has preconditions, these must be fulfilled;
otherwise, the extension use case does not execute.
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If the extension use case has postconditions, these constrain the state
of the system after the extension use case has executed.

An extension use case may contain many insertion segments.

Two or more extension use cases may extend the same base use case at
the same extension point - the order of execution of each extension
use case is indeterminate.

Conditional extensions —~ Boolean guard conditions on the «extend»
relationship allow an insertion if true, and prevent an insertion if false.

Use advanced features as follows:

actor generalization - use only where it simplifies the model;

use case generalization ~ consider not using, or only using with abstract
parents;

«include» — use only where it simplifies the model; beware of overuse, as
this makes a use case model turn into a functional decomposition;
«extend» — consider not using; but if you do use it, be careful to ensure
that all modelers and stakeholders exposed to the model understand
and agree on its semantics.

@ Hints and tips for writing use cases:

keep use cases short and simple;
focus on the what not the how;
avoid functional decomposition.
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The analysis workflow

64 Chapter roadmap

This chapter begins our investigation of the process of OO analysis. It provides
a brief overview of the UP analysis workflow and then some “rules of thumb”
for analysis models, which set the scene for more detailed discussions in the
other chapters in this part of the book.

[learn about the analysis workflow] [learn about good practice in analysis models]

( 6.2 The analysis workflow ) ( 6.5 Analysis model - rules of thumb )

( 6.3 Analysis artifacts - metamodel )

C 6.4 Analysis workflow detail )

( 6.6 What we have learned )

Figure 6.1

119
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L 62

Analysis modeling
is strategic as we are
trying to model the
system’s essential
behavior.

The main work in analysis begins toward the end of the Inception phase and
is the main focus of the Elaboration phase, along with requirements.

Most of the activity in Elaboration is about creating models that capture
the desired behavior of the system. Notice in Figure 6.2 that analysis work
overlaps to a great extent with requirements capture. In fact, these two activ-
ities often go hand-in-glove—you often need to perform some analysis on
your requirements in order to clarify them and uncover any missing or
distorted requirements.

: Ince'ptiqn Elabo'ration

ReqUirementS / 'n

Analysis R E ik :

Design v /

L

Implementation v ;

—

Test E :
Preliminary I 12 In In+1 In+2  Im  Im+1

iterations

Figure 6.2 Adapted from Figure 1.5 [Jacobson 1] with permission from Addison-Wesley

The aim of the analysis workflow (from the point of view of the OO
analyst) is to produce an analysis model. This model focuses on what the
system needs to do, but leaves the details of how it will do it to the design
workflow.

The boundary between analysis and design can be quite vague, and to
some extent it is up to the individual analyst to draw the line where he or she
sees fit. See Section 6.5 for some rules of thumb that can help in the produc-
tion of successful analysis models.
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In the analysis workflow, two key artifacts are produced:

@ analysis classes — these model key concepts in the business domain;
@ use case realizations — these illustrate how instances of the analysis classes
can interact to realize system behavior specified by a use case.

We can model the analysis model itself by using UML. A metamodel of the
analysis model is shown in Figure 6.3.

A
Analysis Model

©

analysis class use case realization

Figure 6.3

You've seen package syntax already (the things that look like folders),
but the class syntax (the boxes) and the use case realization syntax (the dot-
ted ovals) are new. We look at classes in Chapter 7, packages in Chapter 11,
and use case realizations in Chapter 12.

We can model the analysis model as a package with a triangle in its top
right-hand corner. This package contains one or more analysis packages. We
call them “analysis packages” because they are part of the analysis model. In
Figure 6.3 we have only shown four analysis packages, but the analysis
model may actually contain many analysis packages and each package may
in turn contain nested analysis packages.
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 Analysis workflow detail |

Figure 6.4 shows the UP analysis workflow. We look at the relevant activities in
turn in later chapters, but before you can understand these activities, you first
need to understand classes and objects. We look at this topic in Chapter 7.

O

U Architectural analysis
Architect \

o N\
[]

Use case engineer

Analyze a use case

Qo

Component engineer Analyze a class Analyze a package

Figure 6.4 Reproduced from Figure 8.18 [Jacobson 1] with permission from Addison-Wesley

Every system is different, so it is hard to generalize about analysis models.
Still, for a system of moderate size and complexity there are probably about
50 to 100 analysis classes in the analysis model. Remember that, when con-
structing the analysis model, it is vitally important to restrict yourself only to
those classes that are part of the vocabulary of the problem domain. It is
always tempting to put design classes (such as communications or database
access classes) in an analysis model, but you should avoid this (unless the
problem domain is actually about communications or databases)! We restrict
ourselves in this way to try to keep the analysis model a concise and simple
statement of the system structure and behavior. All implementation deci-
sions should be left to the design and implementation workflows.
Here are some rules of thumb for successful analysis modeling.

@ The analysis model is always in the language of the business. The abstrac-
tions found in the analysis model should form part of the vocabulary of
the business domain.
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Create models that “tell a story”. Each diagram produced should eluci-
date some important part of the system’s desired behavior. If it doesn't,
then what purpose does it serve? You'll see good ways of producing such
diagrams when we consider use case realizations.

Concentrate on capturing the big picture. Don’t get bogged down in the
details of how the system will work—there is plenty of time for this in
design.

Distinguish clearly between the problem domain (the business require-
ments) and the solution domain (detailed design considerations). Always
focus on abstractions that exist in the problem domain. So, for example,
if you are modeling-an e-commerce system, you would expect to see
classes like Customer, Order, and ShoppingBasket in the analysis model. You
would not expect to see database access classes or communications classes,
as these are clearly artifacts arising from the solution domain.

Always try to minimize coupling. Each association between classes cre-
ates coupling between them. You will see in Chapter 9 how you can
apply multiplicities and navigation to associations to minimize this
coupling.

Explore inheritance if there seems to be a natural and compelling hierar-
chy of abstractions. In analysis, never apply inheritance just to reuse
code. Inheritance is the strongest form of coupling between classes, as
you will see in Section 17.6.

Always ask, “Is the model useful to all the stakeholders?” There’s nothing
worse than producing an analysis model that is ignored by the business
users or the designers and developers. Yet this happens all too often,
particularly to inexperienced analysts. The key preventive strategies are to
make the analysis model and modeling activity as visible as possible, to
incorporate stakeholders into the process wherever possible, and to hold
frequent and open reviews.

Finally—keep the model simple! This is easier said than done of course, but
it has certainly been our experience that inside every complex analysis
model is a simple analysis model struggling to get out. One of the ways of
creating simplification is to look at the general case rather than specifics. As
a case in point, a system we recently reviewed had completely separate mod-
els for how tickets, hotel reservations, and car hire were to be sold. Clearly
there is a generic “selling system” model implicit in that system that could
handle the different cases by using a relatively simple combination of inher-
itance and polymorphism.
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. Whatwehaveleamed

You have learned the following.

@ Analysis is about creating models that capture the essential requirements
and characteristics of the desired system — analysis modeling is strategic.

@ Most of the work in the analysis workflow occurs toward the end of the
Inception phase and throughout the Elaboration phase.

@ Analysis and requirements workflows overlap, especially in the Elabora-
tion phase - it is often advantageous to analyze requirements as you find
them to uncover missing or distorted requirements.

& The analysis model:
— is always in the language of the business;
— captures the big picture;
— contains artifacts that model the problem domain;
— tells a story about the desired system;
— is useful to as many of the stakeholders as possible.

® Analysis artifacts are:
— analysis classes — these model key concepts in the business domain;
— use case realizations — these illustrate how instances of the analysis
classes can interact to realize system behavior specified by a use case.

@ UP analysis workflow comprises the following activities:
— Architectural analysis;
— Analyze a use case;
— Analyze a class;
— Analyze a package.

© Analysis model - rules of thumb:
— expect about 50 to 100 analysis classes in the analysis model of an aver-
age system,;
— only include classes that model the vocabulary of the problem domain;
— do not make implementation decisions;
— focus on classes and associations — minimize coupling;
— use inheritance where there is a natural hierarchy of abstractions;
— keep it simple!



chapter 7

Objects and classes

TR pter roadmap e

This chapter is all about objects and classes. These are the basic building
blocks of OO systems. If you are already familiar with the notion of objects
and classes, then you may choose to skip Sections 7.2 and 7.4. You will, how-
ever, want to learn UML object notation (Section 7.3) and class notation
(Section 7.5).

The chapter finishes with a discussion of the related topics of operation
and attribute scope (Section 7.6) and object construction and destruction
(Section 7.7).

You only use a subset of UML class syntax in analysis. However, for ease
of reference, and so we don’t have to come back to it later, we cover complete
class syntax in this chapter.

125
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Objects combine
data and functionina
cohesive unit.

Objects hide data
behind a layer of
functions called
operations.

Every object is
uniquely identifiable.

I

Attribute values
hold an object’s data.
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~ What are objects?

The UML Reference Manual [Rumbaugh 1] defines an object as “A discrete
entity with a well-defined boundary that encapsulates state and behavior; an
instance of a class.”

You can think of an object as a cohesive packet of data and function.
Generally, the only way to get to the data part of an object is by calling one
of the functions that the object makes available. These functions are called
operations. Hiding the data part of an object behind this layer of operations is
known as encapsulation or data-hiding. Encapsulation is not enforced in
UML as some OO languages do not demand it. However, to hide the data
part of an object behind its set of operations is always good OO style.

Every object is itself an instance of some class that defines the common
set of features (attributes and operations) that are shared by all instances of
that class. The idea of classes and classifiers is really very simple. Think of a
printer of type “Epson Photo 1200.” This describes the properties of all
specific instances of this class such as the particular “Epson Photo 1200 S/N
34120098" sitting on our desk. A specific instance of a class is called an
object.

Thinking about this example of an Epson printer object a bit more, you
can see that it has certain properties that are common to all objects.

@ ldentity - this is the object’s unique existence in time and space. It is what
makes it different from all other objects. In our example, the printer’s
serial number can be used as the identifier to point to this particular printer
on our desk and represent the unique identity of that object. A serial
number is a great way to specify the identity of a physical object, and we
use a similar principle, the idea of an object reference, to specify the iden-
tity of every one of the software objects we will be working with in OO
analysis and design. Of course, in the real world not all objects have a
serial number, but they still have unique identities because of their
particular spatial and temporal coordinates. Similarly, in OO software sys-
tems every object has some sort of object reference.

© State - this is determined by the attribute values of an object and the
relationships the object has to other objects at a particular point in time.
Table 7.1 gives a nonexhaustive list of the states the printer can go through.
You can see from this how an object’s state depends on the values of its
attributes and its connection to other objects.

@ Behavior - there are certain things the printer can do for us:
switchOn()

switchOff()
printDocument()
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A method is an

an operation.

implementation of

7.2.1

pageFeed()
clearlnkjetNozzles()
changelnkCartridge()

Invoking an operation on an object will often cause a change in the values
of one or more of its attributes or in its relationships to other objects, and
this may constitute a state transition. This is a meaningful movement of the
object from one state to another state. Considering Table 7.1 again, it is
clear that an object’s state can also affect its behavior. For example, if the
printer is out of ink (object state = OutOfBlackink), then invoking the opera-
tion printDocument() will cause it to signal an error. The actual behavior of
printDocument() is therefore state dependent.

An operation is the specification of a piece of behavior. An implementa-
tion of that behavior is called a method.

Table 7.1

 Object state

Class attribute _ for object _Relatior

On power on N/A

Off power off N/A

OutOfBlackink  blackinkCartridge ~ empty N/A

OutOfColorink  colorinkCartridge ~ empty N/A

Connected N/A N/A Connected to a computer object
NotConnected ~ N/A N/A Not connected to a computer object

Encapsulation

As we have already mentioned, the identity of an object is some unique
handle, usually an address in memory, provided by the implementation lan-
guage. We refer to these handles as object references from now on. You don't
need to worry about how these are implemented in OO analysis—you can
simply assume that each object has a unique identity that is managed by the
implementation technology. In design you may need to consider the imple-
mentation of object references if you are targeting an OO language, such as
C++, that allows the direct manipulation of special types of object references
known as pointers.



An object’s state
is determined by its
attribute values.

An object’s behavior
is “what it can do for
us” - its operations.
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In Figure 7.2 we show a conceptual picture of an object that emphasizes

encapsulation. Note that Figure 7.2 is not a UML diagram. You'll see shortly
what the UML syntax for objects is.

attribute values

deposit()

An Accountobject
operations

Figure 7.2

The state of this object is the set of attribute values (in this case
1234567801, “Jim Arlow”, 300.00) held by the object at any point in time.
Typically, some of these attribute values will remain fixed, and some will
change over time. For example, the account number and name will remain
fixed, but we hope that the balance goes up steadily!

As the balance changes with time, we see that the object’s state also
changes with time. For example, if the balance is negative, then we may say
that object is in the state Overdrawn. As the balance changes from negative to
zero, the object makes a significant change in its nature—it makes the state
transition from the state Overdrawn to the state Empty. Furthermore, as the
Account object’s balance becomes positive, it makes another state transition
from the state Empty to the state InCredit. There may be many more possible
state transitions than this. In fact, any operation invocation that leads to a
substantive change in the object’s nature creates a state transition. UML
provides a powerful set of modeling techniques called state machines for
modeling state changes; we look at those in Chapter 21.

The behavior of any object is basically “what it can do” for you. The
object in Figure 7.2 provides the operations listed in Table 7.2.

This set of operations specifies the object’s behavior. Notice that invok-
ing some of these operations (deposit(), withdraw(), setOwner()) changes attribute
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7.2.2

Objects generate
system behavior by
sending messages to
one another over links.
This is collaboration.

Table 7.2
_ Operation Semantics o
deposit() Deposit some money in the Account object
Increment the balance attribute value
withdraw() Withdraw some money from the Account
Decrement the balance attribute value
getOwner() Return the owner of the Account object — a query operation
setOwner() Change the owner of the Account object

values and may generate state transitions. The operation getOwner() does not
change any attribute values and thus will not cause a state transition.

Encapsulation, or data-hiding, is one of the primary benefits of OO pro-
gramming, and it can lead to more robust and extendible software. In this
simple Account example, a user of this object need not be concerned with the
structure of the data hidden inside the object, only with what the object can
do—in other words, with the services it offers to other objects.

Messaging

Objects have attribute values and behavior, but how do you put objects
together to create software systems? Objects collaborate to perform the
functions of the system. What this means is that objects form links to other
objects and send messages back and forth along those links. When an object
receives a message, it looks at its set of operations to see if there is an opera-
tion whose signature matches the message signature. If there is, then it
invokes that operation (see Figure 7.3). These signatures comprise the mes-
sage (or operation) name, parameter types, and return value.

Bank object Account object

message

withdraw (150.00)
The Bank object sends the The Account object responds by
message “withdraw 150.00" invoking its withdraw operation.
to an Account object. This operation decrements the

account balance by 150.00.
Figure 7.3



73

enev0B0ons0svsRaRERERaRGA0 D vavvenvacecscsnenana mausnens B R R R Y L L @saonvanusson sancosvscsa

Chap}er7 aabiects nd classe 131

The runtime structure of an OO system consists of many objects being
created, abiding for a time, and then perhaps being destroyed. These objects
send messages to invoke one another’s services. This is a radically different
structure than procedural software systems that evolve over time by the pro-
gressive application of functions to data.

UML object notation

The UML object icon is a box with two compartments; an example is shown
in Figure 7.4. The top compartment contains the object identifier, which is
always underlined. This is important, as the UML notation for classes is very
similar to that for objects. Being rigorous about using the underline correctly
removes any confusion as to whether a modeling element is a class or an
object.

UML is very flexible about how objects may be represented on object
diagrams. The object identifier can consist of any of the following.

@ The class name alone - for example, :Account. This signifies that you have
an anonymous object, or instance of that class (i.e., you are looking at an
instance of an Account but haven't identified, or don’t really care, which
specific instance it is). Anonymous objects are often used when only one
object of a particular class is on a given diagram. If you need to show two
objects of the same class, then you should give each a name to distinguish
them from each other.

@ The object name alone - for example, jimsAccount. This identifies a specific
object but doesn’t identify which class it belongs to. This notation can be
useful in very early analysis when you haven't yet discovered all the
classes.

object class
name name
name . )
compartment imsAccount :Account
accountNumber : String = "1234567"
attribute owner : String = "Jim Arlow"
compartment balance : double = 300.00

attribute atiribute atiribute
name type value

Figure 7.4
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Objects of the Il
same class have the
same operations and
the same attributes but
may have different
attribute values.

7.3.1

4 Whatareclasses?

‘ A class describes
the features of a set
of objects.

@ The object name concatenated with the class name, separated from each
other by a colon. You may read the colon as “is an instance of class”. So,
in Figure 7.4, you could read the diagram as follows: there is an object
called jimsAccount that is an instance of class Account.

Objects are usually named in mixed upper- and lowercase, starting with a
lowercase letter. Special characters, such as spaces and underscores, are
avoided. This is known as lowerCamelCase because the resulting words start
with a lowercase letter and appear to have humps.

From Section 7.2, you know that a class defines the attributes and oper-
ations of a set of objects. As all objects of the same class have exactly the same
set of operations, the operations are listed on the class icon, not the object
icon.

Attributes may be optionally shown in the lower compartment of the ob-
ject icon. Those attributes that you choose to show must be named and may
have an optional type and value. Attributes are also named in lowerCamelCase.

Object attribute values
Fach object attribute value has the following form:

name : type = value

You may choose to show all, some, or none of the object attribute values,
depending on the purpose of the diagram.

To keep object diagrams simple and clear, you may choose to omit attribute
types, since they are already defined in the class of the object. When you see
how object diagrams are used in analysis in Chapter 12, it will be clear why you
might choose to show only some of the information in an object icon.

The UML Reference Manual [Rumbaugh 1] defines a class as “The descriptor for
a set of objects that share the same attributes, operations, methods, relation-
ships, and behavior.” We could summarize this by saying that a class is a
descriptor for a set of objects that have the same features.

Every object is an instance of exactly one class. Here are some useful
ways to think about classes.

@ Think of a class as being a template for objects—a class determines the
structure (set of features) of all objects of that class. All objects of the same
class must have the same set of operations, the same set of attributes, and
the same set of relationships, but may have different attribute values.
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Every object is an
instance of exactly
one class.
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@ Think of a class as being like a rubber stamp, and objects as actual stamp
marks on a piece of paper; or think of a class as being like a cookie cutter,
and the objects as being the cookies.

Classifier and instance are one of UML's common divisions (see Chapter 1) and
the most common example of this division is class and object. A class is a spec-
ification or template that all objects of that class (instances) must follow. Fach
object of the class has specific values for the attributes defined by the class and
will respond to messages by invoking the operations defined by the class.

Depending on their state, different objects may respond to the same
message in different ways. For example, if you try to withdraw $100 from a
bank account object that is already overdrawn, this may give a different re-
sult than trying to withdraw $100 from a bank account object that is several
hundred dollars in credit.

Classification is possibly the single most important way that human
beings have of ordering information about the world. As such, it is also one
of the most important OO concepts. Using the notion of classes, you can talk
about a particular type of car or a type of tree without ever mentioning a spe-
cific instance. It is the same for software. Classes allow us to describe the set
of features that every object of the class must have without having to de-
scribe every one of those objects.

Take a look at Figure 7.5 and think about classes for a minute or two.
How many classes are there in this figure?

In fact, there’s no answer to that question! There are an almost infinite
number of ways of classifying objects in the real world. A few classes we can
see are

@ the class of cats;

® the class of fat food-loving cats (we have a cat who is an instance of this
class!);

Figure 7.5
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Finding the right
classification scheme is
one of the keys to

successful 00 analysis.

7.4.1
Relationships | N\

connect things.

A dependency l N

relationship means
that a change to the
supplier thing affects
the client thing.

@ the class of trees;
@ the class of leaves;

@ etc., etc., etc.

Given that there are so many options, choosing the most appropriate classi-
fication scheme is one of the most important aspects of OO analysis and
design. You'll see how to do this in Chapter 8.

Looking at Figure 7.5 very closely, you might begin to see other types of
relationships apart from class/instance. For example, you might see multiple
levels of classification. We have the class of cats, and we could classify things
further into the subclasses “house cat” and “wild cat”—or even the sub-
classes “modern cat” and “prehistoric cat”. This is a relationship between
classes—one class is a subclass of another. Conversely, the class “cat” is a
superclass of “house cat” and “wild cat”. We look at this in much more
detail when we study inheritance in Chapter 10.

Also, if you consider the leaves and trees in Figure 7.5, you can see that
tree objects have collections of leaf objects. There is a very strong kind of re-
lationship between trees and leaves. Each leaf object belongs to a specific tree
object and can’t be swapped or shared between them, and the life cycle of
the leaf is intimately tied to, and controlled by, the tree. This is a relationship
between objects and is known in UML as composition.

If, however, you consider the relationship between computers and
peripherals, the object relationship is very different. One peripheral, such as
a pair of speakers, can be swapped between different computers—different
computers can even share some peripherals. Also, even if a computer is
thrown away, its peripherals may well survive it and be used by a new ma-
chine. The life cycle of the peripherals is typically independent of the life
cycle of the computer. In UML this type of object relationship is known as

~aggregation. We discuss object relationships, and in particular composition

and aggregation, in much moie depth in Chapter 18.

Classes and objects

The relationship between a class and objects of that class is an «instantiate» re-
lationship. This is the first example of a relationship that we have come
across. The UML Reference Manual [Rumbaugh 1] defines a relationship as a
“connection among model elements.” There are many types of relationship
in UML and we eventually explore them all.

The «instantiate» relationship between objects and classes is shown in Fig-
ure 7.6. The dotted arrow is actually a dependency relationship that has
been given a special meaning by the stereotype «instantiate». As you saw in
Chapter 1, anything inside guillemets («..») is known as a stereotype, and



7.4.2

Class instantiation
creates a new object,
using the class as a
template.
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stereotypes are one of the three UML extensibility mechanisms. A stereotype
is a way of customizing modeling elements—a way of creating variants with
new semantics. In this case, the stereotype «instantiate» turns an ordinary de-
pendency into an instantiation relationship between a class and objects of
that class.

The UML Reference Manual [Rumbaugh 1] defines a dependency as “A rela-
tionship between two elements in which a change to one element (the supplier)
may affect or supply information needed by the other element (the client).”
From Figure 7.6 it is quite clear that the class Account must be the supplier
because it determines the structure of all objects of that class, and it is clear
that the objects are clients.

Account
| number : String
class owner : String
balance : double
withdraw()
’,77 deposit() ‘}\\
«instantiate» «instantiate» «instantiate»
jimsAccount :BankAccount] |fabsAccount:BankAccount| | ilasAccount:BankAccount
biect number : "801" number : "802" number : "803"
objecis owner : "Jim" owner : "Fab" owner : "lla"
balance : 300.00 balance : 1000.00 balance : 310.00
Figure 7.6

Class instantiation

Instantlatlon is the creation of new instances of model elements. In this case
we are instantiating objects from classes—we are creating new instances of
classes.

UML tries to be general, and so instantiation applies to other modeling
elements as well as classes and objects. In fact, instantiation captures the
general notion of creating a specific instance of something from a template.

In most OO programming languages, there are special operations, called
constructors, that really belong to the class itself rather than to the objects of
that class. These special operations are said to have class scope, and we say a
bit more about scope in Section 7.6. The purpose of constructor operations is
to create new instances of the class. The constructor allocates memory for
the new object, gives it a unique identity, and sets the initial attribute values
for the object. It also sets any links to other objects.
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Only show the
compartments and
adornments that make
a point.

The visual UML syntax for a class is very rich, and to make the syntax manage-
able, it is important to apply the UML notion of optional adornments. The
only mandatory part of the visual syntax is the name compartment with the
class name in it. All the other compartments and adornments are optional.
However, we've shown the whole thing in Figure 7.7 for your reference.

class name stereotype tagged value

/

A)
«entity»
name BankAccount

compartment { author = Jim,

{ status = tested }
attribute { -number : String initializationvalue

compartment -owner : String /
-balance : double = 0.0

+create( theNumber ; String, theOwner : Strin

+deposit( amount : double )

operation +withdraw( amount : double )

compartment +getNumber() : String class scope
+getOwner() : String operation
(DgetBalance () : double (underlined)

visibility adornment

Figure 7.7

Which compartments and adornments you actually include on a class in
a class diagram depends entirely on the purpose of the diagram. If you are
only interested in showing the relationships between various classes, then
you may be content with just the name compartment. If the diagram is to
illustrate the behavior of the classes, then you will probably add the opera-
tion compartment and the key operations on each class. On the other hand,
the diagram might be more “data oriented”, perhaps trying to show the
mapping of classes to relational tables. In this case, you would show the
name compartment and the attribute compartment, perhaps also showing
attribute types. You should aim to use this UML flexibility to show just the
right amount of information on class diagrams to make your point clearly
and concisely.

In analysis models, you typically only need to show the following:

@ class name;

® Kkey attributes;
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7.5.1

Never abbreviate
class, attribute, or
operation names.

@
@

key operations;
stereotypes (if they have business significance).

You typically do not show the following:

& & e @

tagged values;
operation parameters;
visibility;

initialization values (unless they have business significance).

In the next few subsections we look at the name, attribute, and operation
compartments in detail.

Name compartment

While UML does not mandate any naming convention for classes, there is a
convention that is almost universally followed.

@

Class name is in UpperCamelCase—it begins with an uppercase letter,
and then is in mixed upper- and lowercase, with each word beginning in
uppercase. Special symbols such as punctuation marks, dashes, under-
scores, ampersands, hashes, and slashes are always avoided. There is a
good reason for this: these symbols are used in languages such as HTML,
XML, and by operating systems. Including them in class names, or the
names of any other modeling element for that matter, can lead to unex-
pected consequences when code or HTML/XML documentation is
generated from the model.

Avoid abbreviations at all costs. Class names should always reflect the
names of real-world entities without abbreviation. For example, FlightSeg-
ment is always preferable to FltSgmnt, DepositAccount is always preferable to

‘DpstAccnt. Again, the reason for this is very sunple——-abbrewatlons make

the model (and resulting code) harder to read. Any time saved typing is
lost many times over when the abbreviated model or code needs to be
maintained.

If there are domain-specific acronyms (e.g., CRM - Customer Relation-
ship Management) that are in common use and will be understood by all
readers of the model, then you may use them. However, bear in mind
that the long form of the name might still be preferable if it makes the
model clearer.

Classes represent “things”, so they should have a name that is a noun or a
noun phrase, for example, Person, Money, BankAccount.
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7.5.2

7.5.2.1

Visibility controls
access to the features
of a class.

Table 7.3

Attribute compartment

The only mandatory part of the UML attribute syntax (Figure 7.8) is the at-
tribute name. Attributes are named in lowerCamelCase—starting with a
lowercase letter and then mixed upper- and lowercase. Attribute names are
usually nouns or noun phrases because attributes indicate some “thing” such
as an account balance. You must avoid special symbols and abbreviations.
We look at the optional parts of attribute syntax over the next few sections.

visibility name : type [muitiplicity] = initialValue

mandatory
Figure 7.8

Visibility

The visibility adornment (Table 7.3) applies to attributes and operations
within the class. It may also be applied to role names on relationships (Chap-
ter 9). In analysis, you typically don’t clutter the diagrams with visibility as
this is really a statement of “how” rather than “what”.

Implementation languages may differently interpret all types of UML
visibility, except public. This is an important point—in fact, languages may
define additional types of visibility that UML does not support by default.
Typically, this is not really a problem. The most common 0O languages, C++
and Java, and even common semi-OO languages such as Visual Basic, get
along just fine with public, private, protected, and package visibility, at least
as a first approximation.

Adornment  Visibilityname  Semantics

+ Public visibility Any element that can access the class can access any of its features with

public visibility

- Private visibility Only operations within the class can access features with private

visibility

# Protected visibility Only operations within the class, or within children of the class, can

access features with protected visibility

~ Package visibility Any element that is in the same package as the class, orin a nested

subpackage, can access any of its features with package visibility
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Let’s look at two OO languages in detail. Table 7.4 compares UML visibil-
ity semantics with those of Java and C#.

As you can see, visibility is dependent on the implementation language
and can become quite complex. The exact type of visibility used is really a
detailed implementation decision that would usually be made by the pro-
grammer rather than by the analyst/designer. For general modeling, the
UML standard definitions of public, private, protected, and package are quite
adequate, and we encourage you to restrict yourself to these.

Table 7.4
k Visibility ~ UML semantics _ Java semantics C# semantics

public Any element that can access the Same as UML Same as UML

class can access any of its features

with public visibility
private Only operations within the class Same as UML Same as UML

can access features with private

visibility
protected  Only operations within the class, As UML but is also accessible ~ Same as UML

or within children of the class, to all classes in the same

can access features with protected ~ Java package as the defining

visibility class
package Any element that is in the same The default visibility in -

package as the class, or in a nested  Java - nested classes in

subpackage, can access any of its nested subpackages don’t

features with package visibility automatically have access to

elements in their parent
package. ...
private - Same as UML protected -
protected
internal - - Accessible by any
element in the same
program

protected - - Combines the semantics of
internal protected and internal ~

only applicable to
attributes
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7.5.2.2

An attribute’s type
may be another class
or a primitive type.

7.5.2.3

Type
The type of an attribute may be another class or a primitive type.

The UML specification defines four primitive types that are used in the
UML specification itself, and you can use these in your analysis models when
you want to remain platform independent. These types are listed in Table 7.5.

Table 7.5

UML Integer A whole number

UnlimitedNatural A whole number >= 0
Infinity is shown as *

Boolean Can take the value true or false

String A sequence of characters
String literals are quoted, e.g., "Jim"

ocCL Real A floating point number

The Object Constraint Language (OCL) is a formal language for expressing
constraints in UML models; we discuss OCL in detail in Chapter 25. OCL defines
standard operations for the UML primitive types (except UnlimitedNatural) and
adds a new type called Real.

If your model is targeting a specific language, such as Java or C#, then
you can use the primitive types from that language. However, your model
will then be tied to that language.

Sometimes you need to add a set of primitive types to your UML model
so that you can use them in other classes as attribute and operation parame-
ter types. You can add a primitive type by creating a class with the same
name as the primitive type and the stereotype «primitive». The class typically
has no attributes or operations since it is merely acting as a placeholder for
the primitive type, adding its name to the model namespace.

Multiplicity

Multiplicity is widely used in design, but may also be used in analysis models
as it can provide a concise way to express certain business constraints relat-
ing to the “number of things” participating in a relationship.
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Multiplicity allows
you to model
collections of things
or null values.

7-5.2.4

The initialValue
allows you to set the
value of an attribute at
the point of object
creation,
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Multiplicity allows you to model two distinctly different things by using

a multiplicity expression on an attribute (see Figure 7.9).

@ Collections - if the multiplicity expression results in an integer greater

than 1, then you are specifying a collection of the type. For example,
colors : Color[7] would model an attribute that is a collection of seven Color
objects, which you could use to model the colors of the rainbow.

Null values — there is a difference in most languages between an attribute
that contains an empty or uninitialized object, such as the empty String,
", and an attribute that points nowhere, that is, to the null object refer-
ence. When an attribute references null, this means that the object it
points to has not yet been created or has ceased to exist. It can sometimes
be important in detailed design to distinguish when null is a possible value
for an attribute, and you can model this by using the special multiplicity
expression [o..1]. Take the emailAddress example in Figure 7.9: if the attribute
emailAddress has the value "" (the empty String), you might take this to
mean that you have asked for an e-mail address and it has not been given
to you. On the other hand, if the attribute emailAddress points to null, you
might take this to mean that you have not yet asked for the e-mail address
and so its value is unknown. If you use distinctions like these, it's essential
that you record in the emailAddress documentation the precise semantics
of "" versus null. As you can see, this is a fairly detailed design consider-
ation, but it can be important and useful.

Figure 7.9 gives some examples of multiplicity syntax.

PersonDetails

—name : String [2..%] name is composed of two or more Strings
—address : String [3] address is composed of three Strings
—emailAddress : String [0..1] emailAddress is composed of one String or null

multiplicity expression

Figure 7.9

Initial value

The initialValue allows you to specify the value an attribute will take when an
object is instantiated from the class. This is known as the initial value of the
attribute because it is the value that the attribute takes at the point of object
creation. In design, it is good style to use initial values wherever possible—it
helps to ensure that objects of the class are always created in a valid and use-
ful state.
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7.5.2.5

7:5:3

An operation
signature comprisesits
name, the type of all its
parameters, and its
return type.

Initial values are only used in analysis when they can express or high-
light an important business constraint. This tends to be quite rare.

Advanced attribute syntax

Like any other UML modeling element, you can extend the semantics of
attributes by prefixing them with stereotypes. You can also extend the speci-
fication of an attribute by postfixing the attribute with tagged values, for
example,

«stereotype» attribute { tag1 = values, tag2 = valuez, ...}

You can store whatever information you choose in tagged values. For exam-
ple, they are sometimes used to store version information as shown here:

address { addedBy=")im Arlow", dateAdded="20MAR2004" }

In this example, we have recorded that Jim Arlow added the address attribute
to some class on 20 March 2004.

Operation compartment

Operations are functions that are bound to a particular class. As such, they
have all of the characteristics of functions:

® name;

@ parameter list;

]

return type.

The combination of the operation name, types of all the parameters, and the
return type is the operation signature (Figure 7.10). Every operation of a class
must have a unique signature as it is this signature that gives the operation
its identity. When a message is sent to an object, the message signature is
compared to the operation signatures defined in the object’s class, and if a
match is found, the appropriate operation is invoked on the object.

operation signature

visibility name( direction parameterName : parameterType = defaultValue, ... ) : returnType

— e
—~

parameter list

Figure 7.10
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Different implementation languages have slightly different interpreta-
tions as to what constitutes an operation signature. For example, in C++ and
Java the return type is ignored. This means that two operations on a class
that only differ by return type will be considered to be the same operation
and will generate a compiler/interpreter error. In Smalltalk, which is a
weakly typed language, the parameters and return type are all of type Object,
and so it is only the operation name that constitutes the signature.

Operations are named in lowerCamelCase. Operation names are usually
a verb or verb phrase, and you must avoid special symbols and abbreviations.

Each operation parameter has the form shown in Figure 7.11. An opera-
tion may have zero to many parameters.

direction parameterName : parameterType = defaultValue

Figure 7.11

Parameter names are in lowerCamelCase and are usually a noun or a
noun phrase since they refer to something being passed in to the operation.
Each parameter has a type that is a class or primitive type.

We look at the parameter direction and default value in the next two
sections.

Parameter direction

Operation parameters can be given a direction:
operation(in p1:Integer, inout p2:Integer, out p3:Integer, return p4:Integer, return ps:Integer)

If the direction is not specified, then it defaults to in. Parameter direction
semantics are summarized in Table 7.6.

The semantics of in, inout, and out are quite straightforward but perhaps
return needs more discussion.

We tend to expect functions to return exactly one object as shown
below—

maximumValue = max(a, b)
minimumValue = min(a, b)

—where a, b, maximumValue, and minimumValue are Integers. In fact, normal
operation syntax supports precisely this situation—every operation may
normally have one return value. As you have seen, you can model these
“normal” operations in UML as follows:

maximumValue( a:integer, b:Integer) : Integer
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Table 7.6
 Parameter ‘Semantics
in p1:Integer Default
The operation uses p1 as an input parameter
The value of p1 is used by the operation in some way
p1 is not changed by the operation
inout p2:Integer The operation accepts p2 as an input/output parameter
The value of p2 is used by the operation in some way and serves
to accept a value output by the operation
p2 may be changed by the operation
out p3:integer The operation uses p3 as an output parameter

The parameter serves as a repository to accept a value output by
the operation

p3 may be changed by the operation

return p4:Integer The operation uses p4 as a return parameter

The operation returns p4 as one of its return values

return p5:Integer The operation uses ps as a return parameter

The operation returns ps as one of its return values

However, some languages allow operations to return more than one value.
For example, Python allows operations to have multiple return values. In
Python you could write—

maximumValue, minimumValue = maxMin(a, b)

—where maxMin(a, b) returns two values, the maximum value and the minimum
value. In UML, you can model this operation as follows:

maxMin(in a: Integer, in b:Integer, return maxValue:Integer, return minValue:Integer)

You can see that the return parameter direction allows you to model situations
where an operation has more than one return value.
You can also list the return parameters after the operation name as follows:

maxMin(in a: Integer, in b:Integer) : Integer, Integer

In this case, it is bad style to use the keyword return, as the return parameters
are clearly distinguished.
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Parameter directions are really a design issue, and so you typically don't
bother with them in analysis (unless you are using OCL).

Parameter directions can be very important in design, especially if you
are generating code. Code generators will map UML parameter directions to
the specific parameter passing semantics of your target language.

Parameter default values

You can give an operation parameter a default value. When the operation is
called, if no value is given for that parameter, its default value will be used.

You can specify default values as shown in Figure 7.12. In this figure, the
Canvas class has two operations, drawCircle(...) and drawSquare(...), that draw a
square and circle respectively on the screen. We have supplied the default
value of Point(o,0) for the origin parameter. If this parameter is omitted when
the operations are called, the shapes will be drawn at position {0,0} on the
screen.

Canvas

drawCircle( origin: Point = Point( 0, 0 ), radius : Integer )
drawSquare( origin: Point = Point( 0, 0 ), size : Dimension )

Figure 7.12

Default values are really a design issue, and you rarely use them in analysis.

Advanced operation syntax

You can extend the semantics of operations by prefixing them with stereo-
types and postfixing them with tagged values.

«stereotype» operation(...} { tag1 = values, tagz = valuez, ...}

You can also add tagged values to operation parameters, but we have not yet
come across a situation where this is useful.

Query operations

Each operation has a property called isQuery. If you set this property to true in
your modeling tool, the operation is a query operation. This means that it
has no side effects and doesn’t change the state of the object it is called on. An
operation that returns the value of an attribute is a query operation and
should have isQuery set to true.
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The default value for isQuery is false. Setting isQuery is normally a design
issue. However, specifying query operations can be important if you are
using OCL in your UML models (see Chapter 25). This is because OCL
expressions can’t change the state of the system and so can only use query
operations. Setting isQuery allows OCL compilers to check that your OCL
expressions are only calling valid operations.

A more or less universal naming standard for query operations is to con-
struct the name of the operation by prefixing the name of whatever you are
querying with get. An example is shown in Figure 7.13.

BankAccount

balance : double

) returns the
query operation — getBalance() : double value of balance
(isQuery= true) :
attribute name,
beginning with
uppercase

Figure 7.13

Class stereotype syntax

There is a lot of flexibility in how stereotypes can be displayed (Figure 7.14).
However, most modelers just use the name in guillemets («stereotypeName») or
the icon. The other variants don’t tend to be used as much, and the model-
ing tool you are using often imposes limits.

«entity» «entity» Q.\

- preferred < . .
e ity Ticket / Ticket [~ icon

/7
stereotype

- preferred:
Ticket e

Ticket

Figure 7.14

Stereotypes can also be associated with colors or textures, but this is very bad
practice. Some readers, the visually impaired or the color-blind, may have
difficulty interpreting such diagrams. Also, diagrams often have to be printed
in black and white.
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Scope

Up to now you have seen that objects have their own copies of the attributes
defined in their class so that different objects can have different attribute val-
ues. Similarly, the operations that you have seen so far all act on specific
objects. This is the normal case, and we say that these attributes and opera-
tions have instance scope.

However, sometimes you need to define attributes that have a single,
shared value for every object of the class, and you need operations (like object
creation operations) that don’t operate on any particular class instance. We
say that these attributes and operations have class scope. Class scope features
provide a set of global features for an entire class of objects.

Instance scope and class scope

The notation for instance scope and class scope attributes and operations is
shown in Figure 7.15. The semantics for instance scope and class scope
attributes and operations are summarized in Table 7.7.

BankAccount

-accountNumber : String
-count :int =0 \

class scope +create( accNumber : String ) > instance scope
(underlined) +getAccountNumber : String
-incrementCount()
+decrementCount()
+getCount() : int

Figure 7.15

Scope determines access

Whether an operation can access another feature of the class is determined
by the scope of the operation and the scope of the feature it is trying to
access.

Instance scope operations can access other instance scope attributes and
operations, and also all of the class scope attributes and operations.

Class scope operations can only access other class scope operations and
attributes. Class scope operations can’t access instance scope operations
because

© there might not be any class instances created yet;

© even if class instances exist, you don’t know which one to use.
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Table 7.7
. Instanc e scope “ ; o o o Class scope : ;  . s e
Attributes By default, attributes have instance scope Attributes may be defined as class scope
Every object of the class gets its own copy Every object of the class shares the same,
of the instance scope attributes single copy of the class scope attributes
Each object may therefore have different Each object will therefore have the same class
instance scope attribute values scope attribute values
Operations By default, operations have instance scope Operations may be defined as class scope

Every invocation of an instance scope
operation applies to a specific instance
of the class

Invocation of a class scope operation does
not apply to any specific instance of the
class — instead, you can think of class scope
operations as applying to the class itself

You can’t invoke an instance scope
operation unless you have an instance of
the class available - clearly, this means that
you can’t use an instance scope operation of
a class to create objects of that class, as you
could never create the first object

You can invoke a class scope operation even if
there is no instance of the class available -
this is ideal for object creation operations

 Object construction and destruction

Constructors are

special operations that
create new objects.
They have class scope.

analysis models.

Constructors are special operations that create new instances of classes—
these operations must be class scope. If they were instance scope, there would
be no way to create the first instance of a class.

Constructors are a design consideration and are generally not shown on

Different languages have different standards for naming constructors. A
completely generic approach is just to call the constructor create(..). This
makes the intention of the operation clear. However, Java, C#, and C++ all
demand that the constructor name be the same as the class name.

A class may have many constructors, all with the same name but each
distinguished by a different parameter list. The constructor with no parame-
ters is known as the default constructor. You can use constructor parameters to
initialize attribute values at the point of object construction.

Figure 7.16 shows a simple BankAccount example. Every time you create a
new BankAccount object, you have to pass in a String as a parameter to the con-
structor. This String is used to set the accountNumber attribute (e.g., to some value
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BankAccount BankAccount
+create(_accNumber : String ) +BankAccount( accNumber : String )
generic constructor name Java/C#/C++ standard

Figure 7.16

such as “XYZ001002"). The fact that the BankAccount constructor needs a parame-
ter means that there is 70 way to create a BankAccount object without specifying
this parameter. This ensures that every BankAccount object has the accountNumber
attribute value set at the point of creation—this is very good style.

In analysis-level models, you generally don’t bother specifying construc-
tors (or, indeed, destructors). They usually have no impact on, or relationship
to, the business semantics of the class. If you do want to show constructor
operations, you can put in a create() operation with no parameters as a place-
holder. Alternatively, you can specify just those parameters that are important
from a business perspective.

When you come to detailed design, you need to specify the name,
parameter types, and return type of every operation (see Section 17.4), and this
will include explicit specification of constructor and destructor operations.

Object destruction is not as straightforward as object construction. Differ-
ent OO languages have different semantics for object destruction. We explore
object construction and destruction in more detail in the next two sections.

Constructors — ClubMember class example

The ClubMember example in Figure 7.17 shows a typical use of class scope
attributes and operations. This class represents a member of a club. The
numberOfMembers attribute is a private class scope attribute of type int. This
attribute is therefore shared by all objects of the ClubMember class and will
have the same value for each of those objects.

ClubMember

-membershipNumber : String
-memberName : String
-numberOfMembers : int = 0

+create( number : String, name : String )

+getMembershipNumber () : String
+getMemberName() : String
-incrementNumberOfMembers ()
+decrementNumberOfMembers()
+getNumberOfMembers() : int

Figure 7.17
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7.7.2

Destructors are
special operations that
“clean up” when

objects are destroyed.

When the numberOfMembers attribute is created, it is initialized to zero.
Now, if this were an instance scope attribute, each object would get its own
copy of the attribute when that object was created. However, the attribute
has class scope, meaning that there is only one copy and this single copy is
only initialized once. Exactly when that happens depends on the implemen-
tation language, but, as far as we are concerned, all we have to know is that
the attribute is initialized to the value zero when the program started.

Suppose that in the create(...) operation you invoke the class scope oper-
ation incrementNumberOfmembers(). As you might expect from its name, this
operation increments the value of the class scope attribute numberOfMembers.
Every time an instance of the class is created, numberOfMembers is incre-
mented—a counter has been added to the class! You can query the value of
numberOfMembers by using the class scope operation getNumberOfMembers().
This returns a number that is equal to the number of ClubMember objects
created.

Destructors — ClubMember class example

What happens if the program creates and destroys ClubMember objects? Obvi-
ously, the value of numberOfMembers would rapidly become meaningless. You
can fix this by introducing an operation to the class to decrement number-
OfMembers (see Figure 7.17) and then ensuring that this operation is called
every time an instance of ClubMember is destroyed.

Some OO languages have special instance scope operations called de-
structors that are automatically called at the point of object destruction. In
C++, for example, the destructor is always of the form ~ClassName( parameterList ).
In C++ the destructor operation is guaranteed to be called at the time an object
is destroyed.

Java has a similar capability—every class has an operation called finalize()
that is called when the object is finally destroyed. However, objects are not
explicitly destroyed by the program itself, but rather are left to an automatic
garbage collector. You know that finalize() will be called, but you just don’t
know when! This is obviously not going to work for our simple counter appli-
cation, and you would have to explicitly decrement numberOfMembers yourself
by calling the class scope operation called decrementNumberOfMembers() when-
ever you were finished with an object and were letting it go to garbage
collection.

C# has identical destruction semantics to those of Java, except the oper-
ation is called Finalize().



cnssenonosononene 6060606060 0RAAANO00ROUON0A0B0RBREH 4P 0 EREERON NN E0APE0Ea0NA0ENO00BBBEODEBOLIND T sssvsven GREBOGOON0ONEBO DD

 7°,8 

Chapter 7 Ob}”e&c':ts and classes 151

‘What we have learned

This chapter has presented the basic groundwork on classes and objects that
is used throughout the rest of the book. Classes and objects are the building
blocks of OO systems, so it is important to have a thorough and detailed
understanding of them.

You have learned the following.

® Objects are cohesive units that combine data and function.

@ Encapsulation - the data inside an object is hidden and can only be ma-
nipulated by invoking one of the object’s functions.
— operations are specifications for object functions created in analysis;
— methods are implementations for object functions created in
implementation.

@ Every object is an instance of a class — a class defines the common features
shared by all objects of that class.

@ Every object has the following features.
— Identity - its unique existence - you use object references to uniquely
refer to specific objects.
— State — a meaningful set of attribute values and relationships for the
object at a point in time.
— Only those sets of attribute values and relationships that constitute a
semantically important distinction from other possible sets constitute
a state. For example, BankAccount object — balance < o, state = Overdrawn;
balance > o, state = InCredit.
- State transition - the movement of an object from one meaningful
state to another.
— Behavior - services that the object offers to other objects:
- modeled as a set of operations;
- invoking operations may generate a state transition.

@ Objects collaborate to generate the behavior of the system.
— Interaction involves objects sending messages back and forth — when a
message is received, the corresponding operation is invoked; this may
cause a state transition.

@ UML object notation — every object icon has two compartments.
— The top compartment contains the object name and/or the class name,
all of which must be underlined.
- Object names are in lowerCamelCase.
- Class names are in UpperCamelCase.
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— No special symbols, punctuation, or abbreviation.

— Object name is separated from class name by a single colon.

The bottom compartment contains the attribute names and values
separated by an equal sign.

- Attribute names are in lowerCamelCase.

- Attribute types may be shown but are often omitted for brevity.

® A class defines the features (attributes, operations, relationships, and behav-
ior) of a set of objects.

Each object is an instance of exactly one class.

Different objects of the same class have the same set of attributes but

may have different values for those attributes. Different attribute val-

ues cause objects of the same class to behave differently — for example,

compare trying to withdraw $100 from a BankAccount object that is over-

drawn with trying to withdraw $100 from a BankAccount object that is

$200 in credit.

There are many ways of classifying the world - finding the right classi-

fication scheme is one of the keys to successful OO analysis.

You can show the instantiate relationship between a class and one of

its objects by using a dependency stereotyped as «instantiate»:

- relationships connect things;

- a dependency relationship indicates that a change to the supplier
affects the client.

Object instantiation creates a new object by using its class as a template.

— Most OO languages provide special operations called constructors
that are called when an object needs to be created — constructors set
up or initialize objects; constructors are class scope (they belong to
the class).

- Some OO languages provide special operations called destructors
that are called when an object is destroyed - destructors clean up
after objects.

® UML class notation.

Name compartment has the class name in UpperCamelCase:

- no abbreviations, punctuation, or special characters.

Attribute compartment — each attribute has:

— visibility - this controls access to features of a class;

- name {(mandatory) — lowerCamelCase;

- multiplicity - collections, for example, [10]; null values, for example,
[o..1];

~ type;

— attributes may have stereotypes and tagged values.
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— Operation compartment — each operation may have:
— visibility;
- name (mandatory) - UpperCamelCase;
parameter list (name and type for each parameter);
— a parameter may optionally have a default value;
- a parameter may optionally have a direction - in, out, inout, return.
return type;
stereotype;
~ — tagged values.
— Query operations have isQuery = true — they have no side effects.
— An operation signature comprises:
- name;
— parameter list (types of all parameters);
- return type.
— Every operation or method of a class must have a unique signature.

I

@ Scope.
— Instance scope attributes and operations belong to or operate on
specific objects:
- instance scope operations can access other instance scope opera-
tions or instance scope attributes;
- instance scope operations can access all class scope attributes or
operations.
— Class scope attributes and operations belong to or operate on the whole
class of objects:
- class scope attributes and operations can only access other class scope
operations.






. chapter 8

Finding analysis classes

~ Chapter roadmap

This chapter is all about the core activity of OO analysis, finding the analysis
classes. If you want to understand the UP activity in which analysis classes
are found, go to Section 8.2. If you need to know what an analysis class is, go
to Section 8.3.

In Section 8.4 we describe how to find analysis classes. We present three
specific techniques—noun/verb analysis (8.4.1), CRC analysis (8.4.2), and
RUP analysis class stereotypes (8.4.3)—and also a general consideration of
other possible sources for classes (8.4.4).
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The UP activity
“Analyze a use case”
involves creating
analysis classes and
use case realizations.
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 UPactivity: Analyze a use case

The outputs from the UP workflow Analyze a use case (see Figure 8.2) are anal-
ysis classes and use case realizations. In this chapter we focus on analysis
classes. We consider use case realizations in Chapter 12; these are collabora-
tions between objects that show how systems of interacting objects can
realize the system behavior expressed in the use cases.

It's worth looking at the inputs to Analyze a use case.

© Business model — you may, or may not, have a business model available that
relates to the system you are modeling. If you do, this is an excellent
source of requirements.

© Requirements model — we described creation of this model in Chapter 3.
These requirements (grayed to show that the artifact is modified from the
original figure) provide useful input to the use case modeling process. In
particular, the functional requirements will suggest use cases and actors.
The non-functional requirements will suggest things you may need to
keep in mind when constructing the use case model.

® Use case model — we discussed creation of the use case model in Chapters 4
and 5.

—

O
A
[7

Business model "~

[or domain model] N Use case 4
engineer
A .- - Analysis class
Requirements
model

- _..-> Analyzea

N use case
.7

Use case model

Architecture
description

Use case
realization

Figure 8.2 Adapted from Figure 8.25 [Jacobson 1] with permission from Addison-Wesley
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8.3

Analysis classes
model important
aspects of the problem
domain such as
“customer” or
“product”.

An analysis class
should map in a clear
and unambiguous way
to a real-world
business concept.

Finding the right
analysis classes is the
key to 00 analysis and
design.

pronpBoLPLATEAGEEHR G T

@ Architecture description — a snapshot of the architecturally significant aspects
of the system. May include extracts from UML models embedded in an
explanatory text. This is created by architects with input from analysts/
designers.

What are analysis classes?

Analysis classes are classes that
© represent a crisp abstraction in the problem domain;

© should map on to real-world business concepts (and be carefully named
accordingly).

The problem domain is the domain in which the need for a software system
(and hence a software development activity) first arises. This is usually a spe-
cific area of the business such as online selling or customer relationship
management. However, it is important to note that the problem domain
might not be any specific business activity at all, but might arise from a piece
of physical hardware that needs software to operate it. Ultimately, all com-
mercial software development serves some business need, be that automating
an existing business process or developing a new product that has a signifi-
cant software component.

The most important aspect of an analysis class is that it should map in a
clear and unambiguous way to some real-world business concept such as cus-
tomer, product, or account. However, this statement assumes that the
business concepts themselves are clear and unambiguous, and this is rarely
the case. It is therefore the job of the OO analyst to try to clarify confused or
inappropriate business concepts into something that can form the basis of
an analysis class. This is why OO analysis can be difficult.

So the first step in building OO software is to clarify the problem do-
main. If it contains clearly defined business concepts and has a simple,
functional structure, the solution is virtually there for the taking. Much of
this work will be done in the requirements workflow in the activities of cap-
turing requirements and creating a use case model and project glossary.
However, much more clarification occurs in the construction of analysis
classes and use case realizations.

It is important that all classes in the analysis model are analysis classes
rather than classes arising from design considerations (the solution domain).
When you get down to detailed design, you may find that analysis classes are
ultimately refined into one or more design classes.

Although, in the previous chapter, we necessarily began by considering
specific objects, you will now understand that the real goal of OO analysis is
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finding the classes of those objects. In fact, finding the right analysis classes
is the key to OO analysis and design. If the classes are not right in analysis,
then the rest of the software engineering process, which is predicated on the
requirements and analysis workflows, will be in jeopardy. It is therefore
crucial that you spend sufficient time in the analysis workflow to ensure that
the right set of analysis classes has been identified. Your time will be well
spent, as it will almost certainly save time later.

In this book, we focus on development of business systems, as that is
what most OO analysts and designers are involved in. However, develop-
ment of embedded systems is really just a special case of normal business
development and all the same principles apply. Business systems are usually
dominated by functional requirements and so it is generally the require-
ments and analysis activities that are the most difficult. Embedded systems
are often dominated by non-functional requirements that arise from the
hardware in which the system is embedded. In this case analysis tends to be
straightforward, but design can be difficult. Requirements are important for
all types of system, and for some embedded systems, such as controllers for
x-ray machines, they can be a matter of life and death.

Anatomy of an analysis class

Analysis classes should present a very “high level” set of attributes. They indi-
cate the attributes that the resultant design classes will probably have. We might
say that analysis classes capture candidate attributes for the design classes.

Analysis class operations specify, at a high level, the key services that the
class must offer. In design they will become actual, implementable opera-
tions. However, one analysis-level operation will often break down into
more than one design-level operation.

We have already covered the UML syntax for classes in great detail in
Chapter 7, but in analysis only a small subset of that syntax is actually used.
Of course, the analyst is always free to add any adornments felt to be neces-
sary to make the model clearer. However, the basic syntax of an analysis class
always avoids implementation details. After all, in analysis we are trying to
capture the big picture.

A minimal form for an analysis class consists of the following.

© Name - this is mandatory.

© Attributes — attribute names are mandatory although only an important
subset of candidate attributes may be modeled at this point. Attribute
types are considered optional.

Operations - in analysis, operations might just be very high-level state-
ments of the responsibilities of the class. Operation parameters and
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8.3.2

The name of an
analysis class should
indicate its intent.

return types are only shown where they are important for understanding
the model.

~© Visibility - generally not shown.

@ Stereotypes — may be shown if they enhance the model.
© Tagged values — may be shown if they enhance the model.
An example is given in Figure 8.3.

The idea of an analysis class is that you try to capture the essence of the
abstraction and leave the implementation details until you come to design.

class name { BankAccount

) accountNumber
attributes owner

balance

withdraw()
operations calculatelnterest()
deposit()

Figure 8.3

What makes a good analysis class?
We can summarize what makes a good analysis class in the following points:

@ its name reflects its intent;

]

it is a crisp abstraction that models one specific element of the problem
domain;

@

it maps on to a clearly identifiable feature of the problem domain;

@

it has a small, well-defined set of responsibilities;

@

it has high cohesion;

it has low coupling.

In analysis you are trying to model one aspect of the problem domain accu-
rately and concisely from the perspective of the system you are trying to
construct. For example, if you are modeling a customer in a banking system,
you would want to capture the customer’s name, address, and so on, but you
would be unlikely to be interested in his preference for window or aisle seats
on an aircraft. You need to focus on the aspects of real-world things that are
important from the perspective of the system you are building.

You can often get a first idea as to whether or not a class is a “good” class
simply from its name. If you consider an e-commerce system, Customer would
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seem to refer to something quite precise in the real world and would be a
good candidate for a class. ShoppingBasket would also seem to be a good ab-
straction—we know, almost intuitively, what its semantics will be. However,
something like WebSiteVisitor seems to have rather vague semantics, and in
fact really sounds like a role that a Customer plays in relation to the e-com-
merce system. You should always be looking for a “crisp abstraction”—
something that has clear and obvious semantics. ‘

A responsibility is a contract or obligation that a class has to its clients.
Essentially, a responsibility is a service that a class offers to other classes. It is
crucial that your analysis classes have a cohesive set of responsibilities that
directly accord with the intent of the class (as expressed by its name) and
with the real-world “thing” that the class is modeling. Going back to the
ShoppingBasket example, you would expect this class to have responsibilities
such as '

@ add item to basket;
@ remove item from basket;

& show items in basket.

This is a cohesive set of responsibilities, all about maintaining a collection of
items that the customer has chosen. It is cohesive because all the responsibil-
ities are working toward the same goal—maintaining the customer’s
shopping basket. In fact, we could summarize these three responsibilities as
a very high-level responsibility called “maintain basket”.

Now, you could also add the following responsibilities to the ShoppingBasket:

& validate credit card;
@ accept payment;
@ print receipt.

But these responsibilities do not seem to fit with the intent or intuitive se-
mantics of shopping baskets. They are not cohesive and clearly should be
assigned elsewhere—perhaps to a CreditCardCompany class, a Checkout class, and
a ReceiptPrinter class. It is important to distribute responsibilities appropriately
over analysis classes to maximize cohesion within each class.

Finally, good classes have the minimum amount of coupling to other
classes. We measure coupling between classes by the number of other classes
with which a given class has relationships. An even distribution of responsi-
bilities between classes will tend to result in low coupling. Localization of
control or of many responsibilities in a single class tends to increase coupling
to that class. We consider ways of maximizing cohesion and minimizing
coupling in Chapter 15.
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8.3.3

Analysis class rules of thumb
Here are some rules of thumb for creating well-formed analysis classes.

®

About three to five responsibilities per class — typically, classes should be
kept as simple as possible, and this usually limits the number of respon-
sibilities that they can support to between three and five. Our previous
example of a ShoppingBasket is a good example of a focused class with a
small and manageable number of responsibilities.

No class stands alone - the essence of good OO analysis and design is that
classes collaborate with each other to deliver benefit to users. As such,
each class should be associated with a small number of other classes with
which it collaborates to deliver the desired benefit. Classes may delegate
some of their responsibilities to other “helper” classes that are dedicated
to that specific function.

Beware of many very small classes — it can sometimes be hard to get the
balance right. If the model seems to have lots and lots of very small
classes with just one or two responsibilities each, then you should look at
this very carefully with a view to consolidating some of the small classes
into larger ones.

Beware of few but very large classes — the converse of the above is a model
that has few classes, where many of them have a large number (> 5) of
responsibilities. The strategy here is to look at these classes in turn and see
if each can be decomposed into two or more smaller classes with the right
number of responsibilities.

Beware of “functoids” — a functoid is really a normal procedural function
disguised as a class. Grady Booch tells the amusing anecdote of a model of
a very simple system that had thousands of classes. On closer inspection,
each class had exactly one operation called dolt(). Functoids are always a
danger when analysts accustomed to the technique of top-down func-
tional decomposition approach OO analysis and design for the first time.

Beware of omnipotent classes — these are classes that seem to do every-
thing. Look for classes with “system” or “controller” in their name! The
strategy for dealing with this problem is to see if the responsibilities of the
omnipotent class fall into cohesive subsets. If so, perhaps each of these
cohesive sets of responsibilities can be factored out into a separate class.
These smaller classes would then collaborate to implement the behavior
offered by the original omnipotent class.

Avoid deep inheritance trees — the essence of designing a good inherit-
ance hierarchy is that each level of abstraction in the hierarchy should
have a well-defined purpose. It is easy to add many levels that don'’t really



8.4

8.4.1

R e R R e R R L R LR R L L T T T N

Chapter 8 Finding analysis classes 163

serve any useful purpose. In fact, a common mistake is to use inheritance
to implement a kind of functional decomposition where each level of
abstraction has only one responsibility. This is, in every respect, pointless
and just leads to a complex, difficult to understand model. In analysis,
inheritance is only used where there is a clear, and obvious, inheritance
hierarchy arising directly from the problem domain.

In the last bullet, we need to clarify what we mean by a “deep” inheritance
tree. In analysis, where the classes represent business things, “deep” would
be three levels of inheritance or more. This is because business things tend to
form inheritance hierarchies that are broad rather than deep.

In design, where the tree consists of classes from the solution domain,
the definition of “deep” depends on the implementation language you are
targeting. In Java, C++, C#, Python, and Visual Basic, we still consider three
or more levels to be deep. In Smalltalk, however, inheritance trees can go
much deeper than this, due to the structure of the Smalltalk system.

Finding classes

In the rest of this chapter we consider the core issue of OO analysis and
design, finding the analysis classes.

As Meyer points out in Object Oriented Software Construction [Meyer 1],
there is no simple algorithm for finding the right analysis classes. If such an
algorithm did exist, then it would amount to an infallible way to design OO
software and this is just as unlikely as finding an infallible way to prove
mathematical theorems.

Still, there are tried and tested techniques that lead toward a good answer,
and we present them here. They involve analyzing text and interviewing users
and domain experts. But ultimately, despite all the techniques, finding the
“right” classes depends on the perspective, skill, and experience of the individ-
ual analyst.

Finding classes by using noun/verb analysis

Noun/verb analysis is a very simple way of analyzing text to try to find
classes, attributes, and responsibilities. In essence, nouns and noun phrases
in the text indicate classes or attributes of classes, and verbs and verb phrases
indicate responsibilities or operations of a class. Noun/verb analysis has been
used for many years and works well as it is based on a direct analysis of the
language of the problem domain. However, you have to be very aware of
synonyms and homonyms as these can give rise to spurious classes.
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In noun/verb l N\

analysis you analyze
text. Nouns and noun
phrases indicate
classes or attributes.
Verbs and verb phrases
indicate responsibilities

or operations.

8.4.1.1

You also have to be very careful if the problem domain is poorly under-
stood and defined. In this case, try to collect as much information about the
domain from as many people as possible. Look for similar problem domains
outside your organization.

Perhaps the trickiest aspect of noun/verb analysis is finding the “hidden”
classes. These are classes that are intrinsic to the problem domain but that
might never be mentioned explicitly. For example, in a reservation system for
a holiday company, you will hear the stakeholders talk about reservations,
bookings, and so on, but the single most important abstraction, Order, may
never be mentioned explicitly if it does not exist in current business systems.
You generally know when you have found a hidden class because the whole
model seems to gel suddenly with the introduction of this single, new abstrac-
tion. This happens surprisingly often—in fact, if we're ever having trouble
with an analysis model and it just doesn’t seem to be making sense, we go on
a search for hidden classes. If nothing else, this makes us ask some penetrating
questions and improves our understanding of the problem domain.

Nounferb analysis procedure

The first step in noun/verb analysis is to collect as much relevant informa-
tion as possible. Suitable sources of information are

@

the requirements model;

&

the use case model;

the project glossary;

anything else (architecture, vision documents, etc.).

After collecting the documentation, analyze it in a very simple way by high-
lighting (or recording in some other way) the following:

®

nouns - for example, flight;

@

noun phrases — for example, flight number;

]

verbs — for example, allocate;

verb phrases - for example, verify credit card.

Nouns and noun phrases may indicate classes or class attributes. Verbs and
verb phrases may indicate responsibilities of classes.

If you come across any terms that you don’t understand during this
process, seek immediate clarification from a domain expert and add the term
to the project glossary. Take the list of nouns, noun phrases, verbs, and verb
phrases and use the project glossary to resolve any synonyms and hom-
onyms. This creates a list of candidate classes, attributes, and responsibilities.



sBoBpsoccsaercREnoRsBaOBE Y cvossnon cossaane weacasacnosuse nsononce PescasecRcnonotono LY P e 800000 0RER00EU0N000N000BOBRBE0OG voase

brainstorming

technique in which you
capture on sticky notes
the important things in
the problem domain.

8.4.2

CRCisa |>

8.4.2.1

Chapter 8 Fmdmg analysis classes 165

Once you have this list of candidate classes, attributes, and responsibili-
ties, you make a tentative allocation of the attributes and responsibilities to
the classes. You can do this by entering the classes into a modeling tool and
adding the responsibilities as operations to the classes. If you have found any
candidate attributes, then you can tentatively assign these to classes as well.
You might also have gained some idea of relationships between certain
classes (the use cases are a good source of these), so you can add some candi-
date associations. This gives you a first-cut class model that you can refine by
further analysis.

Finding classes by using CRC analysis

A very good (and fun) way to get user involvement in finding classes is to use
CRC analysis—CRC stands for class, responsibilities, and collaborators. This
technique uses the world’s most powerful analysis tool, the sticky note! So
popular is the CRC method that there is a (possibly apocryphal) story that at
one point a company actually marketed sticky notes already marked out
with class name, responsibilities, and collaborators.

You begin by marking up some sticky notes as shown in Figure 8.4. The
note is divided into three compartments. In the top compartment you record
the name of the candidate class; in the left compartment, the responsibilities;
and in the right, the collaborators. Collaborators are other classes that may
collaborate with this class to realize a piece of system functionality. The col-
laborators compartment provides a way of recording relationships between
classes. Another way to capture relationships (which we prefer) is to stick the
notes on a whiteboard and draw lines between the collaborating classes.

Class name: BankAccount

Responsibilities: Collaborators:
Maintain balance Bank

Figure 8.4

CRC analysis procedure

CRC analysis should always be used in conjunction with noun/verb analysis
of use cases, requirements, glossary, and other relevant documentation, un-
less the system is very simple. The CRC analysis procedure is straightforward
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8.4.2.2

Stakeholder
involvement is essential
for CRC success.

8.4.2.3

Important business
concepts generally

become classes.

and the key is to separate information gathering from information analysis.
CRC is therefore best run as a two-phase activity.

Phase 1: Brainstorm — gather the information

The participants are OO analysts, stakeholders, and domain experts. You also
need a facilitator. The procedure is as follows.

1. Explain that this is a true brainstorm.
1.1, All ideas are accepted as good ideas.
1.2. Ideas are recorded but not debated - never argue about something, just
write it down and then move on. Everything will be analyzed later.

2. Ask the team members to name the “things” that operate in their busi-
ness domain — for example, customer, product.
2.1. Write each thing on a sticky note - it is a candidate class, or attribute
of a class. |
2.2. Stick the note on a wall or whiteboard.

3. Ask the team to state responsibilities that those things might have —
record these in the responsibilities compartment of the note.

4. Working with the team, try to identify classes that might work together.
Rearrange the notes on the whiteboard to reflect this organization and
draw lines between them. Alternatively, record collaborators in the col-
laborators compartment of the note.

Phase 2: Analyze information

The participants are OO analysts and domain experts. How do you decide
which sticky notes should become classes and which should become
attributes? Go back and look at Section 8.3.2—analysis classes must represent
a crisp abstraction in the problem domain. Certain sticky notes will repre-
sent key business concepts and clearly need to become classes. Other notes
may become classes or attributes. If a note logically seems to be a part of
another note, this is a good indication that it represents an attribute. Also, if
a note doesn’t seem to be particularly important or has very little interesting
behavior, see if it can be made an attribute of another class.

If in doubt about a note just make it a class. The important point is to
make a best guess and then drive this process to closure; you can always
refine the model later.
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Finding classes by using the RUP stereotypes

A useful technique comes from RUP in the form of RUP stereotypes. The idea
is that you consider three distinct types of analysis class during your analysis
activity. This is a way of focusing your analysis on specific aspects of the sys-
tem. We consider this an optional technique that you can use to complement
the core noun/verb and CRC card analysis techniques presented earlier.

Three distinct types of analysis class can be distinguished by the stereo-
types shown in Table 8.1.

We look at how to find each of these types of analysis class in the next
three subsections.

Table 8.1
Stereotype  Icon  Semantics |
«boundary» I__O a class that mediates interaction between the system and
its environment
«control» O a class that encapsulates use-case-specific behavior
«entity» Q a class that is used to model persistent information

about something

Finding «boundary» classes

These classes exist on the boundary of your system and communicate with
external actors.

You find these classes by considering the subject (system boundary) and
discovering what classes mediate between the subject and its environment.
According to RUP there are three types of «boundary» class:

1. user interface classes - classes that interface between the system and
humans;

2. system interface classes - classes that interface with other systems;

3. device interface classes — classes that interface with external devices such
as sensors.

Each communication between an actor and a use case in your model must be
enabled by some object in your system. These objects are instances of bound-
ary classes. You can work out what type of boundary class is indicated by
considering what the actor represents (Table 8.2).
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Table 8.2

Represents a human User interface class

Represents a system System interface class

Represents a device Device interface class

When a boundary class services more than one actor, these actors should
generally be of the same kind (representing a human, system, or device). It
can be an indication of bad design if a boundary class services actors of dif-
ferent types!

Because you are still in analysis, it is important to keep these classes at
the right level of abstraction. For example, when modeling a «boundary» class
that represents a GUI, just model the top-level window and leave all the
details of the widgets that compose the window to design. Alternatively, you
can introduce a dummy class that represents the whole user interface.

Similarly, with system interface classes and device interface classes, you
are concerned with capturing the fact that there is a class that mediates
between your system and something else, but not with the specific details of
that class. You will decide on these details later in design.

For example, if you are writing an e-commerce system that needs to
interface to an Inventory system, you can represent the interface to the
Inventory system by a class called Inventoryinterface that is stereotyped «boundary».
This is sufficient detail for an analysis model.

8.4.3.2  Finding «control» classes

These classes are controllers—their instances coordinate system behavior
that corresponds to one or more use cases.

You find control classes by considering the behavior of the system as
described by the use cases and working out how that behavior should be
partitioned among the analysis classes. Simple behavior can often be distrib-
uted between boundary or entity classes, but more complex behavior, such
as order processing, is generally best localized by introducing a suitable
controller class such as an OrderManager. Some modelers (ourselves included!)
often indicate control classes by appending Manager or Controller to the name
of the class.

The key point when working with control classes is to let the classes arise
naturally from the problem domain itself. Some modelers artificially intro-
duce a control class for each use case to control or execute that use case. This
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is a dangerous approximation that leads to a model that looks more like a
top-down functional decomposition than a true OO analysis model. In fact,
this is one of the reasons that we consider using the RUP stereotypes as
optional—they can lead novice modelers astray!

In the real world, controllers arising directly from the problem domain
(rather than as a by-product of a specific analysis technique) tend to cut
across several use cases. A good example might be a controller such as a
Registrar class that is involved in many of the use cases that describe a course
registration system. Similarly, a single use case may require the participation
of many control classes.

If you find that a controller class has a very complicated behavior, this
indicates that you may be able to break it down into two or more simpler
controllers that each implement a cohesive subset of that behavior. Fach of
the simpler classes that you identify must still be something that naturally
occurs in the problem domain. For example, when designing a course regis-
tration system, you might originally introduce a control class called
CourseRegistrationController that coordinates the whole process. But such a class
has a complex behavior, and so you might decide to break it up into a set of
collaborating classes with each class handling one or two aspects of that
behavior. The CourseRegistrationController might be decomposed into Registrar,
CourseManager, and PersonnelManager classes. Notice that each of these classes
represents a thing that exists in the problem domain.

A good way to explore controller classes is to imagine yourself in the role
of the class. What would you have to do in that situation?

Finding «entity» classes

These classes model information about something and usually have very
simple behavior that amounts to little more than getting and setting values.
Classes that represent persistent information such as addresses (an Address
class) and people (a Person class) are entity classes.

Entity classes—

cut across many use cases;

are manipulated by control classes;

provide information to, and accept information from, boundary classes;
represent key things managed by the system (e.g., Customer);

e ® © e @

are often persistent.

Entity classes express the logical data structure of the system. If you have a
data model, then entity classes are intimately related to entities or tables in
this model.
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Finding classes from other sources

Along with noun/verb analysis, CRC analysis, and RUP stereotypes, it is
worth remembering that there are many other potential sources of classes
that should be considered. As you are looking for crisp abstractions that map
to real-world things in the problem domain then, obviously, you can look to
the real world for classes.

@ Physical objects such as aircraft, people, and hotels may all indicate
classes to you.

® Paperwork is another rich source of classes. Things like invoices, orders,
and bankbooks may all indicate possible classes. However, you must be
very careful when looking at paperwork. In many companies the paper-
work has evolved over the years to support exactly the redundant
business processes that the new system might be trying to replace! The
last thing you want to do as an OO analyst/designer is to automate obso-
lete and pathological paper-based systems.

© Known interfaces to the outside world such as screens, keyboards, periph-
erals, and other systems can also be a source of candidate classes, especially
for embedded systems.

@ Conceptual entities are things that are crucial to the operation of the
business but are not manifest as concrete things. An example of this
might be a LoyaltyProgram such as a reward card. Clearly, the program itself
is not a concrete thing (you can’t kick it!), but it is still a cohesive abstrac-
tion and so may warrant modeling as a class.

Archetype patterns

In our book Enterprise Patterns and MDA [Arlow 1] we describe a set of what
we call archetype patterns. These are patterns of business concepts that are so
pervasive in business systems that we believe that they are truly archetypal
in nature. As such, they can be modeled once and then reused, rather than
modeled over and over again in each new business system. The idea of the
book is that you can use these patterns as-is, or modify them, to construct your
analysis model from model components. We call this technique component-based
modeling.
We provide the following archetype patterns:

© Customer Relationship Management;
® Inventory;
@ Money;
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Order;

Party;

Party relationship;
Product;

Quantity;

Rule.

@ ® @ © © e

Each of these patterns is very detailed and inclusive. If you can reuse one of
these patterns, you can save yourself many man-days or even man-months
of work. Even if the pattern isn’t completely appropriate for what you are
trying to model, it may give you useful ideas for your own analysis classes
rather than starting from a blank page.

This is probably the most efficient way of finding classes for your
models—just take them off the shelf!

Creating a first-cut analysis model

To create a first-cut analysis model, you need to consolidate the outputs of
noun/verb analysis, CRC analysis, RUP stereotypes, and a consideration of
other sources of classes (especially archetype patterns) into a single UML
model in a modeling tool. Perform consolidation as follows.

1. Compare all sources of classes.

2. Consolidate the analysis classes, attributes, and responsibilities from the
different sources and enter them into a modeling tool.
2.1. Use the project glossary to resolve synonyms and homonyms.
2.2. Look for differences in the results of the three techniques - differ-
ences indicate areas where there is uncertainty or where more work
~might be done. Resolve these differences now, or highlight for later
work.

3. Collaborators (or lines between sticky notes on the whiteboard) represent
relationships between classes. You will see how to model these in Chapter 9.

4. Improve the naming of classes, attributes, and responsibilities to follow
any standard naming conventions that your company has, or follow the
simple naming conventions described in Chapter 7.

The output from this activity is a set of analysis classes where each class may
have some key attributes and should have between three to five responsibili-
ties. This is your first-cut analysis model.
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In this chapter we have described what analysis classes are and how to find
these classes using the techniques of noun/verb analysis, CRC brainstorm-
ing, and an examination of other sources of classes.

You have learned the following.

® The UP activity Analyze a use case outputs analysis classes and use case
realizations.

o Analysis classes represent a crisp, well-defined abstraction in the problem
domain.
— The problem domain is that domain in which the need for the soft-
ware system has arisen.
— Analysis classes should map in a clear, unambiguous way to a real-
world business concept.
— Business concepts often need to be clarified during analysis.

@ The analysis model only contains analysis classes — any classes arising
from design considerations (the solution domain) must be excluded.

@ Analysis classes include:
— a set of high-level candidate attributes;
— a set of high-level operations.

@ What makes a good analysis class?

— Its name reflects its intent.

— Itis a crisp abstraction that models one specific element of the problem
domain.

— It maps to a clearly identifiable feature of the problem domain.

— It has a small, well-defined set of responsibilities:
- a responsibility is a contract or obligation that a class has to its

clients; :

- aresponsibility is a semantically cohesive set of operations;
— there should only be about three to five responsibilities per class.

— It has high cohesion - all features of the class should help to realize its
intent.

— 1t has low coupling — a class should only collaborate with a small
number of other classes to realize its intent.

© What makes a bad analysis class?
— It is a functoid - a class with only one operation.
— It is an omnipotent class — a class that does everything — classes with
“system” or “controller” in their name may need closer scrutiny.
— It has a deep inheritance tree — in the real world inheritance trees tend
to be shallow.
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— It has low cohesion.
— It has high coupling.

® Noun/verb analysis.
— Look for nouns or noun phrases - these are candidate classes or attributes.
— Look for verbs or verb phrases - these are candidate responsibilities or
operations.
— The procedure is to collect relevant information and then to analyze it.

© CRC analysis is a powerful and fun brainstorming technique.
— Important things in the problem domain are written on sticky notes.
— Each note has three compartments:
- class — contains the name of the class;
— responsibilities - contains a list of the responsibilities of that class;
- collaborators - contains a list of other classes with which this class
collaborates.
~— Procedure - brainstorm:
— ask the team members to name the “things” that operate in their
business domain and write them on sticky notes;
- ask the team to state the responsibilities of the things and record
them in the responsibilities compartment of the note;
- ask the team to identify classes that might work together and draw
lines between them, or record this in the collaborators compart-
ment of each note.

@ RUP stereotypes can be used to focus analysis activity on three types of
class:
— «boundary» — a class that mediates interaction between the system and
its environment;
— «control» — a class that encapsulates use-case-specific behavior;
— «entity» — a class that is used to model persistent information about
something.

- @ Consider other sources of classes:
— physical objects, paperwork, interfaces to the outside world, and con-
ceptual entities;
— archetype patterns - component-based modeling.

@ Create a first-cut analysis model:
— compare noun/verb analysis results with CRC results and the results of
an examination of other sources of classes;
— resolve synonyms and homonyms;
— differences between the results of the different techniques indicate
areas of uncertainty;
— consolidate results into a first-cut analysis model.
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This chapter discusses relationships between objects, and relationships
between classes. To find out what a relationship is, read Section 9.2. The
chapter is then organized under three separate threads. We discuss links (re-
lationships between objects) in Section 9.3, associations (relationships between
classes) in Section 9.4, and, finally, dependencies (catch-all relationships) in
Section 9.5.
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connect things.

UML relationships l N

Objects send
messages to one
another over
connections called
links.

Cl;apte}°; Relationships 177

Whatisarelationship?

Relationships are semantic (meaningful) connections between modeling
elements—they are the UML way of connecting things together. You have
already seen a few types of relationships:

©® between actors and use cases (association);
® between use cases and use cases (generalization, «include», «extend»);

© between actors and actors (generalization).

In this chapter we explore connections between objects and connections
between classes. We start with links and associations, and then, in Chapter 10,
look at generalization and inheritance.

To create a functioning OO system, you can't let the objects stand alone
in glorious isolation. You need to connect them so that they can perform
useful work of benefit to the users of the system. Connections between
objects are called links, and when objects work together, we say that they
collaborate.

If there is a link between two objects, there must also be some semantic
connection between their classes. This is really common sense—for objects
to communicate directly with each other, the classes of those objects must
know about each other in some way. Connections between classes are
known as associations. Links between objects are actually instances of the
associations between their classes.

whatlsalmk7 %

To create an object-oriented program, objects need to communicate with
each other. In fact, an executing OO program is a harmonious community of
cooperating objects.

Alink is a semantic connection between two objects that allows messages
to be sent from one object to the other. An executing OO system contains
many objects that come and go, and many links (that also come and go) that
join those objects. Messages are passed back and forth between objects over
these links. On receipt of a message, an object will invoke its corresponding
operation.

Links are implemented in different ways by different OO languages. Java
implements links as object references; C++ may implement links as pointers,
as references, or by direct inclusion of one object by another.
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9.3.1

Object diagrams
are snapshots of an
executing 00 system.

Whatever the approach, a minimal requirement for a link is that at least
one of the objects must have an object reference to the other.

Object diagrams

An object diagram is a diagram that shows objects and their relationships at
a point in time. It is like a snapshot of part of an executing OO system at a
particular instant, showing the objects and the links between them.

Objects that are connected by links may adopt various roles relative to
each other. In Figure 9.2, you can see that the ila object adopts the role of
chairperson in its link with the bookClub object. You indicate this on the object
diagram by placing the role name at the appropriate end of the link. You can
put role names at either or both ends of a link. In this case, the bookClub
object always plays the role of “club” and so there is no real point in showing
this on the diagram—it would not really add anything to our understanding
of the object relationships.

Figure 9.2 tells us that at a particular point in time, the object ila is play-
ing the role of chairperson. However, it is important to realize that links are
dynamic connections between objects. In other words, they are not necessar-
ily fixed over time. In this example, the chairperson role may pass at some
point to erica or naomi, and we could easily create an object diagram to show
this new state of affairs.

Normally, a single link connects exactly two objects as shown in Figure 9.2.
However, UML does allow a single link to connect more than two objects.
This is known as an n-ary link and is shown as a diamond with a path to each
participating object. Many modelers (ourselves included) consider this idiom
to be unnecessary. It is rarely used and UML modeling tools do not always
support it, so we do not say anything more about it here.

BookClub
role name
— chairperson
ila:Person
secretary -

bookClub:Club erica:Person
bidirectional link / naomi:Person

member

Figure 9.2



-------------------------

Use navigability
to specify which
directions messages
may pass over a link.

9.3.2

--------------------------------------------------------------------------------------------------
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Considering Figure 9.2 in more depth, you can see that there are three
links between four objects:

® a link between bookClub and ila;
@ a link between bookClub and erica;
@ a link between bookClub and naomi.

In Figure 9.2 the links are bidirectional, so you can just as correctly say that
the link connects ila to bookClub or that the link connects bookClub to ila.

If a link is unidirectional, you use navigability to specify in which direc-
tion messages may pass over the link,

You can show navigability by placing an arrowhead (navigable) or cross
(not navigable) on the end of a link. Think of navigability as being a bit like
a one-way system in a city. Messages can only flow in the direction indicated
by the arrowhead.

The UML 2 specification allows three different modeling idioms for
showing navigability, which we discuss in detail in Section 9.4.3. We use the
most common idiom consistently throughout this book:

@ all crosses are suppressed;
@ Dbidirectional associations have no arrows;

& unidirectional associations have a single arrow.

The only real disadvantage of this idiom is that there is no way to indicate
that navigability is undecided, because no navigability is taken to mean “not
navigable”.

For example, Figure 9.3 shows that the link between :PersonDetails and
:Address is unidirectional. This means that the :PersonDetails object has an
object reference to the :Address object, but not vice versa. Messages can only be
sent from :PersonDetails to :Address.

source object target object
:PersonDetails / :Address
unidirectional link
Figure 9.3
Paths

UML symbols, such as the object icon, use case icon, and class icon, are con-
nected to other symbols by paths. A path is a “connected series of graphic
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segments” (in other words, a line!) joining two or more symbols. There are
three styles for drawing paths:

e orthogonal — where the path consists of a series of horizontal and vertical
segments;

© oblique — where the path is a series of one or more sloping lines;
@ curved - where the path is a curve.

It is a matter of personal preference as to which style of path is used, and the
styles may even be mixed on the same diagram if this makes the diagram
clearer and easier to read. We usually use the orthogonal style, as do many
other modelers.

In Figure 9.4, we have adopted the orthogonal path style, and the paths
have been combined into a tree. You can only combine paths that have the
same properties. In this case, all the paths represent links and so we can
legally combine them. '

BookClub 1 .
chairperson

ila:Person

bookClub:Ciub erica:Person

secretary I'—___—'—'
| ——

naomi:Person

member

Figure 9.4

The visual neatness, readability, and general appeal of the diagrams is of
crucial importance. Always remember that the majority of diagrams are
drawn to be read by someone else. As such, no matter what style you adopt,
neatness and clarity are vital.

Associations are
connections between
classes.

Associations are relationships between classes. Just as links connect objects,
associations connect classes. The key point is that for there to be a link
between two objects, there must be an association between the classes of
those objects. This is because a link is an instance of an association, just as an
object is an instance of a class.



Objects are
instances of classes,
and links are instances
of associations.

9.4.1
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Figure 9.5 shows the relationship between classes and objects, and between
links and associations. Because you can’t have a link without an association,
it is clear that links depend on associations; you can model this with a depen-
dency relationship (the dashed arrow) that we look at in more detail in
Section 9.5. To make the semantics of the dependency between associations
and links explicit, you stereotype the dependency «instantiate».

association
Club 7y Person
A H N
H «instantiate» H
«instantiate» : «instantiate»
; ' ) H
1 chairperson -
bookClub:Club / ila:Person
link

Figure 9.5

The semantics of the basic, unrefined association are very simple—an
association between classes indicates that you can have links between objects
of those classes. There are other more refined forms of association (aggregation
and composition) that we look at in Section 18.3 in the design workflow.

Association syntax
Associations may have

an association name;
role names;

multiplicity;

@ © @ e

navigability.

Association names should be verb phrases because they indicate an action
that the source object is performing on the target object. The name may also
be prefixed or postfixed with a small black arrowhead to indicate the direc-
tion in which the association name should be read. Association names are in
lowerCamelCase.

In the example in Figure 9.6 you read the association as follows: “a
Company employs many Persons.” Although the arrow indicates the direction
in which the association should be read, you can always read associations in
the other direction as well. So in Figure 9.6 you can say, “each Person is
employed by exactly one Company” at any point in time.
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Association names
are verb phrases that
indicate the semantics
of the association.

Role names are | N\

noun phrases that
indicate the roles
played by objects
linked by instances of
the association.

9.4.2
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association name navigability

mploys B> Z
Person

*

Company

1
/
multiplicity

Figure 9.6

Alternatively, you can give role names to the classes on one or both ends
of the association. These role names indicate the roles that objects of those
classes play when they are linked by instances of this association. In Figure 9.7,
you can see that a Company object will play the role employer, and Person objects
will play the role employee when they are linked by instances of this associa-
tion. Role names should be nouns or noun phrases as they name a role that
objects can play.

Associations can have either an association name, or role names. Putting
both role names and association names on the same association is theoreti-
cally legal, but this is very bad style—and overkill!

The key to good association names and role names is that they should
read well. In Figure 9.6 a Company employs many Persons—this reads very well
indeed. Reading the association the other way around, you can say that a
Person is employed by exactly one Company at any point in time—it still reads
very well. Similarly, the role names in Figure 9.7 clearly indicate the roles
that objects of these classes will play when linked in this particular way.

role name

\
employer employee
” " Person

multiplicity

navigability

Company

Figure 9.7

Multiplicity

Constraints are one of the three UML extensibility mechanisms, and multi-
plicity is the first type of constraint that we have seen. It is also by far the
most common type of constraint. Multiplicity constrains the number of
objects of a class that can be involved in a particular relationship at any point
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If multiplicity is not
explicitly stated, then it
is undecided.

Multiplicity specifies
the number of objects
that can participateina
relationship at any
point in time.
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in time. The phrase “at any point in time” is vital to understanding multiplic-
ities. Considering Figure 9.8, you can see that at any point in time a Person
object is employed by exactly one Company object. However, over time a Person
object might be employed by a series of Company objects.

Looking at Figure 9.8, you can see something else that is interesting. A
Person object can never be unemployed—it is always employed by exactly
one Company object. The constraint therefore embodies two business rules of
this model:

© that Person objects can only be employed by one Company at a time;
® that Person objects must always be employed.

Whether or not these are reasonable constraints depends entirely on the
requirements of the system you are modeling, but this is what the model
actually says.

You can see that multiplicity constraints are very important—they can
encode key business rules in your model. However, these rules are “buried”
in the details of the model. Literate modelers call this hiding of key business
rules and requirements “trivialization”. For a much more detailed discussion
of this phenomenon, see [Arlow 1].

Multiplicity is specified as a comma-separated list of intervals, where
each interval is of the form:

minimum..maximum

minimum and maximum may be integers or any expression that yields an integer
result.

If multiplicity is not explicitly stated, then it is undecided—there is no
“default” multiplicity in UML. In fact, it is a common UML modeling error
to assume that an undecided multiplicity defaults to a multiplicity of 1.
Some examples of multiplicity syntax are given in Table 9.1.

A Company employs many Persons
employer employee

Company 3 - Person

<

Each Person works for one Company

Figure 9.8
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Table 9.1
Adonment
0.1 Zero or 1
1 Exactly 1
0.* Zero or more
* Zero or more
1.* 1 or more
1.6 1to6
1..3, 7..10, 15, 19..% 1to 3 or7 to 10 or 15 exactly or 19 to many

The example in Figure 9.9 illustrates that multiplicity is actually a powerful
constraint that often has a big effect on the business semantics of the model.
If you read the example carefully, you see that

Always read the
model exactly as
written.

® a Company can have exactly seven employees;

@ a Person can be employed by exactly one Company (i.e., in this model a
Person can’t have more than one job at a time);

a BankAccount can have exactly one owner;

a BankAccount can have one or many operators;

® ® @

a Person may have zero to many BankAccounts;

a Person may operate zero to many BankAccounts.

When reading a UML model, it is vital to figure out exactly what the model
actually says, rather than making any assumptions or hallucinating seman-
tics. We call this “reading the model as written”.

employer employee
Company : Person

7
| 1 [ 1.
owner operator

0.” 0.”

BankAccount

Figure 9.9
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9.4.2.1

When a class has
an association to itself,
this is a reflexive
association.
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For example, Figure 9.9 states that a Company may have exactly seven
employees, no more and no less. Most people would consider these semantics
to be rather odd, or even incorrect (unless it is a very strange company), but
this is what the model actually says. You must never lose sight of this.

There is a certain amount of debate as to whether multiplicity should be
shown on analysis models. We think that it should, because multiplicity
describes business rules, requirements, and constraints and can expose un-
warranted assumptions made about the business. Clearly, such assumptions
need to be exposed and challenged as early as possible.

Reflexive associations

It is quite common for a class to have an association to itself. This is called a
reflexive association and it means that objects of that class have links to
other objects of the same class. A good example of a reflexive association is
shown in Figure 9.10. Each Directory object can have links to zero or more
Directory objects that play the role subdirectory, and to zero or one Directory
object that plays the role parent. In addition, each Directory object is associated
with zero or more File objects. This models a generic directory structure quite
well, although it’s worth mentioning that specific file systems (such as Win-
dows) may have different multiplicity constraints to this model.

The top half of Figure 9.10 shows the class diagram, and the bottom half
shows an example object diagram that accords with that class diagram.

subdirectory

0..* . 1 0.
Directory File
0..1
parent
A

reflexive aésociation
C:Directory
config:File

l I
| Windows:Directory [ l My Documents:Directory] l Corel:Directoryl
[ l

Command:Directory I

. - \ J
— P

directories files

Figure 9.10
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9.4.2.2

In a hierarchy
an object may have
zero or one object
above it.

In a network an
object may have zero
or many objects
above it.

Hierarchies and networks

When modeling, you’ll find that objects often organize themselves into hier-
archies or networks. A hierarchy has one root object, and every other node in
the hierarchy has exactly one object directly above it. Directory trees naturally
form hierarchies. So do part breakdowns in engineering, and elements in XML
and HTML documents. The hierarchy is a very ordered, structured, and some-
what rigid way of organizing objects. An example is shown in Figure 9.11.

Class diagram Example object diagram
. al:A
A 0. ‘[—
o I I ]
v |_7_ bi:A clA di:A
association l r—-—l—-—|
hierarchy etlA f1:A g1:A

Figure 9.11

In the network, however, there is often no root object, although that is
not precluded. In networks, each object may have many objects directly con-
nected to it. There is no real concept of “above” or “below” in a network. It
is a much more flexible structure in which it is possible that no node has
primacy over another. The World Wide Web forms a complex network of
nodes, as illustrated in a simple way in Figure 9.12.

Class diagram Example object diagram
. f1:A clA
A |O- —/—
/ —
association /
network o1A bia I a1A

Figure 9.12

As an example to illustrate hierarchies and networks, let’s consider
products. There are two fundamental abstractions:

@ ProductType — a type of product, such as “Inkjet Printer”;
® Productltem — a specific ink jet printer, serial number 0001123430.
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Navigability
indicates that objects
of the source class
“know about” objects
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ProductType and Productitem are discussed in great detail in [Arlow 1]. Product-
Types often tend to form networks, so a ProductType such as a computer
package may consist of a CPU, screen, keyboard, mouse, graphics card, and
other ProductTypes. Each of these ProductTypes describes a type of product, not
an individual item, and these types of products may participate in other
composite ProductTypes, such as different computer packages.

However, if we consider the Productitems, which are specific instances of
a ProductType, any Productltem, such as a specific CPU, can only be sold and
delivered once as part of one package of goods. Productltems, therefore, form
hierarchies.

Navigability

Navigability shows us that it is possible to traverse from an object of the
source class to one or more objects of the target class, depending on the mul-
tiplicity. You can think of navigability as meaning “messages can only be
sent in the direction of the arrow”. In Figure 9.13, Order objects can send mes-
sages to Product objects, but not vice versa.

One of the goals of good OO analysis and design is to minimize coupling
between classes, and using navigability is a good way to do this. By making
the association between Order and Product unidirectional, you can navigate
easily from Order objects to Product objects, but there is no navigability back
from Product objects to Order objects. So Product objects do not know that they
may be participating in a particular Order and therefore have no coupling to
Order.

Navigability is shown by appending either a cross or an arrowhead to an
end of the relationship as shown in Figure 9.13.

an ‘Order object stores a list of Products

navigable >

*

Order

I
/ N \
navigability/ < X k | navigability

v
not navigable

Product

a Product object does not store a list of Orders

Figure 9.13
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The UML 2.0 specification [UML2S] suggests three modeling idioms for
using navigability on your diagrams.

1. Make navigability completely explicit. All arrows and crosses must be
shown.

2. Make navigability completely invisible. No arrows or crosses are shown.

3. Suppress all crosses. Bidirectional associations have no arrows. Unidirec-
tional associations have a single arrow.

These three idioms are summarized in Figure 9.14.

Idiom 1 makes navigability fully visible, but it can tend to clutter the
diagrams.

Idiom 2 should usually be avoided, because it hides far too much valu-
able information.

Idiom 3 is a reasonable compromise. In fact, idiom 3 is the option that is
used, almost exclusively, in practice. Because it represents current best prac-
tice, it is the option we use consistently throughout this book. The main
advantages of idiom 3 are that it doesn't clutter the diagrams with too many

" UML 2 navigability idioms

Idiom 1: Idiom 2: v Idiom3:

UML 2 synt‘ax‘ Strict UML 2 navigability | No navigability Standard practice

A to B is navigable
' B to A is navigable

A to B is navigable

l A B | B to A is not navigable
A to B is navigable A to B is navigable
B to A is undefined B to A is not navigable
A to B is undefined A to B is undefined A to B is navigable

| A B | B to A is undefined B to A is undefined B to A is navigable

TIIE|

A to B is not navigable
| B to A is not navigable

| A

Figure 9.14




D R R R R R R R R Iy svecon swovovosone 6 e EORON0NE00aONORsIBPE0B00VEREAGAS

Evenifan l N\

association is not
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arrows or crosses and that it is backwards compatible with earlier versions of
UML. However, it does have disadvantages.

@ It is not possible to tell from the diagram if navigability is present or if it
has not yet been defined.

@ It changes the meaning of the single arrowhead from navigable/unde-
fined to navigable/not navigable. This is unfortunate but is just the way
it is.

@ You can’t show associations that are not navigable in either direction (a
cross at each end). These are useless in day-to-day modeling so it is not
really an issue.

You can see a summary of idiom 3 in Figure 9.15.

Visibility idiom 3 is used almost exclusively in practice

Unidirectional association:
A B A to B is navigable
B to A is not navigable

Bidirectional association:
A B A to B is navigable
B to A is navigable

Figure 9.15

Even if an association is not navigable in a particular direction, it might
still be possible to traverse the relationship in that direction. However, the
computational cost of the traversal is likely to be very high. In the example
in Figure 9.13, even though you can’t navigate directly back from Product to
Order, you could still find the Order object associated with a particular Product
object by searching through-all of the Order objects in turn. You have then
traversed a non-navigable relationship, but at high computational cost. One-
way navigability is like a one-way street—you might not be able to go down
it directly, but you might still be able to get to the end of it by some other
(longer) route.

If there is a role name on the target end of the relationship, objects of the
source class may reference objects of the target class by using this role name.

In terms of implementation in OO languages, navigability implies that
the source object holds an object reference to the target object. The source
object may use this object reference to send messages to the target object.
You could represent that on an object diagram as a unidirectional link with
associated message.
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9.4.4

Associations and attributes

There is a close link between class associations and class attributes.

An association between a source class and a target class means that
objects of the source class can hold an object reference to objects of the
target class. Another way to look at this is that an association is equivalent to
the source class having a pseudo-attribute of the target class. An object of the
source class can refer to an object of the target class by using this pseudo-
attribute; see Figure 9.16.

source target

address House
House ] Address

1 address:Address

If a navigable relationship has a role name, then it is as though the source
class has a pseudo-attribute with the same name as the role name and the
same type as the target class

Figure 9.16

There is no commonly used OO programming language that has a specific
language construct to support associations. Therefore, when code is auto-
matically generated from a UML model, one-to-one associations turn into
attributes of the source class.

In Figure 9.17, the generated code has a House class that contains an
attribute called address, which is of type Address. Notice how the role name
provides the attribute name, and the class on the end of the association pro-
vides the attribute class. The Java code below was generated from the model
in Figure 9.17:

public class House
{
private Address address;
}
address House
House Address | =
1 address:Address
pseudo-attribute attribute

Figure 9.17
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You can see that there is a class House that has one attribute called address that
is of type Address. Notice that the address attribute has private visibility—this
is typically the default for most code generation.

Target multiplicities greater than 1 are implemented as either

@ an attribute of type array (a construct that is supported in most languages);
or

® an attribute of some type that is a collection.

Collections are just classes whose instances have the specialized behavior of
being able to store and retrieve references to other objects. A common Java
example of a collection is a Vector, but there are many more. We discuss col-
lections in more detail in Section 18.10.

This notion of pseudo-attributes is fine for one-to-one and one-to-many
relationships, but it begins to break down when you consider many-to-many
relationships. You will see how these are implemented in Chapter 18.

You use associations only when the target class is an important part of the
model. Otherwise, you model the relationship by using attributes. Important
classes are business classes that describe part of the business domain. Unim-
portant classes are library components such as String classes and Date and Time
classes.

To some extent, the choice of explicit associations versus attributes is a
matter of style. The best approach is always one in which the model and the
diagrams express the problem clearly and precisely. Often it is clearer to show
an association to another class than to model the same relationship as an at-
tribute that would be much harder to see. When the target multiplicity is
greater than 1, this is a pretty good indication that the target is important to
the model, and so you generally use associations to model the relationship.

If the target multiplicity is exactly 1, the target object may actually be
just a part of the source, and so not worth showing as an association—it may
be better modeled as an attribute. This is especially true if the multiplicity is
exactly 1 at both ends of the relationship (as in Figure 9.17) where neither
source nor target can exist alone.

Association classes

A common problem in OO modeling is this: when you have a many-to-
many relationship between two classes, there are sometimes some attributes
that can't easily be accommodated in either of the classes. We can illustrate
this by considering the simple example in Figure 9.18.
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An association
class is an association
that is also a class.

Company Person

Figure 9.18

At first glance, this seems like a fairly innocuous model:

@ each Person object can work for many Company objects;

@ each Company object can employ many Person objects.

However, what happens if you add the business rule that each Person has a
salary with each Company they are employed by? Where should the salary be
recorded—in the Person class or in the Company class?

You can'’t really make the Person salary an attribute of the Person class, as
each Person instance may work for many Companies and may have a different
salary with each Company. Similarly, you can’t really make the Person salary an
attribute of Company, as each Company instance employs many Persons, all with
potentially ditferent salaries.

The answer is that the salary is actually a property of the association itself.
For each employment association that a Person object has with a Company
object, there is a specific salary.

UML allows you to model this situation with an association class as
shown in Figure 9.19. It is important to understand this syntax—many peo-
ple think that the association class is just the box hanging off the association.
However, nothing could be further from the truth. The association class is
actually the association line (including all role names and multiplicities), the
dashed descending line, and the class box on the end of the dashed line. In
short, it is the whole lot—everything shown in the indicated area.

i
Company = Person
k Job’ . the association class
- - consists of the class,
association class  + |salary:double| . ©  the association and the
G . dashed line

Figure 9.19

In fact, an association class is an association that is also a class. Not only
does it connect two classes like an association, it defines a set of features that
belong to the association itself. Association classes can have attributes, oper-
ations, and other associations.
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Instances of the association class are really links that have attributes and
operations. The unique identity of these links is determined exclusively by
the identities of the objects on either end. This factor constrains the seman-
tics of the association class—you can only use it when there is a single unique
link between two objects at any point in time. This is simply because each
link, which is an instance of the association class, must have its own unique
identity. In Figure 9.19, using the association class means that you constrain
the model such that for a given Person object and a given Company object,
there can only be one Job object. In other words, each Person can only have
one Job with a given Company.

If, however, you have the situation where a given Person object can have
more than one Job with a given Company object, then you can’t use an associ-
ation class—the semantics just don’t match!

But you still need somewhere to put the salary for each Company/job/
Person combination, and so you reify (make real) the relationship by express-
ing it as a normal class. In Figure 9.20, Job is now just an ordinary class, and
you can see that a Person may have many Jobs where each Job is for exactly one
Company.

. Job * 1
Person

Company

salary:double

Figure 9.20

To be frank, many object modelers just don’t understand the semantic
difference between association classes and reified relationships, and the two
are therefore often used interchangeably. However, the difference is really
very simple: you can use association classes only when each link has a unique
identity. Just remember that link identity is determined by the identities of
the objects on the ends of the link.

Qualified associations

You can use a qualified association to reduce an n-to-many association to an
n-to-one association by specifying a unique object (or group of objects) from
the target set. They are very useful modeling elements as they illustrate how
you can look up, or navigate to, specific objects in a collection.

Consider the model in Figure 9.21. A Club object is linked to a set of
Member objects, and a Member object is likewise linked to exactly one Club object.



A qualified
association selects a
single member from
the target set.
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Club

1

*

Member

memberld:String

Figure 9.21

The following question arises: given a Club object that is linked to a set of
Member objects, how could you navigate to one specific Member object?
Clearly, you need some unique key that you can use to look up a particular
Member object from the set. This is known as a qualifier. Many qualifiers are
possible (name, credit card number, social security number), but in the
example above, every Member object has a memberld attribute value that is
unique to that object. This, then, is the look-up key in this model.

You can show this look-up on the model by appending a qualifier to the
Club end of the association. It is important to recognize that this qualifier belongs
to the association end and not to the Club class. This qualifier specifies a unique
key, and in doing so resolves the one-to-many relationship to a one-to-one
relationship as shown in Figure 9.22.

Club

l memberld

1

qualifier

0..1

qualified multiplicity

Member

memberld:String

the combination {Club, memberld}
specifies a unique target

Figure 9.22

Qualified associations are a great way of showing how you select a spe-
cific object from a set by using a unique key. Qualifiers usually refer to an
attribute on the target class, but may be some other expression provided it is
understandable and selects a single object from the set.



In a dependency
relationship, the client
depends in some way
on the supplier.

Whatis adependency?

A dependency indicates a relationship between two or more model elements
whereby a change to one element (the supplier) may affect or supply infor-
mation needed by the other element (the client). In other words, the client
depends in some way on the supplier. We use dependencies to model rela-
tionships between classifiers where one classifier depends on the other in
some way, but the relationship is not really an association or generalization.

For example, you may pass an object of one class as a parameter to an op-
eration of an object of a different class. There is clearly some sort of relationship
between the classes of those objects, but it is not really an association. You can
use the dependency relationship (specialized by certain predefined stereotypes)
as a catch-all to model this kind of relationship. You have already seen one type
of dependency, the «instantiate» relationship, but there are many more. We look
at the common dependency stereotypes in the next sections.

UML 2 specifies three basic types of dependency, shown in Table 9.2. We
include a discussion of these for completeness, but in day-to-day modeling
you rarely use anything other than a plain dashed dependency arrow and
you typically don’t bother specifying the type of dependency.

Table 9.2
Usage The client uses some of the services made available by the supplier
to implement its own behavior - this is the most commonly used
type of dependency

Abstraction  This indicates a relationship between client and supplier, where
the supplier is more abstract than the client.

What do we mean by “more abstract”? This could mean that the
supplier is at a different point in development than the client (e.g.,
in the analysis model rather than the design model)

Permission The supplier grants some sort of permission for the client to access
its contents — this is a way for the supplier to control and limit
access to its contents

Dependencies don’t just occur between classes. They can commonly
occur between

® packages and packages;
@ objects and classes.
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9.5.1

9.5.1.1

They can also occur between an operation and a class, although it is quite
rare to show this explicitly on a diagram because it is usually too great a level
of detail. Some examples of different types of dependency are shown in Fig-
ure 9.23, and we discuss these in the remaining sections of this chapter.

client
- supplier client
ass
«permit» «use»
foo () [~""7""""">| ClassA [S--===-o-o ClassC
/ A
i
dependency from an © instantiate»
operation to a class H
1
:ClassA

Figure 9.23

Most of the time, you just use an unadorned dotted arrow to indicate a
dependency and don’t worry about what type of dependency it is. In fact,
the type of the dependency is often clear without a stereotype just from con-
text. However, if you want or need to be more specific about the type of
dependency, then UML defines a whole range of standard stereotypes that
you can use.

Usage dependencies

There are five usage dependencies: «use», «call», «parameter», «send», and
«instantiate». We look at each of these in the next few subsections.

«use»

The most common dependency stereotype is «use», which simply states that
the client makes use of the supplier in some way. If you see just a dashed
dependency arrow with no stereotype, then you can be pretty sure that «use»
is intended.

Figure 9.24 shows two classes, A and B, that have a «use» dependency
between them. This dependency is generated by any of the following cases.

1. An operation of class A needs a parametef of class B.

2. An operation of class A returns a value of class B.

3. An operation of class A uses an object of class B somewhere in its imple-
mentation, but not as an attribute.



..........................

9.5.1.2

9.5.1.3
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client supplier

«{se»
I
foo(b:B) \
bar( ):B . .
’ the stereo
doSomething() often omitlt}e/a%e °

Figure 9.24

Cases 1 and 2 are straightforward, but case 3 is more interesting. You would
have this case if one of the operations of class A created a transient object of
class B. Here is a Java code fragment for this case:

class A

{

void doSomething()
{
B myB = new B();
/] Use myB in some way

}

Although you can use a single «use» dependency as a catch-all for the three
cases listed above, there are other more specific dependency stereotypes that
you could apply.

You can model cases 1 and 2 more accurately by a «parameter» depen-
dency, and case 3 by a «call» dependency. However, this is a level of detail that
is rarely (if ever) required in a UML model, and most modelers find it much
clearer and easier to just put a single «use» dependency between the appropri-
ate classes as shown above.

«cally

The «call» dependency is between operations—the client operation invokes
the supplier operation. This type of dependency tends not to be very widely
used in UML modeling. It applies at a deeper level of detail than most mod-
elers are prepared to go. Also, very few modeling tools currently support
dependencies between operations.

«parameter»
The supplier is a parameter of the client operation.
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9.5.1.4

9.5.1.5

9.5.2

9.5.2.1

9.5.2.2

9.5.2.3

«send»

The client is an operation that sends the supplier (which must be a signal) to
some unspecified target. We discuss signals in Section 15.6 but, for now, just
think of them as special types of classes used to transfer data between the
client and the target.

«instantiate»
The client is an instance of the supplier.

Abstraction dependencies

Abstraction dependencies model dependencies between things that are at
different levels of abstraction. An example might be a class in an analysis
model, and the same class in the design model. There are four abstraction
dependencies: «trace», «substitute», «refine», and «derive».

«trace»

You often use a «trace» dependency to illustrate a relationship in which the
supplier and the client represent the same concept but are in different mod-
els. For example, the supplier and the client might be at different stages of
development. The supplier could be an analysis view of a class, and the client
a more detailed design view. You could also use «trace» to show a relationship
between a functional requirement such as “The ATM shall allow the with-
drawal of cash up to the credit limit of the card” and the use case that supports
this requirement.

«substitute»

The «substitute» relationship indicates that the client may be substituted for
the supplier at runtime. The substitutability is based on the client and the
supplier conforming to common contracts and interfaces, that is, they must
both make available the same set of services. Note that this substitutability is
not achieved through specialization/generalization relationships between
the client and supplier (we discuss specialization/generalization in Section 10.2).
In fact, «substitute» is specifically designed to be used in those environments
that do not support specialization/generalization.

«refine»

Whereas the «trace» dependency is between elements in different models,
«refine» may be used between elements in the same model. For example, you
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may have two versions of a class in a model, one of which is optimized for
performance. As performance optimization is a type of refinement, you can
model this as a «refine» dependency between the two classes, along with a
note stating the nature of the refinement.

«derivey

You use the «derive» stereotype when you want to show explicitly that a
thing can be derived in some way from some other thing. For example, if
you have a BankAccount class and the class contains a list of Transactions where
each Transaction contains a Quantity of money, you can always calculate the cur-
rent balance on demand by summing Quantity over all the Transactions. There
are three ways of showing that the balance of the account (a Quantity) can be
derived. These are shown in Table 9.3.

Table 9.3

Model P S - Description

1 0.* - The BankAccount class has a derived

! BankAccount }———r—-l Transaction l L i i
; y association to Quantity where Quantity

! plays the role of the balance of the

«derive»
BankAccount

: 1
: I -
balance 1 [_Q_“@ This model emphasizes that the balance

is derived from the BankAccount’s collec-
tion of Transactions

1 0.* - In this case a slash is used on the role
BankAccount Transaction R .
] 3 name to indicate that the relationship
between BankAccount and Quantity is
1 derived

 —
Tbalance 1 Quartity This is less explicit as it does not show

what the balance is derived from

1 0.* - Here the balance is shown as a derived
attribute — this is indicated by the slash

: i 1
foalance:Quantity that prefixes the attribute name

! This is the most concise expression of
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9.5:3

9.5.3.1

9.5.3.2

9.5.3.3

All of these ways of showing that balances can be derived are equivalent,
although the first model in Table 9.3 is the most explicit. We tend to prefer
explicit models.

Permission dependencies

Permission dependencies are about expressing the ability of one thing to ac-
cess another thing. There are three permission dependencies: «access», «import»,
and «permit».

«access»

The «access» dependency is between packages. Packages are used in UML to
group things. The essential point here is that «access» allows one package to
access all of the public contents of another package. However, packages each
define a namespace and with «access» the namespaces remain separate. This
means that items in the client package must use pathnames when they want
to refer to items in the supplier package. See Chapter 11 for a more detailed
discussion.

«import»

The «import» dependency is conceptually similar to «access» except that the
namespace of the supplier is merged into the namespace of the client. This
allows elements in the client to access elements in the supplier without having
to qualify element names with the package name. However, it can sometimes
give rise to namespace clashes when an element in the client has the same
name as an element in the supplier. Clearly, in this case you must use path-
names to resolve the conflict. Chapter 11 provides a more detailed discussion.

«permit»

The «permit» dependency allows a controlled violation of encapsulation, but
on the whole it should be avoided. The client element has access to the sup-
plier element, whatever the declared visibility of the supplier. There is often a
«permit» dependency between two very closely related classes where it is ad-
vantageous (probably for performance reasons) for the client class to access
the private members of the supplier. Not all computer languages support
«permit» dependencies—C++ allows a class to declare friends that have per-
mission to access its private members, but this feature has, perhaps wisely,
been excluded from Java and C#.



In this chapter you have begun to look at relationships, which are the glue of
UML models. You have learned the following.

@ Relationships are semantic connections between things.

@ Connections between objects are called links.
— A link occurs when one object holds an object reference to another
object.
— Objects realize system behavior by collaborating:
- collaboration occurs when objects send each other messages across
links;
- when a message is received by an object, it executes the appropriate
operation.
— Different OO languages implement links in different ways.

@ Object diagrams show objects and their links at a particular point in time.
— They are snapshots of an executing OO system at a particular time.
— Objects may adopt roles with respect to each other - the role played by
an object in a link defines the semantics of its part in the collaboration.
— N-ary links may connect more than two objects — they are drawn as a
diamond with a path to each object but are not widely used.

@ Paths are lines connecting UML modeling elements:
— orthogonal style - straight lines with right-angled bends;
— oblique style - slanted lines;
— curved style — curved lines;
— be consistent and stick to one style or the other, unless mixing styles
increases the readability of the diagram (it usually doesn't).

@ Associations are semantic connections between classes.
~— If there is a link between two objects, there must be an association
between the classes of those objects.
— Links are instances of associations just as objects are instances of
classes.
— Associations may optionally have the following.
- Association name:
- may be prefixed or postfixed with a small black arrowhead to
indicate the direction in which the name should be read;
- should be a verb or verb phrase;
— in lowerCamelCase;
— use either an association name or role names but not both.
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- Role names on one or both association ends:

— should be a noun or noun phrase describing the semantics of the
role;
- in lowerCamelCase.

- Multiplicity:

— indicates the number of objects that can be involved in the rela-
tionship at any point in time;

— objects may come and go, but multiplicity constrains the number
of objects in the relationship at any point in time;

— multiplicity is specified by a comma-separated list of intervals, for
example, 0.1, 3..5;

— there is no default multiplicity - if multiplicity is not explicitly
shown, then it is undecided.

- Navigability:

— shown by an arrowhead on one end of the relationship — if a rela-
tionship has no arrowheads, then it is bidirectional;

- navigability indicates that you can traverse the relationship in the
direction of the arrow;

~ you may also be able to traverse back the other way, but it will be
computationally expensive to do so.

— An association between two classes is equivalent to one class having a
pseudo-attribute that can hold a reference to an object of the other class:
— you can often use associations and attributes interchangeably;

— use association when you have an important class on the end of the
association that you wish to emphasize;

— use attributes when the class on the end of the relationship is unim-
portant (e.g., a library class such as String or Date).

— An association class is an association that is also a class:

- it may have attributes, operations, and relationships;

- you can use an association class when there is exactly one unique
link between any pair of objects at any point in time;

— if a pair of objects may have many links to each other at a given
point in time, then you reify the relationship by replacing it with a
normal class.

— Qualified associations use a qualifier to select a unique object from the
target set:

— the qualifier must be a unique key into the target set;

— qualified associations reduce the multiplicity of n-to-many relation-
ships, to n-to-one;

- they are a useful way of drawing attention to unique identifiers.
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© Dependencies are relationships in which a change to the supplier affects or
supplies information to the client.

The client depends on the supplier in some way.

Dependencies are drawn as a dashed arrow from client to supplier.

Usage dependencies:

— «use» — the client makes use of the supplier in some way - this is the
catch-all;

- «call» ~ the client operation invokes the supplier operation;

- «parameter» — the supplier is a parameter or return value from one of
the client’s operations;

— «send» — the client sends the supplier (which must be a signal) to the
specified target;

— «instantiate» ~ the client is an instance of the supplier.

Abstraction dependencies:

«trace» — the client is a historical development of the supplier;

«substitute» — the client can be substituted for the supplier at runtime;

«refine» — the client is a version of the supplier;

«derive» — the client can be derived in some way from the supplier:

- you may show derived relationships explicitly by using a «derive»
dependency;

— you may show derived relationships by prefixing the role or rela-
tionship name with a slash;

— you may show derived attributes by prefixing the attribute name
with a slash.

Permission dependencies:

— «access» — a dependency between packages where the client package
can access all of the public contents of the supplier package — the
namespaces of the packages remain separate;

- «import» — a dependency between packages where the client package
can access all of the public contents of the supplier package — the
namespaces of the packages are merged;

~ «permity — a controlled violation of encapsulation where the client
may access the private members of the supplier - this is not widely
supported and should be avoided if possible.






~ Inheritance
and polymorphism

In this chapter we focus on the key concepts of inheritance (Section 10.3)
and polymorphism (Section 10.4). But before getting into these topics, it is
important to understand the concept of generalization, which we discuss in
Section 10.2.

205
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[learn about class generalization]

10.2 Generalization

~ = g
(_ 10.2.1 Class generalization )

flearn about inheritance in detail]
10.3 Class inheritance 10.3.1 Overriding

C 10.3.2 Abstract operations and classes )

C 10.3.3 Level of abstraction D
l

C 10.3.4 Multiple inheritance >

10.4 Polymorphism

[learn about polymorphism in demilL/-
> 10.4.1 Polymorphism example )

< 10.5 Advanced generalization )

C 10.5.1 Generalization sets )

10.5.2 Powertypes

C 10.6 What we have learned )

Figure 10.1

102 Generalization

Before we can discuss inheritance and polymorphism, we need to have a solid
understanding of the idea of generalization. Generalization is a relationship
between a more general element and a more specific element, where the
more specific element is entirely consistent with the more general element but
contains more information.

The two elements obey the substitutability principle—we can use the
more specific element anywhere the more general element is expected with-

Generalization
is a relationship
between a more
general thingand a
more specific thing.
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out breaking the system. Clearly this is a much stronger type of relationship
than association, and indeed, generalization implies the very highest level of
dependency (and therefore coupling) between two elements.

Class generalization

Conceptually, generalization is a simple idea. You are already familiar with
the notion of general things such as a tree, and then more specific things
such as an oak tree, which is a particular type of tree.

Generalization applies to all classifiers. You have already seen generaliza-
tion applied to use cases and actors, and now you will see how it is applied
to classes.

In Figure 10.2, we have a class called Shape—this is clearly a very general
notion! From that, we derive children, subclasses, descendants (all these
terms are in common use) that are more specific variants of the general idea
of Shape. By the substitutability principle, we can use an instance of any of
these subclasses anywhere an instance of the Shape superclass is expected.

— more general element parent
] superclass
s Shape base class
"5 “is a kind of” ancestor
s .
g l | ' child
2| | Square Circle Triangle | subclass
descendant
more specific elements

’ \/ A generalization hierarchy

Figure 10.2

As you will see when we look at the detailed attributes and operations of
these classes, we could arrive at the above hierarchy in one of two ways:
through either a process of specialization or a process of generalization. In
specialization, we would first identify the general concept of Shape in analysis
and then specialize this to specific types of shape. In generalization, we
would identify the more specialized Square, Circle, and Triangle in analysis and
then notice that they all have common features that we could factor out into
a more general superclass.

OO analysts tend to use both specialization and generalization hand-in-
hand, although in our experience it is wise to train oneself to see the more
general case as early in the analysis process as possible.
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superclass.

Subclasses inherit
features from their

10.3.1

When you arrange classes into a generalization hierarchy as shown in Fig-
ure 10.2, you implicitly have inheritance between the classes whereby the
subclasses inherit all the features of their superclasses. To be more specific,
subclasses inherit

@

attributes;

@

operations;

@

relationships;
constraints.

Subclasses can also add new features and override superclass operations. We
look at all these aspects of inheritance in detail in the next few sections.

Overriding

In the example in Figure 10.3, the Shape subclasses Square and Circle inherit all
of the attributes, operations, and constraints from the Shape superclass. This
means that although you don't see these features in the subclasses, they are
implicitly there. We say that Square and Circle are types of Shape.

Shape
origin : Point = (0,0)
width : int {>0}
height : int {>0}
draw( g : Graphics )
getArea() :int
getBoundingArea() : int

[ Squlare [ Circle

[ .1 radius: int = width/2

! ’

{width = height} I

Figure 10.3

Notice that the operations draw() and getArea() defined in Shape can in no
way be appropriate for the subclasses. You would expect a Square object,
when sent the message draw(), to draw a square, and a Circle object, when sent
the message draw(), to draw a circle. The default draw() operation that both
subclasses have inherited from their parent clearly won’t do. In fact, this
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Subclasses
override inherited
operations by providing
a new operation with
the same signature.
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operation may not draw anything at all as, after all, what should a Shape look
like? The same arguments apply to getArea(). How do you calculate the area of
a Shape?

These problems clearly point to the need for subclasses to be able to
change superclass behavior. Square and Circle need to implement their own
draw() and getArea() operations that override the default operations supplied
by the parent and provide a more appropriate behavior.

Figure 10.4 shows this in action: the subclasses Square and Circle have pro-
vided their own draw() and getArea() operations that have the appropriate
behaviors.

Square::draw( g : Graphics) — draws a square.
Square::getArea() : int — calculates and returns the area of the square.

Circle::draw(g : Graphics) — draws a circle.

® & o @

Circle::getArea() : int — calculates and returns the area of the circle.

Shape

draw( g : Graphics )
getArea() :int
getBoundingArea() : int

Square Circle @5"”'%
g i
draw( g : Graphics ) draw( g : Graphics ) \‘aég;
width x height | getArea() : int getArea() :int nx radius?

Figure 10.4

To override a superclass operation, a subclass must provide an operation with
exactly the same signature as the superclass operation it wishes to override.
UML defines operation signature as the operation name, its return type, and
the types of all of the parameters listed in order. The parameter names don’t
count, as they are just a convenient way of referring to a specific parameter
within an operation body and so are not really part of the signature.

This is all well and good, but it is important to know that different lan-
guages may define “operation signature” differently. For example, in C++
and Java, the operation return type is not part of the operation signature. So,
if you override a superclass operation by a subclass operation that is identical
apart from the return type, you will get a compiler or interpreter error in
these languages.
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10.3.2

Abstract operations
have no
implementation.

Abstract classes
have one or more
abstract operations,
and they can’t be
instantiated.

Abstract operations and classes

Sometimes we would like to defer implementation of an operation to the
subclasses. In our Shape example, the operation Shape::draw( g : Graphics ) is a
case in point. We can’t really provide any sensible implementation of this
operation in the Shape class itself, as we just don’t know how “shapes” should
be drawn—the concept of “drawing a shape” is too abstract to have any con-
crete implementation.

You can specify that an operation lacks an implementation by making it
an abstract operation. In UML you do this simply by writing the operation
name in italics.

When you think about it, a class with one or more abstract operations is in-
complete as there are some operations that don’t have an implementation. This
means that you can’t instantiate such classes, and they are therefore known as
abstract classes. You write the class name in italics to show that it is abstract.

In the example in Figure 10.5, we have the abstract class Shape, which has
two abstract operations: Shape::draw( g : Graphics) and Shape::getArea() : int. The
implementations for these operations are provided by both the Square and
the Circle subclasses. Although Shape is incomplete and can’t be instantiated,
both of its subclasses provide the missing implementations, are complete,
and can be instantiated. Any class that can be instantiated is known as a con-
crete class.

Shape
e | Gran g Grapnice) T otz
getArea() :int

getBoundingArea() : int

? concrete
l l operations

concrete Square Circle
classes /
draw( g : Graphics ) draw( g : Graphics ) /
getArea() :int getArea() :int
Figure 10.5

The operation getBoundingArea() is a concrete operation of Shape because
the bounding area of every kind of Shape is calculated in the exactly the same
way—it is always the width of the shape multiplied by its height.

There are a couple of big advantages of using abstract classes and operations.

@ You can define a set of abstract operations in the abstract superclass that
must be implemented by all Shape subclasses. You can think of this as
defining a “contract” that all concrete Shape subclasses must implement.
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® You can write code to manipulate Shapes and then substitute Circle, Square,
and other Shape subclasses as appropriate. According to the substitutabil-
ity principle, code written to manipulate Shapes should also work for all
Shape subclasses.

We look -at these advantages in greater depth when we discuss polymor-
phism in Section 10.4.

Level of abstraction

Before we get into polymorphism, it’s a good idea to understand something
about levels of abstraction. What's wrong with the model in Figure 10.6?

Vehicle

1

JaguarXJs Truck

Figure 10.6

The answer is “levels of abstraction”. A generalization hierarchy defines
a set of levels of abstraction from the most general at the top to the most
specific at the bottom. You should always try to maintain a uniform level of
abstraction at each level of the generalization hierarchy. In the example
above, we have not achieved this. JaguarXS is a type of car. Clearly this is a
lower level of abstraction than Truck. You can fix the model quite easily by
introducing a Car superclass between JaguarX)S and Vehicle.

Multiple inheritance

UML allows a class to have more than one direct superclass. This is called
multiple inheritance. The subclass inherits from all of its direct superclasses.

Multiple inheritance is usually considered to be a design issue, and so we
defer discussion to Section 17.6.2.

Polymorphism means “many forms”. A polymorphic operation is one that
has many implementations. You have already seen two polymorphic opera-
tions in the Shape example. The abstract operations draw() and getArea() in the
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Polymorphism | N
means “many forms”.
Polymorphic
operations have many
implementations.

A concrete | N

subclass must
implement all the
abstract operations
that it inherits.

Shape class have two different implementations—an implementation in the
Square class and a different implementation in the Circle class. The operations
have “many forms” and are therefore polymorphic.

Figure 10.7 illustrates polymorphism perfectly. We define an abstract
Shape class with abstract operations draw() and getArea().

Shape
abstract - - polymorphic
superclass | @raw( g : Graphics ) } operations
getArea() : int
getBoundingArea() : int
concrete Square Circle
subclasses
draw( g : Graphics ) draw( g : Graphics )
getArea() : int getArea() :int
Figure 10.7

Square and Circle inherit from Shape and provide implementations for the
polymorphic operations Shape::draw() and Shape::getArea(). All concrete sub-
classes of Shape must provide concrete draw() and getArea() operations because
they are abstract in the superclass. This means that for draw() and getArea()
you can treat all subclasses of Shape in a similar way. A set of abstract operations
is therefore a way to define a set of operations that all concrete subclasses
must implement. This is known as a contract.

Clearly the implementation of draw() and getArea() will be different for
Squares and Circles. The draw() operation will draw a square for objects of the
Square class and will draw a circle for objects of the Circle class. You can see
that the getArea() operation will also have different implementations. It will
return width*height for a square and n*r? for a circle. This is the essence of poly-
morphism—objects of different classes have operations with the same signature
but different implementations.

Encapsulation, inheritance, and polymorphism are the “three pillars” of
0OO. Polymorphism allows you to design simpler systems that can more eas-
ily accommodate change because it allows you to treat different objects in
the same way.

In fact, what makes polymorphism an essential aspect of OO is that it
allows you to send objects of different classes the same message and have the
objects respond appropriately. So if you send objects of the Square class the
message draw(), they will draw a square, and if you send objects of the Circle
class the same message, they will draw a circle. The objects seem to exhibit a
kind of intelligence.
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Polymorphism example

Here is an example of polymorphism in action. Suppose you have a Canvas
class that maintains a collection of Shapes. Although this is a somewhat sim-
plified picture, many graphics systems actually work in very much this way.
The model for this simple graphics system is shown in Figure 10.8.

Shape

1 * | draw( g : Graphics )
getArea() : int

getBoundingArea() : int

I l

Square Circle
draw( g : Graphics ) draw( g : Graphics )
getArea() : int getArea() : int

Figure 10.8

Now, you know that you can't create an instance of Shape (because it is
abstract), but according to the substitutability principle, you can create in-
stances of its concrete subclasses and substitute these anywhere a Shape is
called for.

So, although Figure 10.8 shows that objects of type Canvas contain a col-
lection of many Shape objects, the only objects that you can actually put in
the collection are instances of concrete subclasses of Shape because Shape
itself is abstract and can’t be instantiated. In this case there are two concrete
subclasses, Circle and Square, so the collection may contain Circle objects and/
or Square objects.

 In Figure 10.9 we have created an object model from the class diagram in

' ’Figure 10.8. This object model shows that a :Canvas object holds a collection

of four Shape objects s1, s2, 53, and s4 where s1, 53, and s4 are objects of class
Circle, and s2 is an object of class Square. What happens when the :Canvas ob-
ject iterates over this collection and sends each object in the collection the
message draw()? Well, not surprisingly, each object does the right thing—
Square objects draw squares, and Circle objects draw circles. It is the object’s
class that determines what the object draws; in other words, the object’s class
determines the semantics of the set of operations that the object offers.

The key point here is that each object responds to a message by invoking
the corresponding operation specified by its class. All objects of the same
class will respond to the same message by invoking the same operation. This
doesn’t necessarily mean that all objects of the same class respond to the



aaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

214 Part 3 Analysis

Concrete
operations may also
be polymorphic - but
this is bad style.

s1:Circle

s2:Square

:Canvas

s3:Circle

s4:Circle

Figure 10.9

same message in exactly the same way. The results of an operation invoca-
tion often depend on the state of the object—the values of all its attributes
and the state of all its relationships. For example, you might have three
objects of class Square with different attribute values for width and height.
When you send the message draw() to each of these objects in turn, they will
each draw a square (i.e., the meaning, or semantics, of the operation remains
the same) but each square will have a different size depending on the attribute
values of width and height.

Here is another example. The business rules about making withdrawals
and calculating interest are different depending on the type of bank account.
For example, checking accounts tend to have an overdraft limit and therefore
may have a negative balance, while deposit accounts will not let the balance
fall below zero. Similarly, interest is often calculated and accrued to the
account differently. One simple way to model this is shown in Figure 10.10.
An abstract class Account is defined, and then concrete subclasses CheckingAccount
and DepositAccount are provided. The abstract class defines abstract operations
for withdraw() and calculateinterest(), and these are implemented in different
ways by each of the concrete subclasses.

Notice that we have also overridden the concrete deposit() operation by
providing a new implementation in the ShareAccount class. Remember that to
override a base class operation, all you need to do is provide the subclass
with an operation that has exactly the same signature. We have done this for
ShareAccounts because there happen to be business rules that make the process
of depositing to a ShareAccount different from other types of Account. For
example, there might be business rules that determine the minimum value
of deposit that can be made. There are now two implementations of deposit():
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Account

* | withdraw( amount )

1
calculatelnterest()

deposit( amount )

ShareAccount

CheckingAccount

DepositAccount

withdraw( amount )
calculatelnterest()

withdraw( amount )
calculatelnterest()

withdraw( amount )
calculatelnterest()

deposit( amount )

Figure 10.10

one implementation in Account and another in ShareAccount. This means that
deposit() is now a polymorphic operation. So even concrete operations like
deposit() can be polymorphic!

You have to be very careful when you override concrete operations. This
is because, rather than just providing an implementation for an abstract
superclass operation, you are now changing an existing implementation.
You only know that it is safe to do this by examining the specification of the
superclass operation and ensuring that you abide by its contract. Abstract
operations can always be safely overridden because that is what they are
designed for. However, overriding concrete operations can have unexpected
side effects and might be dangerous. Often, the subclass operation just does
something extra and then calls the superclass operation. In other words, it
adds its own behavior to the superclass operation. This particular idiom is a
good way of reusing and extending the behavior of a concrete superclass
operation as it is generally safe.

Some languages allow you to prevent subclasses from overriding a
concrete superclass operation. In Java, appending the keyword final to the
operation signature explicitly prevents that operation from being overrid-
den. In fact, in Java it is good style to define all operations as final except
those you explicitly want to be polymorphic.

105

Advanced generalization

In this section, we look at two advanced aspects of generalization: generali-
zation sets and powertypes. The notion of generalization sets can be quite
useful. However, you will use powertypes rarely, if at all. We include them
mainly for completeness.
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10.5.1 Generalization sets
You can organize the subclasses of any superclass into one or more generali-
zation sets.

A generalization set groups subclasses according to a particular rule, or
basis of specialization. Here’s an example. Figure 10.11 illustrates that the
superclass Shape has many subclasses. On examination of these subclasses,
you can see that there are two distinctly different groups of Shapes: two-
dimensional shapes and three-dimensional shapes.

Generalization sets
partition subclasses
accordingtoa
specific rule.

Shape

Figure 10.11

You can indicate this partitioning of subclasses on a class diagram by
associating each group of shapes with a different generalization set as illustrated
in Figure 10.12.

generalization set

A
-~ —~

Cube Sphere Pyramid

v threeDShape

Shape generalization set name
- (optional)
A twoDShape
Square Circle Triangle
— v
—~—

generalization set

Figure 10.12
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Generalization sets can have constraints applied to them. These constraints
determine whether the sets are

® {complete} — the subclasses in the generalization set cover all of the possi-
bilities. For example, a generalization set gender of class Person containing
the two subclasses Male and Female could be considered to be {complete}
provided that you only recognize two genders;

® {incomplete} — there may be subclasses other than those in the generaliza-
tion set. The generalization set twoDShape is clearly {incomplete} as there are
potentially very many twoDShapes;

@ {disjoint} — an object can be an instance of one and only one of the members
of the generalization set. This is by far the most common case;

@ {overlapping} — an object can be an instance of more than one of the mem-
bers of the generalization set. This is quite uncommon as it requires mul-
tiple inheritance or multiple classification.

Generalization set constraints can be combined as shown in Table 10.1.

Table 10.1

L n . Theset  Members ofthe set may

;"Constramt . iscomplete  have instances in common
{incomplete, dlswmt} the default N N

{complete, disjoint}

Y N
{incomplete, overlapping} N Y
Y Y

{complete, overlapping}

Figure 10.13 illustrates generalization set constraints applied to the Shape
example.

As you've seen, generalization sets are an analysis concept that allow you
to partition a set of subclasses. When it comes to implementation, none of
the commonly used OO languages directly support generalization sets, and
the concept is redundant from an implementation perspective.

In implementation, generalization sets are either ignored or resolved
into a new layer in the inheritance hierarchy, provided there is a benefit in
doing so. Looking at the analysis model in Figure 10.13, you can imagine
that there might be some attributes or operations common to all twoDShapes
and to all threeDShapes. This gives you a basis to resolve the generalization sets
into new classes in the inheritance hierarchy, as illustrated in Figure 10.14.
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Cube Sphere Pyramid

V threeDShape {disjoint, incomplete}

Shape

A twoDShape {disjoint, incomplete}

Square Circle Triangle

Figure 10.13

Cube Sphere Pyramid

\] {disjoint, incomplete}

ThreeDShape

g

Shape

1

TwoDShape

A (disjoint, incomplete}

Square Circle Triangle

Figure 10.14

10.5.2 Powertypes

Powertypes are an analysis concept that you will hardly ever come across in
normal day-to-day modeling. This section is included largely for complete-
ness and as a reference should you happen to encounter the idiom.

A powertype is a class whose instances are classes. These instances are
also subclasses of another class.

Any class whose instances are classes is called a metaclass (the class of a
class). A powertype is therefore a special type of metaclass whose instances
are also subclasses of another class.

Apowertypeisa
class whose instances
are classes that are
also subclasses of
another class.
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The idea of powertypes is quite complex and is best illustrated with a
simple example as shown in Figure 10.15.

powertype/class
owertype relationship
P yP class
|

7 T

«powertype» 0.1 *

InterestAccount Account
interestRate : double balance : double
powertypename,
interestBearing: InterestAccount noninterestBearing
{disjoint, incomplete} {disjoint, incomplete}
generalization set name
ShareAccount DepositAccount CheckingAccount

Figure 10.15

The first thing to note about Figure 10.15 is that InterestAccount is not a
normal class. It is a powertype, as indicated by the stereotype. The second
thing to note about this figure is that the association between InterestAccount
and Account doesn’t have normal association semantics. In this case it indi-
cates that the Account class (and by inheritance its subclasses) can optionally
(0..1) have an InterestAccount as a powertype.

To use the powertype, you partition the subclasses into one or more
generalization sets and apply the powertype to one or more of these sets.
All classes in a powertyped generalization set are then instances of that
powertype.

You apply a powertype to a generahzanon set by hstmg the powertype
name after the generalization set name and a colon, much as you would list
the type of an attribute after an attribute name. You can think of the power-
type as providing an extra type for the members of the generalization set in
addition to the type they get from their superclass.

In Figure 10.15, we have partitioned the subclasses of Account into two
generalization sets, interestBearing and nonlnterestBearing—those that bear inter-
est and those that don't. The interestBearing generalization set is typed by the
powertype InterestAccount. This means that ShareAccount and DepositAccount are
simultaneously subclasses of Account and instances of InterestAccount. They
inherit the balance attribute from Account and get the attribute interestRate by
virtue of being instances of InterestAccount.
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The noninterestBearing generalization set contains a single class, CheckingAccount,
that is a simple subclass of Account. As such, ShareAccount inherits the balance
attribute from Account but gets nothing from InterestAccount.

None of the mainstream OO languages support powertypes, and so you
may be wondering how you can implement this idiom in practice. Figure 10.16
shows a simple solution to the problem where we implement powertyping
by delegation. In this example, we have introduced new classes AccountType
and NoninterestAccount to create a well-formed inheritance hierarchy of
AccountTypes. We have used constraints to indicate the type for each different
Account. This is a pretty standard way of dealing with powertypes.

{type must be NonlinterestAccount} B'

CheckingAccount
NonlnterestAccount 47
AccountType ! Account
type
balance : double
InterestAccount
interestRate : double
ShareAccount DepositAccount

{type must be InterestAccount} ﬁ

Figure 10.16

In theory, powertypes provide a concise and convenient modeling idiom
for use in analysis models. However, in practice we find that they are not
widely understood or used. Thus, when they are used they can cause a lot of
confusion. Powertypes add nothing new to your modeling repertoire and
may not even be supported by your modeling tool. Our advice is that you
avoid them.
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106 Whatwe have leamed

In this chapter we looked at class inheritance and polymorphism. You have
learned the following.

© Generalization is a relationship between a more general thing and a more
specific thing:

the more specific thing is consistent in every way with the more general
thing;

the substitutability principle states that you can substitute the more
specific thing anywhere the more general thing is expected;
generalization applies to all classifiers and some other modeling elements;
generalization hierarchies may be created by generalizing from specific
things or by specializing from general things;

all things at the same level in a generalization hierarchy should be at
the same level of abstraction.

@ Class inheritance occurs in a generalization relationship between classes.

The subclass inherits the following features from its parents - attributes,
operations, relationships, and constraints.
Subclasses may:
- add new features;
- override inherited operations:
— the subclass provides a new operation with the same signature as
the parent operation it wishes to override;
- the operation signature consists of an operation name, types of all
parameters in order, and return type.
Abstract operations are designed to have no implementation:
- they serve as placeholders;
- all concrete subclasses must implement all inherited abstract
operations. ‘ ‘ ‘
An abstract class has one or more abstract operations:
— abstract classes can't be instantiated;
~ abstract classes define a contract as a set of abstract operations that
concrete subclasses must implement.
Polymorphism means “many forms”. It allows you to design systems
to use with an abstract class, then substitute concrete subclasses at
runtime - such systems are very flexible and easy to extend; just add
more subclasses.
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— Polymorphic operations have more than one implementation:
- different classes may implement the same polymorphic operation
differently;
- polymorphism allows instances of different classes to respond to the
same message in different ways.

@ Generalization set — a set of subclasses organized according to a particular
rule.
— Constraints:
— {complete} - the generalization set contains all possible members;
— {incomplete} - the generalization set does not contain all possible
members;
— {disjoint} — an object may be an instance of no more than one of the
members of the generalization set;
~ {overlapping} — an object may be an instance of more than one of the
members of the generalization set;
— {incomplete, disjoint} — the default.

® Powertype — a class whose instances are classes that are also subclasses of

another class. '

— A powertype is a metaclass whose instances are subclasses of another
class:
— «powertype» — indicates that the class is a powertype.

— An association between a class and a powertype indicates that the class
can be an instance of the powertype.

— To use powertypes:
— partition the subclasses into one or more generalization sets;
- apply powertypes to type the generalization sets.
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~ Analysis packages

In this chapter we look at the UML grouping mechanism, packages, and the
way in which they are used in analysis.

C 11.2 What is a package? )
!

( 11.3 Packages and namespaces )

( 11.4 Nested packages ) C 11.5 Package dependencies ) C 11.6 Package generalization ) C 11.7 Architectural analysis )
11.5.1 Transitivity

C 11.7.1-Finding analysis packages - )

( 11.7.2 Cyclic package dependencies )

Q 11.9 What we have learned >
|

Figure 11,1
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Whatisapackage?

The package is the
UML mechanism for
grouping things.

Every model
element is owned by
one package. The
packages form a
hierarchy.

If you go back to the basic UML principles (Section 1.8), then you know that
the set of UML building blocks consists of things, relationships, and dia-
grams. A package is the UML grouping thing—it is a container and owner for
model elements. Fach package has its own namespace within which all
names must be unique.

In fact, a package is a general-purpose mechanism for organizing model
elements (including other packages) and diagrams into groups. It can be used
to

@ provide an encapsulated namespace within which all names must be
unique;

® group semantically related elements;
@ define a “semantic boundary” in the model;

@ provide units for parallel working and configuration management.

Packages let you create a navigable and well-structured model by allowing
you to group things that have close semantic ties. You can create semantic
boundaries in the model where different packages describe different aspects
of the system functionality.

It’s important to note that in UML 2 a package is a logical grouping
mechanism that provides a namespace for its members. If you want to phys-
ically group model elements then you should use a component as we discuss
in Section 22.2.

Every model element is owned by exactly one package, and the owner-
ship hierarchy forms a tree rooted in a top-level package. A special UML
stereotype, «toplLevel», can be used to mark this package. If you don't explicitly
place a modeling element in a package, then it goes into the top-level pack-
age by default. The package hierarchy also forms a namespace hierarchy
where the top-level package is the root of the namespace.

Analysis packages should contain

® use cases;

@ analysis classes;

@ use case realizations.

UML package syntax is quite straightforward. The package icon is a folder, and
the package name may be shown on the tab if package contents are shown, or
on the body of the folder. The syntax is summarized in Figure 11.2, which

shows three different ways of representing the same package at different
levels of detail.
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I Membership I
i
1 «mport »
+MemberDetaiIs| i e

| +Member I

Membership

-JoiningRules }————{ +ClubMembership H +Benefits
Membership l +MembershipRules

+ClubMembership
public +Benefits
(exported) +MembershipRules
elements +MemberDetails

) +MemberDetails::Member
private  f1 - JjoiningRules
element

\
qualified name

Figure 11.2

Elements inside a package can be given a visibility that indicates whether
they are visible to clients of the package. The possible visibilities are summa-
rized in Table 11.1.

Table 11.1

Elements with public visibility are visible to elements
~outside the package - they are exported by the package

- private Elements with private visibility are completely hidden
inside the package

You can use the visibility of package elements to control the amount of
coupling between packages. This can be done because the exported elements
of a package act as the interface to, or the window into, the rest of the pack-
age. You must try to make this interface as small and simple as possible.

To ensure that a package has a small, simple interface, you need to min-
imize the number of public package elements and maximize the number of

Visibility determines
whether a package
element is visible

outside the package.
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Table 11.2

_ Stereotype

private package elements. This may be difficult to achieve in analysis unless
navigability is applied to the associations. Otherwise, there will be many bi-
directional associations between classes, and so the classes involved in the
association must either both be in the same package, or both be public. In
design, relationships between classes become unidirectional, and so it is only
the supplier class that needs to be public.

UML provides two standard stereotypes, listed in Table 11.2, to tailor the
semantics of packages for specific purposes.

«framework» A package that contains model elements that specify a reusable
architecture

«modelLibrary» A package that contains elements that are intended to be reused
by other packages

Packages and namespaces
A package defines what is known as an encapsulated namespace. All this
really means is that the package creates a boundary within which all the
element names must be unique. It also means that when an element in one
namespace needs to refer to an element in a different namespace, it has to
specify both the name of the element it wants and a way to navigate through
the namespaces to that element. This navigation path is known as the qualified
name or pathname of the element.

You create a qualified name by prefixing the element name with the
names of the packages in which it resides, separated by a double colon. You
list the outermost package first, and then each package in order of nesting
until you get to the element. Qualified names are very similar to pathnames

in directory structures.
For example, the qualified name of the class Librarian in Figure 11.3 is

Library::Users::Librarian
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Library I

Users ]

Librarian

Borrower

Figure 11.3

Packages may be nested inside other packages to any depth. However, just
two or three levels of nesting are generally enough. Much more than this,
and the model may become difficult to understand and navigate.

UML gives two ways to show nesting. The first is very graphic, as it shows
modeling elements physically contained in the package. An example is
shown in Figure 11.3.

An alternative nesting syntax is shown in Figure 11.4. This is useful
when there is a lot of nesting, or complex nesting, that might be confusing
to show with embedding.

Library I

@
containment | " anchor icon
relationship
Users |
5]
Librarian Borrower

Figure 11.4
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Nested packages have access to the namespace of their owning package.
So, in Figure 11.4, elements in the Users package can access all elements in
the Library package by using unqualified names. However, the converse is not
true. The owning package must use qualified names to access the contents of
its owned packages. So in the example, elements in Library must use the fully
qualified names Users:Librarian and Users::Borrower to access the two elements
in the Users package.

You'll see how you can use dependencies to merge package namespaces
in the next section.

Packages may be related to each other by a dependency.
Consider the example in Figure 11.5. Any package that has a depen-

A dependency

relationship indicates

that one package dency relationship with the Membership package will be able to see the public
depends in some way elements of that package (ClubMembership, Benefits, etc.) but will not be able to
on another. see the private element JoiningRules.

Membership |
«import» !
i package dependency

MemberDetails ] g

pl|JbliC visibility

1
+Member
-'JoiningRules +ClubMembership +Benefits
private visibility -+MembershipRules

Figure 11.5

There are five different types of package dependencies, each with differ-
ent semantics. These are summarized in Table 11.3.

The «use» dependency means that there are dependencies between
elements in the packages rather than between the packages themselves.
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~ Semantics

I

Supplier

«lse» .
ROREEEEEEEEEEEE Client

An element in the client package uses a public element
| in the supplier package in some way - the client depends on
the supplier

If a package dependency is shown without a stereotype,
then «use» should be assumed

] ] Public elements of the supplier namespace are added as
public elements to the client namespace
Suppli smports Client
upeler en Elements in the client can access all public elements in the
supplier using unqualified names
— ] Public elements of the supplier namespace are added as
private elements to the client namespace
Suppli e caccesss | Client
uppler en Elements in the client can access all public elements in the
supplier using unqualified names
] ] «trace» usually represents a historical development of one
A race A element into another more developed version - it is usually
Analysis [ -mnmmmnn e n - o Design a relationship between models rather than elements (an
Mode! Model . s
extra-model relationship)
— ] Public elements of the supplier package are merged with
elements of the client package
Supplier < -- ST Client
UppHer en This dependency is only used in metamodeling - you should

not encounter it in ordinary OO analysis and design

Both «import» and «access» merge client and supplier namespaces. This
allows client elements to use unqualified names to access supplier elements.
The difference between the two is that «<import» performs a public merge, that
is, merged supplier elements become public in the client, while «access» per-
forms a private merge, that is, merged elements become private in the client.

«trace» is the odd man out. Whereas the other package dependencies are
between things in the same model, «trace» usually represents some historical
development of one package into another. It therefore often shows relation-
ships between different models. A complete UML model can be represented
by a package with a small triangle in its right-hand corner, and in Table 11.3
we show the extra-model «trace» dependency between the analysis model
and the design model. Clearly, such a diagram is a metamodel where we
model the relationships between models! As such, it is not used very often.
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11.5.1

«import» is
transitive.
«access» is not.

«merge» is a complex relationship that indicates a set of transformations
between the elements in the supplier package and the client package.
Elements in supplier package are merged with client elements to create new,
expanded, client elements. This dependency is only used in metamodeling
(e.g., it is widely used in the UML metamodel) and should not be used in
ordinary OO analysis and design. We do not discuss it any further here, but
if you need to find out more, you can look in [Rumbaugh 1].

Transitivity

Transitivity is a term that applies to relationships. It means that if there is
a relationship between thing A and thing B and a relationship between
thing B and thing C, then there is an implicit relationship between thing A
and thing C.

It is important to note that the «import» dependency is transitive, but the
«access» dependency is not. This is because, as you saw above, when there
is an «import» dependency between a client and a supplier package, public
elements in the supplier package become public elements in the client. These
imported public elements are accessible outside the client package. On the
other hand, when there is an «access» dependency between a client and a
supplier package, public elements in the supplier package become private
elements in the client. These private elements are not accessible outside the
client package.

Consider the example in Figure 11.6. Package A accesses package B, and
package B accesses package C.

«aCcess», «aCCcess»
> >

Figure 11.6

Lack of transitivity in «access» means that

@ public elements in package C become private elements in package B;

® public elements in package B become private elements in package A;

© elements in package A therefore can’t access elements in package C.

This lack of transitivity in «access» allows you to actively manage and control

coupling and cohesion in the model. Nothing is accessed unless it is explicitly
accessed.
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. Package generalization

Package generalization is similar in many ways to class generalization. In pack-
age generalization, the more specialized child packages inherit the public
elements from their parent package. Child packages may add new elements
and may override elements in the parent package by providing an alternative
element with the same name.

In the example in Figure 11.7, the Hotels and CarHire packages inherit all
the public members of their parent Product package. Both the Hotels and CarHire
packages override the Item class inherited from their parent by providing an
alternative class with the same name. Child packages may also add new
elements; the Hotels package adds classes Hotel and RoomType and the CarHire
package adds class Car.

Product ’

+Price
+Market
+ltem
—MiaoMarket

1

parent

CarHire l

+Product::Price
+Product::Market

Hotels I

+Product::Price
+Product::Market

+ltem +ltem
+Hotel +Car
+RoomType
N\ J
Y
children

Figureas7

Just like class inheritance, the substitutability principle must apply—
anywhere we might use the Product package, we should be able to use either
the Hotels or CarHire package.

117 Architectural analysis

In architectural analysis, all the analysis classes are organized into a set of
cohesive analysis packages, and these are further organized into partitions
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and layers as illustrated in Figure 11.8. Each analysis package within a layer
is a partition.

Architectural ‘ N\

analysis partitions
related classes into
analysis packages
and then layers the
packages.

Always minimize [ N

coupling.

11.7.1

Look for clusters
of classes that form a
cohesive unit.

application- ] I
specific
layer Sales ~ fe----- > Products
application- l I
&?r::ral AccountManagement InventoryManagement
\ > \ v
partition partition
Figure 11.8

One of the goals in architectural analysis is to try to minimize the
amount of coupling in the system. You can do this in three ways:

© minimize the dependencies between analysis packages;
© minimize the number of public elements in each analysis package;

® maximize the number of private elements in each analysis package.

Reduction in coupling is one of the most important considerations in archi-
tectural analysis because systems that exhibit a high degree of coupling are
typically complex and difficult to build and maintain. You should always try
to keep coupling to the necessary minimum.

As the model deepens into a design model, so the number of layers will
tend to increase. In analysis, however, you can just arrange packages into
application-specific and application-general layers. The application-specific
layer contains functionality that is entirely specific to the particular applica-
tion. The application-general layer contains functionality that is more generally
useful. In Figure 11.8, AccountManagement and InventoryManagement might be
reusable across several different applications, and so these packages naturally
live in the application-general layer.

Finding analysis packages

You find analysis packages by identifying groupings of model elements that
have strong semantic connections. Analysis packages are often discovered
over a period of time as the model develops and matures. It is imperative that
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the analysis packages reflect real, semantic groupings of elements, rather
than just some idealized (but fictitious) view of the logical architecture.

Where do you begin looking for such groupings? The static model is the
most useful source of packages. Look for

@ cohesive clusters of classes in the class diagrams;

@ inheritance hierarchies.

You may also consider the use case model as a source of packages because it is
important that you try to make packages as cohesive as possible from a busi-
ness process perspective. However, it is common for use cases to cut across
analysis packages—one use case may be realized by classes from several differ-
ent packages. Still, one or more use cases that support a particular business
process or actor, or a set of related use cases, may indicate a potential package.

After a set of candidate packages has been identified, you should then
attempt to minimize the public members of the packages and the dependen-
cies between the packages by

©® moving classes between packages;
® adding packages;
@ removing packages.

The keys to good package structure are high cohesion within a package and
low coupling between packages. A package should contain a group of closely
related classes. Classes are most closely related by inheritance (Chapter 10),
next by composition (Chapter 18), then by aggregation (Chapter 18), and
finally by dependencies (Chapter 9). Classes that are in inheritance or com-
position hierarchies are prime candidates for co-location in the same package.
This will lead to high cohesion within the package and will probably lead to
lower coupling with other packages.
As always, you should keep things simple when creating the analysis
- package model. It is more important to get the right set of packages than to
make extensive use of features such as package generalization and depen-
dency stereotypes. These can be added later if, and only if, they make the
model more comprehensible. Part of keeping things simple is avoiding
nested packages. The more deeply something is buried in a nested package
structure, the more obscured it becomes. We have seen models with very
deeply nested packages where each package contained only one or two
classes. These models were more like a standard top-down functional decom-
position than an object model.
As a rule of thumb, expect to have between four and ten analysis classes
per package. However, as with all rules of thumb, there will be exceptions,
and if breaking this rule makes the model clearer, then do so! Sometimes you
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Shop I

need to introduce packages with just one or two classes because you need to
break cyclic dependencies in the package model. In such circumstances, this
is a perfectly reasonable thing to do.

Figure 11.9 shows an example of an analysis package model from a
simple e-commerce system. We provide this system as a worked example on
our website www.umlandtheunifiedprocess.com.

ShoppingBasket
ShopAssistant

Product l

Order | Customer l ‘Security ]

ProductCatalog Order CustomerDetails SecurityGuard
Product OrderManager CustomerManager SecurityProfile
Category --->! ShippingDetails --->1 CreditCardDetails ---> CustomerSecurityProfile
Book ltem UserSecurityProfile
CcD
Figure 11.9
11.7.2  Cyclic package dependencies

Avoid cyclic
package
dependencies.

You should try to avoid cyclic dependencies in the analysis package model.
When you think about it, if package A depends in some way on package B,
and vice versa, there is a very strong argument for just merging the two pack-
ages, and this is a perfectly valid way of removing cyclic dependencies. But a
better approach, which very often works, is to try to factor the common
elements out into a third package C. The dependency relationships are then
recalculated to remove the cycle. This is shown in Figure 11.10.

Many modeling tools allow you to check the dependencies between
packages automatically. The tool creates a list of access violations if an
element in one package accesses an element in another package but there is
no visibility or dependency between the two packages.

In an analysis model, it can be impossible to create a package diagram
that is free of access violations. This is because in analysis you often use bidi-
rectional relationships between classes. Suppose we have a very simple model
with one class in package A and another class in package B. If the class in pack-
age A has a bidirectional relationship with the class in package B, then
package A depends on package B, but package B also depends on package A—
we have a cyclic dependency between the two packages. The only ways to re-
move this violation are to refine the relationship between A and B by making
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[ AT B ]
There can be more
"""" > complex cycles
L involving three or
<o more packages!

Figure 11.10

it unidirectional or to put the two classes in the same package. Package depen-
dencies thus provide an excellent argument for using navigability in analysis
‘models! On the other hand, classes that truly have mutual dependencies
(rather than dependencies that are just a feature of the incompleteness of the
model) should normally live in the same package.

In this chapter we have looked at analysis packages. In particular, you have
seen how you can maximize the cohesion within an analysis package and
minimize the coupling between analysis packages. This helps create more
robust and maintainable systems. You have learned the following.

@ The package is the UML mechanism for grouping things.

@ Packages serve many purposes:
— they group semantically related elements;
— they create a “semantic boundary” in the model;
— they provide units of configuration management;
— in design, they provide units for parallel working;
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— they provide an encapsulated namespace in which all names must be
unique — to access an element within the namespace you must specify
both the element name and the namespace name.

© Every model element is owned by one package:
— the packages form a hierarchy;
— the root package may be stereotyped «toplevel»;
— Dby default, model elements are placed in the «topLevel» package.

@ Analysis packages may contain:
— use cases;
— analysis classes;
— use case realizations.

o Package elements may have visibility:
— visibility is used to control the coupling between packages;
— there are two levels of visibility:
— public (+) — elements are visible to other packages;
—~ private (-) — elements are completely hidden.

@ Package stereotypes:
— «framework» — a package that contains model elements that specify a
reusable architecture;
— «modelLibrary» — a package that contains elements that are intended to
be reused by other packages.

® A package defines an encapsulated namespace:
— use qualified names to refer to elements in other packages, for example,

Library::Users::Librarian

© Nested packages:
— the inner package can see all of the public members of its outer packages;
— the outer package can't see any of the members of its inner packages
unless it has an explicit dependency on them (usually «access» Or «import»)
~ this allows you to hide implementation details in nested packages.

@ A dependency relationship between packages indicates that the client
package depends in some way on the supplier package.

— «use» — an element in the client package uses a public element in the
supplier package.

— «import» — public elements of the supplier namespace are added as public
elements to the client namespace. Elements in the client can access all
public elements in the supplier by using unqualified names.

— «access» — public elements of the supplier namespace are added as private
elements to the client namespace. Elements in the client can access all
public elements in the supplier by using unqualified names.
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— «trace» — the client is a historical development of the supplier. This usu-
ally applies to models rather than elements.

— «merge» — public elements of the supplier package are merged with ele-
ments of the client package. Only used in metamodeling.

@ Transitivity: If A has a relationship to B and B has a relationship to ¢, then
A has a relationship to C.
— «import» is transitive.
— «access» is not transitive.

@ Package generalization:
— very similar to class generalization;
— the child packages:
~ inherit elements from their parent package;
- can add new elements;
~ can override parent elements.

Architectural analysis:
— partitions cohesive sets of analysis classes into analysis packages;
— layers analysis packages according to their semantics;
— attempts to minimize coupling by:
- minimizing package dependencies;
- minimizing the number of public elements in all packages;
- maximizing the number of private elements in all packages.

@ Finding analysis packages.
— Examine analysis classes — look for:
- cohesive clusters of closely related classes;
- inheritance hierarchies;
- classes are most closely related by (in order) inheritance, composi-
tion, aggregation, dependency.
— Examine use cases:
- clusters of use cases that support a particular business process or
actor may have analysis classes that should be packaged together;
- related use cases may have analysis classes that should be packaged
together;
- be careful ~ analysis packages often cut across use cases!
— Refine the package model to maximize cohesion within packages and
minimize dependencies between packages by:
- moving classes between packages;
adding packages;
removing packages;
remove cyclic dependencies by merging packages or by splitting
them to factor out coupled classes.

I






- Use case realization

This chapter discusses the process of use case realization in which you model
interactions between objects.

239
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62.2 UP activity: Analyze a use case)

{learn about use case realization]

)

{1 2.3 What are use case realizaﬁons?)

(12.4 Use case realization ~ elements)

12.5 Interactions
12.6 Lifelines
12.7 Messages

( 12.7.1 Synchronous, asynchronous and return messages) (12.7.3 Found and lost messages)

(12.7.2 Creation and destruction messages)

12.8 Interaction diagrams

[learn about sequence diagrams] [learn about communication diagrams}]

12.9 Sequence diagrams

(12,9.1 Lifelines and messages)

12.9.2 Activations

(1 2.9.3 Documenting sequence diagrams)

(1 2.11 Communication diagrams)

(1 2.9.4 State invariants and constraints )

(12.10 Combined fragments and operatorg

(1 2.10.1 Branching with opt and alt) (1 2.10.2 lteration with loop and break) (1 2114 Iteration)

12.11.2 Branching

(12.1 2 What we have Iearned)

Figure 12.1
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UPactivity: Analyze ause case

In previous chapters, you have seen how the analysis class artifact of the
Analyze a use case activity is produced. The second artifact produced by this
activity is the use case realization, as shown in Figure 12.2. We discuss the
inputs to this activity in Section 8.2.

1

A

Business model Zj

[or domain model] -

Use case -
] el engineer : "
A .
~~~~~~ Analysis class
Requirements )
model
— - ..--> Analyzea
_________ use case “~._
Al - 7
Use case model O ]
,x" Use case
’ realization
Architecture
description

Figure12.2 Adapted from Figure 8.25 [Jacobson 1] with permission from Addison-Wesley

Analysis classes model the static structure of a system, and use case real-
izations show how.instances .of the analysis classes interact to realize the
functionality of the system. This is part of the dynamic view of the system.

Your goals for use case realization in analysis are as follows.

© Find out which analysis classes interact to realize the behavior specified
by a use case—you may uncover new analysis classes as you perform use
case realization.

@ Find out what messages instances of these classes need to send to each
other to realize the specified behavior. As you will see in this chapter, this
tells you
— the key operations your analysis classes need to have;

— the key attributes of the analysis classes;
— important relationships between analysis classes.
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@ Update your use case model, requirements model, and analysis classes
with the information you get from use case realization. Keep all models
consistent and in step with each other.

In use case realization in analysis, it is essential that you focus on capturing
key attributes, operations, and relationships between analysis classes. At this
point you are not concerned with details such as operation parameters—you,
will discover this information in design.

Also, you don’t need to create a use case realization for every use case.
Pick the key use cases, and work on these. Keep realizing use cases until you
feel that you have sufficient information to understand how the analysis
classes work together. When you have this information, stop. UP is an itera-
tive process, so if you decide you need to do more work on use case
realization later, you will have an opportunity to do so.

At the end of use case realization in analysis, you will have an analysis
model that gives a high-level picture of the dynamic behavior of the system.

What are use case realizations?

m The key to analysis, after finding the analysis classes, is finding the use case
realizations. These consist of sets of classes that realize the behavior specified
in a use case. For example, if you have a use case BorrowBook and have identi-
fied the analysis classes Book, Ticket, Borrower, and the actor Librarian, you need
to create a use case realization that demonstrates how these classes and objects
of these classes interact to realize the behavior specified in BorrowBook. In this
way, you turn a use case, which is a specification of functional requirements,
into class diagrams and interaction diagrams, which are a high-level specifi-
cation of a system.

m Although UML provides a symbol for use case realizations, as shown in
Figure 12.3, they are rarely modeled explicitly. This is simply because each
use case has exactly one use case realization, so there is no extra information
to be captured in creating a use case realization diagram. Instead, you just
add the appropriate elements (see Table 12.1) to the modeling tool and let
the use case realizations be an implicit part of the backplane of the model.

realizations show how
classes collaborate to
realize system
functionality.

realizations are an
implicit part of the
model backplane - you
typically don’t show
them on diagrams.

use case use case realization

1 «frace» 1, e T
Place Order M e mmmanoneamenn §  «usecase realization»
\ . Place Order L

Figure 12.3
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Table 12.1

Element Purpose

Analysis class diagrams ~ Show the analysis classes that interact to realize the
use case

Interaction diagrams Show interactions between specific instances that
realize the use case - they are “snapshots” of the
running system

Special requirements The process of use case realization may well uncover
new requirements specific to the use case ~ these must
be captured

Use case refinement New information may be discovered during realization
that means the original use case has to be updated

Use case realization - elements

Use case realizations consist of the elements shown in Table 12.1.

Use case realization is fundamentally a process of refinement. You take a
specification of one aspect of the system’s behavior as captured in a use case
and any associated requirements, and model how this may be realized by
interactions between instances of the analysis classes that you have identi-
fied. You go from a general specification of required behavior to a fairly
detailed description of the interactions between classes and objects that will
actually make this behavior real.

Analysis class diagrams are a vital part of a use case realization. They
should “tell a story” about the system—about how a set of classes are related
such that instances of those classes can collaborate to realize the behavior
specified in one (or more) use cases.

As well as analysis class diagrams, you can create diagrams that demon-
strate explicitly how instances of those analysis classes collaborate and
interact to realize some or all of the use case behavior. These diagrams are
known as interaction diagrams, and there are four types: sequence diagrams,
communication diagrams, interaction overview diagrams, and timing dia-
grams. We look at sequence and communication diagrams in this chapter,
interaction overview diagrams in Section 15.12, and timing diagrams in Sec-
tion 20.7.

OO modeling is an iterative process, so you should not be too surprised
if you uncover new requirements or if you need to modify existing use
cases once you begin to model in more depth. This is all part of use case
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Interactions

realization—you must keep existing documents up to date as you uncover
more information about the system. As such, you must update the use case
model, requirements model, and analysis classes to keep them all consistent.

classifier.

Interaction — a unit
of behavior of a context

Lifeline-a
participant in an
interaction.

Interactions are simply units of behavior of a classifier. This classifier, known
as the context classifier, provides the context for the interaction.

An interaction may use any of the features of its context classifier or any
features that the context classifier has access to (e.g., temporary or global
variables).

In use case realization, the context classifier is a use case, and you create
one or more interactions to demonstrate how the behavior specified by the
use case can be realized by instances of classifiers (in this case, analysis
classes) passing messages back and forth.

As you work on interaction diagrams, you begin to uncover more and
more of the operations and attributes of the analysis classes. The analysis class
diagrams should be updated with this information as part of the use case
realization process.

The key elements in interaction diagrams are lifelines and messages. We
look at these in detail in the next two sections.

A lifeline represents a single participant in an interaction, that is, it represents
how an instance of a specific classifier participates in the interaction. Lifeline
syntax is summarized in Figure 12.4.

jimsAccount [ id = "1234" ] : Account

;_Y___J\._____Y____J;.,,_J

name selector type

Figure 12.4

Each lifeline has an optional name, a type, and an optional selector.

® Name - used to refer to the lifeline within the interaction.
@ Type-the name of the classifier of which the lifeline represents an instance.
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@ Selector —a Boolean condition that may be used to select a single instance
that satisfies the condition. If there is no selector, a lifeline refers to an
arbitrary instance of the classifier. Selectors are only valid if the type has
a multiplicity greater than one so that there are many instances from
which to choose. In Figure 12.4, the selector selects an instance of Account
that has an id of “1234".

Lifelines are drawn with the same icon as their type and have a vertical
dashed “tail” when they are used in sequence diagrams. Some examples of
lifelines are shown in Figure 12.5.

I
}im:Pers\on :OrderProcessing Orders.jar @
name classifier ,:

Figure 12.5

You can think of a lifeline as representing how an instance of the classi-
fier may participate in the interaction. However, it does not represent any
particular instance of the classifier. This is a subtle, but important, distinc-
tion. The interaction describes how instances of the classifier interact in a
general way, rather than specifying just one particular interaction between a
set of particular instances. You can therefore think of the lifeline as repre-
senting a role that an instance of the classifier may play in the interaction.

You can show true instances directly on an interaction diagram if you
want to. Just use normal instance notation—the classifier symbol with the
instance name, selector (if any), colon, and classifier name, all underlined.

This distinction between lifelines and instances gives rise to two differ-
ent forms of interaction diagrams. A generic form interaction diagram shows
the interaction between lifelines that represent arbitrary instances. An
instance form interaction diagram shows the interaction between particular
instances. The generic form diagrams tend to be the most common and
useful.

To complete the interaction you need to specify messages that are sent
between the lifelines. We look at messages in the next section.
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| Message - a
specific
communication
between lifelines.

12.7.1

Messages

A message represents a specific kind of communication between two lifelines
in an interaction. This communication may involve

© calling an operation—a call message;
® creating or destroying an instance—a creation or destruction message;

® sending a signal.

When a lifeline receives a call message, this is a request for the invocation of
an operation that has the same signature as the message. So, for every call
message received by a lifeline, there must be a corresponding operation in
the classifier of that lifeline. UML allows messages on interaction diagrams to
get out of step with operations so that you can work on the model dynami-
cally and flexibly. However, by late analysis they must be brought into step.

When a lifeline is executing a message it has focus of control or activation.
As the interaction progresses over time, the activation moves between life-
lines—this movement is called the flow of control.

Messages are drawn as arrows between lifelines. If the lifeline has a dashed
tail (as in sequence diagrams), the messages are generally drawn between the
tails. Otherwise the messages are drawn between the lifeline boxes; you'll see
many examples of this shortly. There are seven types of message as illustrated
in Table 12.2.

Synchronous, asynchronous, and return messages

In a synchronous message call, the sender waits for the receiver to finish
executing the requested operation. In an asynchronous message call, the
sender does not wait but continues to the next step.

In analysis models, the distinction between synchronous and asynchro-
nous messages is usually too great a level of detail. In analysis, you are not
concerned with the detailed semantics of message sending, merely with the
fact that a message is sent. As such, you can show all messages as synchronous
or asynchronous—it really doesn’t matter. Our preference is to show all mes-
sages as synchronous because this is the most constrained case. Synchronous
messages indicate a strict sequencing of operation calls, whereas asynchronous
messages indicate the possibility of concurrency.

In design, it can be important to distinguish between those messages
that are synchronous and those that are asynchronous so that you can design
concurrent flows of control.
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Table 12.2
Syntax Name Semantics
aMessage (aParameter) Synchronous The sender waits for the receiver to return from
> message executing the message
aMessage(aParameter) Asynchronous The se.ander sends ﬂTe message and continues eJ'cecut-
message ing - it does not wait for a return from the receiver

Message return

The receiver of an earlier message returns focus of
control to the sender of that message

«create» aMessage()

Object creation

The sender creates an instance of the classifier
specified by the receiver

«destroy» Object The sender destroys the receiver
destruction If its lifeline has a tail, this is terminated with an X
’ Found message ~ The sender of the message is outside the scope of the
interaction
Use this when you want to show a message receipt,
but don’t want to show where it came from
° Lost message The message never reaches its destination
May be used to indicate error conditions in which
messages are lost
You can show return messages on analysis-level use case realizations or
not as you choose. They are generally not that important. We tend to show
them if they don’t clutter the diagram.
12.7.2  Creation and destruction messages

In OO analysis you generally don’t need to worry about the exact semantics
of object creation or destruction, but it is important that you understand
what is going on, so we cover the topic here,

The object creation message is always drawn as a solid line with an open
arrowhead. You can show object creation by simply sending a message ste-
reotyped «create», or you can send a specific, named, object creation message
that you may also stereotype «create». In C++, C#, or Java, object creation op-
erations are special operations known as constructors—these have the same
name as the class of the object, no return value, and zero or more parameters.
So, for example, if you wanted to create a new Account object, you might send
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a message called Account() to create an Account object and initialize its account-
Number attribute to some value. Not all OO languages have constructors
however; in Smalltalk, for example, you would probably send the message
«createy init: accountNumber.

Object destruction is shown as a solid line with an open arrowhead ste-
reotyped «destroy». Destruction means that the classifier instance referred to
by the target lifeline is no longer available for use. If the lifeline has a tail,
you must terminate the tail with a large cross at the point of destruction.
There is no return value from object destruction.

Different languages have different destruction semantics. For example,
in C++, destruction is usually explicitly handled by the programmer, and
when an object is destroyed, a special method called a destructor is guaran-
teed to be invoked (if it exists). This method is often used to perform cleanup
activities such as releasing resources like files or database connections. After
the destructor is called, the object’s memory allocation is freed.

In languages such as Java and C#, object destruction is handled by the
virtual machine by a strategy called garbage collection. For example, when an
object in a Java program is no longer referenced by any other object, it is
marked as ready for destruction. Destruction will occur at some future time
according to the garbage collection algorithm, but you don’t know when that
will be! Java and C# objects can have a “finalize” method that will be executed
at the point of true destruction by the garbage collector. However, this method
is dangerous to use as you don’t know when the garbage collector will call it.

Found and lost messages

You can generally ignore found and lost messages in analysis. We include
them here mostly for completeness.

Found messages can be useful if you need to show a message receipt by a
class, but you don’t know (at that point in time) where that message origi-
nated. We find that this doesn’t happen too often in practice.

Lost messages allow you to show that a message is lost—it never reaches
its destination. This could be useful in design to show how messages might
be lost during an error condition. However, we have never felt a compelling
need to use this idiom.

UML interaction diagrams can be used to model any type of interaction
between classifier instances. In use case realization they are specifically used
to model interactions between objects that realize a use case, or part of a use
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case. There are four different types of interaction diagram, each of which
emphasizes a different aspect of the interaction.

® Sequence diagrams — these emphasize the time-ordered sequence of mes-
sage sends between lifelines. Users tend to be able to understand sequence
diagrams better than communication diagrams as they are much easier to
read. Communication diagrams have a tendency to get cluttered very
quickly. We discuss sequence diagrams in Section 12.9.

Communication diagrams — these emphasize the structural relationships
between objects and are very useful in analysis, especially for creating a
quick sketch of an object collaboration. In UML 2, these diagrams offer
only a subset of the functionality of sequence diagrams. We discuss com-
munication diagrams in Section 12.11.

® Interaction overview diagrams - these show how complex behavior is
realized by a set of simpler interactions. These are a special case of activ-
ity diagram in which the nodes refer to other interactions. They are use-
ful for modeling the control flow within a system. We discuss interaction
overview diagrams in Section 15.12.

© Timing diagrams - these emphasis the real-time aspects of an interaction.
Their primary purpose is to help you reason about time. We discuss tim-
ing diagrams in Section 20.7.

Sequence and communication diagrams are the most important diagrams
from the perspective of use case realization, and we look at them in detail in
the rest of this chapter.

Sequen ce dlagrams —

Sequence diagrams show interactions between lifelines as a time-ordered

--sequence of events. They are the richest, and most flexible, form of interac-

tion diagram.

When modeling, you sometimes start out by sketching a use case realiza-
tion, using a communication diagram (see Section 12.11) because it is easy to
place lifelines on the diagram and connect them. However, when you need
to focus on the actual sequencing of events, it is always much easier to use a
sequence diagram.

Lifelines and messages

To investigate lifelines and messages, we take an example from a simple
course registration system. Consider realizing the use case AddCourse shown in
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Figure 12.6. We have kept this use case at a very high level to provide a sim-
ple example.

Figure 12.6

Use case: AddCourse

ID: 8

Brief description:
Add details of a new course to the system.

Primary actors:
Registrar

Secondary actors:
None.

Preconditions:
1. The Registrar has logged on to the system.

Main flow:
1. The Registrar selects "add course".

2. The Registrar enters the name of the new course.

3. The system creates the new course.

Postconditions:
1. A new course has been added to the system.

Alternative flows:
CourseAlreadyExists

Initial analysis of the use case created the high-level analysis class dia-
gram in Figure 12.7. Given the use case specification and the class diagram,
you have enough information to create a sequence diagram.

Figure 12.7

RegistrationManager ! 0.” Course
courses
0.~
registration
0.*
! 0.. Student
students

Figure 12.8 shows a sequence diagram that realizes the behavior specified
by the AddCourse use case. According to the UML 2 specification, interaction
diagram names may be prefixed by sd to indicate that the diagram is an
interaction diagram. Strangely enough, sd is used as a prefix for all types of
interaction diagrams, not just sequence diagrams!
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sd AddCourse 1

synchronous lifeline
i message
‘RegistrationManager
:Registrar
: addCourse( "UML") _ | object creation message
The Registrar selects g
"add course".
«create»
The system creates umi:Course
the new Course. \ \

activation

\

notes can form E 5 ,  objectis
a "script" : message ! E cr_eatec} at
describing the | return E i this point
flow ! ! :

Figure 12.8

At this point it’s worth reminding you that when you start to create
sequence diagrams as part of the use case realization, you may find that you
need to modify the analysis class diagram or even the use case. This is OK—
it is all part of the analysis process. The use case, analysis class diagram, and
sequence diagram artifacts all evolve together over time.

Consider the sequence diagram in Figure 12.8. Sequence diagrams have
time running from top to bottom, and lifelines running from left to right.
Lifelines are placed horizontally to minimize the number of crossing lines on
the diagram and are placed vertically according to when they are created.
Stretching beneath each lifeline is a dashed line that indicates the duration
of the lifeline over time.

Notice that Figure 12.8 shows how the use case behavior is realized, but
it is not an exact representation of every step in the use case. This is an im-
portant point. Steps 1 and 2 of the use case involve some sort of user
interface that we won't really look at until design, so we have omitted these
from the sequence diagram. In design, we can add a user interface layer to
the sequence diagram that helps to clarify things (see Section 20.4). In anal-
ysis, we are only concerned with capturing the essential behavior of the
analysis classes.

Let’s look at another example use case from the course registration
system, DeleteCourse (Figure 12.9).

In this use case, we are destroying an object. To indicate object destruc-
tion, you terminate the lifeline with a large cross, as shown in Figure 12.10.
If you don’t know when the object is destroyed, or don’t care, you just termi-
nate the lifeline normally.
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Use case:DeleteCourse

ID: 8

Brief description:
Remove a course from the system.

Primary actors:
Registrar

Secondary actors:
None.

Preconditions:
1. The Registrar has logged on to the system.

Main flow:

1. The Registrar selects "delete course".

2. The Registrar enters the name of the course.
3. The system deletes the course.

Postconditions:
1. A course has been removed from the system.

Alternative flows:
CourseDoesNotExist

Figure 12.9

sd DeleteCourse ]

% :RegistrationManager uml:Course
:Registrar
! deleteCourse( "UML" )_ E self-delegation
>

findCourse( "UML" )

nested activation
«destroy»

) object is
deleted at
this point

Figure 12.10

Figure 12.10 also shows self-delegation, that is, a lifeline sends a message
to itself. This creates a nested activation (see next section). Self-delegation is
common in OO systems. Objects offer a set of public services (the public
operations) that can be called by client objects, but they also generally have
a set of private “helper” operations that are specifically designed to be called
by the object itself. In this example, the :RegistrationManager lifeline sends itself
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the message findCourse( "UML") to find a UML course object if one exists. Pri-
vate operations of an object can only be called by that object itself by means
of self-delegation.

Activations

You place long thin rectangles on the dashed line below the lifeline to indi-
cate when a particular lifeline has the focus of control. These rectangles are
called activations or focus of control.

We note in passing that The Unified Modeling Language Reference Manual,
Second Edition [Rumbaugh 1] refers to activation as “a UML 1 term replaced
by execution specification”. However, as we go to press, the term “execution
specification” occurs nowhere in the Unified Modeling Language: Superstruc-
ture, version 2.0 [UML2S], whereas both “activation” and “focus of control”
do. We can only conclude that “activation” and “focus of control” are the
standard terms. We mention this because you may come across the term
“execution specification” as a synonym for activation because of its inclusion

" in [Rumbaugh 1].

In Figure 12.8 the :Registrar actor starts with the focus of control. It sends
the message addCourse( "UML" ) to :RegistrationManager, which invokes its
addCourse(..) operation with the parameter "UML". During the execution of
this operation, :RegistrationManager has focus of control. However, notice that
this focus of control is nested within the focus of control of the :Registrar actor.
This is quite normal—one object starts with focus of control and invokes an
operation on another object nesting the focus of control. This object may
then invoke an operation on another object nesting focus of control yet
further, and so on.

Within the execution of the addCourse(.) operation, the :Registration-
Manager creates a new object, the uml:Course object.

Activations seem to have gone out of favor in recent years, and you will
find that many modelers just don’t bother to show them. This is partly
because some UML tools don’t support activations very well and partly
because they generally aren’t that important, especially in analysis models.
In an executing OO system, activations take care of themselves through the
normal semantics of operation invocation. In fact, complex sequence dia-
grams can be slightly easier to read without activations. Our style is to use
activations unless they make the diagram harder to read.

Documenting sequence diagrams

One very nice feature of sequence diagrams is that you can add a “script” to
a diagram by placing notes down the left-hand side (see Figure 12.8). This
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makes the diagram much more accessible to nontechnical stakeholders, such
as users and business domain experts. The script may consist of actual steps
from a use case or just a textual summary of what is happening in the dia-
gram. Either way, a script can be a useful addition to a sequence diagram,
especially if the diagram is complex.

State invariants and constraints

When an instance receives a message, this can cause it to change state.

A state is defined as “a condition or situation during the life of an object
during which it satisfies some condition, performs some activity, or waits for
some event” [Rumbaugh 1]. Every classifier can have a state machine that
describes the life cycle of its instances in terms of the states they can be in
and the events that cause them to transition between those states.

Not all messages cause a state change. For example, a message that sim-
ply returns the value of some attribute and has no side effects never generates
a state change. You can show the state of the instances on the lifelines by
using state invariants. '

Adding state invariants to a sequence diagram can be a very useful anal-
ysis technique because it allows you to capture the key states in the life cycle
of a lifeline. These states indicate important states of the system and can be
the basis of the state machines that we discuss in Chapter 21.

Let’s look at a specific example: Figure 12.11 shows a use case from a sim-
ple order processing system that is subject to the following constraints:

© the order must be paid for in full by a single payment;
@ the items specified in the order can only be delivered after payment;
® the items are delivered to the customer within 28 days of payment.

Real-world order processing is usually much more complex and flexible than
this! Nevertheless, the example serves to illustrate state invariants. Figure 12.12
shows a sequence diagram for ProcessAnOrder.

You can see that when an Order instance is created, it immediately transi-
tions to the state unpaid (drawn as a rounded rectangle). This tells you that all
Orders are created in the unpaid state. On receipt of the acceptPayment() message,
which must be for payment in full, the Order instance transitions to the state
paid. At some later time, the DeliveryManager instance is sent the message
deliver(). It forwards this message to the Order instance, causing it to transition
to the state delivered.

If the Order class also has a state machine, the states in that machine must
correspond to any state invariants it may have on its sequence diagrams.
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Use case: ProcessAnOrder

ID: 5

Brief description:

The Customer raises an order that is then paid for and delivered.
Primary actors:

Customer

Secondary actors:

None.

Preconditions:

None.

Main flow:

1. The use case begins when the Customer actor creates a new order.

2. The Customer pays for the order in full.

3. The goods are delivered to the Customer within 28 days of the date of the final payment.

Postconditions:
1. The order has been paid for.
2. The goods have been delivered within 28 days of the final payment.

Alternative flows:
ExcessPayment
OrderCancelled
GoodsNotDelivered
GoodsDeliveredLate
PartialPayment

Figure 12.11

sd ProcessAnOrder J
% :OrderManager :DeliveryManager

:Cusltomer

raiseOrder()

label

state invariant '

acceptPayment(

¥

.

; «create»

i >|I :Order !
1

]

)

:

]

constraint

AN

{B — A <= 28 days}

acceptPayment() -

deliver()

TN ]

1
L
i
¥

5 - deliver()
|

B _: . <‘ """"""""""" i‘ """"""" 1

1

Figure 12.12
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Combined
fragments divide a
sequence diagram into
different areas with
different behavior.

o Combined fragments and operators

Figure 12.12 illustrates the use of constraints that are written in braces and
placed on (or near) the lifelines. A constraint placed on a lifeline indicates
something that must be true about instances from that point onwards. Con-
straints are often stated in informal language, although UML does have a
formal constraint language (OCL) that we discuss in Chapter 25.

The figure shows a duration constraint. The :Customer lifeline has two
labels, A and B, and a constraint, {B - A <= 28 days}. This says that the distance
in time between the points A and B must be less than or equal to 28 days.
Point A marks the point at which payment is made, and point B marks the
point at which the products are delivered to the customer. In plain English,
the constraint means that “the order shall be delivered no more than 28 days
after payment has been received”.

Any type of constraint may be placed on a lifeline. Constraints that
constrain attribute values of instances are quite common.

Finally, notice that in Figure 12.12 we have used neither activations nor
message returns. This is because the emphasis in this diagram is on timing
and state invariants and these features would add nothing.

Sequence diagrams may be divided into areas called combined fragments.
Figure 12.13 illustrates combined fragment syntax, which is quite rich.

Each combined fragment has one operator, one or more operands, and
zero or more guard conditions.

sd OperatorSyntax J
EXIEN

: a()
! combined fragment

name opera'ttor [guardConditiont]

) b() : } operand

5 } operand

any guard conditions must
be placed above the first
message in the operand

P LT L

Figure 12.13
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The operator determines how its operands are executed.

Guard conditions determine whether their operands execute. Guard
conditions are Boolean expressions, and the operand executes if, and only if,
the expression evaluates to true. A single guard condition may apply to all
operands, or each operand may have its own unique guard condition.

The full list of operators is given in Table 12.3.

The most important operators are opt, alt, loop, break, ref, par, and critical. We
discuss opt, alt, loop, and break in detail in the next few subsections and cover ref
in the next chapter. The operators par and critical are about concurrency, which

execute,
is a design issue. We discuss these in Section 20.5 when we discuss concur-
rency. The other operators are rarely used, and you have enough information
in the table to enable you to apply them should you need to.
Table 12.3
: Operator Lon’g,ham‘e o ‘Semantlcs . S e . section {
opt option There is a smgle operand that executes if the condition is true 12.10.1
(like if ... then)
alt alternatives ~ The operand whose condition is true is executed. The keyword else 12.10.1
may be used in place of a Boolean expression (like select ... case)
loop loop This has a special syntax: 12.10.2
loop min, max [condition]
loop min times, then while condition is true, loop (max — min) times
break’ break If the guard condition is true, the operand is executed, not the rest of 12.10.2
the enclosing interaction
ref reference The combined fragment refers to another interaction 13.2
par parallel All operands execute in parallel 20.5.2
critical critical The operand executes atomically without interruption 20.5.2
seq weak All operands execute in parallel subject to the following constraint: 12.10
sequencing  events arriving on the same lifeline from different operands occur in
the same sequence as the operands occur
This gives rise to a weak form of sequencing - hence the name
strict strict The operands execute in strict sequence 12.10
sequencing
neg negative The operand shows invalid interactions 12.10

Use this when you want to show interactions that must not happen

Continued on next page
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Table 12.3 Continued

Operator longname  Semantics

ignore ignore Lists messages that are intentionally omitted from the interaction -
the names of the ignored messages are placed in braces in a comma-
delimited list after the operator name, e.g., {m1, m2, m3}

For example, an interaction might represent a test case in which you
choose to ignore some of the messages

consider  consider Lists messages that are intentionally included in the interaction - the = 12.10
names of the messages are placed in braces in a comma-delimited list
after the operator name

For example, an interaction might represent a test case in which you
choose to include a subset of the set of possible messages

assert assertion The operand is the only valid behavior at that point in the inter- 12.10
action - any other behavior would be an error

Use this as a way of indicating that some behavior must occur at a
certain point in the interaction

12.10.1  Branching with opt and alt

Figure 12.14 illustrates the syntax of opt and alt.
opt creates a The opt operator indicates that its single operand executes if, and only
single branch. if, the guard condition is true. Otherwise, execution continues after the
combined fragment.
opt is equivalent to the programming construct:

if (conditiona) then
action1

alt creates The alt operator represents a choice between alternatives. Fach of its oper-
multiple branches. ands has its own guard condition and will only execute if the guard
condition is true. An optional operand with a guard condition of [else]
executes if none of the other guard conditions are true.

It's worth noting that only one of the alt operands can execute. This
means that all the operand guard conditions must be mutually exclusive. If
at any time more than one of the guard conditions is true, this is an error
condition and the resulting behavior of alt is not defined by the UML
specification.

DL
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sd OptAndAltSyntax )
A B :C D
opt [condition] f J 5 E E
N H ' : do this if condition is true
: op1() > : !
alt : [condition1] Z : :
; op2() =E ; ; do this if condition1 is true
; [condition2] ; ; ;
; op3() ' >: E do this if condition2 is true
------ ; [else] ; : :
‘ op4() ; : R do this if none of the other
: . : L conditions are true
Figure 12.14

alt is equivalent to the programming construct:

if (conditiond) then
operand 1

else if (condition2) then
operand 2

else if (conditionN) then
operand N

else
operand M

You can see that opt is semantically equivalent to an alt operator with exactly
one operand.

As an example of using opt and alt, consider the use case in Figure 12.15.
We first saw this ManageBasket use case in Section 4.5.6. It is part of a simple
e-commerce system, and it describes updating the quantity of an item in the
Customer’s ShoppingBasket or removing an item entirely.

Figure 12.16 is the analysis class diagram for this use case. You can see
that the ShoppingBasket holds one or more Items. Each of these Items is a quantity
of a particular Product. In analysis class diagrams, you only show the classes,
attributes, and operations that illustrate the point you are trying to make. In
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Use case:ManageBasket

ID: 2

Brief description:
The Customer changes the quantity of an item in the basket.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
1. The shopping basket contents are visible.

Main flow:

1. The use case starts when the Customer selects an item in the
basket.

2. If the Customer selects "delete item"
2.1 The system removes the item from the basket.

3. If the Customer types in a new quantity
3.1 The system updates the quantity of the item in the basket.

Postconditions:
None.
Alternative flows:
None.
Figure 12.15
ManageBasket )
ShoppingBasket ! 0. Item 0. 0. Product
getltem ():ltem quantity:int productld :String
— name:String
setQuantity():int description:String
price:double

Figure 12.16

this diagram, we are trying to show the collaboration between the Shopping-
Basket, ltems, and Products.

Finally, Figure 12.17 shows the sequence diagram that realizes this use
case. Notice that in this sequence diagram, we have described the policy that
when an Item’s quantity falls to zero, it is destroyed. This is perfectly reason-
able as an ltem only exists to represent a quantity of a particular Product in the
ShoppingBasket. However, you could argue that this level of detail is unneces-
sary in analysis and that a sequence diagram that did not show the explicit
deletion of Items would be equally acceptable.
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sd ManageBasket )

X

:Customer |:ShoppingBasketl ! item:ltem I

getltem ()

v

alt [changeQuantity]

1
[
'
I
1
]
]
'
T
1
1
1
]
t
g

setQuantity()

e

opt item.quantity = 0] )

«destroy» ; :

[deleteltem)

«destroy»

B R L L T

[ (R R .

Figure 12.17

Iteration with loop and break
Very often you need to show loops in sequence diagrams. You can do this by
using the loop and break operators as illustrated in Figure 12.18.

The loop operator works as follows:

loop min times then
while (condition is true)
loop (max - min) times

You should note the following points about loop syntax:

@ a loop without max, min, or a condition is an infinite loop;
® if only min is given, then max = min;

@ the condition is usually a Boolean expression but it may also be arbitrary
text, provided that its intent is clear.

loop might seem to be quite complex at first, but it can be used to support a
great variety of looping idioms. Some of the more common idioms are listed
in Table 12.4.

You can use break to indicate under what conditions the loop is broken out
of and what happens then. The break operator has a single guard condition,
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sd LoopAndBreakSyntax )
times then T
while condition T T
is true loop — loop min, max [condition] ) :
(max — min) + :
times : op1() ;:
loop while : :
condition ____ [ioop [condition]; ) :
is true : .
1 op2() :
: ] on breaking
! ' out of the loop
break J ! op3() ';E } do this
break must/ : op4) :
be g!obal i :E this does not
relative ' ' :
t 1 happen if break
o loop : 1
] ! executes
Figure 12.18
Table 12.4
Typeofloop ~~  Semantics _ Loopexpression
while(true) Keep looping forever loop or loop *
{ body }
fori=ntom Repeat (m-n) times loopn, m
{ body }

while( booleanExpression )
{ body}

Repeat while booleanExpression is

true

loop [ booleanExpression ]

repeat
{ body}
while( booleanExpression )

Execute once then repeat while

loop 1, *{ booleanExpression ]

booleanExpression is true

forEach object in collection
{ body }

Execute the body of the loop once
for each object in a collection of
objects

loop [ for each object in collectionOfObjects |

forEach object of class
{body}

Execute the body of the loop once
for each object of a particular class

loop | for each object in ClassName |
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and if this is true, the body of break executes and the loop terminates. The
essential point is that the rest of the loop after break does not execute.

The break combined fragment is logically outside the loop—it is not part
of it. You must therefore always draw the break fragment outside the loop but
overlapping it, as shown in Figure 12.18.

One of the commonest looping idioms is to traverse a collection of
objects. For example, you could use a loop over a collection as a possible
implementation for the findCourse(...) operation of the RegistrationManager class
(Figure 12.19).

The operation returns the Course object with the right name or null, as
shown in Figure 12.20. You can use the name of an association end with
multiplicity greater than 1 as a collection of objects. In this case we use
courses to represent a collection of Course objects.

RegistrationManager 1 0.7 Course
courses
findCourse( name : String ) : Course 0.%
findStudent( name : String ) : Student
registration
0..*
1 *
Q.. Student
students

Figure 12.19

sd FindCourse( name : String ) : Course)

l :RegistrationManagerl I courses—l I course:Course

' 1 t
1 '
o ! '
P> T
1
1

loop [for each course in coursesy courseName = g'etName()

v

break [name = courseName] )

course

G R By R U S

Figure 12.20
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Communication
diagrams emphasize
the structural aspects
of an interaction.
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Communication diagrams

Communication diagrams emphasize the structural aspects of an interac-
tion—how lifelines connect. In UML 2, they are semantically quite weak
compared to sequence diagrams.

You have already seen some communication diagrams. According to the
UML 2.0 specification [UML2S], the object diagrams you saw in Chapter 7
can be considered to be special cases of class diagrams or to be special cases
of instance form communication diagrams where each lifeline represents a
class instance (object).

Communication diagrams have a syntax similar to that of sequence dia-
grams except that the lifelines don't have tails. Instead, they are connected
by links that provide communication channels for the messages to pass over.
Sequencing is indicated by numbering each message hierarchically.

Figure 12.21 shows a simple communication diagram for the AddCourses
use case that shows the :Registrar adding two new Courses. Note how the mes-
sages are numbered to indicate their sequence and their nesting within other
messages.

Here is the walkthrough for Figure 12.21.

1. addCourse("UML") — The message addCourse(...) is sent to the :RegistrationManager
lifeline with the parameter "UML". The :RegistrationManager instance invokes
an operation called addCourse(...) with the parameter "UML" and focus of
control passes to this operation.

1.1. «create» — As the sequence number is 1.1, this tells us that we are
still within the focus of control of the operation addCourse(...). The
:RegistrationManager sends an anonymous message that is stereo-

sd AddCourses )
lifeline
sequence number message uml-Course /
1: addCourse( "UML" ) ——> T 1.1: «create»
2: addCourse( "MDA" ) ——»
:RegistrationManager
:Registrar i
Y link l 2.1: «create»
mda:Course object creation
m ge

Figure 12.21
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typed «create». These «create» messages create new objects, and this
particular message creates a new object, uml:Course. You will give this
anonymous message a name, and possibly parameters, later in
analysis or design but for now it is sufficient to show that you are
creating a new uml:Course object. After object creation, no more mes-
sages are sent within the focus of control of addCourse(...), and this
flow returns.

2. addCourse( "MDA") — The message addCourse(...) is sent to the :RegistrationMan-
ager with the parameter "MDA". Focus of control passes to the operation
addCourse(...).

2.1. «create» — As the sequence number is 2.1, this tells us that we are still
within the focus of control of addCourse(..). The :RegistrationManager
sends an anonymous message, stereotyped «create», that creates a
new object, mda:Course. After object creation, the focus of control of
addCourse(..) returns and the interaction finishes.

At first, communication diagrams can be somewhat tricky to read as quite a
lot is going on. The key points to realize are that a message send results in an
operation being called on an instance and that the sequence numbering of
messages indicates the nesting of operation calls within operation calls (i.e.,
nested focus of control).

Iteration

You can show iteration on communication diagrams by using an iteration
expression. This comprises an iteration specifier (*) and an (optional) itera-
tion clause as shown in Figure 12.22.

UML 2 does not prescribe any particular syntax for iteration clauses, so
you can use anything that makes sense. Generally, code or pseudocode is a

iteration specifier

AY
sd PrintCourses I iteration clause
—

1.1 " [fori=1to n]: printCourse(i) —

N

.
I :ReglstratlonManagerl

1: printCourses ()

‘Registrar l 1.1.1: print()

I [i:Course l

Figure 12.22
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good option. You might think that communication diagrams would by
default use the iteration syntax for sequence diagrams that we described in
Section 12.10.2. However, the UML specification doesn’t mention this! If you
do decide to use the same iteration syntax, an iteration expression could be
written as

*[ loop min, max [ condition ]]

This has the advantage of consistency but has some syntactic redundancy as
both loop and * are effectively iteration specifiers. Nevertheless, we think that
this is a very good approach.

In the example in Figure 12.22 we have used pseudocode to indicate that
the iteration clause loops, incrementing i from 1 to n. We then use i as a selector
for a specific Course instance to which we send the message print(). This has the
effect of printing out all the Course instances. However, this approach assumes
that the Course instances are stored in some kind of indexed collection. If you
don’t want to make that assumption, you can use the alternative approach

~ shown in Figure 12.23.
In Figure 12.23 we have done two things.

1. We have shown the role name and multiplicity on the :RegistrationManager
to :Course link. This indicates that :RegistrationManager is connected to a
collection of :Course objects via the courses role name (see the class diagram
in Figure 12.7).

2. We have added the iteration specifier to the message print(). This indi-
cates that the print() message is sent to each object in the collection.

The standard iteration specifier (*) means that the messages will be executed
sequentially. If you wish to indicate that the messages are all executed in
parallel, you must use the parallel iteration specifier *//.

sd PrintCourses l

1: printCourses( )

—_—
Jl :RegistrationManagerl

:Registrar l 1.1:* print()
courses *

:Course

Figure 12.23
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Branching - the
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Branching

You can model branching simply by adding guard conditions to the mes-

sages. The message is only sent when the guard condition evaluates to true.
Figure 12.24 shows an example of branching in our course registration

system. This communication diagram realizes the use case RegisterStudent-

ForCourse. In this registration system, registration is a three-step process:

© find the right student record—we can’t register students for courses
_unless they are in the system;
find the right course;
register the student for the course.

sd RegisterStudentForCourse) 1.1: student = findStudent( "Jim") —
1.2: course = findCourse{ "UML") —»

N

1: register ( "Jim", "UML" ) ——>

:RegistrationManager
<+—— 1.4 [lfound] : error()
‘Registrar l 1.3 [found] : register( student )
guard condition
found = (student i= null) & (course != null) B] course:Course

Figure 12.24

In Figure 12.24, we have made extensive use of conditions to show how
you can use them in communication diagrams. Conditions have no formal
syntax but are often expressions that involve temporary variables in the
scope of the current focus of control, or attributes of the classes involved in
the interaction. In Figure 12.24, we record the results of the findStudent(..) and
findCourse(...) operations in two temporary variables: student and course. We
then use the values of these variables to calculate the value of the temporary
Boolean variable found. We use found to make a branch at step 1.3. We also use
found to decide whether to raise an error condition to the :Registrar at step 1.4.

Here is the walkthrough for Figure 12.24.

1. registerStudent("Jim", "UML" ) — The :Registrar actor sends the message register-
Student("Jim", "UML") to the :RegistrationManager.
1.1. findStudent( "Jim" ) — The :RegistrationManager sends itself the message
findStudent( “Jim”). The return value from this operation is stored in
the variable student. It will be null if the search failed.
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1.2. findCourse( "UML" ) — The :RegistrationManager sends itself the message
findCourse( "UML" ). The return value from this operation is stored in
the variable course. It will be null if the search failed.

1.3. [found] register( student ) — The :RegistrationManager sends the message
register( student ) to the course object. This message is protected by a
condition and will only be sent if both student and course are not null.
In other words, we only attempt to register the student with the course
if both the student and the course objects have been found successfully.

1.4. [found]: error() —If found is false, call the error() operation on the :Registrar.

It is quite difficult to show branching clearly on communication diagrams—
the conditions seem to spread out all over the diagram and it can get com-
plex quite quickly. As a general style guideline, only show very simple
branching on these diagrams. It is much easier to show complex branches on
sequence diagrams.

What we have learned

Use case realization is an essential part of the analysis process. It allows you
to test your theories against reality by explicitly demonstrating how objects
of your classes can interact to deliver the specified system behavior. Interac-
tion diagrams show how classes and objects realize requirements as specified

in use cases.
You have learned the following.

© The UP activity Analyze a use case is where you create use case realizations -
this activity creates part of the dynamic view of the system.

@ Use case realizations show how instances of analysis classes interact to
realize the functional requirements specified by a use case.
— Fach use case realization realizes exactly one use case.
— Use case realizations consist of:
— analysis class diagrams - these should “tell a story” about one (or
more) use cases;
- interaction diagrams - these demonstrate how objects interact to
realize the use case behavior;
— special requirements — you always uncover new requirements dur-
ing use case realization and you need to record these;
- use case refinement — you may need to change a use case as you
begin to realize it.
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© Interactions are units of behavior of a context classifier.

-— Interactions can use any of the features of the context classifier.

— In use case realization the context classifier is a use case.

— Generic form interaction diagrams show interactions between roles
that classifier instances may play in the interaction.

— Instance form interaction diagrams show interactions between specific
classifier instances:
- use normal instance notation for lifelines.

@ A lifeline represents a participant in an interaction - how an instance of a
classifier participates in the interaction.
— Each lifeline has an optional name, a type, and an optional selector.
— Each lifeline is drawn with the same icon as its type.
— Underline the name, type, and selector to show actual instances.

® A message represents a specific kind of communication between two life-
lines in an interaction.
— Synchronous message (solid arrow head).
— Asynchronous message (open arrow head).
- Message return (open arrow head, dashed line).
— Create message (open arrow head, solid line, stereotyped «create»).
— Destroy message (open arrow head, solid line, stereotyped «destroy»).
— Found message (open arrow head, originates from a filled circle).
— Lost message (open arrow head, terminates in a filled circle).

@ Interaction diagrams.
— Sequence diagrams - emphasize time-ordered sequence of message sends.
— Communication diagrams — emphasize structural relationships between
objects.
— Interaction overview diagrams - emphasize relationships between
interactions.
— Timing diagrams - emphasize real-time aspects of interactions.
© Sequence diagrams. ' '
— Time runs top to bottom.
— Lifelines run left to right:
- lifelines have dashed vertical tails that indicate the duration of the
lifeline;
- lifelines may have activations to indicate when the lifeline has focus
of control;
- organize lifelines to minimize the number of crossing lines.
— Place explanatory scripts down the left-hand side of the sequence
diagram.
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— State invariants — place state symbols on the lifeline at the appropriate

points.

— Constraints — place constraints in {} on or near lifelines.

@ Combined fragments — areas within a sequence diagram with different

@

behavior.

— The operator defines how its operands execute.

— The guard condition defines whether its operand executes.
— The operand contains the behavior.

Operators.
— opt - there is a single operand that executes if the condition is true (like

if ... then).

alt — the operand whose condition is true is executed.

loop — loop min, max [condition]:

— loop or loop * - loop forever;

loop n, m - loop (m - n) times;

loop [ booleanExpression | — loop while booleanExpression is true;

loop 1, *[ booleanExpression | - loop once then loop while booleanExpression
is true;

loop [ for each object in collectionOfObjects | — execute the body of the loop
once for each object in the collection;

loop [ for each object in className ] — execute the body of the loop once
for each object of the class.

break — if the guard condition is true, the operand is executed, not the
rest of the enclosing interaction.

ref — the combined fragment refers to another interaction.

par — all operands execute in parallel.

critical — the operand executes atomically without interruption.

seq — operands execute in parallel subject to the following constraint:
events arriving on the same lifeline from different operands occur in
the same sequence as the operands occur.

strict — the operands execute in strict sequence.

neg — the operand shows invalid interactions.

ignore — lists messages that are intentionally omitted from the interaction.
consider — lists messages that are intentionally included in the interaction.
assert — the operand is the only valid behavior at that point in the
interaction.

Communication diagrams - emphasize the structural aspects of an
interaction:

— lifelines are connected by links;

— messages have a sequence number — they are numbered hierarchically

according to the nesting of the focus of control.
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® Iteration - use an iteration specifier (*) and an optional iteration clause on
the message.

The iteration clause specifies the number of times to loop.

You can use natural language, pseudocode, source code, or sequence
diagram loop notation for the iteration clause.

You can show iteration over a collection of objects by showing the role
name and multiplicity (>1) on the target end of the link and prefixing
the message with the iteration specifier (*). The message is sent to each
object in turn.

Use the parallel iteration specifier *// to indicate that messages are exe-
cuted in parallel.

® Branching - prefix messages with guard conditions. The message executes
if the guard condition is true.

It can be hard to show branching clearly on a communication dia-
gram - for complex branching, use sequence diagrams instead.






realization

This chapter introduces some advanced features of interaction diagrams that
help you deal with complexity. This complexity can arise in both analysis
and design, depending on the nature of the system on which you are work-
ing. While you should always try to keep interaction diagrams as simple as
possible, sometimes there is irreducible complexity. This is when you should
see if any of the techniques presented in this chapter can help.

C 13.2 Interaction occurrences D ( 13.3 Continuations >
(1324 Parameters )
13.2.2 Gates

( 13.4 What we have learned )

6

Figure 13.1

273



soec0RReCoR0N0BOBOGAD PR O BOERBON00RORSNENORO DA B EP PR LN NN R ERBRENERONEAODAUOHODD Bon0s060G0REA0BENG vasessusssa veescsccnsnan oo

274 Part3 Analysis

nteraction occurrences

Very often you have a sequence of message sends that occurs again and again
in many different sequence diagrams. Clearly, it is both error-prone and tire-

Interaction

occurrences are
references to another some to have to redraw the same interaction fragment over and over again,
interaction. so instead you use interaction occirrences.

Interaction occurrences are references to an interaction. When an inter-
action occurrence is placed into an interaction, the flow of the interaction it
references is included at that point.

As a specific example, let us look at a fragment from the simple course
registration system that we discussed Chapter 12. The analysis class diagram
for the part of the system we are interested in is shown in Figure 12.7.

Consider a specific example. Before the Registrar actor in Figure 12.6 can
use the system in any way, he or she first has to log on. You can realize this
requirement by adding a SecurityManager class to Figure 12.7 as illustrated in

Figure 13.2.
SecurityManager
1
1
RegistrationManager 1 Q. Course
courses
0.*
registration
0..*
1 *
0.. Student
students
Figure 13.2

Let’s look at the use case LogOnRegistrar. This is illustrated in Figure 13.3.
This use case is one that will be included by any use case that first needs the
Registrar to log on to the system.

The interaction fragment for logging on the Registrar can potentially
occur at the beginning of a large number of sequence diagrams. It makes
sense to factor this common behavior out into its own sequence diagram and
then reference it when needed. Figure 13.4 shows the sequence diagram
LogOnRegistrar that contains the reusable interaction fragment.

In Figure 13.5, you can see another sequence diagram, ChangeStudentAddress,
that includes the LogOnRegistrar interaction.
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Use case: LogOnRegistrar

ID: 4

Brief description:
The Registrar logs on to the system.

Primary actors:
Registrar

Secondary actors:
None.

Preconditions:
1. The Registrar is not logged on to the system.

Main flow:

1. The use case starts when the Registrar selects "log on".

2. The system asks the Registrar for a user name and password.
3. The Registrar enters a user name and password.

4. The system accepts the user name and password as valid.

Postconditions:
1. The Registrar is logged on to the system.

Alternative flows:
InvalidUserNameAndPassword
RegistrarAlreadyLoggedOn

Figure 13.3

sd LogOnRegistrar )

A

:Registrar :SecurityManager

., logOn( userName, password ) :

authenticate( userName, password )

Figure 13.4

The complete sequence of events in ChangeStudentAddress is summarized
in Table 13.1.

There are several points to bear in mind when you use interaction
occurrences.

@ The interaction referenced by the interaction occurrence is inserted into
the including interaction at the point where the interaction occurrence
first appears.
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13.2.1

Parameters
provide specific values
for the interaction

to use.

Al;alysis

sd ChangeStudentAddress )

:Registrar I:SecurityManager[ I:RegistrationManagerH theStudent:Student

"—' 1

ref LogOnRegistrar J

I ———————— ' interaction

. ! occurrence é
theStudent :=ﬂndStudent( name ) > E §
setAddress( FnewAddress ) lTl =|E|
Figure 13.5
Table 13.1
_Diagam  Sourcelifeline  Message  Targetlifeline
LogOnRegistrar :Registrar logOn(...) :SecurityManager
LogOnRegistrar :SecurityManager authenticate(...) :SecurityManager
ChangeStudentAddress :Registrar findStudent(...) :RegistrationManager
ChangeStudentAddress :Registrar setAddress theStudent:Student

® When the included interaction ends, be very aware of where it leaves the

@

focus of control! The very next message send in the including interaction
must be consistent with this.

All lifelines used in the interaction occurrence must also exist in the
including interaction.

@ To indicate the scope of the interaction occurrence, draw it across the life-

lines it uses.

Parameters
Interactions may be parameterized. This allows you to supply different val-
ues to the interaction in each of its occurrences. You can specify parameters
by using the normal syntax for operations that we discussed in Section 7.5.3.

interactions.

Figure 13.6 shows FindStudent(..) and FindCourse(..), two parameterized
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sd FindStudent( name : String ) : Student )

A

:Registrar I :RegistrationManager

findStudent( name ) ,

sd FindCourse( name : String ) : Course )

A

:Registrar l :RegistrationManager

1

findCourse( name ) '

enesencocso

277

Figure 13.7 shows an example of how these parameterized interactions
can be used. Notice how you can pass specific values in to the interactions as
parameters. This gives you great power and flexibility!

In Figure 13.7 you can see that the two interaction occurrences have return
values that are assigned to the temporary variables theStudent and theCourse.
These temporary variables exist in the scope of the sequence diagram.

sd RegisterJimForUMLCourse )

A

:Registrar

I:RegistrationManager! I theCourse:Course

ref J

theStudent = FindStudent( "Jim" )

ref ]

theCourse = FindCourse( "UML" )

register( theStudent )

v

Figure 13.7
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13.2.2 Gates

Gates are the inputs and outputs of interactions.

You use gates when you want an interaction to be triggered by a lifeline that
is not part of the interaction. You can easily adapt the examples in Figure 13.6,
FindStudent and FindCourse, to use gates. This is illustrated in Figure 13.8.

Gates are the
inputs and outputs of
interactions.

sd FindStudent )

I :RegistrationManagerl

findStudent( name ) :

o
P

____________________________ U

gates sd FindCoursel

findCourse( name ) B

S

l :HegistrationManagerl

AT

Figure 13.8

As you can see from the figure, a gate is a point on the sequence diagram
frame. This point connects a message outside the frame to a message inside
the frame. Both these messages must have a matching signature.

You can modify Figure 13.7 to use these new sequence diagrams with
gates as shown in Figure 13.9.

Now that FindStudent and FindCourse have explicit inputs and outputs, they
have even more flexibility. Consider Figure 13.10, which shows another
possible use of the FindCourse interaction.

Given that both gates and parameters allow flexibility in the reuse of
interactions, when should you use gates and when should you use parameters?

® You use parameters when you know the source and destination lifelines
of all messages within the interaction.

® You use gates when some of the messages arise from outside the interac-
tion frame and you don’t know in advance where they might come from.



56606800 0G0BEBOB0E0N000ERB0GE

PR e OB EOBEEN0NENEB0ENERENGRE0ERA0ITONDYY soacavoaa

ooooooooooooooooooooooooooooo 6nocossnone

Chapter 13 Advanced use case realization

snononoe

279

sd RegisterJimForUMLCours§
‘Registrar l :RegistrationManagerI l theCourse:Course ]
L theStudent = findStudent( "Jim" ) ref E
I:] » FindStudent '
5 gate E
Ij theCourse = findCourse{ "UML" ) ref E
: " FindCourse ;
: register( theStudent ) E R E
Figure 13.9
sd GetStudentsOnUMLCourse )
‘Registrar I :RegistrationManager]

l.-....

getRegisteredStudents( "UML" )

uml = findCourse( "UML" )

FindCourse

Figure 13.10

Continuations allow an interaction fragment to indicate that its flow terminates
in such a way that it can be picked up and continued by another interaction

fragment. The continuation is drawn as a label inside a rounded rectangle.
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Continuations I N

allow an interaction
fragment to terminate
in such a way that it
can be continued by
another fragment.

When a continuation is the Iast item in an interaction fragment, it indi-
cates the point at which the fragment finishes but may be continued by
other fragments.

When a continuation is the first item in an interaction fragment, it indicates
that this fragment is continuing from a previous fragment.

Continuations provide a way to connect different interactions. Essen-
tially, one interaction finishes, leaving its lifelines in a specific state, and
other interactions may pick up at that point and continue.

Continuations have the same visual syntax as the state invariants that
we discussed in Section 12.9.4. However, a continuation is just a way of
connecting different interactions at labelled points and doesn’t necessarily
map to a specific state in the state machine of the context classifier.

Figure 13.11 shows a simple sequence diagram in which the :RegistationUl
(UI stands for user interface) prompts the :Registrar actor first for a course
name, and then for one of the three options: add, remove, or find. Depending
on which option is selected, the interaction terminates at one of the three
continuations addCourse, removeCourse, or findCourse.

sd GetCourseOption)

A

‘Registrar :RegistrationUl

name = get course name
—

E option = get option :
e

alt : [option == add] ‘
C addCourse D]

: [option == remove] ;
(__ removeCourse )

i [option ==find] !
C findCourse 1

\

I~ continuation

Figure 13.11

In Figure 13.12 you can see an interaction called HandleCourseOption that
includes GetCourseOption and then picks up at each of its continuations. You
can see that continuations have allowed you to

@ decouple the interactions GetCourseOption and HandleCourseOption;

® potentially reuse GetCourseOption and HandleCourseOption with other interac-
tions that have the same continuations.
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sd HandleCourseOptiog}

:Registrar l :RegistrationUl ” :RegistrationManager

ref ) .
GetCourseOptlon
MaddCourse( name )

removeCourse

l
1)
:
removeCourse( name )
I T
1
H
l

| (__findCourse )

~ findCourse( name_)
r———-1—~—————>.

continuation |

Figure 13.12

When using continuations be aware that

@ continuations start and end interactions—they must therefore be either
the first or last thing in an interaction;

@ in the context of a given classifier, continuations with the same name
must cover the same set of lifelines;

© continuations only make sense when there is at least weak sequencing in
an interaction—clearly, if there was no sequencing, you could not know
where the continuation occurred;

@ continuations must cover all lifelines in their enclosing fragment (i.e.,
they are global within that fragment).

Continuations are often used with the alt operator, as shown in Figure 13.12,
to create branch points within an interaction.

Whatwehave learned

In this section we have looked at advanced features of interaction diagrams.
You have learned the following.

@ Interaction occurrences — references to another interaction.
— The flow of the referenced interaction is included in the flow of the
referencing interaction.
— Parameters - interaction occurrences may have parameters — use normal
parameter notation.
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— Gates — inputs and outputs of interactions:

— a point on the sequence diagram frame that connects a message
outside the frame to a message with the same signature inside the
frame.

- Use parameters when you know the source and destination of all
messages — use gates when you don't.

© Continuations - terminate an interaction fragment so that it can be
continued by another fragment:
— first item in the fragment - the fragment is continuing from another
fragment;
— last item in the fragment — the fragment terminates but may be contin-
ued by another fragment.
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Activity diagrams

Chapt erroad map T

Activity diagrams are “OO flowcharts”. They allow you to model a process as
an activity that consists of a collection of nodes connected by edges. UML 2
introduces new semantics for activity diagrams that gives them much more
power and flexibility than they have ever had before. In this chapter we
cover basic activity diagrams—this should be all you need for most of your
activity modeling. For completeness, we present more advanced topics in the
next chapter.

283
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(142 Whatare activity diagrams? )

( 14.3 Activity diagrams and the UP )

14.4 Activities

14.5 Activity semantics

14.6 Activity partitions

flearn about action nodes] [learn about control nedes}

14.7 Action nodes
14.7.1 Call action node

C 14.7.2 Accept time event action node ) C 14.8.2 Decision and merge nodes ) C 14.9.2 Representing objects in state >

flearn about object nodes] flearn about pins]
14.8 Control nodes 14.9 Object nodes ( 14.10 Pins )
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Figure 14.1

Activity diagrams are often called “OO flowcharts”. They allow you to model
a process as an activity that consists of a collection of nodes connected by
edges.

In UML 1, activity diagrams were really just special cases of state machines
(see Chapter 21), where every state had an entry action that specified some
process or function that occurred when the state was entered. In UML 2,
activity diagrams have completely new semantics based on Petri Nets. This
has two advantages.

Activity diagrams
are 00 flowcharts.

1. The Petri Net formalism provides greater flexibility in modeling different
types of flow.

2. There is now a clear distinction in UML between activity diagrams and
state machines.
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An activity can be attached to any modeling element for the purpose of mod-
eling its behavior. The element provides the context for the activity, and the
activity may refer to features of its context. Activities are typically attached to

use cases;
classes;
interfaces;
components;

collaborations;

@ & ¢ © ¢ @

operations.

You can also use activity diagrams to model business processes and work-
flows. We indicate how you can do this, but it can be a complex topic and is
beyond the scope of this book.

Although a common use of activity diagrams is to flowchart operations,
it’s worth considering that the source code for an operation, in code or
pseudocode, might be its best and most concise representation! So judge
each case on its merits.

The essence of a good activity diagram is that it is focused on communi-
cating one specific aspect of a system’s dynamic behavior. As such, it must be
at the correct level of abstraction to communicate that message to its target
audience, and it should contain the minimum amount of information nec-
essary to make the point. It is easy to adorn activity diagrams with object
states and objects flows, etc., but you must always ask yourself whether those
adornments clarify or obscure the diagram. As usual, it’s best to keep it sim-
ple if possible.

Activity diagrams
can be used inmany UP
workflows.

143 Activity diagrams and the UP

Because of their flexibility, there is no single place where activity diagrams fit
into the UP. They provide a general-purpose mechanism for modeling behav-
iors and you may use them wherever they add value. We cover them here in
the analysis workflow as this is where we tend to use them the most.

The unique capability of activity diagrams is that they let you model a
process without having to specify the static structure of classes and objects
that realize that process. Clearly, this is very useful when you are in the early
stages of analysis and are trying to uncover what a particular process is.



voeseonsnonoD seesasa

PR PRI HNRONENONOB0B0NBE0RNIGANEN00S 0B OUENOEORRsEEEe000NN0BANOBOLENROD0DRSEAAERGAGE ceomeconeuonsRrbRBLOBL

86 Part 3 Analysis

Activities are
networks of nodes
connected by edges.

In our experience, activity diagrams are most commonly used in the fol-
lowing ways.

@ In the analysis workflow:
— to model the flow in a use case in a graphical way that is easy for
stakeholders to understand;
— to model the flow between use cases. This uses a special form of
activity diagram called an interaction overview diagram (see Section
15.12).

@ In design:
— to model the details of an operation;
— to model the details of an algorithm.

@ In business modeling:
— to model a business process.

Activity diagrams are usually easily understood by stakeholders. This is be-
cause most stakeholders will have had some exposure to flowcharts in some
form or another. Activity diagrams can therefore be a great communication
mechanism provided you keep them simple.

As you will see in this chapter and the next, UML 2 introduces a lot of
powerful new syntax and semantics for activity diagrams, and it’s important
not to get carried away with this. When constructing any UML diagram, al-
ways keep in mind your target audience and use UML features accordingly.
There’s no point in using all the latest features if no one understands the
diagram.

Activities are networks of nodes connected by edges. There are three categories

of node:

1. action nodes - represent discrete units of work that are atomic within the
activity;

2. control nodes — control the flow through the activity;

3. object nodes - represent objects used in the activity.

Edges represent flow through the activity. There are two categories of edge:

1. control flows - represent the flow of control though the activity;
2. object flows - represent the flow of objects through the activity.

We look at each of these types of node and edge in detail in subsequent
sections.
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Let’s look at an example. Figure 14.2 shows a simple activity diagram for
the business process Send letter. Note that activities can have preconditions
and postconditions much like use cases. Preconditions are things that must
be true before the activity can start, and postconditions are things that will
be true after the activity has finished. Actions within the activity can also
have their own local preconditions and postconditions, as illustrated.

@d letter \
precondition: know topic for letter

postcondition: letter sent to address

«localPrecondition»
address is known

«localPostcondition»| ~
|letter is addressed
activity )\

initial node

action node

Write letter
Address letter

Post letter

final node
/
O /

edge

control flow

Figure 14.2

Activities often start with a single control node, the initial node, that in-
dicates the place where execution will begin when the activity is invoked.
One or more final nodes indicate places where the activity terminates.

In the example in Figure 14.2, the activity begins at the initial node and
then control transitions to the action node Write letter via an edge. This node
indicates a piece of work or behavior that is atomic as far as its containing
activity is concerned. Flow progresses to Address letter, Post letter, and then to the
final node where the activity terminates.

A common use of activity diagrams is to model a use case as a series of
actions. Figure 14.3 shows the use case PaySalesTax from Chapter 4. This use
case can be expressed as an activity diagram, as shown in Figure 14.4.

Notice that the activity diagram gives you a more compact and graphical
form of the use case. The activity diagram expresses the use case as two actions,
Calculate sales tax and Send electronic payment. Each of these actions could itself be
expressed as an activity diagram, and this would probably occur in the design
workflow when you need to uncover how the actions are implemented. The
actor and its interaction with the system are structural features, and these are
absent from the diagram.
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Use case: PaySalesTax

ID: 1

Brief description:
Pay Sales Tax to the Tax Authority at the end of the business quarter.

Primary actors:
Time

Secondary actors:
TaxAuthority

Preconditions:
1. ltis the end of the business quarter.

Main flow:

1. The use case starts when it is the end of the business quarter.

2. The system determines the amount of Sales Tax owed to the Tax
Authority.

3. The system sends an electronic payment to the Tax Authority.

Postconditions:
1. The Tax Authority receives the correct amount of Sales Tax.

Alternative flows:
None.

Figure 14.3

ﬁ’aySalesTax \

precondition: it is the end of the business quarter
postcondition: the Tax Authority receives the correct amount of Sales Tax

?

( Calculate sales tax ]

|

[ Send electronic payment J

- o Y,

Figure 14.4

Use cases express system behavior as an interaction between an actor
and the system, whereas activity diagrams express it as a series of actions.
These are complementary views of the same behavior.

Activity diagrams have quite intuitive semantics, as you may have noticed
from the previous sections. In this section we look at activity semantics in
depth.

Activity diagrams
are based on Petri Nets.
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UML 2 activity diagrams are based on Petri Nets. Petri Nets are out of scope
for this book, but you can find out more about them at www.daimi.au.dk/
PetriNets/ if you are interested.

Activity diagrams model behavior by using the token game. This game
describes the flow of tokens around a network of nodes and edges according
to specific rules. Tokens in UML activity diagrams can represent

@ the flow of control;
® an object;

@ some data.

The state of the system at any point in time is determined by the disposition
of its tokens.

In the example in Figure 14.2, the token is the flow of control as there are
no objects or data being passed between nodes in this particular case.

Tokens are moved from a source node to a target node across an edge.
Movement of a token is subject to conditions, and it can only occur when all
of the conditions are satisfied. The conditions vary depending on the type of
node. For the nodes in Figure 14.5 (action nodes) these conditions are

& the postconditions of the source node;
@ guard conditions on the edge;
@ the preconditions of the target node.

As well as action nodes there are control nodes and object nodes. Control
nodes have special semantics that control how tokens are passed from their
input edges to their output edges. For example, the initial node begins an
activity, the final node ends an activity, and a join node will offer a token
on its single output edge if, and only if, there are tokens on all of its
input edges. Object nodes represent objects flowing around the system. We
discuss control nodes and object nodes in more detail in Sections 14.8 and
14.9 respectively. -

Consider how the token game works for the activity illustrated in Fig-
ure 14.5. When the activity is executed, a flow of control token starts on the
initial node. There are no conditions on this node, its output edge, or the target
node, and so the token automatically traverses the output edge to the target
node, Write letter. This causes the action specified by the Write letter action node
to execute. When Write letter has finished, the flow of control token traverses
to the action node Address letter if, and only if, its precondition, address is
known, is satisfied. When the postcondition, letter is addressed, is satisfied, con-
trol flows from Address letter to Post letter. Finally, as there are no conditions
impeding flow out of Post letter, the flow of control moves to the final state
and the activity finishes.
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Each activity
partition represents a
high-level grouping of
related actions.

146 Activity partitions

flow of control token

Kend letter
precondition: know topic for letter

postcondition: letter sent to address

Write letter
Address letter

[———————————— L.
«localPostcondition» |
Post letter

«localPrecondition»
address is known

letter is addressed

-

/

Figure 14.5

In this simple example the flow of control passes through each action
node in turn, causing it to execute. This is core activity semantics.

As we've mentioned, the state of the executing system may be repre-
sented at any point in time by the disposition of its tokens. For example,
when the token is in the Write letter action node, you could say that the sys-
tem is in the state Writing letter. However, not every action execution or token
flow constitutes a notable change in state of the system from the point of
view of its state machines (see Chapter 21). Nevertheless, the disposition of
tokens provides a link between activity diagrams and state machines. You
must ensure that the activity diagrams and state machines for a particular
model element are consistent with each other.

Although the semantics of UML 2 activities are described with the token
game, they are hardly ever implemented in that way. In fact, an activity is
just a specification for which there may be many possible implementations.
For example, in Figure 14.5, we are describing a simple business process,
rather than a software system, and implementations of this process would
generally not involve token passing!

To make your activity diagrams easier to read, you can divide activities into
partitions by using vertical, horizontal, or curved lines. Each activity parti-
tion represents a high-level grouping of related actions. Activity partitions
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are sometimes called swimlanes. Partitioning is a powerful technique—when
used well, it can make activity diagrams much easier to understand.

In UML 2, the modeler defines the semantics of activity partitions—they
have no inherent semantics. You can therefore use them to partition activity di-
agrams in any way you like! Activity partitions are commonly used to represent

® use cases;
© classes;
@ components;
@ organizational units (in business modeling);
@ roles (in workflow modeling).
However, these are not the only possibilities. For example, in design models
for distributed systems, you can even use activity partitions to model the dis-
tribution of processes across physical machines.

Each set of partitions should have a single dimension that describes the
base semantics of the set. Within this dimension, partitions may be hierar-

chically nested. Figure 14.6 shows an activity that has a hierarchically nested
set of activity partitions.

Course production dimension name
Location
Zurich London
Marketing Scheduling Development

Create course
business case | { Develop course l
Schedule |

course

-

activity partition—

Book trainers

[ Market course }6—{ Book rooms ]

$ | /

The dimension is Location, and within this dimension there is a hierarchy
of partitions, as shown in Figure 14.7. This diagram actually models the
course production business process in our partner company Zuhlke Engi-
neering AG. Many of their courses are developed in London by us.

Figure 14.6
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wexternal» [ N

partitions are not part
of your system.

dimension
Department

Zurich London
activity
partitions

Marketing  Scheduling Development

Figure 14.7

There is often a connection between activity partitions and concurrent
flows of control. We discuss modeling concurrency in activity diagrams in
detail in Section 14.8.3. For example, it is common for separate departments
or business units to perform concurrent lines of work and then to synchro-
nize at some point. Activity diagrams with activity partitions are an excellent
way of modeling this.

Sometimes it’s not really feasible to arrange the nodes into vertical or hor-
izontal partitions without making the diagram hard to read. In this case, you
could use curved lines to create irregular partitions, or you could indicate
partitions by using text. UML has a textual notation for activity partitions,
illustrated in Figure 14.8. However, you would typically only use this nota-
tion as a last resort because the graphical notation is usually so much clearer.

partition hierarchy multiple partitions

A) A}
(Location::London::Development) (A, B)
Develop course Some action

Figure 14.8

You can specify an action’s position within the partition hierarchy by
using a double-colon-delimited pathname in brackets above the action name.
If an action resides in more than one partition, you list each partition path-
name separated by commas.

Very occasionally you may need to show behavior on an activity diagram
that is, strictly speaking, outside the scope of the system. This might be to
show how the system interacts with some other external system. Activity
diagrams can accommodate this—simply add the stereotype «external» directly
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above the partition name. Note that the external partition is not a part of the
system and therefore can’t be nested within any model partition hierarchies.

You can certainly add a lot of useful information to an activity diagram
by careful choice of dimensions and activity partitions. However, these fea-
tures can also complicate diagrams, particularly when there are multiple
dimensions and complex partition hierarchies! In practice, try to use no
more than three levels in a hierarchy (including the dimension) and no more
than two dimensions per diagram.

Always use your judgment and apply activity partitions only when they
add real value to the model.

Action nodes execute when

© there is a token simultaneously on each of their input edges AND
© the input tokens satisfy all of the action node local preconditions.

This is illustrated in Figure 14.9.

input token

b—1—

. > action node does
Action node

S not execute
|
( ] — action node does
.| Action node | not execute
- J

action node
executes

Action node

output token

Figure 14.9

Action nodes perform a logical AND on their input tokens—the node isn’t
ready to execute until tokens are present on all of its input edges. Even when
the required tokens are present, the node will only execute when its local
precondition is satisfied.



esonscosenew GNP RENPEEENNE00VN0ONLEPDRC0ARNGR00ERsRAN0BONNDRANIODR coasrsentsnsuos seosovesonnD peaseses censaonenocosoensvRROn so

294

Action nodes
offer control tokens on
all their output edges -
an implicit fork.

14.7.1

A call action node
can invoke an activity,
a behavior, or an
operation.

Part 3 Analysis

When the action node has finished execution, the local postcondition is
checked; if it is satisfied, the node simultaneously offers tokens on all of its
output edges. This is an implicit fork as one action node may give rise to
many flows. Unlike conventional flowcharts, activity diagrams are inher-
ently concurrent.

Because action nodes do something, they are usually named with a verb
or verb phrase. The UML specification doesn't give any guidelines on nam-
ing action nodes. The convention we use is to name the node by starting
with an uppercase letter and continuing in lowercase, using spaces where
appropriate. The only exception to this rule occurs when an action node
contains a reference to another model element. In this case, we always use
the model element name as it is without changing case or adding spaces. Fig-
ure 14.10 shows two examples. The top example refers to something called
“order”, whereas the bottom example refers explicitly to a class called Order
that can be found somewhere else in the model.

"order" refers to an order

't 5
Create order of some kind

Create Order

"Order" refers to a model
element called Order

Figure 14.10

Details of the action are captured in the action node specification. It is
often just a simple textual description such as “Write a letter”, but in design,
it might be structured text, pseudocode, or actual code. If the activity dia-
gram is modeling a use case, then it could be one or more steps from the use
case flow. However, be aware that this can create a maintenance problem
because you have to keep the use case and associated activity diagram in step
if one or the other changes.

There are four types of action nodes. These are summarized in Table 14.1
and discussed in detail in the sections listed in the table.

Call action node
The most common type of action node is the call action node. This type of

“node can invoke

@ an activity;
@ a behavior;

@ an operation.
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Table 14.1
Syntax Name - Semantics o ~ Section
Call action node  Invokes an activity, behavior, or operation 14.7.1
Some action
Send signal Send signal action — sends a signal asynchronously (the 15.6
SignalName sender does not wait for confirmation of signal receipt)

It may accept input parameters to create the signal

Accept event Accepts an event — waits for events detected by its owning 15.6

AcceptEvent action node object and offers the event on its output edge

Is enabled when it gets a token on its input edge

If there is no input edge, it starts when its containing
activity starts and is always enabled

Accept time event Accepts a time event - responds to time 14.7.2
action node

i Ul

time expression Generates time events according to its time expression

Some examples of call action node syntax are illustrated in Figure 14.11. As
you can see from the figure, call action node syntax is very flexible!

® You can indicate that the action invokes another activity by using the
special rake symbol in the lower right-hand corner of the node icon. The
name of the node is the name of the activity that it calls.

® You can call a behavior—this is a direct invocation of a behavior of the
context of the activity without specifying any particular operation.

Create Order | call an activity

Close Order call a behavior

I!

getBalance():double operation name N
(Account::) class name
(optional)
Get balance node name
(Account:: getBalance():double) operation name call an
(optional) operation
if self.balance <= 0: programming
self.status = 'INCREDIT' language
else (e.g., Python)
self.status = 'OVERDRAWN' Y,

Figure 14.11
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14.7.2
An accept time

event action node
responds to time.

® You can call an operation by using the standard operation syntax described
in Section 7.5.3.

@ You can call an operation by specifying the details of the operation in a
particular programming language. This can be particularly useful if you
are using a UML tool that lets you generate code from activity diagrams
(e.g., iUML from Kennedy Carter, www.kc.com).

@ You can refer to features of the context of the activity by using the key-
word self.

When you use call action nodes in analysis-level activity diagrams, you will
usually be calling a behavior. Call action nodes that invoke specific opera-
tions tend to be used for more detailed activity modeling in design.

Accept time event action node

An accept time event action node responds to time. This type of node has a
time expression, and it generates a time event when this expression becomes
true. This node behaves differently depending on whether or not it has an
input edge.

For example, Figure 14.12 shows an accept time event action node that has
no input edge. When its owning activity is triggered, this node will become
active and will generate a time event whenever its time expression becomes
true. In the example shown, a time event is generated at the end of every
business year, and this causes the activity Send company tax return to execute.

HSend company tax return}-—>

end of business
year occurred

~ time

expression

Figure 14.12

In the example in Figure 14.13, however, the accept time event action
has an input edge and will only become active when a token is received on

()%

wait 10 seconds

time
expression

Figure 14.13
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that edge. This example is a fragment from an elevator system. The first ac-
tion opens the elevator door and triggers the accept time event action. This

297

action waits for ten seconds, and then offers a token to the action Close door.

Note that the time expression may refer to
® an event in time (e.g., end of business year);
@ a point in time (e.g., on 11/03/1960);

@ a duration (e.g., wait 10 seconds).

Table 14.2

Control nodes

Control nodes manage the flow of control within an activity. Table 14.2

summarizes all of the UML 2 control nodes. We discuss each of these nodes

in detail in the next few sections.

@— Initial node Indicates where the flow starts when an activity is invoked  14.8.1
O Activity final Terminates an activity | 14.8.1

. node ' g

=]
Flow final node Terminates a specific flow within an activity — the 8| 1481

® other flows are unaffected ]
Decision node The output edge whose guard condition is true is traversed  14.8.2

decision condition . -
e E May optionally have a «decisioninput»

% C Merge node Copies input tokens to its single output edge 14.8.2
{ Fork node Splits the flow into multiple concurrent flows 14.8.3
{ioin spec} Join node Synchronizes multiple concurrent flows 14.8.3

I o

May optionally have a join specification to modify its
semantics
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14.8.1
The initial node | N\

indicates where an
activity starts.

The activity final ] N\

node stops all flows
within an activity.

The flow final node
stops one flow within
an activity.

14.8.2

A decision node
outputs a token onan
output edge whose
guard condition
evaluates to true.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Initial node and final nodes

As we already mentioned in Section 14.4, the initial node is the point at
which flow starts when an activity is invoked. An activity may have more
than one initial node. In this case, flows start at all of the initial nodes simul-
taneously and execute concurrently.

An activity can also be started by an accept event action (Section 15.6) or
by an activity parameter node (Section 14.9.3), so initial nodes are not man-
datory provided there is some other way of starting the activity.

The activity final node stops all flows within an activity. An activity may
have many activity final nodes, and the first one to be activated terminates
all other flows and the activity itself.

The flow final node simply stops one of the flows within the activity—the
other flows continue. See Figure 15.10 for an example.

Decision and merge nodes

A decision node has one input edge and two or more alternate output edges.
A token arriving at the input edge will be offered to all of the output edges
but will traverse at most one of them. The decision node acts like a crossroads
in the flow where the token must take one direction only.

Each of the output edges is protected by a guard condition such that the
edge will accept a token if, and only if, the guard condition evaluates to true.
It’s important to ensure that the guard conditions are mutually exclusive
so that only one of them can be true at any point in time. If not, the behav-
ior of the decision node is formally undefined according to the UML 2
specification!

The keyword else can be used to specify the edge traversed if none of the
guard conditions is true.

Figure 14.14 shows a simple example of a decision node. After the action
Get mail, the flow of control hits a decision node. If the condition [is junk] is
true, then the mail is binned, else the mail is opened.

A note stereotyped «decisioninput» provides a decision condition for a de-
cision node. The result of this condition is used by the guard conditions on
the outgoing edges. An example activity fragment is shown in Figure 14.15.
In this fragment, the decision condition compares the requested amount of
the withdrawal with the account balance. If the balance is greater than or
equal to the requested amount, then the condition evaluates to true and the
flow traverses to Withdraw amount. Otherwise, a failure is logged.

Figure 14.14 shows a merge node. Merge nodes have two or more input
edges and a single output edge. They merge all their incoming flows into a
single outgoing flow. The semantics of merge is very simple—all tokens
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ﬁ)cess mail

guard

/ condition

fis junk]

keyword

else

decision node

(Open mail ) [ Bin mail ]
| |

merge
\Z Wy

Figure 14.14
— Request withdrawal
«decisionInput»
|balance >= amount
decision
condition (Withdraw amouna ( Log failure ]
Figure 14.15

offered on the incoming edges are offered on the outgoing edge and there is
no modification of the flow or the tokens.

A merge node and an immediately following decision node can be com-
bined into a single symbol as shown in Figure 14.16. However, we don't
particularly recommend this shorthand notation as it is usually clearer to
show separate merge and decision nodes.

\[condition 1]

[condition2]

/ [condition3]

merge decision

Figure 14.16
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14.8.3
A fork node splits a

flow into multiple
concurrent flows.

Ajoin node
synchronizes and joins
multiple input flows
into a single output flow.

Fork and join nodes — concurrency

You can create concurrent flows within an activity by using a fork node to
split a single flow into multiple concurrent flows. While concurrency is usu-
ally a design decision, you often need to show concurrent activities when
you are modeling business processes. You will, therefore, often use fork and
join nodes in the analysis workflow as well as in design.

A fork node has one incoming edge and two or more outgoing edges.
Tokens arriving at the incoming edge are duplicated and offered on all of the
outgoing edges simultaneously. This splits the single incoming flow into
multiple parallel outgoing flows. Each outgoing edge may have a guard con-
dition and, like decision nodes, a token can only traverse the outgoing edge
if the guard condition is true.

Join nodes have multiple incoming edges and a single outgoing edge.
They synchronize flows by offering a token on their single output edge when
there is a token on all of their input edges. They perform a logical AND on
their input edges.

Figure 14.17 shows a simple example of a Product process that uses fork
and join nodes. In this example,

the product is designed first;

the product is marketed and manufactured concurrently;

the product is sold only after both the marketing and manufacturing pro-
cesses are complete.

A)duct process
Design new
product

v v

[ Market [ Manufacture ]
product product

v
/

~

fork

Figure 14.17
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In Figure 14.17 the Product process activity starts with the action Design new
product. After this action, a fork node splits the single flow into two concur-
rent flows. In one of these flows the product is marketed (Market product), and
in the other it is manufactured (Manufacture product). The join node synchro-
nizes the two concurrent flows because it waits for a token from each of the
concurrent actions. When it has a token from each action, it offers a token
on its output edge and flow traverses to the action Sell product.

When you model join nodes, it is important to ensure that all of the
input edges to the join will receive a token. For example, in Figure 14.17, if
there were mutually exclusive guard conditions on the output flows of the
fork, the join could never be offered sufficient tokens to activate and this
would cause the activity to hang.

Object nodes
indicate that instances
of a classifier are
available,

Objectnodes e .

Object flows [ N

represent the
movement of objects
around an activity.

The output edges ]5

of an object node
compete for each

output token.

Object nodes are special nodes that indicate that instances of a particular
classifier are available at a specific point in the activity. They are labelled with
the name of the classifier and represent instances of that classifier or its sub-
classes. The activity fragment in Figure 14.18 shows an object node that
represents instances of the classifier Order or Order subclasses.

classifier name

AN

object __ |

node Order

. Object
flow

Figure 14.18

The input and output edges of object nodes are object flows. These are
special types of flows that represent the movement of objects around the
activity. The objects themselves are created and consumed by action nodes.

Figure 14.19 shows the simple Product process activity introduced in
Figure 14.17, updated to include partitions and to show the creation of a
ProductSpecification object by the Design new product action. The ProductSpecification
object is consumed by the Manufacture product action that uses it to define the
manufacturing process.

When an object node receives an object token on one of its input edges,
it offers this token on all of its output edges simultaneously and these edges
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14.9.1

Object nodes act
as buffers.

ﬁduct process \
Location

New York London

Design Marketing Manufacturing

Desig new
product

object flow objectI node

ProductSpecification |

!

Market product J

e

( Manufacture J
product

Sell product

o]

Figure 14.19

compete for the token. The key point is that there is still only one token—the
token is not replicated on the edges! The first edge to accept the token gets it.

Object node buffer semantics

Object nodes have very interesting semantics. They act as buffers—places in
the activity where object tokens can reside while waiting to be accepted by
other nodes.

By default, each object node can hold an infinite number of object to-
kens. However, sometimes you need to indicate that the buffer is a finite
size. You can do this by giving the object node an upper bound that indicates
the maximum number of tokens it is capable of holding at any time. When
object tokens are offered to the object node, it accepts them until it is full.

'An example of an object node with an upper bound specified is shown in

Figure 14.20.

this object node can hold {upperBound = 12} ‘
a maximum of 12 object tokens {ordering = LIFO} —— the last object in is the first object out

Figure 14.20
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14.9.2
Object nodes can

represent objects in a
particular state.
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You can specify two aspects of the buffer semantics for object nodes.

® Object nodes have an ordering (Figure 14.20) that specifies how the buffer
behaves. The default ordering is FIFO (first-in, first-out). This means that
the first object into the node is the first one offered to its output edges.
The other ordering is LIFO (last-in, first-out).

® Object nodes may have a selection behavior. This is a behavior attached to
the node that selects objects from the input edges according to some
modeler-defined criterion. Selection is specified by a note stereotyped
«selection» as shown in Figure 14.21. In this example, the object node
selects only those Order objects that were created in the month of Decem-
ber. It offers these to its output edges by using the default ordering (FIFO).

all Orders

«selection» Ord
Order.monthCreated = "Dec" [~~~ "~~~ raer

Orders created
this selection behavior selects in December
Orders created in December

Figure 14.21

You can use an object node to collect objects from multiple incoming
object flows or to distribute objects to multiple outgoing object flows. In
these cases, you are using the node specifically for its buffering semantics,
and you can give it the stereotype «centralBuffer» to highlight this fact.

As well as buffering individual objects, object nodes can buffer sets of ob-
jects. A set is a collection of objects in which there is no duplicate, that is,
each object has a unique identity. To show this, you simply prefix the classi-
fier name with Set of. You can see an example of this in Figure 14.23.

We discuss «selection» and «centralBuffer» in a little more depth in Sections
15.8.2 and 15.11, respectively.

Representing objects in state

Object nodes can represent objects in a particular state. For example, Fig-
ure 14.22 shows a fragment from an order-processing activity that accepts
Order objects that are in the state Open and dispatches them. The object states
referenced by object nodes can be modeled with state machines, as we describe
in Chapter 21.



aaaaaaa 606NN EaanONODOORaRaRBROREacRdRoBsNABsEABROPRTCR0NAeRONAasUENUN0N0NP00BNENNRNREAGNAAsANBVALINODO00RRS0IARICRERUOGENS

304 Part 3 Analysis

Create Order
Order ‘ . Order
[Open] > i Dispatch ’ ?| [Dispatched]

object in state ‘l’

Figure 14.22

14.9.3 Activity parameters

You can use object nodes to provide inputs to and outputs from activities, as
illustrated in Figure 14.23. The input and output object nodes should be
drawn overlapping the activity frame. Input object nodes have one or more
output edges into the activity, and output object nodes have one or more
input edges out of the activity.

Activity parameters
are object nodes input
to or output from an
activity.

input parameter

\ / Bespoke product process \
Delivery

CustomerRequest Marketing Manufacturing
Design bespoke ot
I gro ducf J,_> ProductSpecification
Set of output
Busmess’Constramt parameter
Order ‘ Accept Manufacture \
payment product | Order
[Delivered]
object in state object flow
Order \ K ' Deliver
[Paid] ] roducy
Figure 14.23

In Figure 14.23, the activity Bespoke product process has three input param-
eters, CustomerRequest, Set of BusinessConstraint, and Order, and one output parameter,
Order. The Set of BusinessConstraint node contains a set of BusinessConstraint
objects.

There are several business requirements for this process.

® Products are designed based on a CustomerRequest. This creates a Product-
Specification.

@ Product design takes into account any BusinessConstraints.
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Payment is required only after the product has been designed.

The product can’t be manufactured until payment has been received and
there is a ProductSpecification.

Delivery can’t occur until the product has been manufactured.

Here is a walkthrough for the activity.

1. The activity begins when there is a CustomerRequest AND a Set of Business-

Constraint on the input object flows of the Design bespoke product action. This
action consumes its input objects and outputs a ProductSpecification object.

When the Accept Payment action receives a control token from Design bespoke
product AND is offered an Order object on its input object flow it executes. It
changes the state of the Order object to Paid and outputs it on its single
output object flow.

Flow of control then passes to the Manufacture product action. This con-
sumes the ProductSpecification object output by Design bespoke product and
offers a control token to Deliver product.

Deliver product executes when a control token is available from Manufacture
product AND an Order object in the state Paid is available on its input object
flow. It outputs the Order object in the state Delivered. This Order object is
the output parameter of the activity.

You can see that we have been able to satisfy the business requirements quite
easily as follows.

@

We don't Design bespoke product until we have a CustomerRequest AND a Set of
BusinessConstraint.

We can't Accept payment until we have an Order object AND the Design bespoke
product action has finished.

We can’t Manufacture product until we have a ProductSpecification AND the
Accept payment action has finished (in other words, we won’t manufacture
it until it has been paid for!).

We can’t Deliver product until it has been manufactured (Manufacture product
has finished) AND it has been paid for (Order is in state Paid).

This illustrates some of the power of activity diagrams. They can model com-
plex processes in a concise and accurate way.

An activity that has a lot of object flows can get very messy. You can use pins
to clean things up a bit!
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A pin is simply an object node that represents one input to or output
from an action. Input pins have exactly one input edge, and output pins
have exactly one output edge. Apart from this, they have the same semantics
and syntax as object nodes. However, because they are so small, you have to
write all the information, such as the classifier name, outside the pin but as
close to it as you can.

Figure 14.24 shows a Log on activity that has two object flows. The activity
begins with the Get UserName action. This outputs a valid UserName object. The
next action is Get Password, which outputs a valid Password object. The activity
Authenticate User executes when it receives a valid UserName and a valid Password
in its input object flows. The user is authenticated, and the activity finishes.

[A pin is an object
node that represents
one input to or output
from an action.

/ Log on

~

® >l UserName
Get UserNam%—% [Valid]
Authenticate
\|/ User O
Password |
Get PasswordJ——? [Valid] I'+I

.

Figure 14.24

Figure 14.25 shows exactly the same activity, but drawn using pins. You
can see that the pin notation is more compact and keeps the diagram a bit

neater.
/ Log on \
UserName[Valid]
output pin input pin | Authenticate
User
Get Password ,—-h
\ Password[Valid] )
Figure 14.25

Comparing Figure 14.24 and Figure 14.25, you can see that the UserName
object node is exactly equivalent to the combination of the output pin on Get
UserName and the input pin on Authenticate User. Because of this, an object node
is sometimes referred to as a stand-alone style pin.
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‘What we have learned

In this chapter, you have seen that you can use activity diagrams to model
many different kinds of processes. You have learned the following.

@ Activity diagrams are OO flowcharts:

@3(

W

you use them to model all types of processes;

you can attach activity diagrams to any modeling element to capture
its behavior;

a good activity diagram communicates one specific aspect of a system's
behavior;

in UML 2, activity diagrams have Petri Net semantics.

Activities are networks of nodes connected by edges.

Categories of nodes:

- action nodes -~ atomic units of work within the activity;

- control nodes - control the flow through the activity;

— object nodes - represent objects used in the activity.

Categories of edges:

- control flows - represent the flow of control though the activity;
- object flows - represent the flow of objects through the activity.
Tokens flow around the network and can represent:

- the flow of control;

- an object;

- some data.

Tokens move from a source node to a target node across an edge depend-
ing on:

— source node postconditions;

- edge guard conditions;

— target preconditions.

Activities can have preconditions and postconditions.

& Action nodes.

Execute when there is a token simultaneously on each of their input
edges AND their preconditions are satisfied.

After execution, action nodes offer tokens simultaneously on all output
edges whose postconditions are satisfied:

- an implicit fork.

Call action node:

- call an activity — use the rake symbol;

- call a behavior;

- call an operation.

Send signal action node — see Section 15.6.

Accept event action node — see Section 15.6.
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Accept time event action node - executes when its time expression is
true:

- an event in time (e.g., end of business year);

- a point in time (e.g., on 11/03/1960);

- a duration (e.g., wait 10 seconds).

@ Control nodes:

initial node — indicates where the flow starts when an activity is invoked;
activity final node - terminates an activity;

flow final node - terminates a specific flow within an activity;
decision node - the output edge whose guard condition is true is
traversed:

- may have a «decisioninput»;

merge node — copies input tokens to its single output edge;

fork node - splits the flow into multiple concurrent flows;

join node - synchronizes multiple concurrent flows:

— may have a {join spec}.

® Activity partitions - a high-level grouping of related actions.

Partitions form a hierarchy rooted in a dimension.

@ Object nodes represent instances of a classifier.

Input and output edges are object flows — represent the movement of
objects.

Object node output edges compete for each output token.

Obiject nodes act as buffers:

— {upperBound=n};

— {ordering = FIFO } XOR { ordering = LIFO };

— {ordering = FIFO } is the default;

- may have a «selection».

Object nodes can represent objects in a particular state:

- must be consistent with state machine.

Activity parameters are object nodes input to or output from an activity:
drawn overlapping the activity frame;

input parameters have one or more output edges into the activity;
output parameters have one or more input edges out of the activity.

@ Pins.

An object node that represents one input to or output from an action
or activity.
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- Advanced activity
diagrams

1514 Chapter roadmap

In this section we look at some of the more advanced features of activity di-
agrams. These are features that you are unlikely to use every day but that can
be very useful in certain modeling situations. The sections in this chapter
can be read in any order. Alternatively, you could just skim this chapter to
get an idea of what's in it, then refer to the appropriate section when you
need to use a specific feature.
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Connectors

As a general principle, you should avoid using connectors. However, should
you encounter irreducible complexity, you can use connectors to break long
edges that are hard to follow or to untangle edges that cross. This can
simplify an activity diagram and make it easier to read.

Connector syntax is shown in Figure 15.2. For a given activity, each out-
going connector must have exactly one incoming connector with the same
label. Labels are merely identifiers for the connector and have no other
semantics. They are often just letters of the alphabet.

ﬂnAcﬁvity \

Q outgoing connector

incoming connector

4

Figure 15.2

Interruptible activity regions

Interruptible activity regions are regions of an activity that are interrupted
when a token traverses an interrupting edge. When the region is interrupted,
all flows within the region are immediately aborted. Interruptible activity
regions give you a useful way of modeling interrupts and asynchronous
events. They are most often used in design but can also be used to advantage
in analysis to show handling of asynchronous business events.

Figure 15.3 shows a simple Log on activity that has an interruptible
region. The region is shown as a dashed rounded rectangle that encloses the
actions Get UserName, Get Password, and Cancel. If the Cancel accept event action
gets a Cancel event while control is in the region, it outputs a token on an
interrupting edge and interrupts the region. The Get UserName, Get Password, and
Cancel actions all terminate.
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ﬁg ON el . \
.’ UserName [valid]
Get UserName |_|

. ,
Password[valid]

L | Authenticate

'
h
[}
1

A ’

\ ~..-]. ............. ! interrupting edge
/

interruptible
activity region

Figure 15.3

Interrupting edges are drawn as a zigzag arrow as shown in Figure 15.3, or
as a normal arrow with a zigzag icon drawn above it as shown in Figure 15.4.

Zs

Figure 15.4

A protected node
has an exception
handler.

Modern computer languages often handle errors through a mechanism called
exception handling. If an error is detected in a protected piece of code, an excep-
tion object is created and flow of control jumps to an exception handler that
processes the exception object in some way. The exception object contains
information about the error that may be used by the exception handler. The
exception handler may terminate the application or try to make a recovery.
The information in the exception object is often saved to an error log.

You can model this exception handling in activity diagrams by using
exception pins, protected nodes, and exception handlers.

In Figure 15.5 we have updated our Log on activity to make the Authenticate
User activity output a LogOnException object if the user can’t be authenticated.
This object is consumed by the action Log error that writes the error informa-
tion to an error log. You can show that a pin represents the output of an
exception object by annotating it with a small equilateral triangle as shown
in the figure. The Log error node acts as an exception handler that processes
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A)g on protected node exception handler \
A y . / exception pin

L | Log error

Figure 15.5

exceptions generated by Authenticate User. When a node has an associated
exception handler, it is known as a protected node.

As exception handling is often a design issue rather than an analysis
issue, you tend to use protected nodes more in design than in analysis. How-
ever, it can sometimes be useful to model a protected node in analysis if it
has important business semantics.

‘Expansion node -a
collection of objects
flowing into or out of
an expansion region
that is executed once
for each object.

Expansion nodes allow you to show how a collection of objects is processed
by a part of the activity diagram called an expansion region. This can be a
useful technique in both analysis and design as it can otherwise be quite
difficult and verbose to show how a collection is processed.

An expansion node is-an object node that represents-a collection of objects
flowing into or out of an expansion region. The expansion region is executed
once per input element. Figure 15.6 shows an example of an expansion region,
shown as a dashed rounded rectangle, with input and output expansion nodes.
An expansion node looks like a pin, but with three boxes. This representation
is to indicate that it accepts a collection rather than a single object.

There are two constraints on expansion nodes.

® The type of the output collection must match the type of the input
collection.

@ The type of object held in the input and output collections must be the
same.
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ﬁde Students

Set of Student

expansion
node

expansion
region

Set of Student

Figure 15.6

These constraints mean that expansion regions can’t be used to transform
input objects of one type into output objects of another type.

The number of output collections can be different from the number of
input collections, so expansion regions can be used to combine or split
collections.

Every expansion region has a mode that determines the order in which
it processes the elements of its input collection. The mode can be

@ iterative — process each element of the input collection sequentially;
@ parallel — process each element of the input collection in parallel;

@ stream — process each element of the input collection as it arrives at the node.

You must always explicitly specify the mode as the UML specification doesn’t
define any default mode.

In Figure 15.6 the expansion region accepts a set of Student objects. It pro-
cesses each of these objects in turn (mode = iterative) and outputs a set of
processed Student objects. The two actions inside the region first assess a
Student’s exam results and then assign a grade. In this case, the output Set of
Student is only offered at the output expansion node when all Students have
been processed. If, however, the mode was stream, then each Student object
would be offered at the output expansion node as soon as it was processed.

. Sending signals and accepting events

A signal represents information that is passed asynchronously between
objects. A signal is modeled as a class stereotyped «signal». The information to
be passed is held in the attributes of the signal. You can use signals in analysis
to show sending and receiving of asynchronous business events (such as
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OrderReceived), and you can use them in design to illustrate asynchronous com-
munication between different systems, subsystems, or pieces of hardware.
Figure 15.7 shows two signals that are used in the activity shown in

Signals represent
information that is

passed .
Figure 15.8.
asynchronously
between objects.
«signal»
SecurityEvent
«signal» «signal»

AuthorizationRequestEvent AuthorizationEvent

pin : PIN isAuthorized : Boolean

cardDetails : CardDetails

Figure 15.7
/ Validate card
CardDetails Enter PIN
[ ]
Authorization send signal
RequestEvent action node
Authorization ,/___ accept event
Event action node
[AuthorizationEvent.isAuthorized) [!AuthorizationEvent.isAuthorized]
(Authorized] [ Not authorizedj
Figure 15.8

These two signals are both types of SecurityEvent. The AuthorizationRequest-
Event signal holds a PIN and card details. These are probably encrypted. The
AuthorizationEvent holds a Boolean flag to indicate whether the card and PIN
have been authorized.
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The send signal
action node represents

the sending of a signal.

The accept event
action node waits for
the receipt of an event of
the right type.

You can send a signal by using a send signal action node. This sends the

signal asynchronously—the sending activity does not wait for confirmation
of signal receipt. The semantics of the send signal action are as follows.

@

The send signal action is started when there is a token simultaneously on
all of its input edges. If the signal has input pins, it must receive an input
object of the right type for each of its attributes.

When the action executes, a signal object is constructed and sent. The
target object is not usually specified, but if you need to specify it, you can
pass it into the send signal action on an input pin.

The sending action does not wait for confirmation of signal receipt—it is
asynchronous.

The action ends and control tokens are offered on its output edges.

An accept event action node has zero or one input edges. It waits for

asynchronous events detected by its owning context and offers them on its
single output edge. It has the following semantics.

@

&

The accept event action is started by an incoming control edge, or, if it
has no incoming edge, it is started when its owning activity starts.

The action waits for receipt of an event of the specified type. This event is
known as the trigger.

When the action receives an event trigger of the right type, it outputs a
token that describes the event. If the event was a signal event, the token
is a signal.

The action continues to accept events while the activity executes.

Figure 15.8 shows a Validate card activity that sends AuthorizationRequestEvents
and receives AuthorizationEvents.

Here is a walkthrough for the Validate card activity.

The Validate card activity begins when it gets CardDetails as an input param-
eter. It then prompts the user to Enter PIN.

The AuthorizationRequestEvent action executes once it gets a PIN object and a
CardDetails object on its input edges. It constructs an AuthorizationRequest-
Event signal, using these input parameters, and sends it. Signal send actions
are represented as convex pentagons as shown in the figure.

Signal sends are asynchronous and flow of control progresses immediately
to the AuthorizationEvent accept event action, which is represented as a con-
cave pentagon. This action waits for receipt of an AuthorizationEvent signal.

On receipt of the signal, flow moves to the decision node. If Authorization-
Event.isAuthorized is true, the Authorized action executes, else the Not authorized
action executes.
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Here is another example of accept event actions. Figure 15.9 models a
Show news activity that has two accept event actions that start automatically
when the activity starts. When the NewsEvent accept event action receives a
NewsEvent, this event is passed to the action Display news. Control then flows to
a flow final node and this particular flow terminates. The activity continues
to execute, however, and both accept event actions continue waiting for
events. When the activity gets a TerminateEvent, control then moves to an
activity final node and the whole activity, including both accept event
actions, terminates immediately.

/Show news \
TerminateEvent < NewsEvent <

Display news

\_ J

Figure 15.9

Should you need to show how signals move around activity diagrams,
you can represent them as object nodes. Although signals have the same
semantics as other object nodes, they have a special syntax. This is shown in
Figure 15.10. The symbol is a combination of those for the send signal action
and the accept event action, so it is easy to remember,

object

node for —-—) OrderEvent )
signal

Figure 15.10

 Streaming

Actions normally only take tokens off their input edges when they start execut-
ing, and offer them to their output edges when they have finished. However,
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Streaming —an
action executes contin-
uously while accepting
and offering tokens.

MouseEvent
option 1 Read mouse port § Handle MouseEvent

sometimes you need an action to execute continuously while periodically
accepting and offering tokens. This behavior is called streaming, and in UML
2, you can illustrate it in any of the four ways shown in Figure 15.11.

In fact, we think this is too many ways to represent streaming, and we
recommend that you decide on just one way and stick with it, unless you
have a compelling reason to do otherwise. Option 1 is the most concise
option—pins filled with black—and it is the one that we recommend.

The example in Figure 15.11 illustrates a typical use of streaming. The
Read mouse port action continuously reads the mouse port and offers informa-
tion about mouse activity as MouseEvents streamed on its single output edge.
These MouseEvents are consumed by the Handle MouseEvent action.

v

indicates streaming } streaming on

MouseEvent
option 2 Read mouse port |} Handle MouseEvent
{stream}

normal pins

T

option 3 _.)l Read mouse port —————/—b MouseEvent —P[Handle MouseEvent

streaming on

indicates streaming biect nod
object nodes

option 4 Read mouse port MouseEvent Handle MouseEvent
{stream} Y

Figure 15.11

 Advanced objectflowfeatures

(stand-alone pins)

Any situation in which you need to continuously receive and process
information is a good candidate for streaming.

In this section we look at some advanced features of object flows. You prob-
ably won’t need to use these features very often, but it's nice to know about
them in case you do!

‘We have summarized these features in Figure 15.12.
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Send Receipt

L] Receipt
{timestamp}

input effect

«transformation»
Order.toReceipt() : Receipt [~

1| Accept Payment

Record Transaction [_l

Transaction
output effect —__ {create)

«selection» .
(now - Order.date) > 28 days

Send Reminder

Figure 15.12

Input effects and output effects

Input effects and output effects show the effect an action has on the objects
that it inputs or outputs. You show these effects by putting a short descrip-
tion of the effect in braces as near to the input or output pin as you can.
There is an example of an input effect near the Send Receipt action in
Figure 15.12. This effect specifies that the Send Receipt action timestamps each
Receipt it receives. The Accept Payment action has an output effect, {create}. This
indicates that Accept Payment creates each Transaction object that it outputs.

«selection»

A selection is a condition attached to an object flow that causes it to accept
only those objects that satisfy the condition. The selection condition is
shown in a note stereotyped «selection.

In Figure 15.12, you can see a selection attached to the object flow between
Accept Payment and Send Reminder. The selection condition is (now - Order.date) > 28
days. The output pin on Accept Payment offers Order objects that are in the state
'Paid and the selection accepts only those Order objects that have been out-
standing for more than 28 days. The net effect of this flow is to select all
unpaid Orders that have been outstanding for longer than 28 days and pass
them to the Send Reminder action.
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15.8.3

A transforma tion
transforms objects in
an object flowtoa
different type.

Multicast sends an
object to many
receivers.

«transformation»

A transformation transforms objects in an object flow to objects of a dif-
ferent type. The transformation expression is shown in a note stereotyped
«transformation».

In Figure 15.12, you can see a transformation attached to the object flow
between Accept Payment and Send Receipt. This transformation specifies that the
Order objects output by Accept Payment will be transformed into the Receipt
objects expected by Send Receipt. In this example, the transformation is
accomplished by invoking the toReceipt() operation on each Order object as it
traverses the edge. This operation takes the information in the Order and
creates a Receipt object.

You use transformations when you need to connect an output pin for in-
stances of one classifier to an input pin that expects instances of a different
classifier.

Multicast and multireceive

Usually an object is sent to exactly one receiver. However, sometimes you
need to show that an object is sent to multiple receivers. This is called a mul-
ticast. Similarly, you might need to show that objects are received from
multiple senders—this is called a multireceive. Multicast and multireceive
often occur in symmetrical pairs as shown in Figure 15.13.

Request for Proposals process \

Technical Group Member

Identify need

Request for
Proposal

«multicast»
RFP |Create Proposal

Assess «multireceive» Proposal
Proposals [Candidate] /
Proposal
[Accepted]

Figure 15.13



Multireceive
receives objects from
many senders.

s

Parameter sets
allow an action to have
alternative sets of

input and output pins.
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To indicate that an object flow originates from a multicast or arises from
a multireceive, you stereotype the flow as illustrated in Figure 15.13. This fig-
ure shows a simple business process similar to the one the OMG uses for
requesting proposals for their standards. The Technical Group first identifies the
need for a solution and then formulates this into a RFP (Request For Pro-
posal). This is multicast to many Members who create candidate Proposals.
These are multireceived by the Technical Group, which assesses them and finally
outputs an Accepted Proposal.

Parameter sets allow an action to have alternative sets of input and output
pins. These sets of pins are called parameter sets. Input parameter sets contain
input pins and output parameter sets contain output pins. You can’t have a
mixed set of input and output pins.

To illustrate why you might want to use parameter sets, consider Fig-
ure 15.14. In this figure there are three types of authentication action.

1. Get UserName and Password — outputs a UserName and a Password object.
2. GetUserName and Passphrase — outputs a UserName and a Passphrase object.
3. GetCard and PIN — outputs a Card and a PIN object.

As you can see, each of these actions outputs a different set of objects. One
solution to this problem would be to have a separate authenticate action

\_

ﬁuthenticate User parameter set \
k o [password] Authenticate ‘[L:J‘\Su%;lenticated]

Choose
authentication
method

Get UserName
and Password

Password

UserName

[passphrase] Passphrase

Card i]/
PIN User
) [!AuthenticatJd]

Get UserName

and Passphrase User

Get Card
and PIN

[card]

input condition: ( UserName AND Password ) XOR ( UserName AND Passphrase ) XOR ( Card AND PIN )
output: ( User [Authenticated] ) XOR ( User [!Authenticated] )

Figure 15.14
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Central buffer
nodes are object

nodes that are used
specifically as buffers.

«centralBuffer» node

for each set of objects such as AuthenticateUserNameAndPassword, AuthenticateUser-
NameAndPassphrase, and AuthenticateCardAndPIN. This is a reasonable solution,
but it does have a couple of drawbacks.

® It makes the activity diagram quite verbose.

@ Authentication is now distributed over three actions rather than being
localized in one place.

Using parameter sets you can create a single Authenticate action that can han-
dle the three different sets of input parameters.

In Figure 15.14, you can see that Authenticate has three input parameter
sets and two output parameter sets. The input parameter sets are

@ UserName AND Password;
@ UserName AND Passphrase;
©® Card AND PIN.

One and only one of these input parameter sets may be used pe‘r' execution
of the action. There is therefore an XOR relationship between them.

Notice that the sets {UserName, Password} and {UserName, Passphrase} have
the UserName pin in common. As the figure shows, you can indicate this by
overlapping the two parameter sets so that common pins are in the overlap
region. However, this idiom can easily get quite messy, so you might choose
instead to have two UserName pins, one in each of the input parameter sets.
We prefer the latter solution, and the diagram is as it is merely to illustrate
the syntax for overlapping pins should you wish to use them.

The Authenticate action has the following output parameter sets, each of
which contains a single pin:

® User[Authenticated];
@ User[!Authenticated].

Again, only one of these output parameter sets will be used per execution of
the activity.

As we mentioned in Section 14.9.1, all object nodes have buffering capability.

Central buffer nodes are object nodes that are used specifically as buffers
between input and output object flows. They allow you to combine multiple
input object flows and to distribute the objects among multiple output object
flows. When an object node is being used as a central buffer, it should be
given the stereotype «centralBuffer».
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Figure 15.15 shows a simple example in which a central buffer is used to
accumulate different types of Order object streaming in from multiple sales
channels. The Order objects are held in the buffer while waiting for the Process
Order action to accept them. The Order central buffer can hold objects of type
Order or its subclasses WebOrder, PhoneOrder, and PostOrder.

Handle Orders WebOrder

[New]

Take web Order Order

\J, [Processed]
PhoneOrder
[New] «centralBuffer»
&—> Take phone Order § Order Process Order

PostOrder [New] th
[New] 1‘

Take post Order [

Figure 15.15

 Interaction overview diagrams

Interaction overview diagrams, a special form of an activity diagram, show
interactions and interaction occurrences. They are used to model the high-
level flow of control between interactions. We discuss interactions and inter-
action diagrams in detail in Chapter 12.

One particularly powerful use for interaction overview diagrams is to
illustrate the flow of control between use cases. If you represent each use case
as an interaction, you can use activity diagram syntax to show how flow of
control moves between them.

~ Figure 15.16 shows an interaction overview diagram, ManageCourses, that
shows the flow between the lower-level interactions LogOn, GetCourseOption,
FindCourse, RemoveCourse, and AddCourse. Each of these interactions represents a
use case, so the interaction overview diagram captures the flow of control
between these use cases.

Note that the lifelines that participate in the interaction may be listed after
the keyword lifelines in the header of the diagram. This can be useful documen-
tation as lifelines are often hidden inside interaction occurrences.

Interaction overview diagrams have the same syntax as activity diagrams
except that you show inline interactions and interaction occurrences rather
than activity and object nodes. You can show branching, concurrency, and
looping as described in Table 15.1. This table also provides an overview of the
differences between sequence diagram and interaction overview diagram syntax.
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sd ManageCourses lifelines :Registrar, :RegistrationManager, :Course)

sd ref J

LogOn
interaction occurg d ref ]
GetCourseOption
[add] )K [find]
N
inline in\teraction [remove]
sd AddCourse ] __s_cﬂ(i) _Sﬂﬁf_)
RemoveCourse FindCourse
% :RegistrationManager
:Registrar 9 ¢ ¢
| addCourse( "UML" )
i else
i «create» )
| - uml:Course fexit]
A i
Figure 15.16

Table 15.1

Branching alt and opt combined fragments

(Section 12.10.1)

Decision node and merge node
(Section 14.8.2)

Concurrency par combined fragment (Section 20.5)

Fork and join nodes (Section 14.8.3)

Iteration loop combined fragment (Section 12.11.1) Cycles in the diagram

Sequence diagrams can do everything an interaction overview diagram
can do, so you might wonder why we bother with them. The reason is that
interaction overview diagrams express branching, concurrency, and iteration
in a visual way that is clear and easy to read. At the same time, they de-
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emphasize other features, such as the lifelines, putting the focus of the dia-
gram squarely on the flow of control. You should therefore use them when
you want to emphasize flow of control across many interactions.

In use case realization, interactions express the behavior specified in a
use case, so interaction overview diagrams can be used to illustrate business
processes that cut across use cases.

‘What we have learned

In this chapter, you have seen some advanced features of activity diagrams.
You have learned the following.

@ Interruptible activity regions:
— interrupted when a token traverses an interrupting edge;
— all flows in the region are aborted when it is interrupted;
— interrupting edges are drawn as a zigzag arrow or as a normal arrow
with a zigzag icon above it.
© Exception pins:
— output an exception object from an action;
— are indicated with an equilateral triangle.

© Protected nodes:
— have an interrupting edge leading to an exception handler;
— abort when an exception of the right type is raised, and flow passes to
the exception handler node;
-— are instantaneous.

@ Expansion nodes:
— represent a collection of objects flowing into or out of an expansion
region;
— the region is executed once per input element.
— Constraints:
— the type of the output collection must match the type of the input
collection;
- the type of object held in the input and output collections must be the
same.
— Modes:
iterative — process each element of the input collection sequentially;
parallel — process each element of the input collection in parallel;
— stream - process each element of the input collection as it arrives at the
node;
there is no default mode.

1
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@ Sending signals and accepting events.
— Signals:
- information that is passed asynchronously between objects;
— class stereotyped «signaly;
- the information is held in the attributes.
— Send signal action node:
— starts when there is a token on all input pins;
— executes — a signal object is constructed and sent;
- then ends and offers control tokens on its output edges.
— Accept event action node:
- started by an incoming control edge or if no incoming edge, when
its owning activity starts;
— waits for an event of the specified type:
- outputs a token that describes the event;
— continues to accept events while the owning activity executes;
- for a signal event, the output token is a signal.

@ Advanced object flow:
— input and output effects show the effects an action has on its input and
output objects:
— write the effect in braces close to the pin;
— selection - a condition on an object flow that causes it to accept only
those objects that satisfy the condition:
— put the selection condition in a note stereotyped «selection», attached
to the object flow;
— transformation — transforms objects in an object flow to a different
type: '
— put the transformation expression in a note stereotyped «transformation»,
attached to the object flow. k

@ Multicast sends an object to many receivers:
— stereotype the object flow «multicast».

@ Multireceive receives objects from many senders:
— stereotype the object flow «multireceive».

@ Parameter sets allow an action to have alternative sets of input and output
pins:
— input parameter sets contain input pins;
— output parameter sets contain output pins;
— only one input parameter set and one output parameter set may be
used per execution of the action.

@ Central buffer node — object nodes that are used specifically as buffers:
— stereotype the object node «centralBuffer».
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@ Interaction overview diagrams show flow between interactions and inter-
action occurrences:
~— branching - decision and merge nodes;
— concurrency - fork and join nodes;
— iteration - cycles in the diagram.












chapter 1 6

The design workflow

Chapter roadmap

This chapter is about the UP design workflow. One of the main issues we con-
sider is how the analysis model evolves into the design model, and whether
or not you need to maintain the analysis and design models separately—we
discuss this important topic in Section 16.3.2. The rest of the chapter is about
the design workflow detail and artifacts.

(16.2 The design workﬂow)

(1 6.3 Design artifacts - metamodel)

[tearn about artifact trace relationships]

/(1 6.3.1 Artifact trace relationships)

flearn about model maintenance]

/66.3.2 Should you maintain two models?)

(16.4 Design workflow detail)

(16.5 UP activity: Architectural dasig@

(16.6 What we have Iearned)

Figure 16.1

331
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The design workflow

Most design work
is done as you move
from the Elaboration
to the Construction
phase.

The design workflow is the primary modeling activity during the last part of
the Elaboration phase and the first half of the Construction phase. As you
can see from Figure 16.2, the main focus of the early iterations is require-
ments and analysis, and as the analysis activity becomes more and more
complete, the modeling focus shifts to design. To a great extent, analysis and
design can occur in parallel. However, as you will see, it is important to dis-
tinguish clearly between the artifacts of these two workflows—the analysis
model and the design model.

Ince.ption Elabo'ration
Requirements ! *
I :
Analysis E :
Design ; :
] :,
Implementation : i
Test : ' . S
E ! — ~ E
Preliminary il 12 in In+1  In«2 Im  Im+1
iterations

Figure16.2 Adapted from Figure 1.5 [Jacobson 1] with permission from Addison-Wesley

Rather than have a team of analysts and a separate team of designers, UP
recommends that one team be responsible for taking an artifact (such as a
use case) from requirements through analysis and design, and ultimately to
implementation. Instead of organizing the team around specific activities,
UP organizes the team around deliverables and milestones. UP provides a
“goal” focus rather than a “task” focus.

In analysis, the focus was on creating a logical model of the system that
captured the functionality that the system must provide to satisfy the user
requirements. The purpose in design is to specify fully how this functionality
will be implemented. One way of looking at this is to consider the problem
domain on the one hand and the solution domain on the other. Require-
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ments come from the problem domain, and you can think of analysis as
being the exploration of this domain from the point of view of the system
stakeholders. Design involves merging in technical solutions from the solu-
tion domain (class libraries, persistence mechanisms, etc.) to provide a model
of the system (the design model) that can actually be implemented.

In design, OO designers decide on strategic design issues such as object
persistence and distribution, and create a design model accordingly. The
project manager and architect should also create policies to deal with any
tactical design issues.

3 Designartifacts - metamodel

A subsystem is
a part of the physical
system.

Figure 16.3 shows a metamodel for the design model. The design model con-
tains many design subsystems (we only show two such subsystems here).
These subsystems are components (see Chapter 19) that can contain many
different types of modeling elements.

Although you might have identified several key interfaces in analysis,
when you come to design you put much more emphasis on interfaces. This
is because it is ultimately the interfaces between design subsystems that hold
your system together. Interfaces, therefore, have a strong architectural role in
design, and you will spend quite a lot of time looking for, and modeling, key
interfaces. In the example in Figure 16.3, you can see that subsystem c1 re-
quires interface |, and this interface is provided by subsystem c2. The provided
and required interfaces connect these two subsystems like a plug and socket.
We discuss interfaces in more detail in 19.

«subsystem» 2]

[ 1

A
Design Model

«subsystem» 2]

033:]

Figure 16.3



uuuuuuuuuu

sonosonoobn

Part 4 Design

There is a simple «trace» relationship between the analysis and design mod-
els: the design model is based on the analysis model and can be considered to
be just a refinement and elaboration thereof (this is shown in Figure 16.4).

1
A
conceptual
model Analysis Model
/?\;
«tréce»
] ¢
; A
physical
model Design Model

Figure 16.4

You can think of the design model as being an elaboration of the analysis
model with added detail and specific technical solutions. The design model
contains the same sorts of things as the analysis model, but all the artifacts
are more fully formed and must now include implementation details. For
example, an analysis class may be little more than a sketch with few attributes
and only key operations. A design class, however, must be fully specified—all
attributes and operations (including return types and parameter lists) must
be complete.

Design models are made up of

design subsystems;

design classes;

¢ © ©

interfaces;

use case realizations—design;

@ @

a deployment diagram.

One of the key artifacts that you produce in design are interfaces. You will see
in 19 that these allow you to decouple your system into subsystems that can
be developed in parallel.

In design, you also produce a first-cut deployment diagram that shows
how your software system is distributed over physical computational nodes.
Clearly, this is an important and strategic diagram. However, as most of the
work on the deployment diagram occurs in implementation, we defer discus-
sion of them until 24.
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Artifact trace relationships

Figure 16.5 shows the relationships between the key analysis and design
artifacts.

0..* 0..*
. h «trace» .
Analysis package f€-======munseeonaans Design subsystem
Design class
0 *
fmmmm e
H
Analysis class 1 !
«trace» 1
............ K
Ll
1
1
i «
v 0.7 «interface»
"""" Interface
//‘ . .\\‘\ 1 «trace» 1 z'/‘ . ..\\
!/ Use case realization »_____ "¢ + Use case realization \
\ —analysis K . —design K

______________

Figure 16.5

The relationship between analysis packages and design subsystems can
be complex. Sometimes, one analysis package will «trace» to one design sub-
system, but this isn’t always the case. You might have good architectural and
technical reasons for breaking down a single analysis package into more than

‘one subsystem. In component-based development, a design subsystem rep-

resents a single coarse-grained component, and in this case, depending on
the desired granularity of the components, you may find that one analysis
package actually resolves to several subsystems.

An analysis class may be resolved into one or more interfaces or design
classes. This is because analysis classes are a high-level conceptual view of the
classes in the system. When we get down to physical modeling (design), these
conceptual classes may well need to be implemented as one or more physical
design classes and/or interfaces.

The Use case realization-analysis has a simple one-to-one «trace» relationship
with Use case realization-design. In design, the use case realization simply has
more detail.
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16.3.2

Keep an analysis
model for large,
complex, or strategic
systems.

Should you maintain two models?

In an ideal world, you would have a single model of your system, and your
modeling tool would be able to give either an analysis view of that model or
a design view. However, this is a more difficult requirement than it at first
appears, and no UML modeling tool currently on the market does an en-
tirely satisfactory job of providing analysis and design views of the same
underlying model. It seems that we are left with the four strategies described
in Table 16.1.

Table 16.1
Statey - Comsequences .
1 Take the analysis model and refine You have a single design model, but
it into a design model you have lost the analysis view
2 Take the analysis model, refine it into You have a single design model, but
a design model and use a modeling the analysis view recovered by the
tool to recover an “analysis view” modeling tool might not be
satisfactory
3 Freeze the analysis model at some You have two models, but they are

point in the Elaboration phase — refine out of step
a copy of the analysis model into a
design model

4 Maintain two separate models — an You have two models - they are in
analysis model and a design model step, but there is a maintenance
burden

There is no best strategy—it depends on your project. However, the fun-
damental question you need to ask is, “Do we need to preserve an analysis
view of the system?” Analysis views give you the “big picture” of your sys-
tem. An analysis view may only have between 1% and 10% of the classes
that are in the detailed design view, and they are therefore much more
understandable. They are invaluable for

introducing new people to the project;
understanding the system months or years after delivery;

understanding how the system satisfies user requirements;

® ® ® ©

providing requirements traceability;
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® planning maintenance and enhancements;
@ understanding the logical architecture of the system;
® outsourcing the construction of the system.

If you need to do any of the above, you definitely need to preserve an analy-
sis view. Typically, you should preserve an analysis view for any system that
is large, complex, strategic, or potentially long-lived. This means that you
need to choose between strategies 3 and 4. Always think very carefully about
allowing the analysis and design models to get out of step. Is this really
acceptable to your project?

If your system is small (say, less than 200 design classes) then the design
model itself is small enough to be understandable, so a separate analysis
model may not be needed. Also, if the system is not strategic or has a short
projected life span, separate analysis and design models may be overkill.
Your choice is then between strategies 1 and 2, and the deciding factor will
be the capabilities of your UML modeling tool. Some modeling tools main-
tain a single underlying model and allow filtering and information-hiding to
try to recover an “analysis” view from the design model. This is a reasonable
halfway house for many medium-sized systems, but it is probably still not
good enough for very large systems.

Finally, a word of caution—it is wise to remember that many systems
long outlive their projected life span!

6.4 Designworkflow detail

The UP workflow for design is shown in Figure 16.6. The main participants
in design are the architect, the use case engineer, and the component engi-

__neer. In most OO projects, one or more dedicated individuals perform the
architect role, but it is often the same individual who will act as use case
engineer and component engineer at different points in time.

One of the UP goals is that individuals take ownership and responsibility
for part of the system right through from analysis to implementation. Thus,
the individual or team responsible for creating a particular piece of OO anal-
ysis will often refine this into a design and, perhaps with some extra
programming expertise mixed into the team, into code. The advantage of
this approach is that it prevents “passing the buck” between analysts, design-
ers, and programmers—this can be common in OO projects.
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©)

D Architectural design

Architect

D Design a use case

O N/ N
[]

Component engineer Design a class Design a subsystem

Figure 16.6 Reproduced from Figure 9.16 [Jacobson 1] with permission from Addison-
Wesley

UP activity: Architectural design

In UP, the activity that kicks off the whole design process is Architectural design.
This activity is performed by one or more architects. You can see the details
for this activity in Figure 16.7.

As you can see, there are a lot of artifacts output from Architectural design,
and we look at each of these in detail—what they are, how you find them—
in the subsequent chapters in this part of the book (the grayed artifacts are
modified from the original figure). The key thing to understand is that archi-
tectural design is about outlining the architecturally significant artifacts to
give a big picture of the system architecture. These outlined artifacts provide
inputs to more detailed design activities in which they are fleshed out.

Architectural design is not usually a separate step. Remember that UP is an
iterative process, so this design occurs throughout the late Elaboration and
early Construction phases as the details of the system architecture are
developed.
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O

Interface
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Design class
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Deployment model
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description

Figure 16.7 Adapted from Figure 9.17 [Jacobson 1] with permission from Addison-Wesley

16.6 What we have learned

The design workflow is about determining how the functionality specified in
the analysis model will be implemented. You have learned the following.

® The design workflow is the primary modeling activity in the last part of
the Elaboration phase and the first part of the Construction phase.
— Analysis and design can occur in parallel to some extent.
— One team should take an artifact through analysis into design.
— OO designers should focus on strategic design issues such as disttib-
uted component architectures ~ policies and standards should be

introduced to deal with tactical design issues.

@ The design model contains:
— design subsystems;
— design classes;
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— interfaces;
— use case realizations—design;
— a deployment diagram (first-cut).

@ There are trace relationships between:
— the design model and analysis model;
— one or more design subsystems and an analysis package.

® Maintain separate analysis and design models if the system is:
— large;
— complex;
— strategic;
— subject to frequent change;
— expected to be long-lived;
— outsourced.

© The UP activity Architectural design is an iterative process that occurs through-
out the late Elaboration and early Construction phases:
— it creates outlined artifacts that are then fleshed out.
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Design classes

Chapter roadmap

This chapter is about design classes. These are the building blocks of the
design model, and it is vital for you, as an OO designer, to understand how
to model these classes effectively.

After providing the UP context, we describe the anatomy of a design
class and then, in Section 17.5, move on to a consideration of what makes a
well-formed design class. We discuss the requirements of completeness and
sufficiency, primitiveness, high cohesion, low coupling, and the applicability
of aggregation versus inheritance.

341
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(17.2 UP activity: Design a class)

(17.3 What are design classes?)

(17.4 Anatomy of a design class)

(1 7.5 Well-formed design classes)

(17.5.1 Completeness and sufficienc@ (17.5.2 Primitiveness) (17.5.3 High cohesion) (17.5.4 Low coupling)

17.6 Inheritance

(17.6.1 Aggregation versus inheritance) (1 7.6.2 Multiple inheritance) (1 7.6.3 Inheritance versus interface realization)

Figure 17.1

17.7 Templates
17.8 Nested classes

(1 7.9 What we have Iearned)

In the UP design workflow detail (Figure 16.6) after Architectural design, the
next activities are Design a class and Design a use case (see Section 20.2). These
two activities occur concurrently and iteratively.

In this section we look at the UP activity Design a class. This activity is
shown in Figure 17.2. We have extended the activity to show interface [complete]
as an explicit output of Design a class. The artifact is grayed to show it is a mod-
ification; in the original description of the activity it was an implicit output.
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Use case realization Y O
—design
\~\ —’7
. Component e Interface
. A engineer P [complete]
Design class >
[outlined] 4
e Design
JUPtLas aclass
o
Interface e \‘\A
[outlined]
R Design class
o [complete]

Analysis class
[complete]

Figure 17.2 Adapted from Figure 9.39 [Jacobson 1] with permission from Addison-Wesley

You have seen how to create the analysis class [complete] input artifact in
the analysis part of this book, and so we say no more about it here,

It’s worth considering the design class [outlined] artifact in some depth. It
looks from the activity as though there are two separate and distinct artifacts,
the design class [outlined] and the design class [complete]. However, this is not the
case. These two artifacts merely represent the same artifact (a design class) in
different stages in its evolution.

If you take a snapshot of the artifacts of a UP project in late Elaboration
or early Construction, you will not find artifacts labeled design class [outlined]
or design class [complete]. Rather, there will just be design classes, and each of
these will be at a different stage in its development.

A “complete” design class from the UP perspective is one that is suffi-
ciently detailed to serve as a good basis for creating source code. This is a key
point, and one that novice modelers often miss. Design classes only need to
be modeled in sufficient detail that code can be developed from them, so
they are rarely modeled exhaustively. The necessary level of detail depends
on your project. If you are going to generate code directly from the model,
your design classes will have to be modeled in great detail. On the other
hand, if they are merely going to serve as a blueprint for programmers, they
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can be modeled in less detail. In this chapter we show you how to model
design classes in sufficient detail for any project.

The considerations for design class [outlined] and design class [complete] also
apply for interface [outlined] and interface [complete].

The use case realization-design input artifact is just a use case realization at
a late point in its life cycle. Although it is shown flowing into Design a class, it
actually includes design classes as part of its structure and is developed in
parallel with them. We defer discussion of use case realizations-design until
Chapter 20 because we find it more effective (and easier on the reader) to dis-
cuss their component parts first.

 What are design classes?

Design classes
come from the problem
domain and the
solution domain.

Design classes are classes whose specifications have been completed to such
a degree that they can be implemented.

In analysis, the source of classes is the problem domain. This is the set of
requirements that describes the problem you are trying to solve. You have
seen that use cases, requirements specifications, glossaries, and any other
pertinent information can be used as a source of analysis classes.

Design classes come from two places.

@ The problem domain via a refinement of analysis classes — this refinement
involves adding implementation details. As you do this, you often find
that you need to break a very high level analysis class into two or more
detailed design classes. There is a «trace» relationship between an analysis
class and the one or more design classes that describe its implementation.

@ The solution domain - the solution domain is the realm of utility class
libraries and reusable components such as Time, Date, String, collections, etc.
Middleware, such as communications middleware, databases (both rela-
tional and object), and component frameworks, such as .NET, CORBA, or
Enterprise JavaBeans, live here as well. The solution domain also contains
GUI frameworks. This domain provides the technical tools that allow you
to implement a system.

This is illustrated in Figure 17.3.

Analysis is about modeling what the system should do. Design is about
modeling how that behavior may be implemented.

Why may an analysis class refine into one or more design classes or in-
terfaces? Well, an analysis class is specified at a very high level of abstraction.
You don’t bother with the complete set of attributes, and the set of opera-
tions is really only a sketch that captures the key services offered by the class.
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Problem Analysis Design Solution
domain classes classes domain

g]

java.util

Figure 17.3

When you move this class into design, you must fully specify all of the oper-
ations and attributes, so it is quite common to find that the class has become
too large. If this happens, you should break it down into two or more smaller
classes. Remember that you should always be trying to design classes that are
small, self-contained, cohesive units that do one or two things really well.
You must avoid, at all costs, the large “Swiss Army Knife” type of class that
tries to do everything.

Your chosen method of implementation determines the degree of com-
pleteness you need in the design class specifications. If the design class
model will be given to programmers who will use it primarily as a guide for
writing code, then the design classes only need to be complete enough to
enable them to perform that task efficiently. This depends on how skilled the
programmers are and how well they understand the problem and solution
domains—you need to find this out for your particular project.

If, however, you intend to generate code from the design classes with a
suitably equipped modeling tool, the design class specifications must be
complete in all respects since a generator, unlike a programmer, can’t fill in
the gaps. Throughout the rest of this chapter, we assume you need a very
high degree of completeness.

174 Anstomyofadesignclass

With analysis classes, you are trying to capture the required behavior of the
systemn without worrying about how this behavior is going to be implemented.
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With design classes, you have to specify exactly how each class will fulfill its
responsibilities. To do this, you must do the following:

® complete the set of attributes and fully specify them including name,
type, visibility, and (optionally) a default value;

complete the set of operations and fully specify them including name,
parameter list, and return type.

This process of refinement is illustrated with a very simple example in

Figure 17.4.
analysis design
BankAccount BankAccount
name «trace» -name : String
number € —m e mm e ~number : String
balance —balance : double = 0
deposit() L +BankAccount( name:String, number:String)
withdraw( ) constructor +deposit( m:double ) : void
calculatelnterest() +withdraw( m:double ) : boolean
+calculatelnterest( ) : double
+getName( ) : String
+setName( n:String ) : void
+getAddress( ) : String
+setAddress ( a:String ) : void
+getBalance( ) : double
Figure 17.4

As you saw in Chapter 8, an operation in an analysis class is a high-level
logical specification of a piece of functionality offered by a class. In the cor-
responding design classes, each analysis class operation is refined into one or
more detailed and fully specified operations that can be implemented as source
code. Therefore, one high-level analysis operation may actually resolve into
one or more implementable design operations. These detailed design-level
operations are sometimes know as methods.

To illustrate this, consider the following example. In an airline check-in
system, you may specify in analysis a high-level operation called checkin().
However, as you’'ll know if you have ever waited in line to check in to a
flight, check-in is actually a fairly complex business process that involves col-
lecting and verifying a certain amount of information from the passenger,
taking baggage, and allocating a seat on a plane. It is reasonable, therefore,
to suppose that the high-level checkin() analysis operation will break down
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into a cascade of lower-level operations when you do the detailed design of
the process. It might be that you still maintain a high-level checkin() opera-
tion, but in design this operation will call a cascade of “helper” operations to
discharge its responsibility. It may even be that the check-in process is suffi-
ciently complex to require some new helper classes that were not identified
in analysis.

Well-formed design classes

The design model will be passed to programmers to produce actual source
code, or code may be generated directly from the model itself if the modeling
tool supports this. Design classes, therefore, need to be sufficiently specified,
and part of this specification process is deciding if the classes are “well
formed” or not.

When creating a design class, it is important always to look at the class
from the point of view of its potential clients. How will they see the class—is
it too complex? Are any bits missing? Is it highly coupled to other classes or
not? Does it do what they might expect from its name? These are important
considerations and may be summarized in the following four minimal char-
acteristics that a design class must have to be considered well formed:

© complete and sufficient;
® primitive;

® high cohesion;

& low coupling.

Completeness and sufficiency

The public operations of a class define a contract between the class and

clients of that class. Just like a business contract, it is important that this con-
tract is clear, well defined, and acceptable to all parties.

Completeness is about giving the clients of a class what they might ex-
pect. Clients will make assumptions from the class name about the set of
operations that it should make available. To take a real-world example—if
you buy a new car, you can reasonably expect it to have wheels! It is the same
with classes—when you name a class and describe its semantics, clients of
the class will infer from this information what operations should be avail-
able. For example, a BankAccount class that provides a withdraw(...) operation
will also be expected to have a deposit(...) operation. Again, if you design a
class such as a ProductCatalog, any client could reasonably expect this class to
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allow them to add, remove, and find Products in the catalog. These semantics
are clearly implied just by the class name. Completeness is about making
sure that the classes satisfy all reasonable client expectations.

Sufficiency, on the other hand, is making sure that all operations of the
class are entirely focused on realizing the intent behind the class. A class
should never surprise a client. It should contain exactly the expected set of
operations and no more. For example, a typical beginner’s mistake is to take
a simple, sufficient class like BankAccount and then add operations to process
credit cards, or manage insurance policies, etc. Sufficiency is about keeping
the design class as simple and focused as possible.

The golden rule for completeness and sufficiency is that a class should do
what the users of the class expect—no more and no less.

Primitiveness

Operations should be designed to offer a single primitive, atomic service. A
class should not offer multiple ways of doing the same thing as this is confus-
ing to clients of the class and can lead to maintenance burdens and consistency
problems.

For example, if a BankAccount class has a primitive operation for making a
single deposit, it should not have a more complex operation that makes two
or more deposits. This is because you can achieve the same effect by repeated
application of the primitive operation. Your aim is that classes should always
make available the simplest and smallest possible set of operations.

Although primitiveness is a good rule, there are occasions when it may
need to be relaxed. A common reason to relax the primitiveness constraint is
to improve performance. For example, if there were a sufficient performance
increase on making bank deposits in a batch, rather than individually, then
you might relax the primitiveness constraint in order to let a BankAccount class
have a more complex deposit(...) operation that handled several transactions
at once. However, your starting point in design should always be the most
primitive possible set of operations. You should only add complexity by
relaxing primitiveness if there is a genuine and proven case for doing so.

This is an important point. Many so-called design “optimizations” are
based more on faith than on solid facts. As such, they may have little or no
impact on the actual runtime performance of the application. For example,
if an application will spend only 1% of its time in a given operation, optimi-
zation of that operation can only ever speed up the application by less than
1%. A useful rule of thumb is that most applications spend about 90% of
their time in 10% of their operations. These are the operations you must
identify and optimize to get real performance increases. This performance
tuning can only be done by using a code profiling tool such as jMechanic for
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Java (http://jmechanic.sourceforge.net) to gather performance metrics on
executing code. This is clearly an implementation task that might impact the
design model.

High cohesion
Fach class should model a single abstract concept and should have a set of
operations that support the intent of the class—this is cohesion. If a class
needs to have many different responsibilities, you can create “helper” classes
to implement some of these. The main class can then delegate responsibili-
ties to its helpers.

Cohesion is one of the most desirable features of a class. Cohesive classes
are generally easy to understand, reuse, and maintain. A cohesive class has a
small set of responsibilities that are all intimately related. Every operation,
attribute, and association of the class is specifically designed to implement
this small, focused set of responsibilities.

We came across the perplexing model in Figure 17.5 in a selling system.
There is a HotelBean class, a CarBean class, and a HotelCarBean class (the “beans”
are Enterprise JavaBeans (EJBs)). The HotelBean was responsible for selling
room stays in hotels, the CarBean for selling car hire, and the HotelCarBean for
selling a package of car hire with a hotel stay. Clearly, this model is wrong
from several perspectives.

® The classes are badly named—HotelStay and CarHire would be much better
names.

® The suffix “Bean” is unnecessary as it just refers to a specific implementa-
tion detail.

@ The HotelCarBean class has very poor cohesion—it has two primary respon-
sibilities (selling hotel stays and selling car hire) that are already carried
out by two other classes.

@ It is neither an analysis model (it contains design information in the
“Bean” suffixes) nor a design model (it is insufficiently complete).

From a cohesion perspective, HotelBean and CarBean are quite plausible (pro-
vided they were renamed), but HotelCarBean is just absurd.

l HotelBean l l HotelCarBean | What's wrong with

this model?

Figure 17.5
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17.5.4

A class should be l N\

associated with the
minimum number of
other classes to allow
it to fulfill its
responsibilities.

Low coupling

A particular class should be associated with just enough other classes to allow
it to realize its responsibilities and you should only associate classes if there
is a genuine semantic link between them—this is low coupling.

One of the common mistakes of the novice OO designer is to connect
everything in the model to everything else on a more or less ad hoc basis. In
fact, coupling is your worst enemy in object modeling, and you must be
really proactive about trying to limit the relationships between classes in
order to minimize coupling as much as you can.

A highly coupled object model is the equivalent of “spaghetti code” in
the non-O0 world and will lead to a system that is incomprehensible and
unmaintainable. You will find that highly coupled OO systems often result
from projects in which there is no formal modeling activity, where the sys-
tem is simply allowed to evolve in an ad hoc manner over time.

If you are a novice designer, you must be careful not to make connections
between classes just because one class has some code that another class could
use. This is the worst sort of reuse, as you sacrifice the architectural integrity
of the system for a small saving in development time. In fact, you need to
think very carefully about all associations between classes. Many of the asso-
ciations in the design model will come directly from the analysis model, but
there is a whole set of associations that are introduced by implementation
constraints or by the desire to reuse code. These are the associations that you
need to examine most carefully.

Of course, some coupling is good and is desirable. High coupling within
a subsystem is generally OK as this indicates high cohesion within the com-
ponent. You only compromise the architecture when coupling is between
subsys’tems, and you must actively seek to reduce this sort of coupling.

When you get to design, you have to consider inheritance much more than
in analysis. In analysis, you would only use inheritance if there were a clear
and unambiguous “is a” relationship between analysis classes. In design,
however, you may also choose to use inheritance in a tactical way to reuse
code. This is a different strategy, as you are really using inheritance to ease
the implementation of a child class rather than to express a business rela-
tionship between a parent and child.

We look at some strategies for using inheritance effectively in design in
the next few sections.
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Aggregation versus inheritance

Inheritance is a very powerful technique—it is a key mechanism for generat-
ing polymorphism in strongly typed languages such as Java, C#, and C++.
However, novice OO designers and programmers often abuse it. You should
realize that inheritance has certain undesirable characteristics.

It is the strongest form of coupling possible between two or more classes.

Encapsulation is weak within a class hierarchy. Changes in the base class
ripple down to change the subclasses. This leads to what is known as the
“fragile base class” problem, where changes to base classes have a large
impact on other classes in the system.

© Itis a very inflexible type of relationship. In all commonly used OO lan-
guages, inheritance relationships are fixed at runtime. You can modify
both aggregation and composition hierarchies at runtime by creating and
destroying relationships, but inheritance hierarchies remain fixed. This
makes it is the most inflexible type of relationship between classes.

The example in Figure 17.6 is a typical beginner’s solution to the problem of
modeling roles in an organization. At first glance, it looks quite plausible, but
it has problems. Consider this case: the object john is of type Programmer, and
you wish to promote it to be of type Manager. How can you do this? You have
seen that you can’t change john’s class at runtime, and so the only way you can
achieve the promotion is to create a new Manager object (called john:Manager),
copy all of the relevant data from the john:Programmer object, and then delete
the john:Programmer object to maintain consistency in the application. This is
clearly complex, and not at all how the real world works.

Employee

I Manager l l Programmer |

«instantiate»

john:Programmer
Figure 17.6

In fact, there is a fundamental semantic error in the model in Figure 17.6.
Is an employee just his or her job, or is it rather that an employee has a job?
This question leads us to the solution to the problem shown in Figure 17.7.
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Subclasses
should always
represent a “special
kind of” rather than a
“role played by”.

17.6.2

Multiple
inheritance allows a
class to have more than
one parent.

Parents must be
semantically disjoint.

Manager J ] Programmer l

]

«instantiate» «instantiate» «instantiate»
. . .
: : :
L
. [ :Manager | I :Programmer |
:

l john:Employee }

just change this link at
runtime to promote john

Figure 17.7

Using aggregation you get the correct semantics—an Employee has a Job.
With this more flexible model, Employees can also have more than one Job if
required.

We have achieved a much more flexible and semantically correct model
by replacing inheritance with aggregation as the mechanism for assigning
jobs to employees. There is an important general principle here—subclasses
should always represent “is kind of”, rather than “is role played by”. When
we think about the business semantics of companies, employees, and jobs, it
is clear that a job is a role played by an employee and does not really indicate
a kind of employee. As such, inheritance is definitely the wrong choice for
modeling this sort of business relationship. On the other hand, there are
many kinds of jobs in a company. This indicates that an inheritance hierar-
chy of jobs (rooted in the abstract base class job) is probably a good model.

Multiple inheritance

Sometimes you may want to inherit from more than one parent. This is mul-
tiple inheritance and it is not supported by all OO languages. For example,
Java and C# only allow single inheritance. In practice, this lack of support for
multiple inheritance is not a problem, as it can always be replaced by single
inheritance and delegation. Even though multiple inheritance sometimes
offers the most elegant solution to a design problem, it can only be used if the
target implementation language supports it.
The important points about multiple inheritance are the following.

@ - All the parent classes involved must be semantically disjoint. If there is
any overlap in semantics between the base classes, there is the possibility
of unforeseen interactions between them. This could lead to strange be-
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havior in the subclass. We say that the base classes must all be orthogonal
(at right angles to each other).

® The “is kind of” and substitutability principles must apply between the
subclass and all of its superclasses.

© Typically, the superclasses should have no parent in common. Otherwise,
you have a cycle in the inheritance hierarchy and there may be multiple
paths whereby the same features could be inherited from the more ab-
stract classes. Languages that support multiple inheritance (such as C++)
have specific, language-dependent ways of resolving cycles in the inherit-
ance hierarchy.

One common idiom for using multiple inheritance effectively is the “mixin”
class. These are classes that are not really stand-alone classes, but rather are
designed specifically to be “mixed in” with other classes using inheritance.
In Figure 17.8, the Dialer class is a simple mixin. All it does is dial a phone
number, and thus is not too useful on its own. However, it does provide a
cohesive package of useful behavior that can be widely reused by other
classes via multiple inheritance. This mixin is an example of a general utility
class that could become part of a reuse library.

Alarm Dialer

AlarmDialer

Figure 17.8

Inheritance versus interface realization
With inheritance you get two things:

© interface - the public operations of the base classes;

@ implementation - the attributes, relationships, protected and private
operations of the base classes.

With interface realization (see Chapter 19) you get exactly one thing:

@ an interface - a set of public operations, attributes, and relationships that
have no implementation.

Inheritance and interface realization have something in common as both
mechanisms allow you to define a contract that subclasses must implement.
However, the two techniques have very different semantics and usage.
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You only need to use inheritance when you are concerned about inher-
iting some implementation details (operations, attributes, relationships)
from a superclass. This is a kind of reuse, and in fact in the early days of OO
it was often considered to be the primary mechanism for reuse. However, the
world has moved on since then, and designers have recognized the some-
times unacceptable constraints that inheritance imposes and have moved
away from this usage to some extent.

Interface realization is useful whenever you want to define a contract but
are not concerned about inheriting implementation details. While interface
realization gives you no actual reuse of code, it does give a very clean mech-
anism for defining contracts and ensuring that implementing classes conform
to those contracts. Because nothing is really inherited in interface realiza-
tion, it is more flexible and robust in some ways than inheritance.

(177 Templates

Up to now, when we have defined a design class, we have had to explicitly
specify the types of the attributes, the return types of all operations, and the
types of all operation parameters. This is fine and works well in most of the
cases but it can sometimes limit the ability to reuse code.

In the example in Figure 17.9 we have defined three classes that are all
bounded arrays. One is a bounded array of int, the next is a bounded array of
double, and the last is a bounded array of String. When you examine these
classes, you see that they are identical except for the type that is stored in the
array. Yet, despite this similarity, we have had to define three separate classes.

BoundedintArray BoundedDoubleArray BoundedStringArray
size :int size : int size :int
elements[ ] : int elements| ] : double elements] ] : String
addElement( e:int ) : void addElement( e:double ) : void addElement( e:String ) : void
getElement( i:int ) : int getElement( izint ) : double getElement( izint ) : String
Figure 17.9

Templates allow you to parameterize a type. What this means is that in-
stead of specifying the actual types of attributes, operation return values, and
operation parameters, you can define a class in terms of placeholders or
parameters. These may be replaced by actual values to create new classes.
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In Figure 17.10, we have defined the class BoundedArray in terms of the
parameters type (which is by default a classifier) and size, which is an int. Notice
that the template specifies a default value of 10 for size. The default value will
be used if size is not specified when the template is instantiated.

template parameters

template default value

IntArray

g . type, size :int=10 ; :
BoundedArray """ TS elements[100] : int

..................... addElement( e:int ) : void

elements{size] : type getElement( iint) :int

addElement( e:type ) : void
getElement( i:int ) : type <] ------------------------------ StringArray

) ) elements[10] : String
explicit binding

addElement( e:String ) : void
getElement( i:int ) : String

Figure 17.10

By binding specific values to these formal parameters you can create new
classes—this is known as template instantiation. Notice that when you
instantiate a template, you get a class, and this class may then be instantiated
to get objects.

As Figure 17.10 shows, a template may be instantiated by using a realiza-
tion relationship stereotyped with «bind»—this is known as explicit binding.
To instantiate a template, you have to specify the actual values that will be
bound to the template parameters, and you list these in angle brackets after
the «bind» stereotype. When you instantiate the template, these values are
substituted for the template parameters, and this gives a new class. Notice
the syntax for parameter binding: the expression type->int means that the
template parameter type is replaced by int on instantiation. You can think of
the symbol —> as reading, “replaced by” or “bound to”.

Templates are clearly a powerful mechanism for reuse—you can define a
class very generally as a template, and then create many customized versions
of this class by binding the template parameters to appropriate actual values.

In Figure 17.10, we actually use binding in two ways. First, we bind a
classifier to the parameter type. When a template parameter has no type, then
it defaults to a classifier. Second, we bind an actual integer value to the
parameter size. This allows us to specify the bound for the bounded array as
a template parameter.
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The template parameter names are local to a particular template. This
means that if two templates have a parameter called type, it is a different type
in each case.

There is a variation on template syntax known as implicit binding. Here
you don't use an explicit «bind» realization to show template instantiation,
but rather you bind implicitly by using a special syntax on the instantiated
classes. To instantiate a template implicitly, you simply list the actual values
in angle brackets after the template class name as shown in Figure 17.11. The
disadvantage of this approach is that you can’t give the instantiated class its

own name.
R, implicit binding
! type, size :int=10 :

BoundedArray '"T7 Tttt BoundedArray< type->String >
elementsisize] : type elements[10] : String
addElement( e:type ) : void addElement( e:String ) : void
getElement( isint ) : type getElement( iiint ) : String

Figure 17.11

Our feeling is that it is better style to use explicit binding so that the tem-
plate instantiation classes can each have their own descriptive name.

While templates are a very powerful feature, at the moment C++ and Java
are the only commonly used OO languages that currently support them (see
Table 17.1). Clearly, templates can only be used in design when the imple-
mentation language supports them.

Table 17.1

Java Yes
C++ Yes
Smalltalk No
Python No
Visual Basic No

C# No
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Anested classis a
class defined inside
another class.

Some languages, such as Java, allow you to place a class definition inside
another class definition. This creates what is known as a nested class. In Java,
this is also known as an inner class.

A nested class is declared within the namespace of its outer class and is
only accessible by that class or by objects of that class. Only the outer class or
its objects can create and use instances of the nested class.

Nested classes tend to be a design issue as they are usually about how
some functionality can be implemented rather than what the functionality is.

For example, nested classes are used widely in Java event handling. The
example in Figure 17.12 shows a simple window class called HelloFrame. It
inherits basic window behavior from its parent Frame class. HelloFrame has a
nested class called MouseMonitor that inherits the ability to handle mouse events
from its parent MouseAdapter class.

Frame MouseAdapter

anchor icon

HelloFrame O \ MouseMonitor
containment
relationship

Figure 17.12

Each HelloFrame instance uses a MouseMonitor instance to process its mouse
events. To achieve this, the HelloFrame instance must

@ create an instance of MouseMonitor;
@ set this MouseMonitor to be its mouse event listener.

This approach makes quite a lot of sense. The mouse handling code gets its
own MouseMonitor class, separating it from the rest of the HelloFrame code, and
MouseMonitor is completely encapsulated within HelloFrame.
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What we have leamed

Design classes are the building blocks of the design model. You have learned
the following.

@ Design classes are developed during the UP activity Design a class.

@ Design classes are classes whose specifications have been completed to
such a degree that they can be implemented.

® Design classes come from two sources:

the problem domain:

— a refinement of analysis classes;

- one analysis class may become zero, one, or more design classes;
the solution domain:

— utility class libraries;

middleware;

GUI libraries;

reusable components;

- implementation-specific details.

@ Design classes have complete specifications:

complete set of attributes including:
- name;

- type;

- default value when appropriate;

- visibility;

operations:

- name;

— names and types of all parameters;
optional parameter values if appropriate;
return type;

visibility.

© Well-formed design classes exhibit certain characteristics:

the public operations of the class define a contract with the clients of
the class;

completeness — the class does no less than its clients may reasonably
expect;

sufficiency — the class does no more than its clients may reasonably
expect;

primitiveness - services should be simple, atomic, and unique;

high cohesion:

~ each class should embody a single, well-defined abstract concept;

— all the operations should support the intent of the class;
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— low coupling:
- a class should be coupled to just enough other classes to fulfill its
responsibilities;
— only couple two classes when there is a true semantic relationship
between them;
- avoid coupling classes just to reuse some code.
— Always assess a design class from the point of view of the clients of that
class.

® Inheritance.
— Only use inheritance when there is a clear “is a” relationship between
two classes or to reuse code.
— Disadvantages:

~ it is the strongest possible coupling between two classes;

- encapsulation is weak within an inheritance hierarchy, leading to
the “fragile base class” problem - changes in the base class ripple
down the hierarchy;

- very inflexible in most languages — the relationship is decided at
compile time and fixed at runtime.

— Subclasses should always represent “is kind of” rather than “is role
played by” - always use aggregation to represent “is role played by”.

© Multiple inheritance allows a class to have more than one parent.
— Of all the common OO languages only C++ has multiple inheritance.
— Design guidelines:
~ the multiple parent classes must all be semantically disjoint;
- there must be an “is kind of” relationship between a class and all of
its parents;
the substitutability principle must apply to the class and its parents;
the parents should themselves have no parent in common;
use mixins — a mixin is a simple class designed to be mixed in with
others in multiple inheritance; this is a safe and powerful idiom.

® Inheritance versus interface realization.
— Inheritance:
- you get interface - the public operations;
- you get implementation - the attributes, associations, protected and
private members.
— Interface realization - you only get interface.
— Use inheritance when you want to inherit some implementation.
— Use interface realization when you want to define a contract.

o Templates.
— Of all the commonly used OO languages, only C++ and Java currently
support templates.
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— Templates allow you to “parameterize” a type — you create a template
by defining a type in terms of formal parameters, and you instantiate
the template by binding specific values for the parameters.
~ Explicit binding uses a dependency stereotyped «bind»:

— you show the actual values on the relationship;
- you can name each template instantiation.
- Implicit binding:
- you specify the actual values on the class inside angle brackets
(<>);
- you can’t name the template instantiations — names are constructed
from the template name and the argument list.

@& Nested classes:
— vyou define a class inside another class;
— the nested class exists in the namespace of the outer class — only the
outer class can create and use instances of the nested class;
— nested classes are known as inner classes in Java, and are used exten-
sively for event handling in GUI classes.
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This chapter presents techniques for refining analysis relationships into
design relationships. You use these techniques in every activity in the Design
workflow (Figure 16.6).

The first part of the chapter discusses converting analysis relationships
into one of the whole-part relationships—aggregation (Section 18.4) or com-
position (Section 18.5).

The second part discusses how to deal with multiplicities in analysis
associations. We provide specific techniques for refining analysis associations
where the multiplicity is one-to-one (Section 18.7), many-to-one (Section 18.8),
one-to-many (Section 18.9), and many-to-many (Section 18.11.1). We also
cover bidirectional associations (Section 18.11.2) and association classes
(Section 18.11.3).

In the final part, we see how UML 2 allows us to explore the relationship
of a composite classifier to its parts.

361
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18.2 Design relationships

(1 8.3 Aggregation and composition)

[learn about aggregation] [learn about composition]

(18.4 Aggregation semantics) 68.5 Composition semantics)

(1 8.5.1 Composition and attributes)

(1 8.6 How to refine analysis relationships)

[refine one-to-one associations] [refine many-to-one associations] [refine one-to-many associations] [reify relationships]

A3
68.7 One-to-one asscciations) (1 8.8 Many-to-one associations) G 8.9 One-to-many associationﬂ (18.11 Reified relationships)

18.10 Collections (18.1 1.1 Many-to-many associations)
18.10.1 The map (18.1 1.2 Bidirectional associations)

68.1 1.3 Association classes)

@.1 2 Exploring composition with structured classes)

(1 8.12.1 Structured classiﬁers) (1 8.12.2 Structured classes)

(1 8.13 What we have Iearned)

Figure 18.1
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 Design relationships

When you move to design, you have to refine the relationships between
analysis classes into relationships between design classes. Many of the rela-
tionships captured in analysis are not directly implementable as they stand,
and they must be made so. For example, there is no commonly used OO
programming language that directly supports bidirectional associations,
association classes, or many-to-many associations. To create a design model,
you have to specify how these associations are going to be realized.

Refining analysis associations to design associations involves several
procedures:

@ refining associations to aggregation or composition relationships where
appropriate;
implementing one-to-many associations;

@ implementing many-to-one associations;

® implementing many-to-many associations;

® implementing bidirectional associations;

© implementing association classes.
All design associations must have

navigability;
¢ multiplicity on both ends.

All design associations should have an association name, or a role name on at
least the target end.

Aggregation and composition

In design, you can refine an association relationship into an aggregation
relationship or a stronger form of aggregation known as the composition
aggregation relationship if the semantics of the association warrant it. We
normally refer to composition aggregation simply as composition.

You can get a good idea about the semantic differences between the two
types of aggregation by thinking about some real-world examples.

© Aggregation - this is a loose type of relationship between objects—an
example might be a computer and its peripherals.

¢ Composition - this is a very strong type of relationship between objects—
it is like a tree and its leaves.
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If you consider these examples, illustrated in Figure 18.2, you can see that a
computer is only weakly related to its peripherals. These peripherals may
come and go, may be shared between computers, and are not in any mean-
ingful sense “owned” by any particular computer—this is aggregation. On
the other hand, a tree is intimately related to its leaves. Leaves are owned by
exactly one tree, they can't be shared between trees, and when the tree dies
the leaves go with it—this is composition.

UML defines two types of association

Aggregation Composition

Some objects are weakly Some objects are strongly

related, like a computer and related, like a tree and
its peripherals its leaves

Figure 18.2

It will be very useful to keep these simple analogies in mind as you study
the detailed semantics of aggregation and composition in the rest of this
chapter.

Aggregation semantics

Aggregation is a type of whole-part relationship in which the aggregate is
made up of many parts. In a whole-part relationship, one object (the whole)
uses the services of another object (the part). As such, the whole tends to be
the dominant and controlling side of the relationship, whereas the part just
tends to service requests from the whole and is therefore more passive.
Indeed, if you only have navigability from the whole to the part, the part
doesn’t even know that it is part of a whole.

Consider the particular aggregation example in Figure 18.3.

You can see that

@ a Computer may be attached to O or more Printers;
@ at any one point in time, a Printer is connected to 0 or 1 Computer;

@ over time, many Computers may use a given Printer;
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0.1 0.*
l Computer K> Printer
whole or \ : part
aggregate aggregation

Figure 18.3

@ the Printer may exist even if there are no attached Computers;

@ the Printer is, in a very real sense, independent of the Computer.

We can summarize aggregation semantics as follows:

© the aggregate can sometimes exist independently of the parts, sometimes
not;

@ the parts can exist independently of the aggregate;
the aggregate is in some sense incomplete if some of the parts are missing;

© itis possible to have shared ownership of the parts by several aggregates.

Aggregation is transitive. Consider the example in Figure 18.4. Transitivity
means that if C is part of B and B is part of A, then C is also part of A.

A B < @

aggregation is transitive: if C is part of B and B is part of A, then C is part of A

Figure 18.4

Aggregation is asymmetric. This means that an object can never, either
directly or indirectly, be part of itself. This limits how you can use aggrega-
tion in your models. In the aggregation example in Figure 18.5, you can see

reflexive
aggregation a:Product

i
\l/ \l/ cycles

- - are
b:Product c:Product NOT

allowed

*

Product

d:Product <>J

Figure 18.5
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that Product objects may be composed of other Product objects. This is fine pro-
vided they are all different objects and the asymmetry constraint is preserved.

Considering Figure 18.5 further, sometimes you might need to model
the case where object d has a link to object a as shown. This would occur
when object d needed to call back and use some of the services of the aggre-
gate object a. But how would you model this on the class diagram? The
reflexive aggregation relationship on the Product class won’t do because the
asymmetry constraint on aggregation precludes object a from being, either
directly or indirectly, a part of itself. You therefore need to use a reflexive,
unrefined association between class Product and itself to handle the link between
objects d and a, as shown in Figure 18.6.

Association is reﬂex*‘;?
aggregation
symmetric. An object 9 /g a:Product
may be associated to
itself.
Product l—————— ! b:Product c:Product
I d:Product
Figure 18.6
The example in Figure 18.7 shows another typical example of aggrega-
tion. You can model a home computer (the whole) as a set of parts. These
HomeComputer
1 1 1 2
2
Mouse Keyboard CPU Monitor Speaker
T 1 connectedTo B>
* 1 1.7 1 1 1
RAM FloppyDrive HardDrive l l CDRom SoundCard GraphicsCard ]
1

Figure 18.7

<@ connectedTo
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parts are quite loosely related to the whole as they are interchangeable with
other computers and may be shared with other computers, so you can use
aggregation semantics in your model. The model says that a home computer
can be thought of as an aggregate of the following parts: a Mouse, a Keyboard,
a CPU, a Monitor, and two Speakers. The CPU can itself be modeled as an aggre-
gate of various hardware components such as RAM, HardDrives, etc.

185

Composition is
a strong form of
aggregation.

The composite has
sole ownership and
responsibility for its
parts.

 Composition semantics

Composition is a stronger form of aggregation and has similar (but more
constrained) semantics. Like aggregation, it is a whole-part relationship and
is both transitive and asymmetric.

The key difference between aggregation and composition is that in com-
position the parts have no independent life outside of the whole. Furthermore,
in composition each part belongs to at most one and only one whole,
whereas in aggregation a part may be shared between wholes.

In the example in Figure 18.8, Button objects have no independent exist-
ence apart from their owning Mouse object. If you destroy the Mouse object,
you destroy its Button objects as they are an integral part of it. Each Button
object can belong to exactly one Mouse object. This is just like leaves and
trees—the life of the leaf is determined by the life of the tree, and a leaf can
only belong to exactly one tree.

always 0..1 or 1

1 1.4
Mouse P> Button

composite composition part

Figure 18.8

We can summarize composition semantics as follows:
© the parts can only belong to one composite at a time—there is no possi-
bility of shared ownership of a part;

@ the composite has sole responsibility for the disposition of all its parts—
this means responsibility for their creation and destruction;

® the composite may release parts, provided responsibility for them is
assumed by another object;

@ if the composite is destroyed, it must either destroy all its parts, or give
responsibility for them over to some other object.
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18.5.1

Apartina
composite is
equivalent to an
attribute.

Because the composite has sole responsibility for the life cycle and disposition
of its parts, when you create a composite, the composite object will often cre-
ate its parts. Similarly, when you destroy a composite, the composite must
destroy all of its parts or arrange for them to be adopted by another composite.

Another difference between aggregation and composition is that although
you may have reflexive aggregation hierarchies and networks, you can only
have reflexive composition hierarchies. This is because in composition, a
part object can only be part of one composite at any point in time.

Composition and attributes

When you think about composition semantics, you should see that they are
very similar to the semantics of attributes. Both have life cycles that are con-
trolled by their owners, and both have no independent existence outside of
their owners. In fact, attributes are exactly equivalent to a composition rela-
tionship between the composite class and the class of the attribute. Why,
then, do we need two ways to express the same thing? There are two reasons.

@ Attributes may be primitive data types. Some hybrid OO languages like
C++ and Java have primitive types such as int and double that are not
classes. Now, you could model these as classes stereotyped «primitive», but
this would just clutter the model. These primitive types should always be
modeled as attributes.

© There are certain utility classes like Time, Date, and String that are used per-
vasively. If you were to model every usage of one of these classes by a
composition relationship to the class itself, pretty soon your models
would be entirely obscured. It is much better to model classes like these
as attributes.

The bottom line is that if you have a primitive type or a utility class, or even
a class that is just not very interesting or useful to show explicitly on the
model, you should consider using an attribute rather than a composition re-
lationship. There is no hard and fast rule here, but the key guiding points to
keep in mind are always the clarity, usefulness, and readability of the model.

In analysis, you use simple associations without really considering the
semantics of the relationship (or how the relationship is finally to be imple-
mented) in any great detail. In design, however, you should always try to be
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as specific as possible, and so you refine associations into one of the aggrega-
tion relationships wherever you can. In fact, the only case where you must use
an association in design is where there would otherwise be a cycle in the
aggregation graph (see Section 18.4). This is quite rare, and so most analysis
associations end up as either aggregation or composition.

Having decided to use aggregation or composition, you should proceed
as follows:

add multiplicities and role names to the association if they are absent;
decide which side of the association is the whole, and which is the part;

look at the multiplicity of the whole side—if it is 0..1 or exactly 1, you
may be able to use composition; otherwise, you must use aggregation;

@ add navigability from the whole fo the part—design associations must be
unidirectional.

This gets you to the stage where you have refined the association into either
an aggregation or a composition.

If the multiplicities on either the whole or the part end are greater than
1, you have to decide how you will implement this. This is the next step in
the refinement.

7 One-to-oneassociations

Whenever you see a one-to-one association, this almost always becomes
composition. In fact, a one-to-one association implies such a strong relation-
ship between two classes that it is often worth seeing if they could be merged
into a single class without breaking any of the design rules for design classes
(see Section 17.5). Assuming that they can’t be merged, you refine a one-to-
one relationship to composition as shown in Figure 18.9.

1 1
analysis Party 7.y Partyldentifier
«tréce»
, f P
design Party [ @——————>| Partyldentifier

Figure 18.9
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You might also consider making Partyldentifier an attribute of Party if Party-
Identifier is not a particularly important class. This certainly simplifies the
diagram (Figure 18.10), but it has the disadvantage that you can’t show any
attributes or operations of Partyldentifier.

analysis

design

Figure 18.10

Party

3 Partyldentifier

id:Partyldentifier

In a many-to-one association, there is a multiplicity of many on the whole
side and a multiplicity of exactly 1 on the part side.

Because there are many on the whole side, you know immediately that
you can’t use composition as the part is shared between many wholes. But
you may be able to use aggregation. You should check at this point for cycles
in the aggregation graph (see Section 18.4). Provided there are none, you can
refine the analysis association to aggregation as shown in Figure 18.11. You

Many-to-one
associations mean )
aggregation, provided analysis
there is no cycle in the
aggregation graph.

design

Figure 18.11

whole part
* 1
Money ) Currency
«trace»
* ; 1
Money [<>———*——> Currency
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can see from this example that a single Currency object is shared between
many Money objects. This correctly captures the relationship between Money
and Currency—Money is an amount of a single Currency. You can find a much
more complete money model in [Arlow 1].

One-to-many associations

In one-to-many associations, there is a collection of objects on the part side of
the relationship. To implement such a relationship, you have to use either
native support for collections provided by the implementation language, or
a collection class.

Most OO languages provide minimal built-in support for collections of
objects. In fact, most languages only offer arrays. An array is an indexed col-
lection of object references that is normally bounded to some maximum size.
The advantage of built-in arrays is that they tend to be very fast. However,
this speed is offset by their inflexibility compared to other types of collection.

Collection classes are typically much more powerful and flexible than
native collections. They offer a whole range of different semantics, of which
array semantics is just one possibility. We look at designing with collection
classes in the rest of this chapter.

Collections

A collection class is a class whose instances specialize in managing collec-
tions of other objects. Most languages have standard libraries of collection
classes (and other utilities) available.

One of the keys to excellent OO design and implementation is having a

“mastery of collection classes. All collection classes have operations for

@ adding objects to the collection;

removing objects from the collection;

@ retrieving a reference to an object in the collection;

@ traversing the collection, that is, stepping through the collection from
the first object to the last.

There are many different types of collections, and each is specialized to han-
dle collections of objects in a particular way. Choosing the right collection
for the job in hand is an important aspect of OO design and implementa-
tion. We look at this in the next section.
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As an example of using collections, Figure 18.12 shows a one-to-many

association in analysis being implemented by a collection class called Vector.
This class comes from the Java standard library java.util. The relationship from
the whole (Order) to the Vector is usually a composition as the Vector typically
is just a part of the implementation of the whole and has no life outside of
this. However, the relationship between the Vector and the parts (OrderLine)
may be an aggregation or a composition. If the whole is responsible for the
life cycle of the parts, as in this example, you can use composition. Other-
wise, you must use aggregation.

Collection classes
implement one-to-many
associations.

whole part
9 *
analysis Order r.y OrderLine
«trace»
. 1 1 ' 1 *
design Order <®——>| Vector [@—>| Orderline

Figure 18.12

In terms of modeling with collections, there are four fundamental

strategies.

@ Model the collection class explicitly — this is the case shown in Figure 18.12.

It has the advantage of being very explicit, but also the big disadvantage
of adding a lot of clutter to the design model. If you replace every one-to-
many association in the model with a collection class, the model rapidly
becomes bloated. Choice of a collection class is usually a tactical imple-
mentation decision and can be left to the programmers. We recommend
that you should only replace one-to-many associations with specific
collection classes when the choice of collection is strategic.

Tell the modeling tool how each specific one-to-many association is to be
implemented. Many modeling tools that generate code allow a specific
collection class to be assigned to each one-to-many association. This is
usually accomplished by adding tagged values to the association to spec-
ify the code generation properties for that relationship. This approach is
shown in Figure 18.13, where we have added the property {Vector} to the
appropriate end of the relationship. Notice that we only use the name
part of the tagged value—the value part is redundant in this case.
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1 {Vector}*
Order <@————>| OrderLine

@ Specify the semantics of the collection by adding a property to the rela-
tionship, but don't specify any implementation class (see Figure 18.14). It
is important not to “overmodel” when using collections. As we've said,
the actual type of collection used is often a tactical, rather than a strat-
egic, issue and it can be left to the programmer to make a reasonable
assumption at implementation time. This is often a good option as it is
quite concise and allows you to give a hint to the programmers about
what collection class should be used. This approach usually precludes
automatic code generation, however.

© Don't bother refining one-to-many relationships to collection classes—
leave it up to the programmers.

Figure 18.14

1 {ordered}*
Order [<@————>1 OrderLine

UML provides standard properties that you can apply to multiplicities to
indicate the required semantics of the collection. These are summarized in

Table 18.1.

Ordering determines whether the elements in the collection are main-
tained in a strict order with respect to one another. Uniqueness determines
whether each object in the collection has a unique identity. The default
semantics for a one-to-many relationship are {unordered, unique}.

Table 18.1
‘Standard Sl
'property S ~S'emanti,csh ‘ ;
{ordered} Elements in the collection are maintained in a strict order
{unordered} There is no ordering of the elements in the collection
{unique} Elements in the collection are all unique ~ an object appears in the

collection at most once

{nonunique}

Duplicate elements are allowed in the collection
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18.10.1

Maps are optimized
to quickly refurn a
value, given a key.

For example, assuming you need an ordered collection of OrderLines, you
can express Figure 18.13 as shown in Figure 18.14.

The permutations of the order property and the uniqueness property
give rise to the set of collections listed in Table 18.2. These collections are
part of the Object Constraint Language (OCL) (Chapter 25), although all lan-
guages will have a similar set of collections.

Table 18.2
poperty’ T B0 odeolleion
{unordered, nonunique} Bag
{unordered, unique} Set
{ordered, unique} OrderedSet
{ordered, nonunique} Sequence
The map

Another very useful type of collection class is the map, also sometimes
known as the dictionary. These classes act a bit like a database table with just
two columns—the key and the value. Given a key, maps are designed so that
you can rapidly find the associated value. If you need to store collections of
objects that need to be accessed according to the value of a unique key or if
you need to build fast access indexes into other collections, a map is a good
choice.

Maps usually work by maintaining a set of nodes where each node points
to two objects—the key object and the value object. They are optimized to
find a value object quickly when given a specific key object.

Figure 18.15 shows a simplified representation of a Java HashMap. Finding
a value (given a particular key) is very fast as the collection is indexed with a
hash table.

UML has no standard property to indicate a map, and maps are not
part of OCL. If you want to indicate that a map is required on your design
model, either indicate the specific type of collection (e.g., {HashMap}) or use
the following tagged value:

{map keyName}

If you choose to use this nonstandard idiom, add a note to your model to
explain it!
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m:HashMap
key1
Ei=

L— valuel

key2
node2
value2
key3
—-1 node3 F—-

value3

Figure 18.15

Reified relationships

Some types of relationship are pure analysis artifacts and are not themselves
directly supported by any of the commonly used OO languages. The process
of taking these analysis relationships and implementing them is known as

reification (to make concrete, or real). You need to reify the following analysis
relationships:

® many-to-many associations;
@ bidirectional associations;

@ association classes.

Many-to-many associations

Many-to-many associations are not directly supported in any of the com-
monly used OO languages (although some object databases do support them
directly) so they must be reified into normal classes, aggregations, composi-
tions, and dependencies. In analysis, you could be quite vague about issues
such as ownership and navigation, but there is no room for such vagueness
in design. That being the case, you first have to decide which side of the
many-to-many association is the whole and then use aggregation or compo-
sition as appropriate.

In the example in Figure 18.16 we have reified the allocation relationship
into an Allocation class. This resolves the many-to-many association into two
aggregations as shown. Based on the requirements of the system, we have
decided that Resource is the whole. This is because the system is mainly about
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18.11.2

* allocation *
analysis Task A Resource
«trace»
1 * H * 1
design Task Allocation Resource

Figure 18.16

managing the lines of work associated with Resources, that is, it is resource-
centric. However, if the system were task-centric, we would make Task the
whole, reversing the relationships shown in the figure.

We've also chosen to give Resource responsibility for the life cycle of its
Allocation objects, and so have used a composition relationship.

If the system tries to present both points of view, then we might say it is
allocation-centric, and so we would introduce a new object (AllocationManager
perhaps), which maintains a list of Allocation objects where each object points
to both a Resource and a Task object.

Bidirectional associations

Often you need to model the circumstance in which an object a of class A
uses the services of an object b of class B, and object b needs to call back and
use the services of object a. An example of this might be a GUI Window control
owning one or more Button objects where each of these Button objects needs
to call back and use the services of their owning Window.

In analysis, this is straightforward—you model it as a single bidirectional
association. In design, however, none of the commonly used OO languages
support true bidirectional associations, and so you must reify this bidirec-
tional association into two unidirectional associations or dependencies, as
illustrated in Figure 18.17.

When you are modeling callbacks, you need to be aware of the asymmetry
constraint on aggregation and composition—an object must never directly or

analysis A 1 A A i ll B |

1
1
1
«trace» «trace»

[l
*

1

design A

1 *

Figure 18.17
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indirectly be a part of itself. This means that if class A has an aggregation or
composition relationship to class B, you have to model the callback relation-
ship from B back to A as an unrefined association. If instead you used an
aggregation relationship from B back to A, then object b would be part (by
composition or aggregation) of object a, and object a would be part (by aggre-
gation) of object b. This cycle of ownership clearly breaks the aggregation
asymimetry constraint.

Bidirectional associations also exist where the whole passes a reference to
itself as a parameter to one of the part’s operations, or where the part instan-
tiates the whole in one of its operations. In these cases, you should use a
dependency relationship from the part to the whole rather than an association.

Association classes

Association classes are pure analysis artifacts that are not directly supported by
any commonly used OO programming language. Thus, they have no direct
analog in design, and you need to remove them from your design model.

You reify the association class into a normal class and use a combination
of association, aggregation, composition, or even dependency to capture the
association class semantics. This may involve adding constraints to the model.
You decide which side of the association is the whole and use composition,
aggregation, and navigability accordingly. An example is shown in Figure 18.18.

Person

Company

analysis

design Company Job < Person

1
H salary:double
1
1
1

{each Person can only
have one Job with a
given Company}

Figure 18.18
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18.12.1

A structured
classifier is a classifier
that has an internal
structure.

Connectors are | N

relationships between
roles (parts).
Connectors and parts
only exist within the
context of a particular
structured classifier.

Notice that when you reify an association class, you lose the associa-
tion class semantics. These semantics state that the objects on each end of
the association class must form a unique pair (see Section 9.4.5). However,
as shown in Figure 18.18, you can easily restore these semantics by adding a
note containing the appropriate constraint.

Exploring composition with structured classes

Up to now, we have been taking analysis relationships and turning them
into one or more design relationships—this is the core activity of refining
analysis relationships. However, UML 2 also allows us to explore the relation-
ship of a composite classifier to its parts. This can be an important part of the
UP activities Design a class, Design a use case, and Design a subsystem as it allows
you to focus on the internal workings of one of these classifiers. The key con-
cept is the structured classifier, which we explore in the next section.

Structured classifiers

A structured classifier is simply a classifier (such as a class) that has an internal
structure. This structure is modeled as parts that are joined with connectors.
The interaction of a structured classifier with its environment is modeled by its
interfaces and ports, but we defer discussion of these to Chapter 19.

A part is a role that one or more instances of a classifier can play in the
context of the structured classifier. Each part may have

© a role name - a descriptive name for the role that instances play in the
context of the structured classifier;

@ atype - only instances of this type (or a subtype of this type) can play the
role;

@ a multiplicity - the number of instances that can play the role at any par-
ticular time.

A connector is a relationship between parts in the context of a structured
classifier. It indicates that parts can communicate with one another and that
there is a relationship between the instances playing the parts over which
this communication can occur. These relationships might map to associa-
tions between the classes of the parts, or they might simply be ad hoc
relationships in which the parts are brought together by the structured clas-
sifier in a temporary collaboration to perform some task.

Structured classifier syntax is illustrated in Figure 18.19 for the structured
class SomeClass.
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class diagram

StructuredClassSyntax ) structured class
SomeClass
role ;
name  ype multiplicity connector
A\ | 7 14 "
part1:Type1[0..2] part2:Type2[*]
Figure 18.19

The key points of structured classifier syntax are

® the parts collaborate in the context of the structured classifier;

@ the parts represent roles that instances of a classifier can play in the
context of the structured classifier—the parts do not represent classes;

@ the connector is a relationship between two parts that indicates that the
instances playing the roles specified by the parts can communicate in
some way.

You can see from the previous list that when you model a structured classifier,
you are only considering the internal implementation and external interface
of a single classifier and are ignoring all classifiers that are not parts of the
structured classifier. As such, this can be a very focused modeling technique.

Structured classes

A'structured class has the extra constraint that it owns all of its parts, connec-
tors, and ports (see Section 19.6). It has an implicit containment relationship
with them.

Lets’s look an example of using structured classes in practice. Figure 18.20
shows the class diagram for a simple library management system. It is subject
to the following business constraints:

there are two types of Borrower, StudentBorrowers and StaffBorrowers;
StudentBorrowers can have a maximum of four books on loan simultaneously;

StaffBorrowers can have a maximum of eight books on loan simultaneously;

® © @ e

only one Librarian can be logged on to the system at any particular time—
it is a single-user system.
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LibraryManagementSystem )
0.” 1
Loan Book
borrowedBook
loans | 0..* 0..* | catalog
1 1
borrowers . L
Borrower  f—————@ LibraryManager [@——— Librarian
% 0.* 1 T " T
[ | : ;
StudentBorrower StaffBorrower {only one Librarian can be logged on
. . to the system at any particular time}
|{number of loans = 4} Bl |{number of loans = 8} 'ﬁ
Figure 18.20

We have hidden all of the attributes and operations in this figure because we
are focusing on the structural aspects of the system.

You can see that LibraryManager has an internal structure—it is a composite
of Borrowers, Books, and Librarians. Because of the transitive nature of composi-
tion, Loans are also part of this composite structure. It is possible to express
the LibraryManager as a structured class as shown in Figure 18.21. Notice that
StudentBorrower and StaffBorrower are also shown as structured classes. In fact,
you can nest structured classes to any level.

Figure 18.21 gives us a slightly different perspective on the system and
allows us to look at the LibraryManager class in a bit more detail, investigating
the roles that class instances play in its implementation.

® From the perspective of the LibraryManager, there are two types of Borrower
that are handled slightly differently in terms of the maximum number of
Loans. We introduce new roles, student and staff, to express this.

© student and staff can each have a different maximum number of Loans out-
standing at any point in time. We show this by creating two different Loan
roles, studentLoan and staffLoan, and adding the appropriate multiplicity to
each of them.
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LibraryManager implementation )

:LibraryManager

student:Borrower|[0..*] staff:Borrower[0..]

studentLoan:Loan[0..4] — :Book[0.."] —  staffl.oan:Loan[0..8]

:Librarian[1..*]

loggedOnLibrarian:Librarian[0..1]

Figure 18.21

Some association
roles may map to part
roles.

@ The LibraryManager allows only one Librarian to be logged on at any point in
time, so we have introduced the role loggedOnLibrarian with a multiplicity
of 0..1.

As you can see, we have been able to make explicit the internal roles that
instances play within the context of the LibraryManager. Notice that these roles
can be different from the roles that classes play in their associations with
LibraryManager. For example, in Figure 18.20 the Borrower class has the role
borrowers in its association with LibraryManager, but in Figure 18.21 we have

~ refined this role into more specific roles played by the Borrower subclasses,

student and staff. Generally, some association roles map to part roles and some
do not.

Similarly, connectors may map to associations between classes or merely
to transient relationships created in the context of the structured class. In
this simple example, each connector can be traced to an association.

As well as showing the internal structure of structured classifiers on class
diagrams, you can show this structure on a special type of diagram called a
composite structure diagram. The diagram name is the name of the structured
classifier, and the diagram contents are just the contents of the structured
classifier. Figure 18.22 shows the LibraryManager class in its own composite
structure diagram.
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composite structure diagram

LibraryManager l

student: StudentBorrower[0.."] staff: StaffBorrower[0.."]

0.x 1 1 0.*
studentl.oan:Loan{0..4] :Book[0..*] staffLoan:Loan(0..8]

:Librarian[1..*]

loggedOnLibrarian:Librarian[0..1]

Figure 18.22

In this chapter you have seen how relationships in analysis are converted to
implementable design relationships. You have learned the following.

© Refining analysis relationships to design relationships involves:

— refining associations into aggregation or composition aggregation where
appropriate;

— implementing association classes;

— implementing one-to-many associations;

— implementing many-to-one associations;

— implementing many-to-many associations;

— implementing bidirectional associations;

— adding navigability;

— adding multiplicity to both ends of the association;

— adding a role name at both ends of the association, or at least on the
target end of the association;

— using structured classifiers.
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® Aggregation and composition.

These are whole-part types of relationship where objects of one class

act as the whole or aggregate, and objects of the other class act as the

parts:

— the whole uses the services of the parts; the parts service the requests
of the whole;

- the whole is the dominant, controlling side of the relationship; the
part tends to be more passive.

These relationships are transitive — if C is part of B and B is part of A,

then C is part of A.

These relationships are asymmetric:

~ a whole can never directly or indirectly be a part of itself;

- there must never be a cycle in the aggregation graph.

There are two types of aggregation relationship:

- aggregation;

- composition aggregation — usually referred to simply as composition.

@ Aggregation.

Aggregation semantics:

- the aggregate can sometimes exist independently of the parts, some-
times not;

— the parts can exist independently of the aggregate;

- the aggregate is in some way incomplete if some of the parts are
missing;

- it is possible to have shared ownership of the parts by several
aggregates;

- aggregation hierarchies and aggregation networks are possible;

- the whole always knows about the parts, but if the relationship is
one-way from the whole to the part, the parts don’t know about the
whole.

Aggregation is like a computer and its peripherals:

- a computer is only weakly related to its peripherals;

- peripherals may come and go;

- peripherals may be shared between computers;

— peripherals are not in any meaningful sense “owned” by any partic-
ular computer.

@ Composition.

This is a strong form of aggregation:

- the parts belong to exactly one composite at a time;

— the composite has sole responsibility for the disposition of all its
parts — this means responsibility for their creation and destruction;
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- the composite may also release parts, provided responsibility for
them is assumed by another object;
- if the composite is destroyed, it must destroy all its parts or give
responsibility for them over to some other object;
- each part belongs to exactly one composite so you can only have
composition hierarchies — composition networks are impossible.
— Composition is like a tree and its leaves:
— leaves are owned by exactly one tree;
— leaves can’t be shared between trees;
- when the tree dies, its leaves go with it.
— A part in a composite is equivalent to an attribute:
— use explicit composition when the parts are important and interesting;
- use attributes when the parts are neither important nor interesting.

@ Refining analysis associations.

— Analysis associations should be refined into one of the aggregation
relationships wherever possible. If this would create a cycle in the
aggregation graph, then it is impossible, and you must use an associ-
ation or a dependency.

— Procedure for refining associations to aggregation relationships:

- add multiplicities and role names;

- decide which side of the relationship is the whole and which is the
part;

— look at the multiplicity of the whole side:
- if it is 1, you may be able to use composition — check that the

association has composition semantics, then apply composition;

- if it is not 1, you must use aggregation;

- add navigability from the whole to the part.

@ Different types of association.

— One-to-one association - this almost always becomes composition.
However, you may also choose to use an attribute instead or to merge
the two classes.

— Many-to-one association:

- use aggregation — as there are many on the whole side, you can’t use
composition;

— check for cycles in the aggregation graph.

— One-to-many association:

— there is a collection of objects on the part side;

- use an inbuilt array (most OO languages directly support arrays) —
they are generally quite inflexible but are usually fast;

— use a collection class — they are more flexible than inbuilt arrays and
are faster than arrays when searching the collection is required
(otherwise they are slower).
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— Collections:
— These are classes specialized so that their instances can manage a
collection of other objects.
— All collection classes have operations for:

I

I

I

adding objects to the collection;

removing objects from the collection;

retrieving a reference to an object in the collection;

traversing the collection — stepping through the collection from
the first object to the last.

- Modeling with collections - there are four options:

model the collection class explicitly;

tell the modeling tool which collection to use by adding a prop-
erty to the relationship - e.g., {Vector};

tell the programmer what collection semantics are required by
adding a property to the relationship:

o {ordered} — the collection is maintained in a strict order;

o {unordered} — the collection is not maintained in a strict order;

o {unique} - all elements in the collection are unique;

s {nonunique} — duplicate elements are allowed in the collection;
instead of refining one-to-many relationships to collection
classes, leave it up to the programmers.

Don’t “overmodel” - the choice of a specific collection class is
often a tactical issue that can be left to the programmer at imple-
mentation time.

- Types of collection:

OCL collections:

o Bag — {unordered, nonunique};

o Set — {unordered, unique};

@ OrderedSet - {ordered, unique};

& Sequence - {ordered, nonunique}.

The map:

o also known as the dictionary;

¢ given a key, the corresponding value may be found very quickly;
e acts like a database table with two columns, the key and the value;
e keys must be unique.

— Reified relationships.
- Some relationships are pure analysis artifacts and must be made
implementable by the process of reification.
- Many-to-many associations:

reify the relationship into a class;
decide which side is the whole and use aggregation, composition,
or association as appropriate.
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- Bidirectional associations:

- replace with a unidirectional aggregation or composition from
whole to part, and a unidirectional association or dependency from
part to whole.

— Association classes:

— decide which side is the whole and which is the part;

- replace with a class (usually with the same name as the association
class);

- add a constraint in a note to indicate that objects on each end of
the reified relationship must form a unique pair.

@ Exploring composition with structured classes.
— Structured classifier — a classifier (such as a class) that has an internal
structure.
— Modeled as parts that are joined with connectors:
— part - a role that one or more instances of a classifier can play in
the context of the structured classifier;
® name - the name of the part;
o type — the type of objects that can play the role;
» multiplicity - the number of objects that can play the role at any
time;
- connector — a relationship between parts in the context of a struc-
tured classifier.
- Internal structure can be shown on class diagrams or on a composite
structure diagram.
— Structured class:
- a class that has an internal structure;
~ has the extra constraint that it owns (has an implicit containment
relationship with) all of its parts, connectors, and ports.
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94 Chapter roadmap

This chapter has two main threads—interfaces and components. We discuss
these two topics together because, as you will see, they are intimately related.
You will also see, in Section 19.10, how using interfaces combined with a
special type of component called a subsystem allows the creation of flexible
system architectures.

387
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(19.2 UP activity - Design a subsystem)

(19.3 What is an interface?)

(1 9.4 Provided and required interfaces)

[understand interface realization vs.inheritance] NG
119.5 Interface realization vainheritance)

19.6 Ports

(19.7 Interfaces and component-based development)

(19.8 Whatis a component?)

L

(1 9.9 Component stereotypes)

19.10 Subsystems

flearn aboutﬁrlj?ing interfaces] [learn about modeling with interfaces]

(1 9.11 Finding interfaces) (19.12 Designing with interfaces)

(19.12.1 The Fagade pattern)

(19.12.2 Architecture and the layering patteﬂ

(19.1 3 Advantages and disadvantages of interfaces)

(1 9.14 What we have Iearnecﬂ

Figure 19.1
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This chapter is primarily about the UP activity Design a subsystem. A subsystem
is just a special type of component, so in this chapter we discuss components
and component-based development along with subsystems. The topics in this
chapter also have an impact on the other UP design activities, as you will see.

The UP activity Design a subsystem is shown in Figure 19.2. We have mod-
ified the original figure to bring it into line with UML 2 where subsystems are
types of components, rather than stereotyped packages. Changed artifacts are
shown in gray in the figure.

] [ N =
Architecture Component : «subsystem»
description engineer
P Subsystem
E] [complete]
«subsystem»
- -7 Designa s
Subsystem .-t subsystem RO |
[outlined] e N
Interface Interface
[outlined] [complete]

Figure 19.2 Adapted from Figure 9.44 [Jacobson 1] with permission from Addison-Wesley

The activity Design a subsystem is about breaking up the system into parts
that are as independent as possible. These parts are called subsystems. Interac-
tions between subsystems are mediated by interfaces. The goals of subsystem
design are to minimize coupling in the system by designing appropriate
interfaces and to ensure that each subsystem correctly realizes the behavior
specified by its interfaces.

An interface specifies a named set of public features.
The key idea behind interfaces is to separate the specification of function-
ality (the interface) from its implementation by a classifier such as a class or

An interface
specifies a named set
of public features.
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subsystem. An interface can’t be instantiated—it simply declares a contract
that may be realized by zero or more classifiers. Anything that realizes an in-
terface accepts and agrees to abide by the contract that the interface defines.

~Interfaces can specify the features listed in Table 19.1. This table also
shows the responsibilities of realizing classifiers with respect to the interface.

Interfaces
separate the
specification of
functionality from its
implementation.

Table 19.1
Interface specifies  Realizingclassifier
Operation ' Must have an operation with the same signature and
semantics
Attribute Must have public operations to set and get the value of the
attribute - the realizing classifier is not required to actually
have the attribute specified by the interface, but it must
behave as though it has
Association Must have an association to the target classifier — if an
interface specifies an association to another interface, the
implementing classifiers of these interfaces must have an
association between them
Constraint Must support the constraint
Stereotype Has the stereotype
Tagged value Has the tagged value
Protocol (e.g., as Must realize the protocol
defined by a proto-

col state machine -
see Section 21.2.1)

Interfaces also need specifications of the semantics of their features (usu-
ally in text or pseudocode) to guide implementers.

The attributes and operations in an interface should be fully specified
and should include the following:

@ the complete operation signature (name, types of all parameters, and return
type);
the semantics of the operation—this can be recorded as text or pseudocode;
the name and type of the attributes;
any operation or attribute stereotypes, constraints, and tagged values.
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abstract classes.

19.4.

Interfaces that l N\

are realized by a
classifier are its
provided interfaces.

Interfaces that l N

a classifier needs are
its required interfaces.
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It is important to remember that an interface only defines a specification for
its features and that it never implies any particular implementation.

Interfaces can have a profound effect on the way you design. Up to now,
we have been designing by connecting specific classes—we might call this
“designing to an implementation”. However, it is more flexible to “design to
a contract” where you connect to an interface and this interface may then be
realized by any number of classes and other classifiers. The Java standard
libraries bear testament to the flexibility and power of this approach. We
often say that an interface defines a service offered by a class, subsystem, or
component. Modern software architectures are often service based.

Java is the first commonly used language to introduce a specific language
construct for interfaces. However, it is quite possible to program using inter-
faces in languages that have no construct for interfaces. For example, in C++
you would simply define a pure abstract class—this is an abstract class whose
operations are all abstract.

Provided and required interfaces

The set of interfaces realized by a classifier is known as its provided interfaces.

When a classifier requires one or more interfaces for its operation, these
are known as its required interfaces.

The UML syntax for provided interfaces is shown in Figure 19.3. There
are two variants, the “class” style notation (on which you may show the
attributes and operations) and the concise “lollipop” style notation (on which
you may not show the attributes and operations).

«interface»
Borrow
borrow() inter’
return() ——interface—_____ Borrow
isOverdue() !
A realization
R EEEEEE :/relatiqnship
Book cD y Baok cD

“Lollipop” style notation
(note: you can't show the interface
operations or attributes with this
shorthand style of notation)

“Class” style notation

Figure 19.3
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The example in Figure 19.3 is taken from a simple library management
system where the Library class maintains a collection of Books and a collection
of CDs. Each Book and CD realizes the Borrow interface that specifies the proto-
col for a borrowable item. Although Books and CDs are semantically quite
different, the Borrow interface allows the Library to treat them in a uniform
way, at least as far as their borrowing protocol is concerned.

Interfaces are typically named just like classes—in UpperCamelCase.
However, in Visual Basic and C# there is a common standard to prefix each
interface name with uppercase |, for example, IBorrow. Another naming idiom
is to add “able” to the end of the name, for example, Borrowable or IBorrowable.

The realization relationship is the relationship between a specification
(in this case, an interface) and the things that realize the specification (in this
case, the classes Book and (D). We'll see later that it is not just classes that can
realize an interface—other classifiers such as packages and components can
as well.

Notice that in the class style notation, the realization relationship is
drawn as a dotted line with an unfilled arrowhead, while in the lollipop
style notation it becomes a single solid line with no arrowhead. The idea
here is that the lollipop notation is kept as concise as possible. You use the
class notation when you want to show the interface features, and the lolli-
pop notation when you don’t. However, they both mean exactly the same
thing.

Figure 19.4 shows the Library class that requires the Borrow interface. You
can show a required interface as a dependency to an interface (in either class
or lollipop notation) or as a socket into which the required interface fits.
Either way, what this notation tells us is that the Library understands and

class style notation lollipop style notation
r"‘——)\‘“—\ A
~ ™
Library Library Library
e | /l\
«interface» O Borrow Borrow
Borrow

required interface

Figure 19.4
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requires the specific protocol defined by the Borrow interface. Anything that
realizes this interface may potentially be plugged into the Library and the
Library will understand that it can be borrowed and returned.

Figure 19.5 shows the Library system assembled. The assembly connector
indicates that Book and CD both provide the set of services (defined by Borrow)
that the Library requires.

———®|  Llbay |@e———

assembly { A\ Borrow

connector

o+  Book o | oL

Figure 19.5

Another good example of interfaces with multiple implementations can
be found in the collection classes in the Java standard libraries (Figure 19.6).
Although eight interfaces are defined, Java provides many different imple-
mentations, all of which have different characteristics. By designing to an
interface, the Java designer can leave the actual realization of the interface to
implementation time, and let the Java programmer choose the implementa-
tion with the most appropriate characteristics.

O

lterabl

O

Collection Map

List Set SortedMap  ConcurrentMap

SortedSet
Figure 19.6
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195

Interface
realization - “realizes
a contract specified by”.

Inheritance -
‘(is a”

Interface realization vs. inheritance

At this point, it’s worth considering the difference between interface realiza-
tion and inheritance. The semantics of interface realization are “realizes
contract specified by” whereas the semantics of inheritance are “is a”. The
substitutability principle applies both for inheritance and for interface real-
ization, so both types of relationship can generate polymorphism.

To illustrate the differences between interface realization and inherit-
ance we have created an alternative solution for the library problem based
on inheritance (see Figure 19.7). This seems to be a perfectly plausible and in
some ways simpler solution for the library system, but there are issues.

Library

1
0.*

Borrowableltem

%

Book CcD

Figure 19.7

Most importantly, this inheritance-based model doesn't seem quite right
because we are making a very definite statement that Books and CDs are of
type Borrowableltem. But is this ability of Books and CDs to be borrowed really
sufficient to specify their type? Perhaps their ability to be borrowed could be
considered to be just one particular aspect of their behavior that they happen
to have in common in the context of the library system. It is semantically
more correct to view Borrowableltem as a particular role that both Books and CDs
play with respect to the Library, rather than as a common supertype.

To illustrate a practical problem with the model in Figure 19.7, consider
adding Journals to the Library. Journals are periodicals, such as Nature, and are
not borrowable. This gives rise to the inheritance-based model in Figure 19.8.

Notice that the Library now has to maintain two lists of objects—those
that are borrowable and those that are not. This solution would work, but it
is not very elegant as it mixes two very different concerns of the Library:

@ storing objects;
@ borrowing objects.
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1
Library <>
1
0.* 0..*
Borrowableltem NonBorrowableltem
Book CcD Journal

Figure 190.8

We can improve this model somewhat by adding an extra level in the inher-
itance hierarchy, as illustrated in Figure 19.9. This gets rid of one of the
composition relationships by introducing a Libraryltem class. This solution is
about as good as it gets using single inheritance. We have factored out the
“borrowable” protocol of an item into a separate level in the inheritance
hierarchy. This is a common solution to this sort of problem.

Library
1
0..*
Libraryltem
Borrowableltem NonBorrowableltem
Book CD Journal

Figure 19.9

As illustrated in Figure 19.10, a model that uses both interfaces and
inheritance provides a more elegant solution.
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Library
1
0..*
Libraryltem
/N
Book CcD Journal
| |
(d) Borrowable

Figure 19.10 ’

The advantages of this interface-based solution are as follows:

@ every item in the Library is a Libraryltem—this makes intuitive sense;

we have factored out the notion of “borrowability” into a separate inter-
face, Borrowable, that we can apply to Libraryltems as needed;

© we have fewer classes—five classes and one interface, as opposed to seven
classes for the other solution;

© we have fewer composition relationships—one as opposed to two in the
other solution;

we have a simpler inheritance hierarchy with only two levels;

we have fewer inheritance relationships—three as opposed to five in the
other solution.

All in all, the interface-based solution is simpler and has better semantics. We
put things like catalogNumber, which all Libraryltems have, in the Libraryltem base
class so that they can be inherited, and we define the “borrowable” protocol
separately in the Borrowable interface.

To illustrate the flexibility of interfaces, let’s take this example one step
further. Suppose you need to export details of Books and Journals (but not CDs)
to XML files. The business drivers for this are to allow information exchange
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with other libraries and to enable the display of the catalog of printed
material on the Web. We design the solution as follows:

® introduce an XMLExporter class to perform the XML export;

@ introduce an interface, XMLExportable, that defines the protocol that every
exportable item must have to work with the XMLExporter.

We have the following non-functional requirements:

© the implementation language shall be Java;

® the JDOM library shall be used for XML processing JDOM is a simple but
powerful Java library for working with XML documents—see www.jdom.org).

The XMLExportable protocol is just a single operation, getElement(), that returns
a representation of the exportable item as an Element, a class defined in the
JDOM library. The XMLExporter class uses JDOM to write Elements out to an
XML file.

The complete solution is shown in Figure 19.11.

Library
¢
0..*
XMLExportable Libraryltem XMLExportable
Book CD Journal
@ Borrowable
«interface»
XMLExporter XMLExportable
writeXMLDocument( filename:String, root:Element, elements:XMLExportable[] ) getElement():Element

Figure 19.11
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With this solution we have managed to separate the concerns of storabil-
ity (the composition relationship), borrowability (Borrowable), and exportability
(XMLExportable). We have used interfaces to specify the common protocols of
classes that should #not normally be related by inheritance.

Ports

A port groups a semantically cohesive set of provided and required inter-
faces. It indicates a specific point of interaction between a classifier and its
environment.

The example in Figure 19.12 illustrates port notation. It shows a Book class
that has a port called presentation. This port consists of a required interface,
DisplayMedium, and a provided interface, Display. The name of the port is op-
tional. The figure shows two variants of the port notation. The left-hand side
of the figure shows the normal case, and the right-hand side shows a more
concise alternative. However, this alternative is only applicable if the port has
a single type of provided interface (it may still have zero or more required
interfaces). You show the type name after the port name as shown in the figure.

DisplayMedium

Book
port DisplayMedium

Book

presentation presentation:Display

/

port type

Display

port name

Figure 19.12

Ports are a very useful way of structuring a classifier’s provided and re-
quired interfaces. They can also be used to simplify a diagram. For example,
Figure 19.13 shows a Viewer class that connects to the presentation port of the
Book class. For ports to be connected, their provided and required interfaces
must match. Using ports is clearly much more concise than showing all of
the provided and required interfaces but can be more demanding to read.

Ports may have a visibility. When a port is drawn overlapping the
boundary of the classifier, it is public, and this means that the provided and
required interfaces are public. If the port rectangle is shown inside the classi-
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Viewer Book

view presentation:Display

Figure 19.13

fier boundary (as illustrated in Figure 19.14), then the port has either protected
visibility (the default) or private visibility. The actual visibility is not shown
graphically but is recorded in the specification of the port.

A
] aProtectedPort

Figure 19.14

Ports may have a multiplicity, and this can be shown in square brackets
after the port name and type name (e.g., presentation:Display[1]). This multiplic-
ity indicates the number of instances of the port that instances of the
classifier will have.

Interfaces and component-based development

Interfaces are the key to component-based development (CBD). This is about
constructing software from plug-in parts. If you want to create flexible com-
ponent-based software for which you can plug in new implementations at
will, you must design with interfaces. Because an interface only specifies a
contract, it allows for any number of specific implementations, provided each
abides by that contract.

In the next few sections we look at components and then explore how
components and interfaces may be combined in CBD.

- Whatisacomponentz

The UML 2.0 specification [UML2S] states, “A component represents a mod-
ular part of a system that encapsulates its contents and whose manifestation
is replaceable within its environment”. A component acts as a black box
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Acomponentisa
modular and replaceable
part of a system that
encapsulates its
contents.

Interfaces allow
| you to connect
componentsina
flexible way.

whose external behavior is completely defined by its provided and required
interfaces. Because of this, one component can be replaced by another that
supports the same protocol.

Components can have attributes and operations and can participate in
association and generalization relationships. Components are structured clas-
sifiers and can have an internal structure comprising parts and connectors. We
introduced structured classifiers in Section 18.12.1, and if you haven’t read
that yet, we advise you to read it now before proceeding with this section.

Components can represent something that can be instantiated at run-
time, such as an EJB (Enterprise JavaBean), or they may represent a purely
logical construct, such as a subsystem, that is only instantiated indirectly by
virtue of its parts being instantiated.

A component may be manifest by one or more artifacts. An artifact rep-
resents something in the physical world, such as a source file. For example,
an EJB component might be manifest by a JAR (Java ARchive) file. We discuss
artifacts in more detail in Section 24.5.

The component diagram can show components, dependencies between
components, and the way in which classifiers are assigned to components.
As illustrated in Figure 19.15, a component is drawn as a box with the stereo-
type «component» and/or a component icon in its top right-hand corner.
Components may have provided and required interfaces and ports.

component
provided required
interface interface
A «component»
il A 12

Figure 19.15

A component can have an internal structure. You can show the parts
nested inside the component (Figure 19.16) or externally, connected to it by
dependency relationships. Both forms are syntactically equivalent, although
we think the nested notation is often clearer.

When a component has internal structure it will usually delegate respon-
sibilities defined by its interfaces to one or more of its internal parts. In
Figure 19.16, the component A provides the interface I+ and requires the
interface l2. It encapsulates two parts of type b and c. It delegates the behavior
specified by its provided and required interfaces to b and c respectively.

Components may depend on other components. To decouple compo-
nents you always mediate the dependency with an interface. When a component
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«component» EI
A

«delegate» «delegate»
Ot {O— bB cC s >LH—(

1 I 12 12

Figure 19.16

requires an interface, you can show this as a dependency between the compo-
nent and the interface or you can use an assembly connector as illustrated in
Figure 19.17.

In Figure 19.17 you can see the following.

@ The Party component provides two interfaces of type IParty and IAddress.
These interfaces are represented as balls.

© The MailingListManager component requires two interfaces of type IAddress
and IPostBox. These are represented as sockets.

© There is an assembly connector between the Party component and the
MailinglListManager component. This shows that the MailinglistManager is
communicating with the Party component via the provided IAddress
interface.

® In this model the Party component is acting as a facade (see Section 19.12.1)
to decouple the MailingListManager component from the details of the Address
component.

Components are often shown simply as black boxes with their supplied and
required interfaces attached to them. However, you can also have a white-box

IParty «component» «component»

O_. Party N Address

A) IAddress
\,/ |IAddress

«component»

MailingListManager __C

IPostBox

Figure 19.17
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view of a component as shown in Figure 19.18. This white-box view exposes
the internal details of the component. It can show any provided interfaces,
required interfaces, realizations, or associated artifacts.

«component» g ]
Party
«providedinterfaces» .
provided

IAddress interfaces

\Party

«artifacts» artifacts that provide the

A physical manifestation of the

party.jar component
Figure 19.18
Component stereotypes

Components are possibly the most stereotyped UML element. This is because a
component can be used to represent many different types of things. UML 2 pro-
vides a small set of standard component stereotypes that are listed in Table 19.2.
We look at one of these, «subsystem», in more detail in the next section.

Table 19.2

Stereotype

~ Semantics

«buildComponent»

A component that defines a set of things for organizational or
system-level development purposes

«entity» A persistent information component representing a business
concept

«implementation» A component definition that has no specification itself — it is
an implementation for a separate «specification» to which it has a
dependency

«specification» A classifier that specifies a domain of objects without defining
the physical implementation of those objects — for example, a
component stereotyped by «specification» only has provided and
required interfaces and no realizing classifiers

«process» A transaction-based component

«service» A stateless, functional component that computes a value

«subsystem» A unit of hierarchical decomposition for large systems
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If you are using UML profiles in your modeling, these probably define

their own component stereotypes.

Subsystems

A subsystem is a component that acts as a unit of decomposition for a larger
system. Subsystems are drawn as components stereotyped «subsystems.

A subsystem is a logical construct that is used to decompose a large sys-
tem into manageable chunks. Subsystems themselves can’t be instantiated at
runtime, but their contents can.

From the UP perspective, subsystems are a key structuring concept.
Breaking a system down into subsystems factors a large, difficult develop-
ment problem into many smaller and more manageable subproblems. This is
the key to successful system development using UP.

Interfaces go hand-in-hand with subsystems as shown in Figure 19.19. In
this example, the GUI subsystem only knows about the CustomerManager, Account-
Manager, and OrderManager interfaces. It does not know anything about the
internals of the implementing BusinessLogic subsystem. This means that you
could, in principle, replace the BusinessLogic subsystem with another subsystem
entirely, or even with several subsystems, as long as together they provided the
same set of interfaces. Similarly, you could replace the GUI subsystem with a dif-
ferent GUI subsystem provided it required the same set of interfaces. Using
interfaces in this way decouples subsystems and creates architectural flexibility.

Interfaces connect subsystems to create a system architecture.

g1

«subsystem»

GUI

QOO

Customer  Account Order
Manager Manager Manager
«subsystem» 2]

BusinessLogic

Figure 19.19
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Designing with interfaces

As you design a system or part of a system, it is worth examining the design
model to try to find some interfaces. This is quite easy to do—proceed as
follows.

@ Challenge each association - look at each one and ask the question,
“Should this association really be to a particular class of objects, or should
it be more flexible than this?” If you decide that the association really
needs to be more flexible than it would be if it were tied to a particular
class, consider using an interface.

® Challenge each message send — look at each one and ask the question,
“Should this message send really be to objects of just one class, or should
it be more flexible than this?” If it should be more general (i.e., if you can
think of cases where the same message could be sent to objects of other
classes), consider using an interface.

@ Factor out groups of operations that might be reusable elsewhere. For ex-
ample, if many classes in your system need to be able to print themselves
to some output device, think of designing a Print interface.

Factor out sets of operations that repeat in more than one class.
Factor out sets of attributes that repeat in more than one class.

Look for classes that play the same role in the system—the role may indi-
cate a possible interface.

@ Look for possibilities for future expansion. Sometimes, with just a little
forethought, you can design systems that can be expanded easily in the
future. The key question is, “In the future, will other classes need to be
added to the system?” If the answer is yes, try to define one or more
interfaces that will define the protocol for adding these new classes.

@ Look at the dependencies between components — mediate these by
assembly connectors where possible.

As you can see, there can be many opportunities for using interfaces. We look
at the details of designing with interfaces in the next section.

When you are designing a system, it is always helpful if things behave as uni-
formly as possible. Using interfaces, you can design common protocols that
might be realized by many classes or components. A good example of this is a
system we were working on to provide a common interface to several legacy
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systems. The problem was that each system had a different communications
protocol. We were able to hide this complexity behind a single interface con-
sisting of the operations open(...), read(...), write(...), and close().

Here’s another example. If you consider a system that models an organi-
zation (a human resources system, for example), there are many classes of
things that have a name and address—for example, Person, OrganizationalUnit,
Job. All of these classes can play the common role of addressableUnit. It clearly
makes sense that all of these classes should have the same interface for han-
dling name and address details. You might therefore define a NameAndAddress
interface that they could all realize. Other solutions to this problem may use
inheritance, but the interface solution can sometimes be more flexible.

It is worth remembering that classes may have reflexive associations (to
themselves) and that there may be roles that are internal to the class. These
are also possible candidates for interfaces.

A powerful use of interfaces is to provide the ability to plug things in to
systems. One of the ways to make systems flexible and resilient to change is
to design the system so that extensions can be plugged in easily. Interfaces
are the key to this. If you can design systems around interfaces, then associ-
ations and message sends are no longer tied to objects of a particular class
but instead are tied to a particular interface. This makes it easier to add new
classes to a system as the interfaces define the protocols that the new classes
must support in order to plug in seamlessly.

Plug-in algorithms are a good example of software modules that you
might want to plug in at will. We were working on a system some time ago
that did a big and complex calculation on a large data set. The users wanted to
experiment with the calculation algorithm to try to find the optimum strat-
egy. However, the system had not been written taking this into account, and
every small change to the algorithm took several man-days as the existing
code had to be changed and the system rebuilt. We worked with one of the
designers to refactor the system to use an interface to pluggable algorithms.

~ After this work, new algorithms could be tried out in a matter of hours. In fact,

we could even switch algorithms while the system was still running.

The Fagade pattern

Hiding complex subsystems behind a well-defined, simple interface is known
as the Facade pattern. This is documented in [Gamma 1]. This book is a trea-
sure trove of powerful, reusable design patterns that may be used in many
different contexts in design models. Gamma has this to say about the Facade
pattern: “Structuring a system into subsystems helps reduce complexity. A
common design goal is to minimize the communication and dependencies
between subsystems. One way to achieve this goal is to introduce a facade
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19.12.2

The layering

pattern organizes
subsystems into
semantically cohesive
layers.

object that provides a single, simplified interface to the more general facilities
of a subsystem.”

The Facade pattern allows information hiding and separation of con-
cerns—you can hide the complex details of the internal workings of a
subsystem behind a simple interface. This reduces the complexity of the sys-
tem and allows you to control and manage coupling between the subsystems.

Interfaces used as a facade can be used to create “seams” in a system. You
do this as follows:

® identify cohesive parts of the system;
® package these into a «subsystem;
® define an interface to that subsystem.

Architecture and the layering pattern

The collection of design subsystems and interfaces constitutes the high-level
architecture of a system. However, for this architecture to be easy to under-
stand and maintain, you still need to organize the collection of subsystems
and interfaces in some coherent way. You can do this by applying an archi-
tectural pattern known as layering.

The layering pattern arranges design subsystems and interfaces into lay-
ers where the subsystems in each layer are semantically cohesive. The essence
of creating a robust layered architecture is to manage the coupling between
subsystems by

@ introducing new interfaces where needed;

@ repackaging classes into new subsystems in a way that reduces the cou-
pling between subsystems.

Dependencies between layers must be managed very carefully as these depen-
dencies represent coupling between layers. Ideally, you want the layers to be as
decoupled as possible, so try to ensure that

© dependencies go one way;
@ all dependencies are mediated by interfaces.

In other words, a subsystem in a layer should require interfaces from the
layer below it and provide interfaces to the layer above it wherever possible.

There are many ways of producing layered architectures, and you can
have as many layers as make sense. However, the basic pattern is a split into
presentation, business logic, and utility layers. As shown in Figure 19.20, it is
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also quite common to further subdivide the business logic layer. In this case
we have two layers—domain and services. The domain layer contains sub-
systems specific to this particular application, and the services layer contains
subsystems that may be reusable in other applications.

presentation
B LT T T T TP «subsystem»
: GUI
E OrderManager
AN AN :
: Customer (P Product
' Manager Manager
! | «subsystem» <\ «subsystem» O «subsystem»
1 | Customer Q/ Order Product
business ; o I :
logic ! ' /‘I\ Account ' :
 — ' ! ? Manager E :
services ! «subsystem» :
' ; Accounts : ;
v : v v 5
N «subsystem» | 1 | «subsystem» | )
javax.swing java.sql
utility
«subsystem»
{global}
java.util
Figure 19.20

Wherever possible, it is best to design to an interface. In Figure 19.20,
you can see that the subsystems we have designed ourselves are all con-
nected via interfaces. However, the Java packages are just connected with
dependencies, even though each one makes available several interfaces. The
reason for this is that while showing your own interfaces is interesting and
useful, showing the interfaces made available by standard Java libraries
doesn’t seem to serve any useful purpose. Notice also that the java.util pack-
age, which contains generic components like Strings, is used everywhere and
so it is marked with a {global} tag. This tag indicates that the entire public con-
tents of the package are visible everywhere. It is a pragmatic way to indicate
that you have chosen not to show the dependencies to this package because
they don't provide any useful information.
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 Advantages and disadvantages ofnterfaces

Designing to a
contract is more
flexible than designing
to an implementation.

Flexibility can lead
to complexity - so take
care.

When you design with classes, you are constraining the design to specific
implementations. But when you design with interfaces, you are instead
designing to contracts that may be realized by many different implementa-
tions. Designing to contracts frees the model (and ultimately the system)
from implementation dependencies and therefore increases its flexibility
and extensibility.

Designing with interfaces allows you to reduce the number of dependen-
cies between classes, subsystems, and components and hence begins to give
control over the amount of coupling in a model. In a real sense, coupling is
the worst enemy of the object developer, as highly coupled systems are hard
to understand, maintain, and evolve. Appropriate use of interfaces can help
reduce coupling and separate the model into cohesive subsystems.

However, there are drawbacks to using interfaces. Generally, whenever
you make something more flexible, you make it more complex. So when you
design with interfaces, you are looking for a trade-off between flexibility and
complexity. In principle, you could make every operation of every class an
interface—you simply would not be able to understand such a system! There
is also often a performance cost to flexibility, but this is usually a minor
consideration compared to the increase in complexity.

When you design a system you are trying to capture a very definite set of
business semantics in software. Some of these semantics are fluid and change
quite rapidly, while others are relatively stable. You need flexibility to help
deal with the fluid aspects, but you can simplify systems by dispensing with
a certain amount of flexibility for the more stable parts. In a way, this is one
of the secrets of good OO analysis and design—identifying the fluid and
stable parts of a system and modeling each accordingly.

To be frank, it is more important that a system be correctly modeled than
flexibly modeled. Always concentrate on correctly modeling the key business
semantics of the system first, and then think about flexibility. Remember the
KISS rule—keep interfaces sweet and simple!

Interfaces allow software to be designed to a contract rather than to a specific
implementation. You have learned the following.

® The UP activity Design a subsystem is concerned with breaking a system up
into subsystems — parts that are as independent as possible.
— Interactions between subsystems are mediated by interfaces.
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@ An interface specifies a named set of public features.

— Interfaces separate specification of functionality from implementation.

— Interfaces may be attached to classes, subsystems, components, and
any other classifier and define the services offered by these.

— If a classifier inside a subsystem realizes a public interface, the sub-
system or component also realizes the public interface.

— Anything that realizes an interface agrees to abide by the contract
defined by the set of operations specified in the interface.

@ Interface semantics — the realizing classifier has the following responsibili-
ties for each feature:
— operation — must have an operation with the same signature and
semantics;
— attribute — must have public operations to set and get the value of the
attribute:

- the realizing classifier is not required to have the attribute, but it

must behave as though it has;
— association — must have an association to the target classifier:

- if an interface specifies an association to another interface, the
implementing classifiers of these interfaces must have an associa-
tion between them;

— constraint — must support the constraint;
— stereotype - has the stereotype;

— tagged value - has the tagged value;

— protocol — must realize the protocol.

® Designing to an implementation:
— specific classes are connected;
— to keep things simple (but rigid), design to an implementation.

@ Designing to a contract:
— a class is connected to an interface that may have many possible
realizations;
— to make things flexible (but possibly more complex), design to a contract.

® Provided interface - an interface provided by a classifier:
— the classifier realizes the interface;
— use the “class” style notation when you need to show the operations
on the model;
— use the shorthand “lollipop” style notation when you just want to show
the interface without operations.

@ Required interface - an interface required by a classifier:
— the classifier requires another classifier that realizes the interface;
— show a dependency to a class style interface, a lollipop style interface,
or use an assembly connector.
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@ Assembly connector — joins provided and required interfaces.

@ Interface realization vs. inheritance.

— Interface realization — “realizes a contract specified by”.

— Inheritance - “is a”.

— Both inheritance and interface realization generate polymorphism.

— Use interfaces to specify the common protocols of classes that should
not normally be related by inheritance.

@ Port — groups a semantically cohesive set of provided and required interfaces:

— may have a name, type, and visibility.

@ Component — a modular part of a system that encapsulates its contents

and whose manifestation is replaceable within its environment:

— may have attributes and operations;

— may participate in relationships;

— may have internal structure;

— its external behavior is completely defined by its provided and required
interfaces;

— components manifest one or more artifacts.

Component-based development (CBD) is about constructing software

from plug-in parts:

— you use interfaces to make components “pluggable”;

— by designing to an interface, you allow the possibility of many differ-
ent realizations by many different components.

Components can represent:
— a physical entity (such as an EJB component);
— a logical entity (such as a subsystem).

Standard component stereotypes:

— «buildComponent» — a component that defines a set of things for organi-
zational or system-level development purposes;

— «entity» — a persistent information component representing a business
concept;

— «implementation» — a component that has no specification itself - it is an
implementation for a separate «specification» to which it has a dependency;

— «specification» — a classifier that specifies a domain of objects without
defining the physical implementation of those objects — for example, a
component stereotyped by «specification» only has provided and
required interfaces and no realizing classifiers;

— «process» — a transaction-based component;

— «service» — a stateless, functional component that computes a value;

— «subsystem» — a unit of hierarchical decomposition for large systems.
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© Subsystem - a component that acts as a unit of decomposition for a larger
system:

a component stereotyped «subsystem»;

a logical construct that is used to decompose a large system into man-

ageable chunks;

can’t be instantiated at runtime, but its contents can;

breaking a system down into subsystems is a key to successful system

development using UP.

Subsystems are used to:

- separate design concerns;

- represent large-grained components;

— wrap legacy systems.

Use interfaces to hide the implementation details of subsystems:

- the Fagade pattern hides a complex implementation behind a sim-
ple interface;

- the layering pattern organizes subsystems into semantically cohe-
sive layers:
- dependencies between layers should only go one way;
- all dependencies between layers should be mediated by an interface;
- example layers include presentation, business logic, and utility

layers.

¢ Finding interfaces:

challenge associations;

challenge message sends;

factor out groups of reusable operations;

factor out groups of repeating operations;

factor out groups of repeating attributes;

look for classes that play the same role in the system;
look for possibilities for future expansion;

look for dependencies between components.
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Chapterroadmap et

Use case realization—
design

In this chapter we look at use case realization-design. This is the process of
refining analysis interaction diagrams and class diagrams to show design
artifacts. Having already looked in detail at design classes in Chapter 17, we
focus here on interaction diagrams. In particular, we discuss the use of inter-
action diagrams in design to model central mechanisms. These are the
strategic design decisions that you need to make about object persistence,
distribution, etc. We also look at using interaction diagrams to capture the
high-level interactions within a system by learning how to create subsystem
interaction diagrams. In this chapter we cover timing diagrams. These are a
new type of diagram introduced in UML 2 that are very useful for modeling
hard real-time and embedded systems. Finally, we close the chapter with a
real, but simple, example of use case realization-design.
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2 UPactivity: Design a use case.

The UP activity, Design a use case (Figure 20.2) is about finding the design
classes, interfaces, and components that interact to provide the behavior
specified by a use case (artifacts modified from the original figure are shown
in gray). This is the process of use case realization that we discussed in Chap-
ter 12, but now with the focus on design. This change of focus has several

important consequences.

® Use case realizations in design will involve design classes, interfaces, and

components rather than analysis classes.

@ The process of creating use case realizations in design is likely to uncover
new non-functional requirements and new design classes.

® Use case realizations-design help you find what Booch calls central mech-
anisms [Booch 1]. These are standard ways of solving a particular design
problem (such as database access) that are applied consistently throughout
the system development.

—
A

Use case model .

.
A
.
~ S
Requirements AT
model See
1
A

Analysis model

i —_,'
Al g
/'l
Design model L
l'l
VAN I

Deployment model

O
[]

Use case engineer

Design a
-7  usecase .

77 Use case realization
e —design

Design class
[outlined]

«subsystem»

Subsystem
~ [outlined]

Interface
[outlined]

Figure 20.2  Adapted from Figure 9.34 [Jacobson 1] with permission from Addison-Wesley
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The following are inputs to Design a use case.

Use case model — see Part 2 of this book (Requirements).
Requirements model — see Part 2 of this book (Requirements).
Analysis model — we covered this in Part 3 of this book (Analysis).

e @ @ ¢

Design model — this is what we are building in this design section of the
book. UP shows this artifact as an input to Design a use case to indicate the
iterative nature of the process. You refine each artifact as your design
activities uncover more and more of the details of the system.

@ Deployment model — we defer discussion of this to Chapter 24. Again, the
deployment model is shown as an input to this design activity to illus-
trate how the artifacts all evolve together over time.

It's important to realize that design is an iterative process, rather than a
sequence of steps. As such, information you discover about one artifact may
well affect others. Part of design is keeping all of the artifacts in step.

203 Usecaserealization-design
m A use case realization—-design is a collaboration of design objects and classes
that realize a use case. There is a «trace» between an analysis use case realiza-
tion and a design use case realization. The use case realization-design specifies
implementation decisions and realizes the non-functional requirements. It
consists of

realizations-design”
are collaborations of
design objects and
design classes that

realize a use case. @ design interaction diagrams;

® class diagrams containing the participating design classes.

Your focus for use case realizations in analysis was to capture what the system
needed to do. In design, you are concerned with how the system is going to do
it. Thus, you now need to specify implementation details that you simply
ignored in the analysis stage. Use case realizations-design are therefore much
more detailed and complex than the original analysis use case realizations.

It is important to remember that you only model to help you understand
the system you are trying to build. You should limit the amount of work you
do in design to that which is useful—this is what is known as strategic
design. There is also tactical design, which you can safely leave to the imple-
mentation phase. In fact, the only time you design exhaustively is when you
intend to generate most of the code from the model. Even then, use case
realizations—-design rarely play an active role in automatic code generation,
and so you only create these as needed to highlight obscure aspects of system
behavior.
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In design you may l N\

refine key analysis
interaction diagrams or
create new ones to
illustrate central
mechanisms such as
object persistence.

Interaction diagrams are a key part of your use case realizations—design.
Because it can be easier to show large amounts of information on sequence
diagrams, you often focus on these in design, rather than on communication
diagrams.

Interaction diagrams in design may be

@ a refinement of key analysis interaction diagrams with implementation
details added;

@ entirely new diagrams constructed to illustrate technical issues that have
arisen during design.

In design, you introduce a limited number of central mechanisms such as
object persistence, object distribution, transactions, etc., and you often con-
struct example interaction diagrams specifically to illustrate these mechanisms.
Interaction diagrams that illustrate central mechanisms often cut across use
cases.

To understand the role of sequence diagrams in design, we look at the
AddCourse use case we previously discussed in Section 12.9.1. Here is the
AddCourse use case again (Figure 20.3).

Use case: AddCourse

ID: 8

Brief description:
Add details of a new course to the system.

Primary actors:
Registrar

Secondary actors:
None;- e

Preconditions:
1. The Registrar has logged on to the system.

Main flow:

1. The Registrar selects "add course".

2. The Registrar enters the name of the new course.
3. The system creates the new course.

Postconditions:
1. A new course has been added to the system.

Alternative flows:
CourseAlreadyExists

Figure 20.3
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Figure 20.4 shows the analysis interaction diagram that we created in
Section 12.9.1.

sd AddCourse ’

% :RegistrationManager
:Registrar

addCourse( "UML" )

L

The Registrar selects
“add course”.

—_— «create»
The system creates umi:Course
the new Course.

Figure 20.4

Figure 20.5 shows a typical sequence diagram for the AddCourse use case in
the early stages of design. You can see that we have added the GUI layer,
although this hasn’t been modeled very deeply. We have also resolved the
high-level operations from the analysis sequence diagram to design-level
operations that are specified completely enough to be implemented. For
example, object construction is now shown in detail by an explicit construc-
tor operation invocation.

Figure 20.5 also includes a central mechanism: how the Course objects are
made persistent. In this case, we have chosen a very simple persistence
mechanism—the :RegistrationManager uses the services of a :DBManager to store
the Course objects in a database. It is essential that this central mechanism,
once defined, should be used consistently throughout the rest of the design.
We once worked on a large system that had no less than three different per-
sistence mechanisms—clearly, this was two too many!
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sd AddCourse - design )

% :RegistrationUl :RegistrationManager :DBManager
:Registrar

addCourse( "UML"

)’FE“

I.--..-_..---.._.

addCourse( "UML" )

v

uml = Course("UML") | umi:Course

save(uml)

This illustrates the central mechanism for persistence
that must be used throughout the system

Figure 20.5

20.5 Modeling concurrency

Concurrency means that parts of the system execute in parallel. It is one of
the key considerations in design.
UML 2 has good support for concurrency:

Concurrency is
one of the key
considerations in
design.

® active classes (Section 20.5.1);

© forks and joins in activity diagrams (Section 14.8.3);

@ the par operator in sequence diagrams (Section 20.5.2);

sequence number prefixes in communication diagrams (Section 20.5.3);
© multiple traces on timing diagrams (Section 20.7);

@ orthogonal composite states in state machines (Section 22.2.2).

In the next few sections we first look at active classes and then concurrency
in sequence and communication diagrams.
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20.5.1

Concurrency -
each active object has
its own thread of
execution.

Active classes

The basic principle for modeling concurrency is that each thread of control
or concurrent process is modeled as an active object. This is an object that
encapsulates its own thread of control. Active objects are instances of active
classes. Active objects and active classes are drawn as normal classes and
objects but with double right and left borders as illustrated in Figure 20.8.

Concurrency tends to be very important for embedded systems, such as
the software that operates a photo-processing machine or an automated
teller machine. So to investigate concurrency, we consider a very simple
embedded system—a security system. This security system monitors a set of
sensors that can detect fire or intruders. When a sensor is triggered, the sys-
tem sounds an alarm. The use case model for the security system is shown in
Figure 20.6. »

The use case specifications for the system are given in Figure 20.7; we
don’t consider the use case ActivateFireOnly as we are focusing on the concur-
rent aspects of the system in this section. Also, these are just very high-level
use cases that capture the essence of what the alarm system needs to do. We
explore its behavior in more depth in the rest of the section.

Now we need to find the classes. With embedded systems, the hardware
on which the system executes can be an excellent source of classes. In fact, it
is often the case that the best software architecture is a close match with the
physical hardware architecture. In this case, the alarm hardware consists of
four components: the control box, the siren, the set of fire sensors, and the
set of security sensors. Opening up the control box reveals that there is a
controller card for each different type of sensor.

Given the use cases and the information about the physical hardware,
you can derive a class diagram for this system as shown in Figure 20.8.

% N
SecurityGuaN ActivateAll

ActivateFireOnly

Security system

DeactivateSystem

TriggerSensor

Uil

Fire Intruder

Figure 20.6

Al
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Active classes
have instances that
are active objects.

20.5.2

active class
1 1
ControlBox Siren
1
1 1
SecuritySensorMonitor FireSensorMonitor

1 1
0.” 0.*
SecuritySensor FireSensor

Figure 20.8

We need to use multithreading as the security system must continuously
monitor the fire and security sensors. The classes ControlBox, SecuritySensor-
Monitor, and FireSensorMonitor have double right and left borders. This means
that they are active classes.

Concurrency in sequence diagrams

Now we have enough information to create a sequence diagram. The sequence
diagram for the use case ActivateAll is shown in Figure 20.9. This diagram dem-
onstrates the use of the par, loop, and critical operators.

Here is the walkthrough for Figure 20.9.

1. The :SecurityGuard sends the message activate() to the :ControlBox.
2. The :ControlBox sends the message soundActivatedAlarm() to the :Siren.

3. The :ControlBox spawns two threads of control, represented by the operands
of the par operator. Moving down the diagram, we call the first operand
of par operand 1 and the second operand of par operand 2.

4. par operand 1:
4.1. The :ControlBox sends the message monitor() to the :FireSensorMonitor.
4.2. The :FireSensorMonitor enters a loop polling the :FireSensor. This loop
executes once (to set the initial value of the variable fire) and then
loops while fire is false.
4.3. When fire becomes true:
4.3.1. The :FireSensorMonitor enters a critical section where:
4.3.1.1. It sends the message fire() to the :ControlBox.
4.3.1.2. The :ControlBox sends the message soundFireAlarm() to
the :Siren.
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sd ActivateAll )
. :SecuritySensor :FireSensor - :Security o
Seourity Guard :ControlBox Monitor Moqitor :FireSensor Sensor :Siren
activate() i
soundActivatedAlarm ()
par monitor()
loop 1, * [ffire] ) fire = isTriggered ()

critical )

fire()

soundFireAlarm ()

monitor()

loop 1, * [(tintruder) & (fire)] )

intruder = isTriggered ()

\4

opt ['fire] )

intruder()

soundIntruderAlarm ()

Figure 20.9

5. par operand 1 finishes.
6. par operand 2:
6.1. The :ControlBox sends the message monitor() to the :SecuritySensorMonitor.
6.2. The :SecuritySensorMonitor enters a loop polling the :SecuritySensor. This
loop executes once (to set the initial value of the variable intruder)
and then loops while intruder AND fire are false.
6.3. When intruder becomes true:
6.3.4. If fire is false
6.3.1.1. the :SecuritySensorMonitor sends the message intruder()
to the :ControlBox;
6.3.1.2. the :ControlBox sends the message soundlntruderAlarm()
to the :Siren.

7. par operand 2 finishes.
8. The interaction finishes.
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There are a few interesting points to note about this interaction.

® Both of the operands of par execute in parallel.

@ A citical section represents an atomic behavior that can't be interrupted.
This is an important refinement as the triggering of the fire sensor is
safety critical and shouldn't be interrupted.

® Both loops have Repeat..Until semantics—they execute once, to set the
value of a variable used in their conditions, and then repeat while their
conditions are true.

@ The fire alarm must always have precedence over the intruder alarm. To
achieve this, the loop in par operand 2 is terminated by either a fire() or an
intruder() event. This is because we don’t want to continue monitoring for
intruders when there is a fire! Furthermore, the intruder alarm will only
sound if the fire alarm is not already sounding.

Another point about this sequence diagram is that we have shown only a
single FireSensor and a single SecuritySensor. This certainly serves to illustrate
the behavior, but suppose you wanted to show the system iterating over sev-
eral SecuritySensors and several FireSensors. To do this, you would have to
modify the diagram as shown in Figure 20.10 by adding two more inner
loops to traverse the collections of sensors.

Both operands in Figure 20.10 behave the same in terms of looping, so
we consider the upper operand that monitors the FireSensors as an example.

You can see that the outer loop remains unchanged. The new inner loop,
however, steps over each FireSensor in turn. You can indicate this by using the
loop expression:

[for each f in FireSensor]

You can then use the selector [f] to show the FireSensor that the loop has
selected as a lifeline on the sequence diagram, so that you can send the
message isTriggered() to it. This loop has a break combined fragment that ter-
minates the inner loop and executes its operand when fire is true. You then
enter the critical section as before.

It's important to keep sequence diagrams as simple as possible. Your
focus in use case realization should be on illustrating how the classes can in-
teract to realize the behavior specified in the use case. In this ActivateAll
example, Figure 20.9 is probably sufficient to illustrate the essential behavior
of the system, especially if it was supported by some comments. Figure 20.10
might well be too detailed.
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sd ActivateAll )
. :SecuritySensor :FireSensor . [s]:Security .
Secufity Guard :ControlBox Monitor Monitor [f]: FireSensof Sensor :Siren
activate() §
soundActivatedAlarm ()
par monitor()

loop 1,* [fire] )

break [fire] l

ritical
critica ) fre0)

loop [for each f in FireSensor] )

fire = isTriggered ()

soundFireAlarm()

monitor()

loop 1, * [(lintruder) & (!fire)] )

loop [for each s in SecuritySensoru

intruder = isTriggered ()

L

break [intruder & ((fire)] )

intruc'er()

soundintruderAlarm()

Figure 20.10

20.5.3 Concurrency in communication diagrams

You show concurrency in communication diagrams by postfixing the
sequence number with a label to indicate the thread of control, as shown in
Figure 20.11. This communication diagram shows the same interaction that
we previously saw as a sequence diagram in Figure 20.9. There are two con-
current threads of control, labeled A and B.

In this example, we assume that there is just one FireSensor instance and
one SecuritySensor instance and that the iteration is a polling operation,
repeatedly calling the isTriggered() operation of the sensor until it returns true.

Postfix the
sequence number with
a label to show
different threads of
control,
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sd ActivateAll J
1.3 A : soundFireAlarm ()
1.3 B : soundintruderAlarm ()
1: activate () ——> — .
:ControlBox :Siren
. ; 1.2A: 12B: . .
:SecurityGuard 1.1 A+ monitor() T fire() intruder() T 1.1 B monitor(
:FireSensorMonitor :SecuritySensorMonitor
1.1.1 A * [ffire] : l l 11.1B *[(!intr.uder) & (Mfire)]
fire = isTriggered() intruder = isTriggered()
:FireSensor :SecuritySensor

Figure 20.11

Subsystem
interaction diagrams
can show the
interactions between
parts of the system.

Suppose that there were many sensors, as we considered for sequence dia-
grams in Figure 20.10. You then would have to repeatedly traverse the set of
sensor instances, polling each one in turn. This requires a nested loop. It is
possible to show nested loops on communication diagrams, but we don't
know of any easy and neat way to do it! Our advice is that when things get
complex, you should use sequence diagrams instead. They have a clearer and
more flexible syntax.

Subsystem interactions

Once you have created a physical architecture of subsystems and interfaces,
you may find it useful to model interactions between subsystems because
these provide a very useful high-level view of how the architecture realizes
use cases without going into the low-level details of individual object
interactions.

You treat each subsystem as a black box that simply provides and requires
services specified by its public provided and required interfaces. You don’t
have to worry about the object interactions within the subsystem at all.

Figure 20.12 shows a subsystem called Customer that has a single interface
called CustomerManager.

Figure 20.13 is part of a sequence diagram, showing an actor interacting
with this subsystem. Notice how we have shown the interface in a box hang-
ing down below the subsystem. Because the interface is a part of the subsystem
that can be connected to, it can have its own lifeline and we can show
messages going directly to that lifeline.
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Timing diagrams
model timing
constraints.
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?CustomerManager

«subsystem» E

Customer

Figure 20.12

«subsystem» g:l

:Customer

:Sales A
Sales Agent I :CustomerManager I

getCustomerDetails( cid )

!

customerDetails

Figure 20.13

Timing diagrams

One of the areas in which UML 1 was weak was in modeling real-time sys-
tems. These are systems in which timing is critical and one event must follow
another within a specified time window. We say “time window” rather than
“time” because absolute time is not accessible to us as developers. Whenever
we specify a time in a model, we are really specifying a time plus or minus
some error that is determined by external factors such as the accuracy of the
system clock. Usually, this isn't a problem except in systems involving very
precise time constraints.

InUML 1, you could express tnmng constraints on various diagrams, but
no single diagram type was devoted explicitly to modeling timing. UML 2
gives real-time modelers the timing diagram. This is a type of interaction
diagram that focuses on modeling timing constraints. As such, it is ideal for
modeling this aspect of real-time systems. Timing diagrams, similar to UML
timing diagrams, have been used successfully in the electronics industry for
many years to model the timing constraints of electronic circuits.

The timing diagram is a very simple diagram. Time increases horizontally
from left to right, and lifelines and their states (or specific conditions on the
lifeline) are shown vertically. Movement between lifeline states and conditions
is drawn as a graph. You can see a simple timing diagram for the Siren class in
Figure 20.14. This timing diagram illustrates what happens when there is an
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intruder event and then a fire event. Hopefully, this is a pessimistic scenario,

but it’s important to model it in order to understand how the intruder and
fire detection functions of the alarm system interact.

sd IntruderThenFire I

duration constraint

SoundingFireAlarm
{t<=15} {t =30}
|92 Sl

b
S I~ T |
/'c% SoundingIntruderAlarm p
A D ire
lifeline \
event
off —— .
intruder intruder
state or condition
Resting
intruder
1 1 1 I3 i i 1 1 } 1 1 1 1 1 1 i 1 1 1 L 1
] Ll 1 ¥ 1 1 ] 1 ] 1 ] 1 1 T 1 i 1 1 ] ] ¥
10 20 30 4 5 60 70 80 90 100
timing ruler —0 0 %0

time in minutes

Figure 20.14

Here is a walkthrough for this timing diagram.

t = 0: The :Siren is in the state Off.

t = 10: There is an intruder event, and the :Siren transitions to the state
SoundingIntruderAlarm.

t = 25: The intruder alarm can sound for no more than 15 minutes because
of local regulations on alarms. The :Siren transitions to the state Resting.
It must stay in this state for 30 minutes (again, because of local laws).

t =35: There is an intruder event but the :Siren is Resting so it can’t sound.
t = 55: The :Siren transitions back to the state Off.

t = 65: There is another intruder event. The :Siren transitions from the state
Off to the state SoundingintruderAlarm.

t = 75: There is a fire event. The :Siren transitions from the state Sounding-
IntruderAlarm to the state SoundingFireAlarm.

t = 100: The interaction finishes, leaving the :Siren in the state SoundingFire-
Alarm.
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You can use
timing diagrams to
show how an object
changes state over
time.
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You can also draw timing diagrams in a more compact form in which the
states are drawn horizontally. Figure 20.15 shows the timing diagram in
Figure 20.14 drawn in this way.

sd IntruderThenFire )

all times in minutes l

{t <—15} {t > 30} {t=10}
| ~1 le S
l 1 ~ i
- Soundlng Sounding Sounding
2 Intruder Resting Off Intruder fire
@ Alarm Alarm \ Alarm

state or condition

Figure 20.15

With this compact form, the emphasis is usually more on the states and
on relative time, rather than on any notion of absolute time as modeled by a
timing ruler.

You can also use timing diagrams to illustrate timing constraints in inter-
actions between two or more lifelines. Figure 20.16 shows the interaction
between the :FireSensorMonitor, :IntruderSensorMonitor, and :Siren lifelines.

There are several interesting points to note about this timing diagram.

The timing diagram has three compartments, one for each lifeline.

You can show messages between lifelines on timing diagrams as shown in
the figure.

© When triggered, both types of sensor transition to the state Triggered and
then back to the state NotTriggered within 1 second (0.016 minutes). This
means that both sensors have a quick recovery time—an essential feature.

® The :Siren only responds to intruder events when it is in the state Off. When
it is Resting, it ignores intruder events. This is because of local regulations
that mandate that intruder alarms should only sound for 15 minutes and
then be off for at least half an hour.

@ The :Siren always responds to fire events even when it is in the state Resting.
This is because the fire alarm must sound as soon as a fire event happens.

As you can see, timing diagrams provide a useful way to model timing
constraints on interactions.
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Figure 20.16

In this section we take a look at a real example of use case realization-design.
The example we use is a simple schema-based use case editor. This is part of the
SUMR system that we describe in Appendix 2, and if you haven't already
done so, you should read that section first.

As you will have seen from Appendix 2, the application we are going to
look at is a simple use case editor that syntax-highlights actor names, use
case names, includes, and extends. The use case model for the UseCaseEditor
system is shown in Figure 20.17. We developed this system by using the
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UseCaseEditor

CreateUseCaseSpecification@
EditUseCaseSpecification

EditActorSpecification
SyntaxHilightActorSpecification
GenerateXMLActorSpecification

UseCaseEngineer \

7l

Figure 20.17

MagicDraw UML modeling tool (www.magicdraw.com), so the figures look a
bit different from the other figures in this book.

The key use case for this system is probably CreateUseCaseSpecificationFrom-
Schema. This sums up the business benefit of the system—to be able to create
(and edit) use case specifications based on preexisting schema. CreateUseCase-
SpecificationFromSchema is shown in Figure 20.18.

As the system is very simple, the analysis model wasn't refined to a par-
ticularly high degree so that we could go very quickly into design. You can
see the analysis class diagram in Figure 20.19. It captures our initial ideas
about what classes would be needed.

As part of use case realization-analysis, we created the analysis-level
sequence diagram shown in Figure 20.20. This diagram illustrates how we in-
tend the system to create a new use case file from an existing schema file.

We came up with the design class model in Figure 20.21. As you can see,
there is a big difference between the analysis class diagram and the design
class diagram. As we've mentioned, it was such a simple system that we
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Use case: CreateUseCaseSpecificationFromSchema

ID: 1

Brief description:
The system creates a new use case specification from a use case schema.

Primary actors:
UseCaseEngineer

Secondary actors:
None.

Preconditions:
1. The use case schema exists.

Main flow:

1. The use case starts when the UseCaseEngineer selects "create new use case".
2. The system asks for the use case name.

3. The UseCaseEngineer enters the use case name.

4. The system creates a new use case from the use case schema.

5. The system displays the new use case for editing.

Postconditions:
1. The system has created a new use case.

Alternative flows:
UseCaseAlreadyExists
UseCaseEngineerCancels

Figure 20.18

schema

UseCaseEditor 1 useCases SUMRFile >
1. fileName : String "’

schemaFileName : String

useCaseModelDirectory : String

createUseCaseFromSchema()

tors L
editUseCase() 1 o loadUseCaseFile()
createActorFromSchema() 1. lloadSchemaFile()
editActor() saveUseCaseFile()
syntaxHilight() 7AY
autoNumber()

lActorFlIe| IUseCaseFlleJ ISchemaﬁle‘
v
XMLRenderer
renderUseCaseToXML()
renderActorToXML()

Figure 20.19

moved very quickly into design and did most of the exploratory work in that
workflow. If the system had been more complex, we would have spent more
time in requirements and analysis.

The use case editor was an exploratory project, and we didn’t really under-
stand what would be useful in it until we had completed a few iterations and



...........................................................................................................................

Chapter 20 Use case realization-design 433

sd CreateUseCaseFromSchemaQ

i :UseCaseEditor :SchemaFile
:UseCaseEngineer

.
L newUseCase (name )
P

load() M_]
«oreate» » name:UseCaseFile
save() ‘[j
edit() :

-L

Figure 20.20

had some early executable architectural baselines that we could play with.
Also, we didn't try to anticipate the most effective central mechanism for the
SUMR files—we evolved that as we built the first iteration of the system.

The use case editor application was developed in Python, and all of the
classes prefixed wx come from the wxPython GUI library (www.wxpython
.org). This is a powerful, cross-platform GUI library based on wxWidgets
(www.wxwidgets.org). These classes have a different naming standard begin-
ning with a lowercase letter rather than the usual uppercase letter. Different
naming standards are just a fact of life in software development.

Finally, let’s look at a design-level sequence diagram for CreateUseCaseFrom-
Schema (Figure 20.22). This sequence diagram is used to illustrate the central
mechanism of creating a new use case file from an existing schema file. This
is an important diagram as this mechanism must be used consistently
throughout the system. You can see that our design works—we have all the
right classes and operations available to do the job.

Although we have presented the requirements, analysis, and design arti-
facts sequentially in this example, you must remember that UP is an iterative
process and that sets of these artifacts are actually created in parallel. In par-
ticular, the use case model, analysis class diagram, and analysis interaction
diagrams will all be worked on together. So will the design class diagram and
the design interaction diagrams. It is common to update artifacts created in
previous iterations. Remember that each iteration contains some element of
each of the workflows, Requirements, Analysis, Design, Implementation,
and Test.
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Lo ocame]

A

UseCaseEditor

~hifights : Dictionary
-actorList : wxListCtrl
-useCaseList : wxListCtrl
~textControl : wxTextCtrt

+__init__( parent: wxPySimpleApp, id : String, tile : String, size : Point, stye : int)
#makeToolBar()
#makeMenu()

)
#enableButtonsAndMenus( enabled : Boolean )
#updateView()
#update( event : wxEvent )
#newActor( event : wxEvent )
#newUseCase( event: wxEvent)
#newUseCaseFromSchema( schemaName : String )
#newAlternativeFlow( event : wxEvent )
#newExtensionUseCase( event : wxEvent )
#generateXVIL( event : wxEvent )
#itemSelected( event : wxEvent)
#openUseCaseModel( event : wxEvent )
#save( event : wxEvent )
#setFont( event: wxEvent )
#getNewName( message : String, caption : String ) : String
#autoNumber()
#autoNumberSelected( event : wxEvent )
#syntaxHilight()
#hilightSelected( event : wxEvent )
#ind AllAndHilight( regularExpression : String, hilight : wxTextAttr )
#saveFile()
#loadFile()

—.__——-B -useCaseModel |1 {dictionary}
1 -actors

Application UseCaseMadel oE SUMRUseCaseParser
Layer -useCasePath : String - -includedUseCases : String}
-useCaseFileNames : Dictionary -extensionPoints : String]

-aclorFileNames : Dictionary
-actorExtension : String = ".ac”
-useCaseExtension : Strin,

+__init__( fileName : Striing )
dictionar +getNama() : String
! " +getiD() : String

1 -useCases

+__init__() +autoNumber(}

+setlUseCasePath( useCasePath : String ) 0.* +deNumber()

+oad() T
+getModelElement( name : String ) : SUMRUseCaseParser |
+getUseCaseNames() : String(} v
+getUseCaseFileName( name : String ) : String

+getNewUseCaseFileName( name : String ) : String StMRVaiidFilsParssr AutoNumber
+getUseCase( name : String ) : SUMRUseCaseParser -schemaName : String +autoNumber( fines : String[})
+newUseCaseFr : 8tring, useCaseN; : String ) : SUMRUseCaseParser: -legaiTags : Dictionary +autoDeNumber( lines : String[] )
+useCaseNameExsts( name : String ) : Boolean -illegalTags : Dicti Y line : String )
+getActorNames() : String{] - N line : Strin,
+getActorFileName( name : String ) : String +__Init__(fileName : String ) +__init__() o
+getNewActorFileName( name : String ) : String +getMissingTags() : String[]

+getActor( name : String ) : SUMRUseCaseParser *+gelExtraTags() : Stringl}

+newActorFromSchema( : String, : String ) : SUMRUseCaseParser 0.1

+namelsValid( name : String ) : Boolean
+nameExisis( name : String ) : Boolean

+actorNameExists( name : String ) : Boolean -schema | 1
1 SUMRFileParser
i -fileName : String
V. -~filePath : String
lines : Stringf}
LRend
SUMRToXMLRenderer Jiags : Stingll
-fileName : String -elements : Dictionary
-~buffer : String[] . -
_root : Stril +__Init__(fileName : String )
root : String +rofresh()
+render{ fileName : String ) +saveAs( fileName : String )
+saveAs( fileName : String } +save()
+save() +search( pattern : String )
+printOut() +getTagMulliplicity{ tagName : String )
-clean( line : String ) +isTag() : Boolean

Figure 20.21
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20,9 Whatwehaveleaned

Use case realization in design is really just an extension of use case realiza-
tion in analysis. You have learned the following.

® The UP activity Design a use case is concerned with finding the design classes,
interfaces, and components that interact to provide the behavior specified
by a use case.

® Use case realizations-design are collaborations of design objects and
classes that realize a use case. They comprise:
— design interaction diagrams - these are refinements of analysis inter-
action diagrams;
— design class diagrams - these are refinements of analysis class diagrams.

@ You can use interaction diagrams in design to model central mechanisms
such as object persistence; these mechanisms may cut across many use cases.

® Modeling concurrency.
— Use active classes and objects.
— Sequence diagrams:
— par — all operands execute in parallel;
- critical — the operand executes atomically without interruption.
— Communication diagrams:
- postfix the sequence number with a label to indicate the thread of
control.
— Activity diagrams:
— forks;
— joins.
@ Subsystem interaction diagrams show the interactions between the differ-
ent parts of the system at a high level:
— they may contain actors, subsystems, components, and classes;
— you can show parts of the subsystem (e.g., provided interfaces) in
boxes hanging down below the subsystem.

® Timing diagrams — model timing constraints:
— very useful for modeling hard real-time and embedded systems;
— time increases horizontally from left to right;
— lifelines, states, and conditions are placed vertically;
— transitions between states or conditions are shown as a graph;
- you can show timing constraints and events;
— the compact form of the timing diagram emphasizes relative time.



~ State machines

211 Chapterroadmap

In this chapter we discuss state machines. These are an important way of
modeling the dynamic behavior of classifiers.

The chapter begins with an introduction to state machines (Section 21.2),
a discussion of the two different types of state machines (Section 21.2.1),
state machines and classes (Section 21.2.2), and state machine syntax (Sec-
tion 21.4). It then focuses on the basic components of state machines—states
(Section 21.5), transitions (Section 21.6), and events (Section 21.7).
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models the dynamic
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State machines

Activity diagrams and state machine diagrams both model aspects of the
dynamic behavior of a system, but they have very different semantics and
purposes in modeling. Activity diagrams are based on Petri Nets (see Chapter
14) and tend to be used for modeling business processes in which several ob-
jects participate. UML state machines are based on the work of Harel [Harel
1} and tend to be used for modeling the life cycle history of a single reactive
object as a finite state machine—a machine that can exist in a finite number
of states. The machine makes transitions between these states in response to
events in a well-defined way.

The three key elements of state machines are states, events, and transitions:

® state - “a condition or situation during the life of an object during which
it satisfies some condition, performs some activity, or waits for some
event” [Rumbaugh 1];

@ event - “the specification of a noteworthy occurrence that has location in
time and space” [Rumbaugh 1];

@ transition — the movement from one state to another in response to an
event.

We look at states, events, and transitions in much more detail later in this
chapter.

A reactive object is an object, in the broad sense of the term, that pro-
vides the context for a state machine. Reactive objects—
respond to external events (i.e., events outside of the object context);
may generate and respond to internal events;

have a life cycle modeled as a progression of states, fransitions, and events;

@ €& © @

may have current behavior that depends on past behavior.

The real world is full of reactive objects that can be modeled with state
machines. In UML modeling, state machines are generally defined in the
context of a particular classifier. The state machine then models the behavior
common to all instances of that classifier. You can use state machines to
model the dynamic behavior of classifiers such as

classes;

(@]

use cases;
subsystems;

® entire systems.
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behavior.

Behavioral state
machines specify

21.2.1

Protocol state

protocol.

machines specify

21.2.2

Behavioral state machines and protocol state machines

The UML 2 specification tells us that there are two kinds of state machines
that share a common syntax:

® behavioral state machines;

& protocol state machines.

Behavioral state machines use states, transitions, and events to define the
behavior of the context classifier. Behavioral state machines can only be used
when the context classifier has a behavior of some sort to be modeled. Some
classifiers, for example, interfaces and ports, have no behavior—they simply
define a usage protocol. States in behavioral state machines can specify one
or more actions that execute when the state is entered, resided in, or exited
(see Section 21.5.1).

Protocol state machines use states, transitions, and events to define the
protocol of the context classifier. This protocol includes the following:

@ the conditions under which operations may be called on the classifier
and its instances;

© the results of operation calls;
© the ordering of operation calls.

Protocol state machines say nothing about the implementation of this
behavior—they only define how the behavior appears to an external entity.
Protocol state machines can be used to define the protocol for all classifiers, in-
cluding those that have no implementation. States in protocol state machines
can’t specify actions—this is the job of behavioral state machines.

In practice, modelers rarely distinguish between behavioral and protocol
state machines. However, if you want to, you can use the keyword {protocol}
after the protocol state machine name.

State machines and classes

State machines are most commonly used to model the dynamic behavior of
classes, and that’s what we focus on in the rest of this chapter.

Fach class can have a single behavioral state machine that models all the
possible states, events, and transitions for all instances of that class.

Each class can also have one or more protocol state machines, although
these are more often used with behaviorless classifiers such as interfaces and
ports. A class inherits the protocol state machines of its parents.’

If a class has more than one state machine, they must be consistent with
each other.
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tend to be used most in
the design workflow.

Chapter 21 State machines 441

The behavioral and protocol state machines for a class should specify the
behavior and protocol required by all use cases in which instances of the
class participate. Should you find that a use case requires a protocol or behav-
ior that is not captured in a state machine, this indicates that the state
machines are in some way incomplete.

Statemachinesandthe UP

Like activity diagrams, there is no one place where state machines fit into the
UP. You can use them in the analysis workflow to model the life cycle of
classes that have interesting states such as Order and BankAccount, and you can
also use them in the design workflow to model things like concurrency and
Java stateful session beans. We have even used them in the requirements
workflow when we were trying to understand a complex use case.

As always, the key question is, will creating a state machine for some-
thing add value to your model? If creating a state machine helps you
understand a complex life cycle or behavior, it is worth doing. Otherwise you
shouldn’t bother.

You will probably find that you are most likely to use state machines late
in the Elaboration phase and early in the Construction phase. This is when
you are trying to understand the classes in your system in sufficient detail so
that they can be implemented. Sometimes a state machine can be an invalu-
able aid to this.

From our perspective, the biggest problem with state machines is testing
them. The UP test workflow is largely out of scope for this book, but we think
it’s important to say something about testing state machines as this is one
aspect of testing that analysts and designers have to do. When you create a
state machine, how do you know it is correct? With most UML modeling tools,
you have no option but to perform a manual walkthrough where someone pre-
tends to be the state machine so you can see how it reacts under different
circumstances. It’s usually best to work in a small group with the state machine
owner walking other modelers and domain experts through the machine.

However, the best way to create and test state machines is to simulate
them. There are several tools available that let you do this, for example, Real-
Time Studio from Artisan Software (www.artisansw.com). With simulation,
you can execute the state machine to see how it behaves. Some tools also
allow you to generate code and test harnesses from state machines. For busi-
ness modeling, such tools might be overkill, but for real-time embedded
systems, where objects may have complex behavior and life cycles, they can
be a real boon.
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To illustrate state machine diagrams, let us consider a simple real-world
example. One of the simplest and most obvious real-world objects that con-
stantly cycles though a state machine is a light bulb. Figure 21.2 shows how
you can send events to a light bulb by using a switch. The two events you can
send are turnOn (this event models the supply of electric current to the bulb)
and turnOff (which cuts off the current).

state = Off
Light bulb {protocol} ] event
-
turnOn
Off On
turnOff
burnOut
Off On state transition

Figure 21.2

A state machine diagram contains exactly one state machine for a single
reactive object. In this case, the reactive object is a system comprising the
light bulb, the switch, and the electricity supply. The state machine diagram
can be drawn in an explicit frame as illustrated in Figure 21.2, or it can exist
within implicit frames provided by a modeling tool.

You can prefix the name of the state machine with State Machine if you
wish, but this is rarely necessary as state machines have a readily identifiable
syntax.

@ States are rounded rectangles (“roundtangles”), apart from the initial start
state (filled circle) and stop state (bull’s eye).

@ Transitions indicate possible paths between states and are modeled by an
aITow.

@ Events are written over the transitions that they trigger.

The basic semantics are also quite simple. When a reactive object in state A
receives the event anEvent, it may transition to state B.

Every state machine should have an initial start state (filled circle) that in-
dicates the first state of the sequence and, unless the states cycle endlessly,
they should also have a final state (bull’s eye) that terminates the sequence of
transitions. Typically, you automatically transition from the initial pseudo-
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state to the first “real” state of the state machine. The initial pseudo-state is just
used as a convenient marker for the beginning of the series of state transitions.

In Figure 21.2, when the switch is turned to the “On” position, the event
turnOn is sent to the bulb. Now, in state machines, events are considered to be
instantaneous. In other words, it takes zero time for the event dispatched
from the switch to reach the light bulb. Instantaneous events provide an im-
portant simplification to state machine theory that makes it much more
tractable. Without instantaneous events we might well have race conditions,
where two events race from their source to reach the same reactive object.
We would have to model this race condition as some sort of state machine!

The bulb receives the event turnOn and changes state to On in response to
the event. This is the crux of state machines—objects may change state on
receipt of an event. When the event turnOff is sent to the bulb, it changes state
to Off.

At some point, the event burnOut may occur (when the light bulb burns
out). This terminates the state machine.

We look at each element of the state machine in detail in the next few
sections.

215 States

The UML Reference Manual [Rumbaugh 1] defines a state as “a condition or
situation during the life of an object during which it satisfies some condi-
tion, performs some activity, or waits for some event”. The state of an object
varies over time, but at any particular point it is determined by

® the object attribute values;

© the relationships it has to other objects;

" @ the activities it is performing.

Over time, objects send messages to one another, and these messages are
events that may cause changes in object state. It is important to think quite
carefully about what we mean by “state”. In the case of the light bulb, we
could (if we were quantum physicists) decide that every change to any one
of the atoms or subatomic particles in the light bulb constituted a new state.
This is perfectly accurate, but it would give us an infinity of states, most of
which would be virtually identical.

However, from the point of view of the user of a light bulb, the only
states that make a difference are On, Off, and the final state when the light
bulb is burned out. This is the key to successful state modeling—you need to
identify the states that make a difference to your system.
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As another example, consider the simple Color class shown in Figure 21.3.

If we assume that red, green, and blue can each take values 0-255, then
based just on the values of these attributes, objects of this class can have
256*256*256 = 16777216 possible states. Now that would be some state
machine! However, we must ask ourselves the question: what is the key
semantic difference between each of those states? The answer is none. Each
of the 16777216 possible states represents a color, and that’s all. In fact, the
state machine for this class is very boring, as you can model all of the possi-
bilities by a single state.

Color

red :int
green : int
blue : int

Figure 21.3

In summary, there has to be a semantic “difference that makes a differ-
ence” between states for you to bother to model them on a state machine.
They must add value to your model. You will see examples of state machines
that add value throughout this chapter and the next.

21.5.1 State syntax

UML state syntax is summarized in Figure 21.4.

Each state in a behavioral state machine may contain zero or more
actions and activities. States in protocol state machines have no actions or
activities.

f EnteringPassword \

state name {

entry and exit{ entry/ display password dialog
actions exit/ validate password

internal { keypress/ echo “*”

transitions help/ display help

internal do/ get password ‘
activity { k gep /

action syntax: eventName/ someAction

activity syntax: do/ someActivity

Figure 21.4
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uninterruptible.

Activities take
finite time and are
interruptible.

Chapter 21 State machines
Actions are considered to be instantaneous and uninterruptible, whereas
activities take a finite amount of time and can be interrupted. Each action in
a state is associated with an internal transition that is triggered by an event.
There can be any number of actions and internal transitions within a state.

An internal transition allows you to capture the fact that something
worth modeling has happened but that it doesn’t cause (or is insufficiently
important to warrant modeling as) a transition to a new state. For example,
in Figure 21.4, pressing one of the keys on the keyboard is certainly a
noteworthy event, but it doesn’t cause a transition out of the state Entering-
Password. We model this as an internal event, keypress, that causes an internal
transition that triggers the action echo “*”.

. Two special actions—the entry action and the exit action—are associated
with the special events entry and exit. These two events have special seman-
tics. The entry event occurs instantaneously and automatically on entry to
the state—it is the first thing that happens when the state is entered, and it
causes the associated entry action to execute. The exit event is the very last
thing that happens instantaneously and automatically on exit from the
state, and it causes the associated exit action to execute.

Activities, on the other hand, take a finite amount of time and may be
interrupted by the receipt of an event. The keyword do indicates an activity.
Whereas actions always finish because they are atomic, it is possible to inter-
rupt an activity before it has finished processing.

Transitions show
movement between
states.

UML transition syntax for behavioral state machines is summarized in
Figure 21.5.

Behavioral state machine J

event1, event2 [guardCondition])/ anAction

Figure 21.5
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Transitions in a behavioral state machine have a simple syntax that may
be used for external transitions (shown by an arrow) or internal transitions
(nested within a state). Every transition has three optional elements.

1. Zero or more events — these specify external or internal occurrences that
can trigger the transition.

2. Zero or one guard condition - this is a Boolean expression that must eval-
uate to true before the transition can occur. It is placed after the events.

3. Zero or more actions ~ this is a piece of work associated with the transi-
tion, and occurs when the transition fires.

You can read Figure 21.5 as follows. “On (event1 OR event2) if (guardCondition is
true) then perform anAction and immediately enter state B.”

The action may involve variables in the scope of the state machine. For
example:

actionPerformed( actionEvent )/ command = actionEvent.getActionCommand()

In this example, actionPerformed(actionEvent) is an event generated by a button
press in a Java GUI On receipt of this event, we execute an action that stores
the name of the button in the variable command.

Transitions in protocol state machines have a slightly different syntax, as
illustrated in Figure 21.6.

© There is no action, as we are specifying a protocol rather than an
implementation.

@ The guard condition is replaced by preconditions and postconditions.
Note that the precondition is placed before the events and the postcondi-
tion after the slash.

In both behavioral and protocol state machines, if a transition has no event,
it is an automatic transition. An automatic transition doesn’t wait for an event
and fires when its guard condition or precondition is true.

Protocol state machine {protocol} )

[precondition] event1, event2/ [postcondition]

Figure 21.6
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21.6.1

Junction
pseudo-states join or
branch transitions.

Connecting transitions - the junction pseudo-state

Transitions can be connected by junction pseudo-states. These represent points
where transitions merge or branch. They are represented as filled circles that
have one or more input transitions and one or more output transitions. The
example in Figure 21.7 shows a state machine for the Loan class that we intro-
duced in Section 18.12.2. Loan models the loan of a book from a library. The
state machine for Loan has a simple merge junction. This is the most com-
mon usage of junction pseudo-states.

Loan J ‘ simple merge junction
nLoan erminate

[after maximumDuration] payFine

returnBook

Overdue

Figure 21.7

A junction pseudo-state may have more than one output transition. If
this is the case, each output transition must be protected by a mutually
exclusive guard condition so that only one output transition can fire. An
example is shown in Figure 21.8, where we have extended the state machine
for the Loan class to handle the case in which a Loan may be extended. A busi-
ness rule is that a borrowed book has to be presented at the library for its Loan
to be extended, so the returnBook events are still valid.

[extend]

] returnBook .
OnlLoan Terminated
C___J /’ [lextend] ‘
junction with

after maximum©Duration |
[ ] merge and branch

payFine

returnBook .
Overdue FineDue

Figure 21.8
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21.6.2  Branching transitions — the choice pseudo-state

If you want to show a simple branch without a merge, you should use a choice
pseudo-state, as shown in Figure 21.9.

BankLoan ]

acceptPayment

choice pseudo-state

[payment > b®

[payment = balance]

makeRefund
OverPaid FullyPaid ] PartiallyPaid }' acceptPayment

[payment < balance]

Figure 21.9

The choice pseudo-state allows you to direct the flow through the state
machine according to conditions that you specify on its output transitions.
For example, Figure 21.9 shows a behavioral state machine for a simple
BankLoan class. On receipt of the acceptPayment event, the BankLoan object tran-
sitions from the state Unpaid to one of the three states FullyPaid, OverPaid, or
PartiallyPaid, depending on the amount of the payment compared to the out-
standing balance on the BankLoan. '

The conditions on the outgoing transitions of the choice pseudo-state
must be mutually exclusive to ensure that only one of them can fire at any
time.

The choice pseudo-
state directs the flow
through the state
machine according to
conditions.

Events trigger UML defines an event as “the specification of a noteworthy occurrence that
transitions. has location in time and space.” Events trigger transitions in state machines.
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21.7.1

Acalleventisa
request for a specific
operation to be
invoked.
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Events can be shown externally on transitions, as shown in Figure 21.10, or
internally within states, as shown in Figure 21.11.

Off

turnOff  turnOn

‘ On l

event

Figure 21.10

There are four types of event, each of which has different semantics:

call event;
signal event;

change event;

® ©® @ o

time event.

Call events

A call event is a request for a specific operation to be invoked on an instance
of the context class.

A call event should have the same signature as an operation of the context
class of the state machine. Receipt of a call event is a trigger for the operation
to execute. As such, a call event is perhaps the simplest type of event.

The example in Figure 21.11 shows a fragment from the state machine of a
SimpleBankAccount class. This class is subject to the following business constraints:

@ accounts must always have a balance greater than or equal to zero;
@ a withdrawal will be rejected if it would take the balance below zero.

The figure shows internal and external call events. These correspond to oper-
ations of the SimpleBankAccount class.

You can specify a sequence of actions for a call event where each action
is separated by a semicolon. These actions specify the semantics of the oper-
ation, and they can use attributes and operations of the context class. If the
operation has a return type, the call event has a return value of that type.
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SimpleBankAccount )

internal call event action

\
r\ InCredit / ) = @

A
external call event Ldeposut(m)/ balance = balance + rrj
condition
withdraw(m) withdraw(m)
[balance < m] [balance >= m]
( RejectingWithdrawal ) ( AcceptingWithdrawal ]
Lentry/ IogRejectedWithdrawal()J Lentry/ balance = balance - m J
VA

entry action

Figure 21.11

21.7.2 Signal events

A signal is a package of information that is sent asynchronously between
objects. You model a signal as a stereotyped class that holds the information
to be communicated in its attributes, as illustrated in Figure 21.12. A signal
usually doesn’t have any operations because its sole purpose is to carry
information.

Asignal is a one-
way asynchronous
communication
between objects.

«signal»
RejectedWithdrawal

date : Date
accountNumber : String
requestedAmount : double
availableBalance : double

Figure 21,12

In Figure 21.13 we have updated the state machine for SimpleBankAccount
so that it sends a signal when a withdrawal is rejected. A signal send is indi-
cated by a convex pentagon with the signal name inside. This is the same
syntax as is used in activity diagrams (see Section 15.6 where we discuss
signals in more depth).
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SimpleBankAccount )

N close()
( InCredit ‘
Ldeposit(m)/ balance = balance + m
J
withdraw(m) withdraw(m)
[balance < m] [balance >= m]
( RejectingWithdrawal ] ( AcceptingWithdrawal )
Lentry/ IogRejectedWithdrawaI()J Lentry/ balance = balance - m J
signal send
RejectedWithdrawal

Figure 21.13

A signal receipt is indicated by a concave pentagon, as shown in the state
machine fragment in Figure 21.14. It specifies an operation of the context

class that accepts the signal as a parameter.

signal receipt

processRejectedWithdrawal( a : RejectedWithdrawal )

context: Bank class

Figure 21.14

Calling customer

v

You can also show signal receipts on internal or external transitions by
using the standard eventName/ action notation discussed in Sections 21.5.1

and 21.6.
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21.7.3

Change events
occur when a Boolean
expression changes
value from false to
true.

Change events

A change event is specified as a Boolean expression, as illustrated in Figure
21.15. The action associated with the event is performed when the value of
the Boolean expression transitions from false to true. All values in the Boolean
expression must be constants, globals, or attributes or operations of the con-
text class. From the implementation perspective, a change event implies
continually testing the Boolean condition while in the state.

SimpleBankAccount )

( InCredit h close() @

deposit(m)/ balance = balance + m

Boolean — balance >= 5000/ notifyManager()

‘ " v
expression
withdraw(m) withdraw(m)
[balance < m] [balance >= m]

( RejectingWithdrawal )
Lentry/ logRejectedWithdrawal() J

( AcceptingWithdrawal ]
Lentry/ balance = balance - m J

RejectedWithdrawal

Figure 21.15

In Figure 21.15, we have modified the SimpleBankAccount state machine so
that the manager will be notified if the account balance goes greater than or
equal to 5000. This notification is so the manager can alert the customer
about other investment options.

Change events are positive edge triggered. This means they are triggered
each time the value of the Boolean expression changes from false to true. The
Boolean expression must go back to false and then transition to true again for
the change event to be retriggered.

Positive edge triggering is exactly the behavior we want for our Simple-
BankAccount. The action notifyManager() will only be invoked when the account
balance transitions from less than 5000 to 5000 or more. Clearly, if the bal-
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21.7.4

Time events
occur in response
to time.
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ance is oscillating rapidly around 5000, the manager will receive multiple
notifications. We assume that the manager has some business process in
place to handle this.

Time events

Time events are usually indicated by the keywords when and after. The key-
word when specifies a particular time at which the event is triggered; after
specifies a threshold time after which the event is triggered. Examples are
when( date = 07/10/2005) and after(3 months).

You should always ensure that the units of time (hours, days, months,
etc.) are recorded on the diagram for each time event. Any symbols in the
expression must be constants, globals, or attributes or operations of the con-
text class.

The example in Figure 21.16 is a fragment from the state machine of a
CreditAccount class that has a limited (and somewhat draconian) credit facility.
You can see that after a CreditAccount object has been in the state Overdrawn for
three months, it transitions to the state Frozen.

‘ Overdrawn l

after( 3 months )

l Frozen l

context: CreditAccount class

Figure 21.16

Whatwehav “ leamed R

In this chapter you have seen how to construct basic state machines by using
states, actions, activities, events, and transitions. You have learned the
following.

@ State machines are based on the work of Harel.
— State machines model the dynamic behavior of a reactive object.
— State machine diagrams contain a single state machine for a single
reactive object.
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®» A reactive object provides the context for a state machine.
— Reactive objects:
- respond to external events;
- may generate internal events;
- have a clear life cycle that can be modeled as a progression of states,
transitions, and events;
- have current behavior that may depend on past behavior.
— Examples of reactive objects:
- classes (most common);
— use cases;
- subsystems;
— entire systems.

@ There are two types of state machines:

— behavioral state machines:
— model the behavior of a context classifier;
- states in behavioral state machines may contain zero or more actions

and activities;

— protocol state machines:
- model the protocol of a context classifier;
— states in protocol state machines have no actions or activities.

@ Actions — pieces of work that are instantaneous and uninterruptible:
— may occur within a state, associated with an internal transition;
— may occur outside a state, associated with an external transition.

® Activities — pieces of work that take a finite time and are interruptible:
— may occur only within a state.

@ State — a semantically significant condition of an object.
— Obiject state is determined by:
- object attribute values;
~ relationships to other objects;
— activities the object is performing.
— State syntax:
- entry action - performed immediately on entry to the state;
- exit action - performed immediately on exit from the state;
- internal transitions — these are caused by events that are not signifi-
cant enough to warrant a transition to a new state:
~ the event is processed by an internal transition within the state;
- internal activity — a piece of work that takes a finite amount of time
and that may be interrupted.
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@ Transition — a movement between two states.

— Transition syntax:

- event - the event that triggers the transition;

guard condition ~ a Boolean expression that must be true before the
transition occurs;
action - an action that occurs instantaneously with the transition;
junction pseudo-state — joins or branches transitions;
choice pseudo-state — directs the flow through the state machine
according to conditions.

© Event - something of note that occurs to a reactive object. The types of
event are:
— call event:
- a call for a set of actions to occur;
~ an operation invocation on the object;
— signal event:
— the receipt of a signal - a signal is an asynchronous one-way com-
munication between objects;
— change event:
- occurs when some Boolean condition changes from false to true (i.e.,
edge is triggered on the false-to-true transition);
— time event:
— keyword after — occurs after a time period;
~ keyword when — occurs when some time condition becomes true.
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We begin this chapter with a discussion of composite states. These are states
that themselves contain a nested state machine. Section 22.2 introduces the
idea of nested state machines, or submachines. We then discuss two types of
composite states—the simple composite state (22.2.1) and the orthogonal
composite state (22.2.2). In Section 22.3 we look at how we may refer to state
machines in separate diagrams by using submachine states.

When you have two or more concurrent submachines, you often need to
establish some sort of communication between them. We discuss this in
Section 22.4 and introduce a communication strategy that uses attribute
values of the context object.

In Section 22.5, we introduce the idea of history, which is about giving a
superstate “memory” of its final substate before an outgoing transition. In
Sections 22.5.1 and 22.5.2 we discuss the two variants of this, shallow and
deep history.

457
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22.2 Composite states

llearn about types of composite states] Nz
\22.2.1 Simple composite states)

else

(21 .2.2 Orthogonal composite states)

else

[learn about submachine states]  [learn about submachine communication] [learn about history]

tion)

22.5 History

(22.3 Submachine states) (22.4 Submachi

22.5.1 Shallow history

22.5.2 Deep history

(22.6 What we have leamed)

Figure 22.1

A composite state is a state that contains nested states.

These nested states are organized into one or more state machines called
submachines. Each submachine exists in its own region within the composite
state icon. Regions are just areas of the state icon separated by dashed lines.
You can see a simple example in Figure 22.2.

Composite states
contain one or more
nested submachines.

/ A composite state \
region 1 ‘——9( A }——)[ B J——-}@ submachine 1

region 2 submachine 2

Figure 22.2
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Nested substates
inherit all of the
transitions of their
containing
superstates.
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Nested states inherit all of the transitions of their containing states. This
is a very important point. If, for example, the composite state itself has a par-
ticular transition, each of the states nested within it also has this transition.

The final pseudo-state of a submachine only applies within that region. So,
for example, in Figure 22.2, if the submachine in region 1 reaches its final
state first, that region will terminate, but region 2 will continue to execute. If
you wish to stop the execution of the whole composite state, you can use the
terminate pseudo-state as shown in Figure 22.3. In this example, the whole
composite state stops as soon as the terminate pseudo-state is reached.

K Another composite state \

@ o o e o

W ®
N J

terminate
pseudo-state

Figure 22.3

Nested states can also be composite states. However, you should gener-

~ ally keep nesting of composite states to a maximum of two or three levels if

you can, as any mote than this can make the state machine hard to read and
understand.

To keep a state machine diagram clear and simple, you sometimes need
to hide the details of a composite state. You can indicate that a state is a com-
posite state without explicitly showing its decomposition by adding the
composition icon to the state. This is an optional adornment, but it gives a
very useful indication that a state has a decomposition, so we recommend
you always use it. You can see the composition icon in Figure 22.4.

A composite state

oo

composition icon

Figure 22.4
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22.2.1

Simple composite
states contain a single
nested state machine.

There are two types of composite state depending on how many regions
they have.

1. Simple composite state — one region only.
2. Orthogonal composite states — two or more regions.

We look at each of these types of composite state in turn in the next two
subsections.

Simple composite states

A simple composite state is a composite state that contains a single region.
For example, Figure 22.5 shows the state machine for a class called ISPDialer.
This class is responsible for dialing in to an Internet service provider. The
state DialingISP is a simple composite state because it only has one region.
There are a couple of interesting points about this state machine.

@ The transition out of DialingISP triggered by the cancel event is inherited by
each of the substates in the DialinglSP submachine. This is very convenient,
as it means that on receipt of the cancel event we will always transition
from whatever substate we are in to the state NotConnected. Use of super-
states and substates in this way can greatly simplify a state machine.

ISPDialer J
/ DialingISP \

entry/ offHook

dial

B , (diattone] [ Diaing | { ,
WaitingForDialtone WaitingForCarrier

ldos diatisp | 7|

entry after(20 seconds)/ noDialtone after(20 seconds)/ noCarrier

pseudo-state

notConnected

cancel exit pseudo-state

N
Connected

NotConnected @
entry/ onHook exit/ onHook
(® do/ useConnection

Figure 22.5
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DialingISP has one entry pseudo-state called dial, and two exit pseudo-states
called notConnected and connected. An entry pseudo-state is shown as a circle
that is usually placed on the border of the composite state (although it
may also be placed inside the border), and it indicates a point of entry
into the submachine. Similarly, the exit pseudo-state, which is drawn as a
circle with a cross in it, indicates an exit from the submachine.

Entry and exit pseudo-states are very useful as they allow you to define dif-
ferent ways of entering and exiting from composite states. They provide
connection points to which you connect transitions to/from other states.

1.

Here is a complete walkthrough for the ISPDialer class state machine.

We enter the superstate DialingISP via the entry pseudo-state dial and imme-
diately execute the entry action offHook—this puts the modem off-hook.

We enter the single region, and the state WaitingForDialtone.
We wait in the state WaitingForDialtone for a maximum of 20 seconds.

4. 1f we don't get a dial tone before 20 seconds has elapsed:

4.1. we perform the action noDialtone as we transition via the exit pseudo-
state notConnected to the state NotConnected;

4.2. on entry to NotConnected we put the phone back on the hook (onHook
action);

4.3. we transition to the stop state.

If we get a dial tone (i.e., the guard condition [dialtone] evaluates to true)
within 20 seconds:
5.1. we transition to the state Dialing where we perform the activity
diallSP;
5.2. as soomn as the diallSP activity is finished, we automatically transition
to the state WaitingForCarrier;
5.3. we wait in the state WaitingForCarrier for a maximum of 20 seconds.
5.4. - 1f we don't get a carrier within 20 seconds:
5.4.1. we perform the action noCarrier as we transition via the exit
pseudo-state notConnected to the state NotConnected;
5.4.2. on entry to NotConnected we put the phone back on the hook;
5.4.3. we transition to the stop state.
5.5. If we get a carrier within 20 seconds:
5.5.1. we automatically transition from the DialingISP superstate via
the exit pseudo-state connected to the Connected state;
5.5.2. we perform the action useConnection until it is finished;
5.5.3. on exit from Connected we put the phone back on the hook;
5.5.4. we transition to the stop state.
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22.2.2

Orthogonal l N\

composite states
contain two or more
nested submachines
that execute
concurrently.

6. If at any point while we are in the superstate DialingISP we receive the cancel
event:
6.1. we immediately transition to the state NotConnected;
6.2. on entry to NotConnected we put the phone back on the hook;
6.3. we transition to the stop state.

Orthogonal composite states
Orthogonal composite states contain two or more submachines that execute
concurrently.

When you enter the composite state, all of its submachines start execut-
ing at once-—this is an implicit fork.

There are two ways you can exit from the composite state.

1. Both submachines finish—this is an implicit join.

" 2. One of the submachines transitions to a state outside the superstate, usu-

ally via an exit pseudo-state. This does not cause a join—there is no syn-
chronization of submachines, and the remaining submachines simply
abort.

To investigate concurrent composite states, we need a system that exhibits a
degree of concurrency. We model a simple burglar alarm system that consists
of a control box, security and fire sensors, and an alarm box. The state ma-
chine for the whole system is shown in Figure 22.6.

This state machine captures two essential features of the alarm system.

1. If an intruder sensor is triggered, the alarm box sounds the intruder
alarm for 15 minutes before the system resets and goes back into the
state Monitoring. This is to comply with zoning laws.

2. If there is a fire while the intruder alarm is sounding, there is an immedi-
ate transition from the state SoundinglntruderAlarm to the state SoundingFire-
Alarm and the fire alarm sounds. This means that the fire alarm always
takes precedence over the intruder alarm.

Initializing and Monitoring are composite states. The Initializing composite state is
shown expanded in Figure 22.7.

When we enter this state, a fork occurs and two submachines start exe-
cuting concurrently. In the top submachine, the state InitializingFireSensors
runs the initialization process for the fire sensors, and in the bottom subma-
chine, the state InitializingSecuritySensors does the same for the security sensors.

Under normal conditions, we automatically transition from the Initializing
superstate when both submachines finish. This is a join, and it synchronizes
the submachines such that we can’t progress unless both the fire sensors and
the security sensors are initialized. This initialization obviously depends on
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BurglarAlarmSystem )

SystemActive

deactivate o >
oo
after(15
t J\ sensorError
‘-—9’ Systeminactive Initializing
_J activagk
off off

Figure 22.6

Initializing composite state details J

/ i Initializing

N
® [ mitializingFireSensors
/Ldo/ initializeFireSensor )

© | J

-~

. ( InitializingSecuritySensors
\ L do/ initializeSecuritySensor )

\ @

Figure 22.7
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the types of sensors being used, but it may, in the simplest case, just be a
short “warm up” delay.

There is also a sensorError transition out of the Initializing state (Figure 22.6)
that is inherited by both its substates. This allows an immediate exit from Ini-
tializing on encountering a sensor error. The Initializing composite state and all
its substates also inherit the off transition from their SystemActive superstate.
This allows an immediate exit from Initializing (and all other SystemActive sub-
states) on receipt of an off event.

Sometimes you want to start concurrent threads of control, but do not
need to synchronize them with a join when they complete. This is the case
for the Monitoring composite state shown in the state machine diagram in
Figure 22.8. This state has some interesting features.

@ There is no synchronization between the two submachines:
— on a fire event, we make an explicit transition from MonitoringFire-
“Sensors to the fire exit pseudo-state that takes us out of Monitoring. The
MonitoringFireSensors submachine terminates but the MonitoringSecurity-
Sensors submachine keeps executing;

— similarly, on an intruder event, we make an explicit transition from
MonitoringSecuritySensors to the intruder exit pseudo-state that takes us
out of the Monitoring superstate. The MonitoringSecuritySensors subma-
chine terminates but the MonitoringFireSensors submachine keeps on
executing.

@ The Monitoring composite state and all its substates inherit the off transi-
tion from their SystemActive superstate. You can see this in Figure 22.6. This
allows the system to shut down immediately in response to an off event
no matter what substate happens to be active.

Monitoring composite state details )

/ Monitoring \

. ( MonitoringFireSensors fire
Ldo/ monitorFireSensor )

N\ .
. (MonitoringSecuritySensors intruder

\ Ldo/ monitorSecuritySensor )

Figure 22.8



LR R R R L R R R N L I I cooscsnsuaa sesecnosonvnseo

A submachine
state references
another state machine.

Chapter 22 Advanced state machines 465

From this example, you can see how using concurrent composite states,
either with or without synchronization, allows you to model concurrency
very effectively.

A submachine state is a special state that references a state machine recorded
in a separate diagram. You can think of it being a bit like a subroutine call
from one state machine to another. Submachine states are semantically
equivalent to composite states.

You can use submachine states to simplify complex state machines. You
partition the state machines into separate diagrams and then, using subma-
chine states, you reference these diagrams from a main diagram.

Submachine states can provide a way to reuse behavior. You define the
behavior in one diagram and then reference this diagram whenever you
need to. For example, you might have two very similar burglar alarm systems
that have some behavior in common. You can define this behavior in its own
diagram, and then reference that diagram by using submachine states in the
state machines of each burglar alarm system.

Submachine states are named as follows:

state name : name of referenced state machine diagram

Figure 22.9 shows a state machine diagram that describes behavior that we
would like to reuse in another diagram. Notice how you can show entry and

VerifyingUser )
/ Loggingin \
( . ) | cancel
getDetails GettingDetails cancelled
C) do/ getUsername
\do/ getPassword verified
7 \[/ ~ |[badUsername} badU
. adUsername
verifyDetails Verifying
C) do/ getUsername [badPassword]
\do/ getPassword badPassword

Figure 22.9
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CheckingOut J submachine state

/

verifyingCustomer : VerifyingUseN

getDetails

[noDetails]

cancelled
cancelled 0:‘ CancellingCheckout ]—%Qi)

verificationFailed

verified }:‘ AcceptingPayment

verifyDetails [lok] paymentFailed

LM 69

[details]

AssessCustomer ]

checkOut [

Figure 22.10

exit pseudo-states on the border of the frame. You can also place them inside
the border, but we think that putting them on the border indicates their
function as entry and exit points from the state machine more clearly.

You can reference the VerifyingUser state machine by using a submachine
state as shown in Figure 22.10. We have called the submachine state verifying-
Customer. When reading this diagram, you have to imagine the contents of
the VerifyingUser diagram replacing the submachine state.

You have seen in Figure 22.7 how you can use forks and joins to spawn con-
current submachines and then bring them back into synchronization. This is
a kind of synchronous communication between the submachines—the con-
current submachines wait for each other until they have all finished.

However, very often you need to communicate between submachines
but don’t want to bring the machines into synchronization to do this. This
is called asynchronous communication.
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In UML you can achieve asynchronous communication by allowing one
submachine to leave “messages” or “flags” as it executes. Other submachines
can pick up these flags as and when they are ready.

You create these flags by manipulating attribute values of the state
machine’s context object. The basic strategy is that one submachine sets
attribute values, and other submachines use the attribute values in guard
conditions on their transitions.

In the OrderProcessing state shown in Figure 22.11, you can’t predict
whether a given order will be assembled or paid for first. Some orders may
need to wait for new stock to arrive before they can be assembled, and some
may be assembled off the shelf. Similarly, some payments might be more or
less instantaneous (by credit card, for example) and some might take sev-
eral working days (by check, for example). However, in this business there
is a business rule that creates a logical dependency between the two subma-
chines—you can't deliver an order until it has been assembled and paid for.

In the upper submachine of Figure 22.11, when the AcceptingPayment
state is finished, we transition to the state PaidFor where we set the value of
the attribute paidFor to true. In the lower submachine, when we have finished
AssemblingOrder, we can only transition to DeliveringOrder when the attribute
paidFor is equal to true. We have achieved asynchronous communication
between the two submachines by using an attribute as a flag that one subma-
chine sets and the other queries—this is a simple and common mechanism.
Finally, both submachines end and synchronize, and we leave the Order-
Processing state.

4 OrderProcessing

e

e AcceptingPayment PaidFor

do/ acceptPayment \entry/ paidFor = true

.

( AssemblingOrder W[paidFor] ( DeliveringOrder

. kdo/ assembleOrder J k

- J

Figure 22.11
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a superstate to “pick
up where it left off”
when it is returned
to after an

interruption.

22.5.1

Shallow history l N

remembers the last
substate you were in at
the same level as the
shallow history
pseudo-state.

You often encounter the following situation when modeling with state
machines.

You are within a substate A of a composite state.

You transition out of the composite state (and therefore out of substate A).

® © e

You go through one or more external states.

@

You transition back into the composite state but would like to continue at
the substate A where you left off.

How can you achieve this? Clearly, the composite state needs some way of
remembering which substate you were in when you left it. This requirement
to pick up where you left off is so common that UML includes history
pseudo-states specifically to handle it.

With history, you give superstates memory of the last active substate before
the superstate was exited. There are two types of history pseudo-state—the shal-
low and the deep. We consider each of them in turn in the next two sections.

Shallow history

Figure 22.12 shows a state machine for the BrowseCatalog use case in an e-com-
merce system.

In this example you can transition from the Browsing superstate on three
events:

@ exit ~ terminate the state machine and return to whatever you were doing
previously (we don’t need to consider this in any further detail);

® goloBasket — transition to the composite state DisplayingBasket where the
current contents of the shopping basket are displayed;

@ goToCheckout — transition to the composite state CheckingOut where the order
summarizing the purchases is presented to the customer.

When you return to Browsing from DisplayingBasket or CheckingOut, it would be
good to return users to exactly where they were when they left—this is only
reasonable.

The shallow history pseudo-state can have many incoming transitions,
but only one outgoing transition. The shallow history pseudo-state remembers
which substate you were in when you left the superstate. If you then transition
from an external state back to the history state, the indicator automatically
redirects the transition to the last remembered substate (here, Displayingindex or
Displayingitem). If this is the first time you have entered the superstate, there will
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return

browselndex

BrowseCatalog l

i oToBasket ) .
Q Dgx't [ Displayingltem ] —g———>[ DisplayingBasket ]
O

/ Browsing \

goToCheckout goToCatalog
goTolndex  selectProduct

. . ToCheckout
/ Displayinglndex \ w( CheckingOut ]
- )
- Alphabetical

byCategory alphabetical

goToCatalog

C

W/

ByCategory

o
o ;

shallow history pseudo-state

Figure 22.12

22.5.2

Deep history ] N

remembers the last
substate you were in at
the same level or lower
than the deep history
pseudo-state.

be no last remembered substate and, in this case, the history state indicator’s
single outgoing transition fires and you transition to Displayinglndex.

With history, you give superstates memory of the last active substate
before the superstate was exited. With shallow history, you only remember
which substate you were in at the same level as the history state indicator
itself. However, you can see in Figure 22.12 that Displayingindex is itself a com-
posite state. Shallow history will not remember the substates within this
state—for that you need deep history.

Deep history

With deep history, you not only remember which substate you were in at the
same level as the history pseudo-state, you remember which sub-substate
you were in, to an infinite depth.

In Figure 22.13, we have modified the state machine to use deep history.
In this case you will not only return to either Displayinglndex or Displayingltem,
you will return to the right type of index (Alphabetical or ByCategory). You could
model the same thing without using deep history, but it would be much more
difficult.
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browselndex

Figure 22.13
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deep history
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Like shallow history, deep history can have many incoming transitions
but only a single outgoing transition. The outgoing transition fires if this is
the first time you have entered the superstate and there is no last remem-
bered substate.

What we have learned

UML provides a rich state machine syntax that allows you to capture com-
plex behavior in concise state machines. You have learned the following.

@ Composite states can contain one or more nested submachines - substates
inherit all of the transitions of their superstate.
— Fach submachine exists in its own region.
— The final pseudo-state only applies within a region.
— Use the terminate pseudo-state to terminate all regions.
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@ The sequential composite state contains exactly one nested submachine.

@ The concurrent composite state contains two or more nested submachines

that execute concurrently.

— There is a fork on entering the state, and the submachines start their
concurrent execution.

— If all the submachines have a stop state, you can’t leave the superstate
until all submachines have finished - this is a join.

— You can leave the superstate without a join if the submachines make
explicit transitions to external states.

@ A submachine state references another state machine:
— simplifies complex state machines;
— reuses state machines.

® Submachine communication:
— attribute values — one submachine sets the value of an attribute and the
other submachines check this value.

© History allows a superstate to remember the last substate before an out-
going transition.

— Shallow history allows a superstate to remember the last substate at the
same level as the shallow history pseudo-state before an outgoing
transition:

- on transitioning back into the shallow history pseudo-state, the
transition is routed to the last remembered substate;

— if it is the first entry (no last remembered substate), the single output
transition of the shallow history pseudo-state fires.

— Deep history allows a superstate to remember the last substate at any
level before an outgoing transition:

- on transitioning back into the deep history pseudo-state, the transi-
tion is routed to the last remembered substate;

— if it is the first entry (no last remembered substate), the single output
transition of the deep history pseudo-state fires.
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The implementation
workflow is the
main focus of the
Construction phase.

Implementation is
about transforming a
design model into
executable code.

There is very little work for the OO analyst/designer in the implementation
workflow, so this is the most lightweight part of the book. Nevertheless,
implementation does bear some scrutiny as, although the primary activity in
the implementation workflow is producing code, you will see that there are
still some elements of UML modeling involved.

The implementation workflow

The implementation workflow begins in earnest in the Elaboration phase
and is the main focus of the Construction phase (Figure 23.2).

Inception | Elaboration | i«
Requirements ! *
Analysis Af/ ! -
Design v ; N
' ) E -

Implementation | .= -+ E E
Test 3 ! E

Preliminary il 12 In In+1  In+2  Im  Im+t

iterations

Figure 23.2 Adapted from Figure 1.5 [Jacobson 1] with permission from Addison-Wesley

Implementation is about transforming a design model into executable
code. From the point of view of the analyst/designer, the purpose of imple-
mentation is to produce an implementation model if that is required. This
model involves the (mostly tactical) allocation of design classes to compo-
nents. How this is done depends to a great extent on the target programming
language.

The main focus of the implementation workflow is to produce execut-
able code. The production of an implementation model may be a by-product
of this focus, rather than an explicit modeling activity. In fact, many model-
ing tools allow you to reverse-engineer an implementation model from source
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code, This strategy effectively leaves implementation modeling up to the
programiers.

However, there are two cases in which an explicit implementation mod-
eling activity, performed by trained OO analyst/designers, might be very
important.

© If you intend to generate code directly from the model, you will need to
specify details such as source files and components (unless you take the
modeling tool defaults).

@ If you are doing component-based development (CBD) to reuse compo-
nents, the allocation of design classes and interfaces to components becomes
a strategic issue. You may want to model this first, rather than leave it to
the individual programmer.

In this chapter, we look at what'’s involved in putting together an implemen-
tation model.

The relationship between the implementation model and the design model
is very simple. The implementation model is really just the implementation
view of a design model—that is, it is part of the design model. This is shown
in Figure 23.3.

1
A
Design Model
¥
I
A

Implementation Model

Figure 23.3

The implementation model is the part of the design model that deals
with implementation issues. It specifies how the design elements are mani-
fest by artifacts, and how these artifacts are deployed onto nodes. Artifacts
represent the specifications of real-world things such as source files, and
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 Implementation workflow detail

nodes represent the specifications of hardware or execution environments
onto which those things are deployed. The relationship between the design
model and implementation model is illustrated in Figure 23.4.

A A
Design Model Implementation Model
«device»
ni
«manifest>» ____]....-] «artifact> .
T e al —T— node
«component»
et .. _«manifest» -
------------------- «artifact» )
----- a2 artifact
«device»
n2
«component» «manifest» «artifact»
c2 8 Y IR a2

Figure 23.4

The «manifest» relationship between artifacts and components indicates
that the artifacts are the physical representations of the components. For
example, a component may comprise a class and an interface, and both of
these are realized by a single artifact, a file containing source code.

Design components are logical entities that group design elements, but
implementation artifacts map to real, physical grouping mechanisms of the
target implementation language.

As you can see from Figure 23.5, the implementation workflow involves the
architect, system integrator, and component engineer. Individual analyst/
designers, or small teams of analyst/designers, may play any of these three
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o
L]

Architect Architectural implementation

N

System integrator Integrate system

Qo

/ Implement a class \

Implement a component Perform unit test

Qo

Component engineer

Figure 23.5 Adapted from Figure 10.16 [Jacobson 1] with permission from Addison-Wesley

roles in the implementation workflow. Their focus will be on producing de-
ployment and implementation models (part of architectural implementation).
System integration, class implementation, and unit testing are beyond the
scope of this book—these are programming activities rather than analysis
and design activities. (Note that in Figure 23.5 we have updated the original
figure from Implement a subsystem to the more general Implement a component as
this is more correct from the UML 2 perspective.)

. Arifacts

The key artifact of the implementation workflow from the point of view of
the OO analyst/designer is the implementation model. This model consists
of component diagrams to show how artifacts manifest components, and a
new type of diagram, the deployment diagram. The deployment diagram mod-
els the physical computational nodes on which the software artifacts will be
deployed, and the relationships between those nodes. We look at deployment
diagrams in detail in Chapter 24.
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Implementation is primarily about creating code. However, the OO analyst/
designer may be called on to create an implementation model. You have
learned the following.

@ The implementation workflow is the main focus of the Construction phase.
@ Implementation is about transforming a design model into executable code.

® Implementation modeling is important when:
— you intend to forward-engineer from the model (generate code);
— you are doing CBD in order to get reuse.

@ The implementation model is part of the design model.

@ Artifacts — represent the specifications of real-world things such as source

files:
— components are manifest by artifacts;
— artifacts are deployed onto nodes.

@ Nodes - represent the specifications of hardware or execution environments.



~ Deployment

In this chapter we look at the UP activity Architectural implementation and the
way to produce a deployment diagram. This is a diagram that shows how the
software you are developing will be deployed over physical hardware and
how that hardware is connected. In Section 24.5 we present a simple Java

example.

(24.2 UP activity: Architectural implementation)

(24.3 The deployment diagram)

24.4 Nodes
24.5 Artifacts

24.6 Deployment

(24.7 What we have Iearned)

6

Figure 24.1
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Implementatlon

UP activity: Architectural implementation

This activity is about identifying architecturally significant components and
mapping them to physical hardware—it is about modeling the physical
structure and distribution of the system. The key phrase is “architecturally
significant”. In principle, you could model the physical deployment of the
system exhaustively. In practice, this would probably add little value as the
exact deployment details of many components will have little architectural
importance. The exception to this is if you are generating code from the
model. In this case, you might need a more detailed deployment model so
that your generator knows where to put its output artifacts and can create
the appropriate deployment descriptors and build files.

The UP activity Architectural implementation is shown in Figure 24.2. We
have modified this figure from the original in two ways and have 1dent1ﬁed
the changes by graying the affected artifacts.

® In accordance with UML 2 we show a subsystem as a stereotyped compo-
nent rather than as a stereotyped package.

@ We have explicitly shown the artifacts and nodes output from the activ-
ity. These were implicit in the original figure.

— A O Architecture
D description
,-7  [implementation
Deployment model . Architect 7 and deployment]
__l S . 3
Y l
A
.............. s Artifact
Design model Architectural ~ "T=p-.___
.-7 implementation *«_ § = TTve-ll T
et 4 =D l«subsystem»
] e . Component
Architecture iy
description
[design and
deployment] Nod
ode

Figure 24.2. Adapted from Figure 10.17 [Jacobson 1] with permission from Addison-Wesley
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From the point of view of the OO analyst/designer, the key activity in Archi-
tectural implementation is creating one or more deployment diagrams. The
deployment diagram brings components, artifacts, and nodes together to
specify the physical architecture of the system. We look at this diagram in
detail in the rest of this chapter.

The other activity is updating the architecture description with architectur-
ally important deployment and implementation details.

The deployment diagram

In UML, deployment is the process of assigning artifacts to nodes or artifact
instances to node instances. We look at artifacts and nodes in detail shortly.

The deployment diagram specifies the physical hardware on which the
software system will execute and also specifies how the software is deployed
on that hardware.

The deployment diagram maps the software architecture created in
design to a physical system architecture that executes it. In distributed
systems, it models the distribution of the software across physical nodes.

There are two forms of deployment diagram.

1. Descriptor form - contains nodes, relationships between nodes, and arti-
facts. A node represents a type of hardware (such as a PC). Similarly, an
artifact represents a type of physical software artifact such as a Java JAR
file.

2. Instance form - contains node instances, relationships between node
instances, and artifact instances. A node instance represents a specific,
identifiable piece of hardware (such as Jim’s PC). An artifact instance rep-
resents a specific instance of a type of software, such as the particular
copy of FrameMaker (www.adobe.com) used to write this, or a particular

- JAR file. If you don’t know (or don’t care about) the details of specific
instances, you can use anonymous instances.

Although we're discussing it as an implementation activity, a first-cut
deployment diagram is often created in design as part of the process of decid-
ing the final hardware architecture. You might start by creating a descriptor
form deployment diagram limited to nodes and the connections between
them. You can then refine this into one or more instance form deployment
diagrams, showing possible arrangements of anonymous node instances.
When you know the details of the hardware at a deployment site, you can
create an instance form deployment diagram showing the actual machines
at this site, if so required.
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The construction of the deployment diagram is therefore a two-step
process.

1. In the design workflow, focus mainly on node or node instances and
connections.

2. In the implementation workflow, focus on assigning artifact instances to
node instances (instance form), or artifacts to nodes (descriptor form).

In the next two sections we look at nodes and artifacts in detail.

The UML 2.0 specification [UML2S] states: “A node represents a type of com-
putational resource upon which artifacts can be deployed for execution.”

A node represents

a type of
computational There are two standard stereotypes for nodes.
resource. @ «device» — the node represents a type of physical device such as a PC or a

Sun Fire server.

@ «execution environment» — the node represents a type of execution environ-
ment for software such as an Apache web server or the JBoss EJB (Enter-
prise JavaBeans) container.

Nodes can be nested in nodes. For example, the descriptor form deployment
diagram in shows that zero or more WindowsPCs running the Firefox web
browser can be connected to zero or more Apache web servers, each running on
a LinuxPC. Notice that by naming the nodes WindowsPC and LinuxPC, we have in-
cluded both the type of hardware (PC) and the operating system—the
execution environment for all software running on those devices. This is com-
mon practice, as having a separate execution environment node specifically
for the operating system clutters the diagram. We show Firefox as an execution
environment because it can run plug-in components such as Java applets.

«device» «device»
WindowsPC LinuxPGC

0. «http» 0.

«execution environment»
irefox . .
Firefo «execution environment»
- Apache
association
~
node

Figure 24.3
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«device»
JimsPC:WindowsPC

«execution environment»

:Firefox
«device»
«http»
«execution environment»
«device» :Apache
llasPC:WindowsPC
«execution environment»

:Firefox node instance

Figure 24.4

An association between nodes represents a communication channel over
which information can be passed back and forth. In Figure 24.3 we have
stereotyped the association «http» to indicate that it represents an HTTP
(HyperText Transport Protocol) connection between the two nodes.

If you want to show specific instances of nodes, you can use the instance
form deployment diagram illustrated in Figure 24.4. The figure shows two
actual PCs, )imsPC and IlasPC, connected to the Linux machine WebServeri. In
the instance form, the node instances represent actual physical devices or
actual instances of execution environments running on those devices. We

“underline the element names to indicate that they represent node instances.

Descriptor form deployment diagrams are good for modeling a type of
physical architecture. Instance form deployment diagrams are good for mod-
eling an actual deployment of that architecture at a particular site.

According to The UML User Guide [Booch 2], deployment diagrams are
the most stereotyped part of UML. You can assign your own icons to stereo-
types, and this allows you to use symbols in the deployment diagram that
look as much like the actual hardware as possible. This makes it easy to read
the deployment diagram at a glance. Having an extensive collection of clip
art can help with this! An example of a fully stereotyped descriptor form
deployment diagram is shown in Figure 24.5.
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Artifacts

An artifact represents the specification of a concrete, real-world thing such as
the source file BankAccount.java. Artifacts are deployed on nodes. Some examples
of artifacts are

source files;

executable files;

scripts;

database tables;

documents;

5 & © © ¢ ©

outputs of the development process, e.g., a UML model.

An artifact instance represents a specific instance of a particular artifact, for
example, a specific copy of BankAccount.java deployed on a particular machine.
Artifact instances are deployed on node instances.

An artifact can provide the physical manifestation for any kind of UML
element. Typically, they manifest one or more components, as illustrated in
Figure 24.6. This figure shows an artifact, librarySystem.jar, that manifests three
white-box components, Book, Library, and Ticket. Artifacts are labelled with the
stereotype «artifact» and may have an artifact icon placed in their top right-
hand corner as shown in the figure. The figure also illustrates that artifacts
may depend on other artifacts. In this case, the artifact librarySystem.jar depends
on the artifact jdom.jar. '

As well as a name, each artifact has a filename in its specification that
indicates the physical location of the artifact. For example, this filename could
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____________ cartifacts LV
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«manifest» «manifest» «manifest»
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«component» & | «component» & | «component» £]
Book Library Ticket
ISBN TicketlD
! r Librarylmpl f 1
! 1
Bookimpl Ticketimpl
0 {1 [H 0

— o L

Book Library Ticket
Figure 24.6

specify a URL where the master copy of the artifact is found. Artifact instances
have file names that point to the physical location of the instance.

Let’s look at the JAR file in Figure 24.6 in more depth. To create this JAR,
you perform two steps.

1. Compile the Java source files for the classes Book, ISBN, Bookimpl, Library,
Librarylmpl, Ticket, TicketID, and Ticketimpl. R

2. Use the Java jar tool to create a JAR file from these compiled files.

This creates the JAR file shown in Figure 24.7. You can see that this JAR file
contains aJava class file for each class and interface in the system. It also con-
tains a directory, META_INF, that contains a file called MANIFEST.MF. This file is
generated by the jar tool, and it describes the contents of the JAR. Notice in
the figure how you can show dependencies between artifacts and artifacts
nested within artifacts.

Although Figure 24.7 is correct from a UML modeling perspective, it is
not particularly descriptive, as everything is just an artifact. The .class exten-
sion tells you that some of the artifacts represent compiled Java class files,
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«artifact»
librarySystem.jar
«artifact» -] «artifact» «artifact» «artifact» L «artifact»
ISBN.class BookImpl.class Librarylmpl.class Ticketlmpl.class TicketlD.class
i v
«artifact» «artifact» «artifact»
Book.class Library.class Ticket.class
«artifact»
META_INF
«artifact»
MANIFEST.MF
«artifact»
jdom.jar
Figure 24.7
but it isn’t easy to tell, for example, that META_INF represents a directory. This
highlights the need to stereotype artifacts to indicate clearly exactly what
each one represents.
UML provides a small number of standard artifact stereotypes that repre-
sent different types of files. These are listed in Table 24.1.
Table 24.1
 Atifact stereatype _ Seman
«filew A physical file
«deployment spec» A specification of deployment details (e.g., web.xml in J2EE)
«document» A generic file that holds some information
«executable» An executable program file
«library» A static or dynamic library such as a dynamic link library (DLL) or Java Archive
(JAR) file
«scripty A script that can be executed by an interpreter

«source» A source file that can be compiled into an executable file
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You can expect that various UML profiles will be developed over time for
specific software platforms such as J2EE (Java 2 Platform, Enterprise Edition)
and Microsoft .NET. These will provide a richer set of artifact (and other) ste-
reotypes. The UML 2.0 specification [UML2S] provides example profiles for
J2EE and EJB, Microsoft COM, Microsoft .NET, and CORBA (Common Object
Request Broker Architecture).

Table 24.2 shows the sample Java profile.

This profile isn’t sufficient for modeling Java applications—it is missing
a stereotype for Java class files and for directories. We extend the profile with
the two new stereotypes listed in Table 24.3.

In Figure 24.8 we have applied the extended sample Java profile from the
UML specification to our model. As you can see, the diagram is much more
meaningful when you apply descriptive stereotypes.

Table 24.2

Stereotype .‘ e ‘App[iés‘ﬁ) e s,ema,,nticg R

«EJBEntityBean» Component V EJB entity bean

«EJBSessionBean» Component EJB session bean

«E)BMessageDrivenBean» Component EJB message-driven bean

«EJBHome» Interface EJB home interface

«EJBRemote» Interface EJB remote interface

«E]BCreaten Operation EJB create operation

«EJBBusiness» Operation An operation that supports the business logic of the EJB
remote interface

«E|BSecurityRoleRef» Association An association between an EJB and a supplier that provides a
reference to a security role

«EJBRoleName» Actor The name of a security role

«EJBRoleNameRef» Actor A reference to a security role

«JavaSourceFile» Artifact A Java source file

«JAR» Artifact A Java ARchive file

«EJBQL» Expression An expression in the EJB query language

Table 24 3

Stereotvpe . APPlies to“’! k Semantics ; ;

«JavaClassFile» Artifact A Java class file (a compﬂed Java source file)

«directory» Artifact A directory
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«JAR»
librarySystem.jar

«JavaClassFile» -] «JavaClassFile» «JavaClassFile» «JavaClassFile» | «JavaClassFile»
ISBN.class BookImpl.class Librarylmpl.class Ticketlmpl.class TicketlD.class

v

A \'

«JavaClassFile» «JavaClassFile» «JavaClassFile»
Book.class Library.class Ticket.class

«directory»
META_INF

«file»
MANIFEST.MF

«JAR»
jdom.jar

Figure 24.8

A simple instance form deployment diagram is shown in Figure 24.9.

This example is from the Java tutorial (www.java.sun.com). It is a cur-
rency converter application. Figure 24.9 shows an Enterprise application
ARchive (EAR) file called ConverterApp.ear deployed into a J2EE Server execution
environment on a node called server of type WindowsPC. The J2EE Server is an
application server from Sun that is shipped as part of J2EE. EAR files are a
special type of JAR file that hold J2EE applications. The deployed server
application is used by the client application, ConverterClient.jar, which executes
on a node called client that is also of type WindowsPC.

You can attach a deployment specification to a deployed artifact as
shown in the figure. The deployment specification contains key details about
the deployment. In this case, we specify three things:

© EnterpriseBeanClass — this is the class that contains the logic of the bean;

© EnterpriseBeanName ~ this is the name that clients can use to access the bean;
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«device»
server:WindowsPC

Figure 24.9

«device» «RMI» «execution environment»
client: WindowsPC :J2EE Server
«JAR» «JAR»
:ConverterClient.jar :ConverterApp.ear
«deployment spec»
‘web. xml|
EnterpriseBeanClass : ConverterBean
EnterpriseBeanName : ConverterBean
EnterpriseBeanType : StatelessSession

© EnterpriseBeanType - this is the type of the bean. In this case, it is a stateless
session bean—a bean used for simple transactions that has no state and is
not persistent.

There is much more to EJB deployment than this simple example would sug-
gest, and some of these details even depend on the execution environment.
However, the purpose of modeling in deployment is to capture the key deploy-
ment details, and so the deployment descriptor shown may well be sufficient.

Whatwe havelearned ’ R

Deployment diagrams allow you to model the distribution of your software
system over physical hardware. You have learned the following.

® The UP activity Architectural implementation is about identifying architectur-
ally significant components and mapping them to physical hardware.

@ The deployment diagram maps the software architecture to the hardware
architecture.

@ In the design workflow you can create a “first cut” deployment diagram
by identifying nodes or node instances, and relationships — you refine
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this as part of the implementation workflow by adding components or
component instances.

© The descriptor form deployment diagram may be used to model what types
of hardware, software, and connections there will be in the final deployed
system.
— It describes a whole set of possible deployments.
— It shows:
- nodes — what types of hardware run the system;
- relationships - the types of connections between the nodes;
— components — the types of components deployed on particular nodes.

© The instance form deployment diagram shows a particular deployment of
the system over specific, identifiable pieces of hardware.
— It describes one specific deployment of the system, perhaps at a specific
user site.
— It shows:
- node instances ~ specific pieces of hardware;
- relationship instances - specific relationships between node instances;
— component instances - specific, identifiable pieces of software deployed
on a node instance; for example, a particular copy of Microsoft Office
with a unique serial number.

@ Node - represents a type of computational resource.
— «device» — a type of physical device such as a PC or a Sun Fire server.
— «execution environment» — a type of execution environment for software
such as an Apache web server.

® Node instance — represents a specific computational resource.
© Artifact — represents the specification of a real-world thing such as a partic-

ular executable file.
— Artifacts can manifest one or more components.

® Artifact instance — represents a specific instance of a particular artifact,
such as a specific copy of a particular executable file deployed on a partic-
ular machine.



e Part 6

Supplementary
material






r . ’>»,,/4C\ha pter 2 5

ntroduction to OCL

Originally, we only intended to write a very short introduction to OCL, pri-
marily to cover the requirements of UML certification. The more we looked
at the existing OCL literature however, the more we felt the need for a simple
yet complete description of the language targeted directly at the OO analyst/
designer. This is what we present here. It is based on Unified Modeling Lan-
guage: OCL, version 2.0 [OCL1]. Be aware that there might be some small
changes to the specification by the time we get to press.

As an OO analyst/designer, you might not be particularly aware of OCL.
Hopefully, by the end of this chapter, you will understand what OCL is and
will appreciate the possibilities it presents for precise UML modeling.

This is quite a big chapter, so we have only included the main topics in
the chapter roadmap.
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(25.2 What is the Object Constraint Language?)

25.3 Why use OCL?

25.4 OCL expression syntax
25.8.2 The OCL type system

[learn about structured types]

25.8.4 Tuples

[learn how to add infix operators] flearn about OCL collections]

25.8.5 Infix operators 25.8.6 OCL collections

[learn about primitive types]

25.8.3 Primitive types

25.9 OCL navigation

[learn how to traverse multiple associations]

learn about simple navigation] [learn how to traverse associations]

i ) (25.9.2 Navigation across i ) (25.9.3 Navigation across muitiple assoclations)

(25.9‘1 Navigation within the

(25‘10 Types of OCL expressionin detail)

[define derived attributes]

[define local variables]

flearn about invariants] [learn about pre and post conditions] [define queryop ] [initialize 1 [define ]|
(25101 inv:) (25.101 pre:, post;, and @prej (25.10.3 hudy:) (25.10.4 init:) 25105 def:) (25.10.6 let expresslons) (25.10.1 deriva:)

(25.11 OCL in other types of diaglams)

flearn how to use OCL in interaction diagrams]  [learn how to use OCL in activity diagrams] [fearn how to use OCL in state machines]

(25113 0cLinstate machines )

(25.11 1 OCL in interaction diagrams) (25.1 1.2 OCL in activity diagrams)

erited associations]

th inh

[work wi [work with messages]

(25.12.3 Inherited assoclaﬂons) (25.12.4 OclMessage)

[work with qualified associations]

[work with association classes]

(25.1 2.2 Navigation through qualified associatians)

(25.12.1 Navigation to and from association classes)

25.13 What we have learned

Figure 25.1
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- Whatis the Object Constraint Language (OCL)?

OCL can specify
queries, constraints,
and query operations.

OCLis not an
action language for
UML because OCL
expressions have no
side effects.

OCL is a language that allows you to add extra information to a UML model.
It is a standard extension to UML that allows you to do the following:

® write queries to access model elements and their values—it is a query lan-
guage a bit like SQL;

® state constraints on model elements—you can define business rules as
constraints on model elements;

@ define query operations.

It’s vital to understand that you can’t specify behavior with OCL—it is not an
action language for UML. This is because OCL expressions have no side effects,
so:

@ OCL can’t change the value of a model element—you can only query val-
ues and state conditions on values;

OCL can’t define an operation other than a query operation;
OCL can only execute query operations that don’t change values;

OCL can'’t be used to specify business rules dynamically at runtime—it
can only be used to specify business rules at modeling time.

You can store OCL expressions in files associated with your UML model. How
this is done depends on the particular modeling tool you are using. However,
the OCL specification defines an XML-based interchange format so that you
can move OCL expressions between tools.

You can also attach OCL expressions directly to UML model elements as
notes. This has the advantage that it makes the OCL expressions visible in
the model, and the disadvantage that it can clutter the model if there are a
lot of expressions.

WhyuseocLz
There are several reasons why you might find OCL useful.
® OCL allows suitably enabled modeling tools to reason about UML mod-

els—for example, this might involve checking their consistency.

® OCL allows suitably equipped modeling tools to generate code based on
OCL expressions—for example, a tool might generate code to enforce
OCL constraints such as operation preconditions and postconditions.
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® OCL allows you to be more precise in your modeling—this makes your
models less open to misinterpretation.

® OCL is a part of OCUP (OMG Certified UML Professional) Advanced cer-
tification—there is only a small amount of OCL in the test, but it is there.

There are several reasons why you might not find OCL useful.

@ OCL is quite hard to read—the syntax is irregular and has lots of odd
“shortcut” forms.

© At this time, few modelers know OCL, and even fewer programmers—so
you might find that there is no audience for your OCL expressions.

® You might not need the level of precision that OCL offers—for example,
if you are creating an informal UML model that will be given to program-
mers for elaboration, OCL might be overkill.

Our position on OCL is that it is just another tool in your modeling toolbox
that can help you create precise UML models. It’s useful to know about it so
that you can use it where it adds real value.

OCLexpressionsyntax

OCL is a small language, but it has a surprisingly difficult syntax that is still
evolving. In particular, it has syntactic exceptions and shortcuts that can
sometimes lead the uninitiated astray. The syntax appears to be mostly C/C++/
Java style with some Smalltalk-like elements.

OCL language semantics (which are formally defined) are independent
of any concrete syntax. This can allow alternative OCL syntaxes to emerge
over time. There is already an SQL-like OCL syntax for business modeling
that you can find described in [Warmer 1].

We take a lot of care in this chapter to try to highlight the less intuitive
aspects of OCL syntax (and semantics) and make them as clear as we can!

Unlike most mainstream programming languages, OCL is a declarative
language. This means that you describe the result you want rather than how
to achieve that result. Languages like Java, C#, C++, and most other main-
stream languages are procedural—you describe step by step how the result
you want is achieved.

In a conventional programming language you create programs that exe-
cute to deliver some value to the user.
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OCL expressions
are attached to UML
model elements.

Each OCL
expression has a value.
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In OCL you write expressions that are attached to elements of a UML
model to specify or constrain the model in some way. This is a fundamental
point and is perhaps the biggest stumbling block that modelers and pro-
grammers face when first encountering OCL. OCL is not a programming
language, it is a constraint language. The essential point to keep in mind is
that in OCL you are specifying queries and conditions, not behaviors.

The general form of an OCL expression is illustrated in Figure 25.2.

package context
A

~ N
package <packagePath>
expression context { context <contexuallnstanceName>:<modelElement>

<expressionType> < expressionNames: } expression
< expressionBody>

<expressionTypes> <expressionNames: } expression
< expressionBody>

emdpa&&%’ége

Figure 25.2

In Figure 25.2 we use boldface to indicate an OCL keyword and the
color gray to indicate an optional element. The angle brackets (<...>) indicate
a placeholder that you must replace with the appropriate thing.

OCL is a typed language, and every OCL expression evaluates to an object
of some type. As you can see from Figure 25.2, OCL expressions may be
broken down into three parts: :

@ the package context (optional);
@ the expression context (mandatory);

@ one or more expressions.

We consider each of these parts in detail in the next few sections. To do this,
we use the model in Figure 25.3 to provide a context for our example OCL
expressions.
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|
BankAccountExample

l
SimpleAccounts

BankAccount

balance : Real
owner : String
accountNumber : String

deposit( amount : Real )
getBalance() : Real
getOwner() : String
withdraw( amount : Real )

T

CheckingAccount DepositAccount

overdraftLimit : Real withdraw( amount: Real )

getAvailableBalance() : Real
getAvailableOverdrafi() : Real
withdraw( amount : Real )

Figure 25.3

The package
context defines the
namespace for the OCL
expression.

The optional package context allows you to specify a package that defines
the namespace for the OCL expression. The package context is subject to the
following rules.

@ If you don't specify a package context, the namespace for the expression
defaults to the whole model.

@ Ifyou attach an OCL expression directly to a model element, the namespace
for the expression defaults to the owning package of the element.

For example, in Figure 25.3, you could specify the package context as

package BankAccountExample::SimpleAccounts

endpackage

If the elements in your UML model all have unique names, you don't need
to use the package context, as you can refer to each element unambiguously
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The expression
context indicates the
UML model element to
which the OCL
expression is attached.

Write your OCL
expressions in terms
of the contextual
instance.
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by name. However, if elements in different packages have the same name, you
can

® define a package context for each OCL expression that refers to any of the
elements OR

@ refeér to the elements using full pathnames, for example,
BankAccountExample::SimpleAccounts:BankAccount.
The OCL syntax for pathnames is

Package1::Packagez:: ... ::PackageN::ElementName

The expression context
The expression context indicates the UML model element to which the OCL
expression is attached.

For example, if you wanted to attach an OCL expression to the Checking-

Account class in Figure 25.3, you could define the expression context as
follows:

package BankAccountExample::SimpleAccounts
context account:CheckingAccount

endpackage

The expression context defines a contextual instance that has an optional
name (account) and a mandatory type (CheckingAccount).

Think of a contextual instance as being an exemplar instance of the class
that you can use in your OCL expressions.

If you give the contextual instance a name, you can refer to it using this
name within the body of the expression. If you don’t-give the contextual
instance a name, you can refer to it using the OCL keyword self. We tend to
use the keyword.

In the expression above, the contextual instance is an instance of the
CheckingAccount class that you can refer to as account or self.

The type of the contextual instance depends on the expression context.

© If the expression context is a classifier, the contextual instance is always
an instance of that classifier.

@

If the expression context is an operation or an attribute, the contextual
instance is generally an instance of the classifier that owns the operation
or attribute.
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There are two
categories of OCL
expressions - those
that constrain and
those that define.

When you attach an OCL expression to a model element as a note (Figure 25.4),
the expression context is determined by the attachment point of the note, so
you don’t need to specify it explicitly.

BankAccount

balance : Real
owner : String

T
|

CheckingAccount l DepositAccount I

overdraftLimit : Real

-- CheckingAccounts shall not be overdrawn
-- more than the overdraft limit
inv:

balance >= overdraftLimit

Figure 25.4

Typesof OCLepressions

There are eight different types of OCL expressions, as summarized in Table 25.1.
You can see that these expressions split into two categories—those specifying
constraints (inv:, pre:, and post:) and those specifying attributes, operation
bodies, and local variables (init:, body:, def:, let, and derive:).

You can give an expressionName to the operations that constrain (inv:, pre:,
and post:). This allows you to refer to them by name, perhaps to link them to
use case specifications or other requirements documents. Good OCL style in-
dicates that you should

© always name constraints (even though the name is optional);
® choose descriptive names that summarize the semantics of the constraint;
@ ensure that constraint names are unique within your model;
@ use lowerCamelCase for constraint names.
You can’t give an expression name to the operations that define (init:, body:,
def:, let, derive:).

We cover the detailed semantics of the different types of OCL expression

in Section 25.10, once we have discussed the expression body and OCL
expression syntax.



4ovassencannssosone C R R T TR T TR T scevecsennoaa P R R R R N R ey o

Introduction to OCL 503

Ci1apter 25

cooosovsnoBoBo 0BG

Table 25.1
Expression Lo ‘ : o
type - . Syntax - Appliesto = Contextualinstance = Semantics Section
Operations that constrain
invariant inv: Classifier An instance of the The invariant must be 25.10.1
classifier ' true for all instances of
the classifier
precondition pre: Operation An instance of the The precondition must 25.10.2
Behavioral  Classifier that owns be true before the opera-
feature the operation tion executes
postcondition  post: Operation An instance of the The postcondition must 25.10.2
Behavioral classifier that owns be true after the opera-
feature the operation tion executes
The keyword result refers to
the result of the operation
Operations that define
query body: Query An instance of the Defines the body of a 25.10.3
operation body operation classifier that owns query operation
the operation
initial value init: Attribute The attribute Defines the initial value 25.104
Association  The association end ~ Of the attribute or the
end association end
define def: Classifier An instance of the Adds variables or helper 25.10.5
classifier that owns operations to a context
the operation classifier
These are used in OCL
expressions on the con-
text classifier
let let OCL The contextual Adds local variables to 25.10.6
expression instance of the OCL ~ OCL expressions
expression
derived value  derive: Attribute The attribute Defines the derivationrule  25.10.7
Association  The association for the derived attribute or

end

end

association end




25.8.1

Use comments
liberally to make OCL
expressions more
understandable.

The expression body contains the meat of the OCL expression. You can see a
simple example in Figure 25.4.

Over the next few sections, we introduce OCL syntax with a view to being
able to construct OCL expression bodies.

Comments, keywords, and precedence rules

Comments are ignored by OCL processors. Use comments liberally to docu-
ment your OCL expressions to make them more understandable.

A good way to comment an OCL expression is simply to write the ex-
pression out in English (or German or whatever your language is). You will
see examples of how to do this throughout this chapter.

OCL has two styles for comments:

—~This is a single line comment. The rest of the line after the two minus signs is ignored.

/* This is a multiple line comment.
Everything between the comment delimiters is ignored. */

We prefer to use the single line comment.
OCL has a very small set of keywords that you can’t use as names in OCL
expressions:

and, attr, context, def, else, endif, endpackage, if, implies, in, inv, let, not, oper, or, package,
post, pre, then, xor, body, init, derive.

We cover each of these as the chapter progresses.
OCL operations are subject to precedence rules as illustrated in Figure 25.5.

if ... then ... else ... endif
> < <= >=

= <>

and or xor

implies

Figure 25.5
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25.8.2

OCL primitive
types are Boolean,
Integer, String,
and Real.

All classifiers l N

in the UML model are
available to OCL
expressions.

OclAny is the [ N

supertype of all types
in OCL.
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In any OCL expression, the operations with the highest precedence are
executed first. So, for example,

1+2%*3

evaluates to 7 because * has a higher precedence than +.
Precedence can be overridden by the use of brackets, so

(1+2)*3

evaluates to 9.
It’s always good style in any language to use brackets rather than rely on
precedence rules!

The OCL type system
OCL is a strongly typed language, and you need to understand its type sys-
tem to be able to write OCL expressions.

All languages come with a set of primitive types, and OCL is no excep-
tion. The primitive types are Boolean, Integer, Real, and String—we discuss these
in Section 25.8.3. OCL also has a structured type, the Tuple, that we discuss in
Section 25.8.4.

As well as the primitive types and Tuples, OCL has an important set of
built-in types, summarized below.

@ OclAny - the supertype of all types in OCL and the associated UML model;

OclType — a subclass of OclAny—an enumeration of all types in the associated
UML model;

© OclState — a subclass of OclAny—an enumeration of all the states in the asso-
ciated UML model;

OclVoid — the “null” type in OCL—it has a single instance called OclUndefined;
OclMessage — represents a message (see Section 25.12.4).

®

@

An unusual, but crucial, aspect of the OCL type system is that all of the clas-
sifiers in the associated UML model become types in OCL. This means that
OCL expressions can refer directly to classifiers in the associated model. This
is what makes OCL work as a constraint language.

In OCL every type is a subtype of OclAny. Primitive types are direct subtypes
of OclAny, whereas UML model types are subclasses of 0CLType, which itself is
a subclass of OclAny. Each type inherits the small set of useful operations
summarized in Table 25.2.

Perhaps the most unusual OclAny operation is alllnstances(). This is a class
scope operation (it applies directly to the class, rather than to any specific
instance) and it returns the Set of all instances of that class in existence when
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Table 25.2

 OclAny operation o

1 "Semantic‘s;f S

Comparison operations

a=bh

Returns true if a is the same object as b, otherwise returns false

a<>bh

Returns true if a is not the same object as b, otherwise returns false

a.ocllsTypeOf( b : OclType ) : Boolean

Returns true if a is the same type as b, otherwise returns false

a.ocllskindOf( b : OclType ) : Boolean

Returns true if a is the same type as b, or a subtype of b

a.oclinState(b : OclState ) : Boolean

Returns true if a is in the state b, otherwise returns false

a.oclisUndefined() : Boolean

Returns true if a = OclUndefined

Query operations

A::alllnstances() : Set(A)

This is a class scope operation that returns a Set of all instances of type A

a.oclisNew() : Boolean

Returns true if a was created by the execution of the operation

Can only be used in operation postconditions

Conversion operations

a.oclAsType( SubType) : SubType

Evaluates to a retyped to SubType

This is a casting operation, and a may only be cast to one of its subtypes
or supertypes

Casting to a supertype allows access to overridden supertype features

25.8.3

the operation is called. No commonly used programming language has this
facility built in, so the OCL specification defines alllnstances() as an optional
compliance point for tools that implement OCL. This means that your OCL
tool may not be able to evaluate expressions that use alllnstances().

At first it may appear strange that the types you have carefully defined in
your UML model each automatically get a new supertype, OclType, when they
are referred to in OCL expressions. However, OCL has to do this so that there
is a common object protocol (defined by OclAny) that it can use to manipulate

types.

Primitive types
The OCL primitive types are Boolean, Integer, Real, and String. These have much
the same semantics as they do in any other language (Table 25.3).
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Table 25.3
OCLbasictype  Semantics ,
Boolean Can take the value true or false
integer A whole number
Real A floating point number
String A sequence of characters

String literals are single quoted, e.g., 'Jim'

Because OCL is a modeling language rather than a programming lan-
guage, the OCL specification places no limits on the length of Strings, the size
of Integers, and the size and precision of Reals.

25.8.3.1 Boolean
The Boolean type has two values, true and false. It has a set of operations that
return Boolean values. The binary operations are summarized in the Table 25.4.
This truth table shows the results of the Boolean operations for input values a
and b.
Table 25.4 ’

a | b a=b a<>h a;and(b) ~awor(b) axor(b) ‘a.imyplies:( bf)‘,

true true true false true true false true

true false false true false true true false

false true false true false true true true

false false true false false false false true

All of these operations should be familiar to you from other program-
ming languages, except for implies. This comes from formal logic and consists
of a premise, a, and a conclusion, b. The result of the operation is true when
the premise and the conclusion have the same value, or when the premise is
false and the conclusion is true. It is false when the premise is true and the con-
clusion is false.

There is also a unary not operator, shown in Table 25.5.
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25.8.3.2

Table 25.5

true false

false true

Boolean expressions are often used in if..then...else expressions according
to the following syntax:

if <booleanExpression> then
<oclExpression1>
else
<oclExpression2>

endif

Integer and Real

Integer represents a whole number, and Real represents a floating point num-
ber. There are no limits on the length of Integers or on the length or precision
of Reals. Integer and Real have the usual set of infix arithmetic operations with
the standard semantics:

=, <3, < >, <=y 5=+, *3 /

They also have the operations described in Table 25.6.

Table 25, 6

 Appliesto

Syntax - ,‘ Semantlcs

a.mod(b)  Returns the remamder after a is divided by b Integer

e.g.,a=3, b=2, amod(b) returns 1

a.div(b) The number of times that b fits completely within a Integer
e.g., a=8, b=3, adiv(b) returns 2

a.abs() Returns positive a : Integer
e.g., a=(~3), a.abs() returns 3 and Real

a.max(b) Returns the larger of a and b Integer
e.g., a=2, b=3, amax(b) returns b and Real

a.min(b) Returns the smaller of a and b Integer

e.g., a=2,b=3, amin(b) returns a and Real
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Table 25 6 Contmued

Syntax -

a.round() Returns the Integer closest to a Real
If there are two integers equally close, it returns the largest

e.g., a = 2.5, a.round() returns 3 rather than 2
a = (~2.5), around() returns —2 rather than —3

a.floor() Returns the closest Integer less than or equal to a Real

e.g., a=2., a.floor() returns 2
a = (-2.5), a.floor() returns -3

String

The OCL String operations (Table 25.7) are again pretty standard—you can
expect to find a similar set in just about any language.

Table 25. 7

;‘,{,‘Syntax

51=52 Returns true if the character sequence of s1 matches the
character sequence of s2, else returns false

51<>52 Returns true if the character sequence of s1 does not match the
character sequence of s2, else returns false

st.concat(s2) Returns a new String that is the concatenation of s1 and s2

e.g., 'Jim'.concat(' Arlow') returns 'Jim Arlow'

s1.size() Returns the Integer number of characters in st

e.g., 'lim'size() returns 3.

s1.toLower() Returns a new String in lower case

e.g., 'Jim'.toLower() returns 'jim'

s1.toUpper() Returns a new String in upper case
e.g., 'lim'toUpper() returns 'JIM'

s1.tolnteger() Converts s1 to an Integer value

e.g., '2".tointeger() returns 2

s1.toReal() Converts s1 to a Real value

e.g., '2.5".toReal() returns 2.5

Continued
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OCL Strings are
immutable.

25.8.4

‘ Tuples are
structured objects that
have one or more
named parts.

Table 25.7 Continued

 Syntax o Semantics “

st.substring(start,end)  Returns a new String that is a substring of s1 from the character
at position start to the character at position end

Notes:

* start and end must be Integers
* The first character in s1is at index 1
* The last character in s1 is at index s1.size()

e.g., 'Jim Arlow'.substring(s, 9) returns 'Arlow'

OCL Strings are immutable—this means once initialized, they can’t be
changed. An operation such as si.concat(s2) always returns a new String.

Tuples

Tuples are structured objects that have one or more named parts. Tuples are
necessary because some OCL operations return multiple objects. Tuple syntax
is as follows:

Tuple { partName1:partType1 = valuet, partName2:partTypez = valuez, ... }

The name and value of each part is mandatory, its type is optional, and the
order of the parts is undefined.
Here is a Tuple that represents information about this book:

Tuple { title:String = ‘UML 2 and the Unified Process’, publisher:String = ‘Addison Wesley’ }

Tuple parts can be initialized by any valid OCL expression. In this simple
example, we have used String literals.

You access the parts of a Tuple by using the dot operator. For example, the
following expression returns the value ‘Addison Wesley':

Tupte { title:String = '"UML 2 and the Unified Process', publisher:String =
‘Addison Wesley' }.publisher

OCL is a strongly typed language, so each Tuple must have a type. TupleTypes
are anonymous types. They have no name and are implicitly defined when
you create the Tuple. However, it’s possible to explicitly define a TupleType type.
For example, the TupleType for the Tuple above can be written in OCL as

TupleType { title:String, publisher:String }

You typically only need to explicitly define a TupleType if you want to create a
collection (see Section 25.8.6) of the type, for example,

Set(TupleType{ title:String, publisher:String}) - - creates a Set that can hold Tuple objects
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Infix operators

As you will have seen in the last few sections, the operations associated with
the OCL primitive types are of two forms. There is normal operation call syn-
tax, for example,

a.toUpper()

and then there are infix operators, where the operator is placed between its
operands, for example,

a<b

Infix operators are a syntactic convenience. Instead of writing a.lessThan(b) you
write a<b, which is a bit more readable, especially in complex expressions.

You can also use infix operators with the types from the associated
UML model, provided you give them operations with the right signature.
The class Money shown in Figure 25.6 defines some Boolean and arithmetic
infix operations.

Money

amount : Real
currency : String

Money( amount ; Real, currency : String )

getAmount() : Real
getCurrency() : String

=( amount : Money ) : Boolean
<>( amount : Money ) : Boolean
<( amount : Money ) : Boolean
OCL infix <=( amount : Money ) : Boolean
operators >(.amount : Money ) : Boolean
>=( amount : Money ) : Boolean
+( amount : Money ) : Money

- (amount : Money ) : Money

Figure 25.6

So if a and b are both type Money, you can use expressions such as
a<hb

However, please note that explicit operation calls such as a.<(b) are illegal,
according to the OCL specification, even though you might reasonably ex-
pect them to be allowed!

OCL collections

OCL provides a fairly comprehensive set of collection types. These can hold
other objects including other collections.
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OCL collections are immutable. This means collection operations don’t
change the state of the collection. For example, when you call an operation
to add or remove an item from a collection, that operation returns a new col-
lection, leaving the original collection unchanged.

We have already mentioned OCL collection types in Section 18.10—
their semantics are summarized in Table 25.8. Notice how each of the OCL
collection types corresponds to a pair of association end properties. The de-
fault association end properties are { unordered, unique }.

Table 25.8

n end properti

{ unordered, unique } — default

OrderedSet Yes Yes { ordered, unique }
Bag No No { unordered, nonunique }
Sequence Yes No { ordered, nonunique }

OCL collections are actually templates (see Section 17.7) that must be in-
stantiated on a type before they can be used. For example, the OCL expression

Set( Customer)

instantiates the Set template on the Customer type. This defines a Set that
holds objects of type Customer. You can instantiate OCL collections on any of
the available types.

You can specify collection constants by simply enumerating their
elements in braces:

OrderedSet{ '"Monday', 'Tuesday', 'Wednesday', 'Thursday’', 'Friday" }

This automatically instantiates the collection template on the type of the
elements.

Sequences of Integer literals have their own special syntax using an interval
specification:

<start> ... <end>

This means “all of the Integers between <start> and <end>" where <start> and
<end> are OCL expressions that evaluate to Integers. For example,

Sequence{1... 7} is equivalent to Sequence{1, 2,3, 4,5,6,7}
Sequence{2...(3+4) }is equivalent to Sequence{ 2,3, 4,5,6,7}
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Collections can contain other collections, for example,

OrderedSet{ OrderedSet{ 'Monday', 'Tuesday' }, OrderedSet{ ‘Wednesday',' Thursday",
'Friday' } }

Collection operations

Collections have an extensive set of operations. These must be invoked with
a special syntax that uses the arrow operator:

aCollection—>collectionOperation( parameters...)

This special syntax is necessary because OCL can treat any single object as a
Set containing only that object. Therefore, if the object has an operation
called, for example, count(), and Set also has an operation called count(), OCL
needs some way to distinguish between the two count() operations—the one
belonging to the object and the one belonging to the collection. It does this
by invoking object operations using the dot operator and invoking collec-
tion operations using the arrow operator.

In the next few sections we summarize the semantics of the collection
operations. For ease of reference we have organized them into the following
categories:

- @ conversion operations — convert one type of collection into another (see

Section 25.8.6.2);

comparison operations - compare collections (see Section 25.8.6.3);
query operations — get information about the collection (see Section 25.8.6.4);
access operations — access elements in the collection (see Section 25.8.6.5);

® ©® © ©

selection operations - return a new collection containing a subset or
superset of a collection (see Section 25.8.6.6).

- In addition, OCL collections have a complete set of iteration operations.

These are quite complex and have an unusual syntax, so we discuss them
separately in Section 25.8.7.

We have introduced a couple of conventions to make our discussion of
collections easier and more compact:

@ X(T) - a shortcut notation where X can be Set, OrderedSet, Bag, or Sequence;

© target collection - the object that the operation is called on.

When reading the following sections, remember that the collection types are
template types. This means that

Set(T) is a Set instantiated on typeT.
So X(T) represents a Set, OrderedSet, Bag, or Sequence instantiated on typeT.
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25.8.6.2

25.8.6.3

25.8.6.4

Conversion operations

The conversion operations (Table 25.9) convert a collection of one type into
another by returning a new collection of the required type. For example,

Bag{ 'Homer', 'Meg' }->asOrderedSet()

returns a new Set containing the Strings 'Homer' and 'Meg'.

The constraints of both the source collection and the result collection
are honored. In this case, the source collection is unordered, but the result
collection is ordered so that the operation establishes an arbitrary order for
the result collection.

Table 25 9

4~,Conversmn operatlons
ngollectlon operatlon

X(T)::asSet() : Set(T) Converts a collection from one type of collection

X(T)::asOrderedSet() : OrderedSet(T)  to another
X(T)::asBag() : Bag(T) When a collection is converted to a Set, duplicate

X(T)::asSequence() : Sequence(T) elements are discarded

When a collection is converted to an OrderedSet or a
Sequence, the original order (if any) is preserved,
else an arbitrary order is established

X(T)::flatten() : X(T2) Results in a new flattened collection instantiated
on T2

For example, if we have:
Set{ Sequence{ ‘A", 'B' }, Sequence{'C','D' }}

the Set is instantiated on a Sequence that is
instantiated on String - the result of flattening
the Set is therefore a Set of String

Comparison operations

The comparison operations (Table 25.10) compare the target collection with
a parameter collection of the same type and return a Boolean result. The
operations take into account the ordering constraints of the collections.

Query operations

The query operations (Table 25.11) allow you to obtain information about
the collection.
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X(Mu=(y: X(T)) : Boolean Set and Bag — returns true if y contains the same elements as the target
collection

OrderedSet and Sequence — returns true if y contains the same elements in the
same order as the target collection

X(M)::<>(y : X(T)) : Boolean Set and Bag - returns true if y does not contain the same elements as the target

collection

OrderedSet and Sequence — returns true if y does not contain the same elements
in the same order as the target collection

Table 25.11
Query operations
 Collection operation

;’ Semanﬁcs

X(T)::size() : Integer

Returns the number of elements in the target collection

X(Mesum() : T

Returns the sum of all of the elements in the target collection

Type T must support the + operator

X(T)::count( object : T) : Integer

Returns the number of occurrences of object in the target collection

X(T)::includes( object : T) : Boolean

Returns true if the target collection contains object

X(T)::excludes( object : T) : Boolean

Returns true if the target collection does not contain object

X(T)::includesAll( c : Collection(T) ) : Boolean

Returns true if the target collection contains everything in ¢

X(T)::excludesAll( ¢ : Collection(T) ) : Boolean

Returns true if the target collection does not contain all of the
elements in ¢

X(T)::isEmpty() : Boolean

Returns true if the target collection is empty, else returns false

X(T)::notEmpty() : Boolean

Returns true if the target collection is not empty else, returns false

25.8.6.5  Access operations

Only the ordered collections OrderedSet and Sequence allow you to access their
elements directly by position in the collection (Table 25.12). To access
elements of unordered collections, you have to iterate through the whole
collection from the beginning to the end.
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Table 25.12

OrderedSet(T)::first() : T Returns the first element of the collection
Sequence(T)::first() : T

OrderedSet(T)::last() : T Returns the last element of the collection
Sequence(T)x:last() : T

OrderedSet::at(i):T Returns the element at position i
Sequence::at(i): T

OrderedSet::indexOf(T) : Integer Returns the index of the parameter object in the
OrderedSet

25.8.6.6  Selection operations

The selection operations (Table 25.13) return new collections that are super-
sets or subsets of the target collection. We have used Venn diagrams to illustrate
the set theoretical operations union, intersection, symmetric difference, and
complement.

Table 25.13

X(T):z:union(y : X(T) ) : X(T) Returns a new collection that is the result
of appending y to the target collection —
the new collection is always of the same
type as the target collection

Duplicate elements are removed and an
order established as necessary

Set(T)::intersection(y : Set(T) ) : Set(T) Returns a new collection containing ele-
OrderedSet(T)::intersection(y : OrderedSet(T) ) : OrderedSet(T) ments common to y and the target collection

é
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",Selectnon operatlons - o
"*Collectlon operatlon :

 Semantics

Set(T)::symmetricDifference(y : Set(T)) Set(T)
OrderedSet(T)::symmetricDifference(y : OrderedSet(T) ) : OrderedSet(T)

Returns a new Set that contains elements
that exist in the target collection and y, but
not in both

Set(T)::-(y = Set(T) ) : Set(T)
OrderedSet(T)::-(y : OrderedSet(T) ) : OrderedSet(T)

Returns a new Set that contains all
elements of the target collection that are
not also iny

In set theory, the return set is the
complement of a with respect to b

4

X(T)::product(y : X(T2)) : Set(Tuple(first : T, second : T2))

Returns the Cartesian product of the
target collection and y - this is a Set of
Tuple{ first=a,second=b } objects where a is a
member of the target collection and b

is a member of y

e.g., Set{'a",' b' }->product(Set{ '1','2'})
returns

Set{ Tuple{ first="a', second="1'},
Tuple{ first="a‘,second='2"}, Tuple{ first="b",
second="1"}, Tuple{ first="b',second="2" } }

X(M::including( object : T) : X(T)

Returns a new collection containing
the contents of the target collection
plus object

If the collection is ordered, object is
appended

X(T)::excluding(object : T) : X(T)

Returns a new collection with all copies
of object removed

Continued on next page
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Table 25.13 Continued

;"Collectlon operation

; "Se ,antlcs

Sequence(T): subSequence(l Integer j : Integer) : Sequence(T) Returns a new Sequence that contains

elements from index i to index j of the
target collection

OrderedSet::subOrderedSet (i : Integer, j : Integer) : OrderedSet(T) Returns a new OrderedSet that contains the

elements from index i to index j of the tar-
get OrderedSet

OrderedSet(T)::append( object : T) : OrderedSet(T) Returns a new collection with object added
Sequence(T)::append( object : T) : Sequence(T) on to the end
OrderedSet(T)::prepend( object : T) : OrderedSet(T) Returns a new collection with object added
Sequence(T)::prepend(object : T) : Sequence(T) on to the beginning
OrderedSet(T)::insertAt(index : Integer, object : T) : OrderedSet(T) Returns a new collection with object inserted
Sequence(T)::insertAt(index : Integer, object : T) : Sequence(T) at the index position

25.8.7 lteration operations

The iteration operations allow you to loop over the elements in a collection.
They have the general form illustrated in Figure 25.7.

aCollection —>< iteratorOperation>( <iteratorVariable> :<Type> |
<iteratorExpression>
)

Figure 25.7

Words in angle brackets (<...>) represent placeholders that you must re-
place with the appropriate things. Words in gray indicate optional parts.

Iterator operations work as follows: The iteratorOperation visits each element
of aCollection in turn. The current element is represented by an iteratorVariable.
The iteratorExpression is applied to the iteratorVariable to produce a result. Fach
iteratorOperation handles the result in its own particular way.

The Type of the iteratorVariable is optional as it is always the same type as
the elements in aCollection. The iteratorVariable itself is also optional. When
each element of the collection is visited, all of its features are automatically
accessible to the iteratorExpression and can be accessed directly by name. For
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example, if the element is a BankAccount object with an attribute called balance,
the iteratorExpression can refer to balance directly.

However, omitting the iteratorVariable can be dangerous, and we think it is
bad style. This is because the iteratorExpression first searches its own namespace
for any variable it needs and, if it can’t find the variable, searches up through
enclosing namespaces. If you omit the iteratorVariable, there is a risk that the
iteratorExpression might find the wrong thing.

We have divided the iterator operations into Boolean operations (those
that return a Boolean value) and selection operations (those that return a
selection from the collection). The operations are summarized in Table 25.14.

Table 25.14

: Booleanitera_tbr,operatioh's“ i

: ‘p;Semanticsk i

X(T)::exists(i : TliteratorExpression ) : Boolean

Returns true if the iteratorExpression evaluates to true for at least
one value of i, else returns false

X(T)::forAll(i : Tl iteratorExpression ) : Boolean

Returns true if the jteratorExpression evaluates to true for all
values of i, else returns false

X(T)::forAll(i: T,j: T...,n: TliteratorExpression ) : Boolean

Returns true if the iteratorExpression evaluates to true for
every {i,j...n} Tuple, else returns false

The set of {i,j...n} pairs is the Cartesian product of the
target collection with itself

X(T)::isUnique(i : T iteratorExpression ) : Boolean

Returns true if the iteratorExpression has a unique value for
each value of i, else returns false

X(T)::one(i: TliteratorExpression) : Boolean

_ Selection iterator operations

Sqmantics :

Returns true if the iteratorExpression evaluates to true for
exactly one value of i, else returns false

X(T)::any(i : TliteratorExpression ) : T

Returns a random element of the target collection for which
iteratorExpression is true

X(T)::collect(i: T1iteratorExpression ) : Bag(T)

Returns a Bag containing the results of executing iterator-
Expression once for each element in the target collection

(See Section 25.9.2 for a shorthand notation for collect(...))

X(T)::collectNested(i : T | iteratorExpression ) : Bag(T)

Returns a Bag of collections containing the results of executing
iteratorExpression once for each element in the target collection

Maintains the nesting of the target collection in the result
collection

Continued on next page
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Table 25. 14 Continued

Selectlon lterator operatlons . 'Semantlcs o b .

X(T)::select(i: Tl iteratorExpression ) : X( ) Returns a collection contam1ng those elements of the
target collection for which the iteratorExpression evaluates
to true

X(T)::reject(i: Tl iteratorExpression ) : X(T) Returns a collection containing those elements of the
target collection for which the iteratorExpression evaluates
to false

X(T)::sortedBy(i : Tl iteratorExpression ) : X(T) Returns a collection containing the elements of the target

collection ordered according to the iteratorExpression

The iteratorVariable must be of a type that has the
< operator defined

It’s worth taking a closer look at forAll(...). This operation has two forms.
The first form has a single iteratorVariable, and the second has many. The sec-
ond form is shorthand for many nested forAll(...) operations.

For example, consider two nested forAll(...) operations as follows:

c—>forAll(i | c=>forAll( j | iteratorExpression ) )
You can write this as
c—>forAll(i, j | iteratorExpression )

The effect of both of these forms is to iterate over a set of {i,j} pairs that is
the Cartesian product of ¢ with itself. An example will clarify this. Suppose

c=Set{x,y,z}
The Cartesian product of ¢ with itself is the Set

{ &xx}, ) zh yxh vy (vzh {23, {zyh {22 }

Then c—>forAll(i, j | iteratorExpression ) iterates over each subset in this Set, and i
and j are each assigned one of the elements of the subset. You can then use i
and j in the iterator expression.

We think the multiple parameter form of forAll(..) is confusing, and you
should avoid it.

All of these iteration operations (apart from the multiple parameter
forAll(...)) are special cases of the more general iterate operation that we exam-
ine in the next section.
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The iterate operation

You can perform your own custom iterations by using the OCL iterate opera-
tion. This has the form shown in Figure 25.8.

aCollection —>iterate( <iteratorVariable > : <Type>
<resultVariable> : < ResultType > = <initializationExpressions |
<iteratorExpression>
)

Figure 25.8

You can see that as well as the iteratorVariable and its Type (which are
mandatory in this case), there is a resultVariable that can have a different type.
The resultVariable gets its initial value from the initializationExpression and its final
value from successive applications of the iteratorExpression.

The iterate operation works as follows. The resultVariable is initialized to
some value by the initializationExpression. The iterate operation then executes
the iteratorExpression for each member of aCollection in turn, using the iterator-
Variable and the current value of the resultVariable. The result of evaluating
iteratorExpression becomes the new value of resultVariable that will be used when
iteratorExpression executes on the next element of the collection. The value of
the iterate(...) operation is the final value of the resultVariable.

It’s easy to see from a simple example how the iterate operation works.

Bag{1, 2, 3, 4, 5 }->iterate( number : Integer;
sum: Integer = o/
sum + number

)

This expression evaluates to the sum of the numbers in the Bag. In this case,
it evaluates to 15. This is exactly equivalent to

Bag{1,2,3,4,5}>sum()

The iterate operation is the most general iterator, and it can be used to simu-
late all of the others. Here is an example that selects all of the positive
numbers from a Set.

Set{ -2, -3, 1, 2 }>iterate( number : Integer;

positiveNumbers : Set(Integer) = Set{} | —— initialize to the empty Set
if number >= o then ——skip negative numbers
positiveNumbers—>including( number) - —append number to the result Set
else
positiveNumbers ——just return the resultVariable itself
endif
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This is exactly equivalent to

Set{-2, -3, 1, 2 }->select( number : Integer | number >=0)

Navigation is the
ability to get from a
source object to one or
more target objects.

25.9.1

Navigation is the process whereby you follow links from a source object to
one or more target objects.

Navigation is possibly the most complex and difficult area of OCL. Yetin
order to write an OCL expression, you have to know how to navigate from
the expression context to other model elements that you need to refer to.
This means that you must use OCL as a navigation language.

OCL navigation expressions can refer to any of the following:

classifiers;

attributes;

@ @

association ends;

®

query operations (these are operations that have the property isQuery set
to true).

In the OCL specification [OCL1] these are called properties.

In the next section we look at simple navigation within the contextual
instance, and then in the following section at navigation across relationships
of multiplicity 1 and greater than 1.

Navigation within the contextual instance

Let’s look at a simple example of navigation to access features of the contex-
tual instance. Figure 25.9 shows a class A that has a single attribute, a1, and a
single operation, op1().

A

al:String

op1():String

Figure 25.9

Assuming class A is the expression context, you can write the OCL navi-
gation expressions listed in Table 25.15.
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Table 25.15

: ’Nawgatlon expressuon L Sémantics C
self The contextual instance — an instance of A
self.a1 The value of attribute a1 of the contextual instance
a1
self.op1() The result of op1() called on the contextual instance
op1() The operation op1() must be a query operation

There are several important points to note about this example:

You access the contextual instance by using the keyword self.

You access properties of the contextual instance directly or by using self
and the dot operator. As a matter of style, we prefer to be explicit and use
self and the dot operator.

® The only operations you can access are query operations.

Navigation across associations

Navigation gets a bit more complicated when you navigate across associa-
tions. Typically, you can navigate only across associations that are navigable,
and you can access only public class features. However, the OCL specification
allows an OCL evaluator optionally to have the ability to traverse non-navigable
associations and access private and protected features. If you are using an
OCL evaluator to evaluate OCL expressions, you should check its documen-
tation to see what is supported.

Figure 25.10 shows some navigation expressions across an association

‘between two classes A and B, where the multiplicity at end b is 1.

Navigation expressions (A is the expression context)

Example model

Expression Value
self The contextual instance — an instance of A
A b B self.b An object of type B
a1:String 1 | b1:String .
- self.b.b1 The value of attribute B::b1
context op1():String

self.b.op1() : The result of operation B::op1()

Figure 25.10
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Use the dot l N

operator to navigate
across associations.

Navigation I N

semantics depend on
the multiplicity on the
target end of the
association.

‘ By default, the dot l N\

operator returns a
Set when multiplicity
is>1.

You navigate across an association end by using the dot operator as if the
role name were an attribute of the context class. The navigation expression
can return the object (or objects) at the target end, the values of its attributes,
and the results of its operations.

Navigation gets more complicated when the multiplicity on the target
end of the association is greater than 1. This is because navigation semantics
depend on multiplicity.

Figure 25.11 shows some navigation expressions across an association
between two classes, C and D, where the multiplicity at end d is many.

Navigation expressions

Example model

Expression Value
self The contextual instance — an instance of C
c d D self.d A Set(D) of objects of type D

cl :String * | d1:String

- self.d.d1 A Bag(String) of the values of attribute D::d1
context op1():String Shorthand for self.d->collect{ d1 )

self.d.op1() || A Bag(String) of the results of operation D::op1()
Shorthand for self.d->collect( op1() )

Figure 25.11

The navigation expression
self.d

returns a Set(D) of d objects.

This means that the dot operator is overloaded. When the multiplicity
on the target end is 1 or 0.4, it returns an object of the same type as the target
class. When the multiplicity is greater than 1, it returns a Set instantiated on
the target class.

By default, the dot operator will return a Set of objects when multiplicity
is many. However, you can specify the type of collection it returns by using
the association end properties listed in Table 25.16.

Table 25.16

: OCL collection = Aéspci:lition end p,ryqpe‘rt’ies;
Set { unordered, unique } — default
OrderedSet { ordered, unique }
Bag { unordered, nonunique }

Sequence { ordered, nonunique }
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When you access a property of a collection, for example,

Accessing a
property of a collection
is a shorthand for
collect...).

self.d.d1

this is shorthand for

self.d—>collect(d1)

You may remember from Section 25.8.7 that collect( iteratorExpression ) returns
a Bag containing the results of executing the iteratorExpression for each element
in the collection. In this case, it returns the Bag of values of attribute d1 for
each D object in the Set(D) obtained by traversing self.d.

Similarly,

self.d.op1()
is shorthand for
self.d—>collect(d.op1()) '

The result of this expression is a Bag containing the return values of opera-
tion op1() applied to each D object in the Set(D) obtained by traversing self.d.

The collect() operation always returns a flattened collection. Should you
need to preserve the nesting of the target collection in the returned collec-
tion, you must use collectNested().

25.9.3 Navigation across multiple associations

In this section we look at navigation across two or more associations.

In principle, it's possible to navigate across any number of associations.
In practice, you minimize the amount of navigation and limit it to two asso-
ciations at most. This is because long navigation expressions are error-prone
and can be difficult to understand. They also make your OCL expressions
quite verbose.

Let’s look at a simple example of navigation across two associations (see
Figure 25.12).

You can see that navigation beyond the end of an association with mul-
tiplicity greater than 1 always results in a Bag. This is because it is equivalent
to applying collect(...). For example, the expression

Navigation beyond
a relationship end of
multiplicity > 1 returns
aBag.

self.k.l.l1

is equivalent to
self.lk—>collect(1)—>collect(l1)

In a similar way, you can extend navigation across more than two associa-
tions, but we don’t recommend this.
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Navigation expressions
Example model
Expression Value
self The contextual instance — an instance of A
A b B c (o} self.b An object of type B
at:String 1 | b1:String 1 | c1:String self.b.b1 | The value of attribute B::b1
- self.b.c An object of type C
contex self.n.c.c1i The value of attribute C::c1
self The contextual instance — an instance of D
D e E f F self.e An object of type E
di:String 1 | e1:String * | f1:String self.e.el | The value of attribute E::e1
contoxt self.e.f A Set(F) of objects of type F
self.ef.f1 i A Bag(String) of values of attribute F::f1
self The contextual instance — an instance of G
G h H i | self.h A Set(H) of objects of type H
g1:String * | hi:String 1 | it:string self.h.m A Bag(String) ‘of values of attribute H::h1
self.h.i A Bag(l) of objects of type |
context ' seif.h.iil | A Bag(String) of values of attribute I::i1
self The contextual instance — an instance of J
self.k A Set(K) of objects of type K
J k K | L
- - - — - - self.k.k1 i A Bag(String) of values of attribute K::k1
i1:8tring Ki:String 1:String selfkl | ABagiL) of objects of type L
context self.k.l.I1 i A Bag(String) of values of attribute L1
Figure 25.12

2510 Types of OCL expression in detail

We introduced the different types of OCL expressions in Section 25.7. Now
that we have covered OCL syntax, we can look at each of them in detail. We
use the simple model in Figure 25.13 as an example.

25.10.1 inv:
An invariant is something that must be true for all instances of its context
classifier.
Consider the simple bank account model in Figure 25.13. There are four
business rules about CheckingAccounts and DepositAccounts.

1. No account shall be overdrawn by more than $1000.

2. CheckingAccounts have an overdraft facility. The account shall not be over-
drawn to an amount greater than its overdraft limit.
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BankAccount ownedAccounts owner Person
* 1 -
balance : Real name : String
id : String

accountNumber : String address : String

deposit( amount : Real ) : Real
withdraw( amount : Real )
getBalance() : Real
getOwner() : Person
getOperators() : Person(]

T

getName() : String

operatedAccounts  operators | getld() : String
* T getAddress () : String

|

CheckingAccount DepositAccount

overdraftLimit : Real

withdraw( amount : Real )

withdraw( amount : Real )
getAvailableBalance() : Real
getAvailableOverdraft() : Real

Figure 25.13

A subclass can
strengthen a

superclass invariant
but can’t weaken it.

3. DepositAccounts shall never be overdrawn.
4. Each accountNumber shall be unique.

We can express the first rule, no account can be overdrawn by more than
$1000, as an invariant on the BankAccount class because it must be true for all
instances of BankAccount (i.e., all instances of its subclasses).

context BankAccount
inv balanceValue:

——a BankAccount shall have a balance > -1000.0

self.balance >= (-1000.0)
This invariant is inherited by the two subclasses, CheckingAccount and Deposit-
Account. These subclasses can strengthen this invariant but can never weaken it.
This is to preserve the substitutability principle (see Section 10.2).

Rules 1 and 2 may be expressed as invariants on the CheckingAccount class:

context CheckingAccount
inv balanceValue:
—~ a CheckingAccount shall not be overdrawn by more than its overdraft limit
self.balance >= (~overdraftLimit)
inv maximumOverdraftLimit:
~~ a CheckingAccount shall not be overdrawn by more than 1000.0
self.overdraftLimit <= 1000.0
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Rule 3 may be expressed as an invariant on the DepositAccount class:

context DepositAccount
inv balanceValue:
—— DepositAccounts shall have a balance of zero or more
self.balance >= 0.0

Notice how both of these subclasses have strengthened the BankAccount::balance
class invariant by overriding it.

You can express the constraint that each account must have a unique
accountNumber as an invariant on the BankAccount class:

context BankAccount
inv uniqueAccountNumber:
— — each BankAccount shall have a unique accountNumber
BankAccount::allinstances()—>isUnique( account | account.accountNumber )

In Figure 25.13, you can see that each BankAccount has exactly one owner and
one or more operators. The owner is the Person who owns the account, and the
operators are other People who have the right to withdraw money and access
the account details. There is a business constraint that the owner must also be
an operator. You can capture this constraint as follows:

context BankAccount
inv ownerlsOperator:
— —the owner of the BankAccount shall be one of its operators
self.operators—>includes( self.owner)

We can write the following constraint on Person:

context Person
inv ownedAccountsSubsetOfOperatedAccounts:
— —aPerson’s ownedAccounts shall be a subset of a Person’s operatedAccounts
self.operatedAccounts—>includesAll( self.ownedAccounts)

When comparing objects of the same type in OCL expressions, you need to
be aware that they may be

e identical — each object refers to the same region of memory (they have
identical object references);

@ equivalent — each object has the same set of attribute values but different
object references.

In the OCL expressions above, we are always careful to compare objects on
the basis of object identity or equivalence as appropriate. You need to be
careful about this. For example, comparing BankAccount objects (comparison
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pre: and post:
apply to operations.

attributeName@pre
refers to its value
before the operation
executes.
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based on identity) is not the same as comparing the accountNumbers of those
objects (comparison based on equivalence).

pre:, post:, and @pre
Preconditions and postconditions apply to operations. Their contextual
instance is an instance of the classifier to which the operations belong.

@ Preconditions state things that must be true before an operation executes.
® Postconditions state things that must be true after an operation executes.

Refer to our simple BankAccount example in Figure 25.13 and consider the
deposit(...) operation that both CheckingAccount and DepositAccount inherit from
BankAccount. There are two business rules.

1. The amount to be deposited shall be greater than zero.

2. After the operation executes, the amount shall have been added to the
balance.

You can express these rules concisely and accurately in preconditions and
postconditions on the BankAccount::deposit(...) operation as follows:

context BankAccount::deposit(amount : Real ) : Real
pre amountToDepositGreaterThanZero:
——the amount to be deposited shall be greater than zero
amount >0

post depositSucceeded:
——the final balance shall be the original balance plus the amount
self.balance = self.balance@pre + amount

The precondition amountToDepositGreaterThanZero must be true before the opera-
tion can execute. It ensures that

® deposits of zero amount can’t be made;
@ deposits of negative amounts can’t be made.

The postcondition depositSucceeded must be true after the operation has exe-
cuted. It states that the original balance (balance@pre) is incremented by amount
to give the final balance.

Notice the use of the @pre keyword. This keyword can be used only
within postconditions. The balance attribute has one value before the opera-
tion executes and another value after the operation executes. The expression
balance@pre refers to the value of balance before the operation executes. You
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25.10.3

often find that you need to refer to the original value of something in a
postcondition. 4

For completeness, here are the constraints on the BankAccount::withdraw(...)
operation.

context BankAccount::withdraw(amount : Real )
pre amountToWithdrawGreaterThanZero:
— —the amount to withdraw shall be greater than zero
amount>o

post withdrawalSucceeded:
— —the final balance is the original balance minus the amount
self.balance = self.balance@pre — amount

Before leaving preconditions and postconditions, we have to consider inherit-
ance. When an operation is redefined by a subclass, it gets the preconditions
and postconditions of the operation it redefines. It can only change these con-
ditions as follows.

@ The redefined operation may only weaken the precondition.
® The redefined operation may only strengthen the postcondition.

These constraints ensure that the substitutability principle (Section 10.2) is
preserved.

body:
You can use OCL to specify the result of a query operation. All of the getXXX()
operations in our simple BankAccount model (Figure 25.13) are query operations:

BankAccount::getBalance() : Real
BankAccount::getOwner() : Person
BankAccount::getOperators() : Set( Person)
CheckingAccount::getAvailableBalance() : Real
CheckingAccount::getAvailableOverdraft() : Real

The OCL expressions for the BankAccount query operations are trivial, and in
fact you usually wouldn’t bother writing them. They are shown below by
way of example: '

context BankAccount::getBalance() : Real
body:
self.balance
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context BankAccount::getOwner() : Person
body:
self.owner

context BankAccount::getOperators() : Set(Person)
body:
self.operators

The CheckingAccount query operations are more interesting:

context CheckingAccount::getAvailableBalance() : Real
body:
——you can withdraw an amount up to your overdraft limit
self.balance + self.overdraftLimit

context CheckingAccount::getAvailableOverdraft() : Real
body:

if self.balance >= o then
——the full overdraft facility is available
self.overdraftLimit

else
——you have used up part of the overdraft facility
self.balance + self.overdraftLimit

endif

You can see that in these two query operations, OCL specifies how to calcu-
late the result of the operation. The return value of the operation is the result
of evaluating the OCL expression.

25.10.4 init:
You can use OCL to set the initial value of attributes. For example:

context BankAccount::balance
init:
0
You typically only use this feature of OCL when initialization is complex.

Simple initializations (like the one above) are best placed directly in the
attribute compartment of the class.

25.10.5 def:

OCL lets you add attributes and operations to a classifier with the stereotype
«OclHelper». They can only be used in OCL expressions. The added attributes
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def: lets you define
variables and helper
operationson a
classifier for use in
other OCL expressions.

are known in OCL as variables, and they are used much like variables in
other programming languages. The added operations are called helper oper-
ations because they are used to “help out” in OCL expressions.

Use variables and helper operations to simplify OCL expressions.

Let’s look at an example. Consider these constraints that we defined
earlier:

context CheckingAccount::getAvailableBalance() : Real
body:
——you can withdraw an amount to take your account down to your overdraft limit
balance + overdraftLimit

context CheckingAccount::getAvailableOverdraft() : Real
body:

if balance >= o then
- —the full overdraft facility is available
overdraftLimit

else
~—you have used up part of the overdraft facility
balance + overdraftLimit

endif

You can see that balance + overdraftLimit occurs in two expressions. It therefore
makes sense to define this once as a variable, availableOverdraft, that can be
reused by both expressions. You use the def: statement to do this.

context CheckingAccount
def:
availableBalance = balance + overdraftLimit

You can then rewrite the two constraints using this variable:

context CheckingAccount::getAvailableBalance() : Real
body:
——you can withdraw an amount to take your account down to your overdraft limit
availableBalance

context CheckingAccount::getAvailableOverdraft() : Real
body:

if balance >= o then
——the full overdraft facility is available
overdraftLimit

else
——you have used up part of the overdraft facility
availableBalance

endif
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Specify values
for derived attributes
by using derive.
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You can also define helper operations. For example, a useful helper operation
for use in OCL expressions might be one that checks if a withdrawal is possi-
ble. You could define this as follows:

context CheckingAccount
def:
canWithdraw( amount : Real) : Boolean = ( (availableBalance — amount) >=0)

let expressions

Whereas def: lets you define variables for use in the scope of the expression
context, let allows you to define a variable that is limited to the scope of a
particular OCL expression. These variables are like local variables in conven-
tional programming languages, and you use them in pretty much the same
way—to capture a calculated value that you need to use more than once in
the expression.

The let expression has two parts, let and in.

let <variableName>:<variableType> = <letExpression> in
<usingExpression>

The first part assigns the value of <letExpression> to <variableName>. The second
part defines <usingExpression>. This is the OCL expression in which the vari-
able is in scope and can be used.

In our simple bank account example, there isn’t really anywhere that we
need to use a let expression. However, for illustration, consider this example
in which we have defined a variable called originalBalance, local to the con-
straint withdrawalSucceeded.

context BankAccount::withdraw(amount : Real )
post withdrawalSucceeded:
let originalBalance : Real = self.balance@pre in
-~ the final balance is the original balance minus the amount
self.balance = originalBalance — amount

derive:

You can use OCL to specify values for derived attributes.

For example, we can refactor our simple bank account example so that
the available balance and the available overdraft are expressed as derived
attributes, as shown in Figure 25.14.
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ownedAccounts owner
BankAccount Person

* 1

name : String
id : String
address : String

balance : Real
accountNumber : String

deposit( amount : Real ) : Real getName() : String
withdraw( amount : Real ) operatedAccounts  operator | getld() : String
getBalance() : Real - —1 getAddress() : String
getOwner() : Person 1.
getOperators() : Person]]

T

CheckingAccount DepositAccount
overdraftLimit : Real ) withdraw( amount : Real )
/availableBalance : Real derived
/availableOverdraft : Real attributes

withdraw( amount : Real )
getAvailableBalance() : Real
getAvailableOverdraft() : Real

Figure 25.14

The derivation rules for these derived attributes can be expressed as
follows:

context CheckingAccount::availableBalance : Real
derive:
——you can withdraw an amount up to your overdraft limit
balance + overDraftLimit

context CheckingAccount::availableOverdraft : Real
derive:
if balance >= o then
~ —the full overdraft facility is available
overdraftLimit
else
——you have used part of the overdraft facility
overdraftLimit + balance
endif

This simplifies the definitions of the CheckingAccount::getAvailableBalance() and
CheckingAccount::getAvailableOverdraft() operations as follows:

context CheckingAccount::getAvailableBalance() : Real
body:
availableBalance

context CheckingAccount::getAvailableOverdraft() : Real
body:
availableOverdraft
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1 OCLin other types of diagrams

Up to now, we have just considered use of OCL in class diagrams. However,
you can also apply OCL to other types of diagrams such as the following:

@ interaction diagrams (see Chapter 12);
@ activity diagrams (see Chapters 14 and 15);
® state machines (see Chapters 21 and 22).

We look at how OCL is used in these types of diagrams over the next few
sections.

OCL in interaction diagrams

You use OCL in interaction diagrams to express constraints. It’s worth bear-
ing in mind that you can’t express behavior with OCL, as the language has
no side effects. '

You can use OCL in an interaction diagram anywhere you need to do the
following:

® specify a guard condition;
@ specify a selector for a lifeline (see Section 12.6);

© specify message parameters.

Let’s look at an example of using OCL in sequence diagrams. Figure 25.15
shows the class diagram for a simple e-mail system.

The EmailAddress class represents an e-mail address. For example, the e-mail
address jim@umlandtheunifiedprocess.com would be represented as an
object of the EmailAddress class as shown in Figure 25.16. In this case, the
operation EmailAddress:getName() returns "Jim", EmailAddress::getDomain() returns
“umlandtheunifiedprocess.com”, and EmailAddress::getAddress() returns "jim@umland-
theunifiedprocess.com”. EmailAddress objects are equivalent if their address attributes
have the same value.

This system has a white list/black list policy for dealing with unsolicited
mail.

All mail whose fromAddress is in the blackList is deleted.

@ All mail whose fromAddress is in the whiteList is filed in the inBox.

@ All other mail is filed in the reviewBox.

@ The state of the Message changes according to whether it is spam (it is
deleted), Legitimate, or Unclassified.

Figure 25.17 shows a sequence diagram for the MailSystem::classifyMessage(m :
Message) operation. We present the activity diagram for this operation in the
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MailSystem

1 |classifyiMessage(m : Message )

1 1
reviewBox} 0.* 0.* | inBox
Message )
<<gnumeration>>
subject: String messageTyPe | yossageType
content : String
1 1 {Legitimate

setType( type : MessageType ) Unclassified

1 1 1 1 1

replyTo | 0.1 cc | 0.* bec | 0.* fromAddress | 1 1.* | toAddresses

whiteList EmailAddress

address : String
0.*

getName() : String
blackList |getDomain(): String
getAddress() : String

0.
Figure 25.15
jimsAddress: EmailAddress
address = "jim @umlandtheunifiedprocess.com"
Figure 25.16

sd ClassifyMessage J
‘ :MailSystem |m:Message| | :inBox | | :reviewBoxI

classifyM je(m : Message ) L
" setType( Unclassified ) |
Unclassified
alt

[ blackList->exists( a | a.getAddress() = m.fromAddress getAddress() ) |

«delete» i :

[ whitelist ~>exists( a | a.getAddress() = m.fromAddress.getAddress() ) |

setType( Legitimate ) |

add(m) | Legitimate R
[else]
add(m)

v

Figure 25.17
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next section in Figure 25.18, and you should be able to see how the two dia-
grams fit together. The sequence diagram specifies what classes and operations
realize the behavior described by the activity diagram.

MailSystem is the expression context, and we have used OCL to specify the
conditions in the alt combined fragment.

We have also used OCL to specify object state on the diagram (although
this is a trivial use of OCL as the OCL and UML syntax for states is the same).

OCL in activity diagrams
You can add activity diagrams to any UML modeling element to specify its
behavior. Use OCL in activity diagrams to specify the following:

@ call action nodes;

¢ guard conditions on transitions;
@ object nodes;
®

object state.

For example, Figure 25.18 shows a very simple activity diagram for the
ClassifyMailMessage behavior of the e-mail system that we described in the pre-
vious section.

You can see that we have used OCL to specify objects, object state, and
conditions.

OCL is about precise modeling, and activity diagrams are, by their very
nature, sometimes imprecise. Also, activity diagrams are often shown to non-
technical stakeholders. It's therefore questionable how useful OCL is with this
type of diagram. For example, the constraints in Figure 25.18 could have been
expressed just as clearly in plain English. When you consider using OCL in
activity diagrams, always think about the purpose of the diagram and its
audience.

OCL in state machines
OCL is used in state machines to specify the following:

@ guard conditions;

@ conditions on states;
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ClassifyMailMessage

GetMailMessage

message
[Unclassified]
[ blackList—exists( a | a.getAddress() = m.fromAddress.getAddress() )] _[
2 DeleteMessage
else
whitelist—>exists( a | a.getAddress () = m.fromAddress.getAddress
/[ (alag 0 g 0)1 >{ClassifyMessageAsLegitimate]
else
message message
[Unclassified] [Legitimate]
. o] (@< [
FileMessageForReview FileM jelninBox
[ Feessag J @) ;

Figure 25.18

® the targets of actions;
@ operations;

® parameter values.

The contextual instance is an instance of the classifier that owns the state
machine. As an example, consider the CheckingAccountActive state machine for
the CheckingAccount class in Figure 25.19.

You can see from the figure that we have used OCL syntax on the dia-
gram in the guard conditions. To make the state machine work, we also need
the following constraints, which we have recorded separately to keep the
diagram free of clutter.

context CheckingAccount::balance
int:
0

context CheckingAccount
inv:
oclinState( InCredit ) implies ( balance >=0)
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CheckingAccountActive )

Active

( AcceptingWithdrawal }

[enoughMoney]
withdraw( amount )

/ Operating \
0 InCredit
closed

~, open close
( ) [notinCredit] [inCredit] —>®
=)

[not enoughMoney]
withdraw( amount )

deposit( amount )

[ RejectingWithdrawal J

Figure 25.19

~inv:
oclinState(Overdrawn ) implies (balance <o)

def:
availableBalance = (balance + overdraftLimit )

def:
enoughMoney = (  availableBalance - amount ) >=0)

def:
inCredit = (balance >=0)
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Notice how we refer to the InCredit state, using oclinState( InCredit ). Alterna-
tively, you could attach the invariant (balance >=0) directly to the InCredit state
as a note.

Advanced topics

In this section we look at some aspects of OCL that you won't often use:

navigation to and from association classes;
navigation through qualified associations;
inherited associations;

OCLMessage.

® ® © ©

25.12.1  Navigation to and from association classes
We discuss association classes in Section 9.4.5. You can navigate to an asso-
ciation class by using the association class name. For example, consider
Figure 25.20.

You can express the query operation getjobs() as follows:

Use the
association class name
to navigate to an
association class.

context Person::getjobs() : Set(job)
body:
self.job

name : String
dateOfBirth : Date

1.* 0.*
Company - Person
employer employee

getAge() : Integer
getJobs()
getTotalSalary() : Real

Job

name : String
description : String
salary: Real

getEmployee() : Person
getEmployer() : Company

Figure 25.20

The expression self Job returns the Set of all Job objects associated with a given
Person object. You can use this Set in OCL expressions. Suppose a business rule
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states that a Person can’t have two Jobs with the same name. You can express
this in OCL as follows:

context Person
inv:
——a person can’t have the same Job more than once
self.Job—>isUnique( j: Job| j.name)

Suppose the Company operates a wind-down-to-retirement scheme and there
is a business rule that a Person over 60 can’t have more than one Job. You can
express this in OCL as follows:

context Person
inv:
—— people over 60 can only have one Job
(self.getAge() > 60) implies (self.Job—>count() = 1)

To get the total salary of a Person, you need to add up the salary for each job:

context Person::getTotalSalary() : Real
body:
-~ return the total salary for all jobs
self.Job.salary—>sum()

You can easily navigate from an association class by using the rolenames on
the relationship as usual. For example, here is the OCL for the getEmployee()
and getEmployer() operations of Job.

context job::getEmployee() : Person
body:
self.employee

context Job::getEmployer() : Company
body:
self.employer

Navigation through qualified associations

We discuss qualified associations in Section 9.4.6. To navigate across a quali-
fied association, simply place the qualifier (or a comma-delimited list of
qualifiers) in square brackets after the rolename.

Figure 25.21 shows a simple model of a club in which membership can
be at a particular level. Suppose there is a business rule that the member ID
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Club

clubName : String
clubAddress : String

lmemberld : String I

1 9 club

1 members

Member

id : String

name : String
address : String
level : String

Figure 25.21

of 00001 is always reserved for the club chairman. This can be expressed in
OCL as follows:

context Club
inv:
— - the Chairman always has member id cooo1
self.members['0o0001'].level = 'Chairman’

You can see how we have used the qualified association with a specific value
for the qualifier to select a single object from the self.members Set.

25.12.3 Inherited associations

Consider the model in Figure 25.22. This is adapted from [Arlow 1] and
shows a model for units of measurement and systems of units.

system unit
SystemOfUnits 1y 1I*S Unit
lmperialSysteml l MetricSysteml | MetricUnit I ImperialUnit
l Meter J I Centimeter l l Foot | | Inch l
Figure 25.22

There are two different types of Unit, MetricUnits and ImperialUnits. Metric-
Units belong to the MetricSystem and ImperialUnits belong to the ImperialSystem.
However, the UML model as it stands doesn’t say this—in fact, it says that
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any Unit can belong to any SystemOfUnits. You can make the model more pre-
cise by subclassing the relationship between SystemOfUnits and Unit as shown
in Figure 25.23.

s of system units U
stemOfUnits nit
Y 1 AN

L o

" MetricUnit

5

Meter Centimeter

MetricSystem 7 .

ImperialSystem ImperialUnit

5

Foot Inch

1 1.

Figure 25.23

This solves the problem but makes the diagram look a bit untidy, and
things get rapidly out of hand as the number of Unit and SystemOfUnits sub-
classes increases.

A neater way to solve the problem is to define OCL constraints as follows:

context MetricUnit
inv:
— - belongs to the Metric system
self.system.ocllsTypeOf( MetricSystem )

context ImperialUnit
inv:
—— belongs to the Imperial system
self.system.ocllsTypeOf( ImperialSystem )

context MetricSystem
inv:
—— all units must be of kind MetricUnit or one of its subclasses
self.units—>forAll( unit | unit.oclisKindOf( MetricUnit) )

context ImperialSystem
inv:
——all units must be of kind ImperialUnit or one of its subclasses
self.units—>forAll( unit | unit.oclisKindOf( imperialUnit) )
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Notice how we have used the OCL expressions oclisKindOf(...) and ocllsTypeOf{(...).
® oclisKindOf(...) returns true if the type of the object is the same as the type
specified by the parameter or one of its subclasses.

@ ocllsTypeOf(...) returns true if the type of the object is exactly the same as the
type specified by the parameter.

25.12.4 OclMessage

OCL message expressions can only be used within postconditions. They al-
low you to do the following:

OCL message
expressions can only
be used within
postconditions.

ensure that a message has been sent;

ensure that a message has returned;

e ® ©

get the return value of a message;

@

return a collection of messages sent to an object.

In OCL every operation call or signal send is an instance of OclMessage. This
has the set of operations listed in Table 25.17.

There are also two operators that apply to messages. These are explained
in Table 25.18.

Table 25.17

'OclMessage operatlon - o fSemantlcs : G e f -
aMessage.lSOperatlonCall() Boolean Returns true 1f the message represents the calhng of an operation
aMessage.isSignalSent() : Boolean Returns true if the message represents the sending of a signal
aMessage.hasReturned() : Boolean Returns true if the message was an operation call that returned a value
aMessage.result(): T Returns the result of the called operation

T represents the return type of the operation call

Table 25.18

. Message operator ~ Name . :Semantlcs o ; L
anObject*aMessage() has sent | Returns true if aMessage() was sent to anObject

Can only be used in postconditions

anObject”*aMessage() get messages Returns the Sequence of aMessage() messages sent to anObject

If the message has parameters, you can use a special syntax with the has
sent and get messages operators. This allows you to specify actual parameters
or just the types of parameters. The syntax is summarized in Table 25.19.
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Semantics

anObject*aMessage(1, 2)

Returns true if aMessage(...) was sent to anObject with parameter values
1and 2

anObject*aMessage( ?:Integer, ?:Integer)

get mességes with parameters -

Returns true if aMessage(...) was sent to anObject with parameters of
type Integer

. Semantics

anObject" "aMessage(1, 2)

Returns the Sequence of all messages sent to anObject with parameter
values 1 and 2

anObject” *aMessage( ?:Integer, ?:Integer)

Returns the Sequence of all messages sent to anObject with parameters
of type Integer

To investigate messages in OCL, we use the Observer pattern that is fully
described in [Gamma 1]. A simple instantiation of this pattern is shown in
Figure 25.24. The semantics of the Observer pattern are straightforward—
Subject has a set of zero or more Observers. When the Subject changes, its notify()
operation is called, and this in turn calls the update() operation of each Observer
attached to it. A typical use of this pattern might be to update a screen when
an underlying business object changes.

Subject Observer
+attach( o : Observer ) | 0. 0.* l+attach( s : Subject )
+detach( o : Observer )| subjects observers |+detach(s : Subject )

+notify()

Figure 25.24

+update( s : Subject )

The semantics of the Subject operations are summarized in Table 25.20.

Table 25.20

Subject operation

Semantics

attach( o : Observer)

Attaches an Observer object

detach( o : Observer)

Detaches an Observer object

notify()

Calls the update() operation on each Observer — this is called
when the Subject changes and wishes to notify the Observers of
that change
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Let’s look at possible postconditions on Subject operations that might
involve messages.

According to Table 25.20, a postcondition on Subject:notify() is that the
Observer::update() has been called for each of the attached Observers. You can
express this in OCL as follows:

context Subject::notify()
post:
—— each observer shall have been notified by calling update()
self.observers.forAll( observer | observerupdate() )

In this postcondition we iterate over the Set of observers and check that each
one received an update() message. The # operator is the “has sent” operator. It
returns true if the specified message was sent by the operation. It can only be
used in postconditions.

When the message is synchronous (you know it will return), you can
check the message return value:

context Subject::notify()
post:
— —the return value of update() shall be true for each observer
self.observers.forAll( observer |
observer*update().hasReturned() implies
observer*update().result()

)

What we have learned

In this introduction to OCL, you have learned the following:

@ OCL is a standard extension to UML. It can:
— specify queries; '
— specify constraints;
— specify the body of query operations;
— specify business rules at modeling time.
@ OCL is not an action language for UML. It can't:
— change the value of a model element;
— specify the body of an operation (other than query operations);
— execute operations (other than query operations);
— specify business rules dynamically.
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® OCL expressions.

Consist of:

- a package context (optional) - defines the namespace for the OCL
expression;

— an expression context (mandatory) — defines the contextual instance
for the expression;

— Oone or more expressions.

You can define the expression context explicitly or by putting the OCL

expression in a note and attaching it to a model element.

@& Contextual instance — an exemplar instance of the expression context:

write OCL expressions in terms of the contextual instance.

® Types of OCL expression.

inv: — invariant:

- applies to classifiers;

— contextual instance — an instance of the classifier;

- the invariant must be true for all instances of the classifier.

pre: — operation precondition:

- applies to operations;

- contextual instance - an instance of the classifier that owns the
operation;

- the precondition must be true before the operation executes.

post: — operation postcondition:

- applies to operations;

- contextual instance — an instance of the classifier that owns the
operation;

- the postcondition must be true after the operation executes;

the keyword result refers to the result of the operation;

feature@pre returns the value of feature before the operation executed:

~ can only use @pre in postconditions;

-OclMessage can only be used in postconditions.

body: — define a query operation body:

— applies to query operations;

- contextual instance — an instance of the classifier that owns the
operation.

init: — set an initial value:

- applies to attributes or association ends;

- contextual instance - the attribute or association end.

def: — add attributes and operations to a classifier with the stereotype

«OclHelper»:

- applies to a classifier;
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- contextual instance — an instance of the classifier;
- adds attributes and operations to a classifier with the stereotype
«OclHelper»: ‘
- can only use these in OCL expressions.
— let - define a local variable:
- applies to an OCL expression;
- the contextual instance of the OCL expression.
— derive: — define a derived value:
~ applies to attributes or association ends;
- contextual instance - an instance of the classifier that owns the
operation.

® Comments:
— /* multiple line */
— - -single line

@ Precedence:

—  @pre
- =
— not- A AN
- x/
- 4
— if then else endif
— ><<=>=
- =<
— and or xor
— implies
© The OCL type system.
— OclAny:
~ the supertype of all OCL types and types from the UML model.
— OclType:
— 0OclAny subclass;
- an enumeration of all types in the associated UML model.
— OclState:
- OclAny subclass;
- an enumeration of all the states in the associated UML model.
— OclVoid:
- the “null” type in OCL - it has a single instance called OclUndefined.
— OclMessage — use to:
- ensure that a message has been sent;
- ensure that a message has returned;
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— get the return value of a message;
- — return a collection of messages sent to an object.
— OCL primitive types:
— Boolean;
— Integer;
— Real;
— String.
— Tuples — a structured type:
- Tuple { partName1:partType1 = values, partName2:partType2 = value2, ... }

© Infix operators — to add these to UML types, simply define an operation
with the appropriate signature, e.g., =(parameter) : Boolean.

® Collections:
— Set — { unordered, unique } (the default)
— OrderedSet — { ordered, unique }
— Bag - { unordered, nonunique }
— Sequence - { ordered, nonunique }

© Collection operations must be invoked with —>,

@ lteration operations:
— aCollection—><iteratorOperation>(<iteratorVariable>:<Type> | <iteratorExpression>);
— <iteratorVariable> and <Type> are optional.

© Navigation within the contextual instance:
— self-accesses the contextual instance;
— dot operator — accesses features of the contextual instance.

© Navigation across associations:
— self—accesses the contextual instance;
— role name - refers to an object or set of objects at the end of the
association;
— dot operator - is overloaded:
—self.roleName:
~ multiplicity 1 - accesses the object at the end of the association;
- multiplicity > 1 — accesses the collection at the end of the association;
- self.roleName.feature:
- multiplicity 1 - returns the value of the feature;
- multiplicity > 1 - returns the Bag of values of the feature for all
participating objects (shorthand for self.roleName->collect(feature) ).

® Navigation across multiple associations, where any multiplicity > 1:
— self.roleNamez1.roleName2.feature — returns the Bag of all values of the fea-
ture for participating objects.
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@ OCL in interaction diagrams — use to specify:
— a guard condition;
— a selector for a lifeline;
— message parameters.

@ OCL in activity diagrams — use to specify:
— call action nodes;
— guard conditions on transitions;
— object nodes;
— operations;
— obiject state.
@ OCL in state machines — use to specify:
— guard conditions;
— conditions on states;
— the targets of actions;
— operations;
— parameter values.
@ Navigation to and from association classes:
— to - use association class name;
— from - use role names.

@ Navigation through qualified associations:
— place comma-delimited list of qualifiers in square brackets after the role
name.

@ Inherited associations:
— use OCL expressions to constrain the types of participants in inherited
associations.
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Example use case model

Introduction
Our experience is that UML models are antagonistic to paper. If you've ever
printed out a large UML model, including specifications, you’ll know pre-
cisely what we mean! UML models are best viewed in a flexible, hypertext
medium. At this time, this means either a modeling tool or a website.
Including a complete UML worked example in this book would have made
it considerably thicker and more expensive. We would also have been respon-
sible for a lot more dead trees. We have therefore decided to provide the UML
worked example for this book on our website (www.umlandtheunifiedprocess
.com). We think you will find it much easier to navigate online than on paper.
In the example we walk through the OO analysis and design activities
required to create a small web-based e-commerce application. We present a
few simplified highlights of the use case model in this appendix to give you
a taste of what is available on the site!

Use case model

The use case model is for a simple e-commerce system that sells books and
CDs. The system is called the ECP (E-Commerce Platform). Figure A1.1 shows
the final result of use case modeling.

The use case model will give you a fair idea of what this system does, but
please refer to the website for more details and background.

551
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ECP

LogOnUser

CloseOrder
R pr— ” CardProcessingCompany

Dispatcher vy
\i inventorySystem

User

)
<<include>> |

exiension point:
{manageBasket

/4
Cuslem&

ViewProducts

CreateNewCustomer
DisplayOpenGrders

LogOnCustomer

UpdateCustomer
S————

Shopkeeper AddProductToCatalog
% DeleteProductFromCatalog
SystemAdministrator \

DeleteUser

Figure A1.1
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3 Example use cases

We look at a subset of the use case model—see Figure A1.2. This subset shows
normal use cases, an extending use case, and «include» and «extend» relationships.

The use cases in Figure A1.2 are detailed in Figures A1.3 to A1.6.

In the use case specifications we have included all of the important use
case detail but have omitted general document information (such as com-
pany branding, author information, version information, and other attributes).
These things tend to be company specific, and many companies have stan-
dard headers that are applied to all documents.

Although the use case specification may be stored directly in a UML
modeling tool, support for it is often quite weak, being limited to plain text.
For this reason, many modelers save the use case specification in a richer
document format, such as Word or XML, and link to these external docu-
ments from the use case model in the modeling tool. See Appendix 2 for
some ideas about using XML to record use case specifications.

o~

User

CardProcessingCompany

AcceptPaymentByCard

Dispatcher x
|

<<include>>!

H

H

InventorySystem

DisplayBasket

extension points
manageBasket
<<exend>>, __ | extension point:
H manageBasket
:
'

ManageBasket

Figure A1.2
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Use case: Checkout

ID: 6

Brief description:
The Customer checks out. The system creates an order based on the contents of
the shopping basket, and the Customer pays the order.

Primary actors:
Customer

Secondary actors:
InventorySystem

Preconditions:
1. The Customer is logged on to the system.

Main flow:

1. The use case begins when the Customer selects "checkout".

2. The system asks the Inventory actor to provisionally reserve the items in the

shopping basket.

3. For each item that is out of stock

3.1 The system informs the Customer that the item is currently unavailable
and it is removed from the order.

4. The system presents the final order to the Customer. The order includes an
order line for each product that shows the product identifier, the product
name, the quantity, the unit price, the total price for that quantity. The order
also includes the shipping address and credit card details of the Customer
and the total cost of the order including tax and postage and packing.

. The system asks the Customer to accept or decline the order.

. The Customer accepts the order.

. include( AcceptPaymentByCard )

~No o

Postconditions:
1. The Customer has accepted the order.
2. The ordered items have been reserved by the Inventory actor.

Alternative flows:
None.

Figure A1.3
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Use case: AcceptPaymentByCard

ID: 1

Brief description:
The Customer makes payment for an order by credit card.

Primary actors:
Customer

Secondary actors:
CardProcessingCompany
InventorySystem
Dispatcher -

Preconditions:
1. The Customer is logged on to the system.
2. Some inventory items have been provisionally reserved for the Customer.

Main flow:

1. The use case begins when the Customer accepts the order.

2. The system retrieves the Customer's credit card details.

3. The system sends a message to the CardProcessingCompany that
includes merchant identifier, merchant authentication, name on card,
number of card, expiry date of card, amount of transaction.

4. The CardProcessingCompany authorizes the transaction.

5. The system notifies the Customer that the card transaction has been
accepted.

6. The system gives the Customer an order reference number for
tracking the order.

7. The system tells the InventorySystem to reserve the required items.

8. The system sends the order to the Dispatcher.

9

1

. The system changes the order's state to pending.
0. The system displays an order confirmation that the Customer may
print out.

Postconditions:

1. The order status has been set to pending.

2. The Customer’s credit card has been debited by the appropriate amount.
3. Some inventory items have been reserved to cover the order.

4. The order has been sent to the Dispatcher.

Alternative flows:
CreditLimitExceeded

BadCard
CreditCardPaymentSystemDown

Figure A1.4
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Use case: DisplayBasket

ID: 13

Brief description:
The system displays the contents of the Customer's shopping basket.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow:

1. The Customer selects "display basket".
2. If there are no items in the basket
2.1 The system tells the Customer that the basket is empty.
2.2 The use case terminates.
3. For each product in the basket
3.1 The system displays the product id, quantity, details, unit price, and total
price.
extension point: manageBasket

Postconditions:
None.

Alternative flows:
None.

Figure A1.5
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Extension use case: ManageBasket

ID: 20

Brief description:
The Customer changes the contents of the shopping basket.

Primary actors:
Customer

Secondary actors:
None.

Preconditions: :
1. The system is displaying the shopping basket.

Main flow:

1. While the Customer is updating the basket

1.1 The Customer selects an item in the basket.

1.2 If the Customer selects "remove item"
1.2.1 The system displays the message "Are you sure you want to remove

the selected item from your basket?".

1.2.2 The Customer confirms the removal.
1.2.3 The system removes the selected item from the basket.

1.3 If the Customer enters a new quantity for the selected item
1.3.1 The system updates the quantity for the selected item.

Postconditions:
None.

Alternative flows:
None.

Figure A1.6
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XML and use cases

‘Using XML for use case templates

As you have seen, UML 2 does not define a formal standard for documenting
use cases. Modelers either have to use the often rather limited facilities offered
by UML modeling tools or define their own approach. The most common ap-
proach at the moment seems to be to create the use case model in a modeling
tool, then link the use cases and actors to external documents that contain
their detailed specifications. These documents are usually created on a word
processor. However, a word processor isn’t the best tool for this; although it
allows you to format and structure the use case and actor specifications, it
does not allow you to capture the semantics of that structure.

We believe that structured XML documents are the natural format for
use case specifications. XML is a semantic markup language, so it separates
the semantic structure of the document from its formatting. Once you have
a use case or actor specification captured as an XML document, you can
transform it in many different ways by using XSL [Kay 1]. You can render
specifications as HTML, PDF, or word processor documents, and you can also
query the specifications to extract specific information.

The structure of XML documents may be described with the XML Schema
Definition Language (XSL). We present some simple XML schema for actors
and use cases on our website. They are available to download and use under
the GNU General Public License (see www.gnu.org for details).

Detailed descriptions of XML and XSL are beyond the scope of both this
book and our website. However, on the site we provide useful links to XML
and XSL learning resources.

Because XML requires special editors and can be complex for stakehold-
ers to use, we have recently devised a simple approach to creating use cases
(and other project documents) in XML and other formats. We discuss this
briefly in the next section.

559
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SUMR (pronounced “summer”) stands for Simple Use case Markup-Restructured.
it is a simple plain text markup language for use cases. SUMR documents
can be easily transformed into XML, HTML, and other formats.

SUMR has a number of advantages.

It is very simple—you can learn the markup syntax in about a minute.

o It does not require fancy word processors or editing features—you can
create SUMR documents using any text editor that supports plain text
and you can enter SUMR text straight into an HTML form field if you
need to.

@ It is structured—SUMR documents have a schema. You can create your
own schema or use the default ones we supply.

@ Itis free under the GNU copyleft (www.gnu.org/copyleft).

To give you a flavor of what SUMR is all about, Figure A2.1 shows a simple
use case tagged up as a SUMR document.

The syntax is simple—anything prefixed and postfixed by a colon (like
:this:) is a tag. The body of the tag starts on the next line after the tag and
continues until the next blank line.

SUMR is entirely concerned with the structure and semantics of the doc-
ument, not how it is displayed. It allows you to capture relevant information
quickly and efficiently, without having to bother about formatting, docu-
ment templates, or complex tag languages.

Fach SUMR document may have a schema defined in the special
:schema: tag. A SUMR schema is a SUMR document that defines the tags that
can be used in other SUMR documents. Figure A2.2 shows the SUMR schema
used by our example use case. As you can see, SUMR schemas can be self-
documenting provided they are well written.

Once you have a schema, you can use SUMR tools to do the following:

@ transform use cases that accord to the schema into XML;

@ generate sample XSL stylesheets to transform the XML into
— XHTML plus a Cascading Style Sheet (CSS);
—  XML-FO (XML formatting objects).

The SUMR tools generate default stylesheets for you. This is a useful feature
as you only have to customize the stylesheets, rather than write them from
scratch. It is also a very flexible approach, as the stylesheets give you almost
complete control over how the SUMR documents will be rendered.
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file AdditemToBasket.uc

:schema:
UseCase.sss

rname:
AddItemToBasket

vid:
2

rparents:
1. None

:primaryActors:
1. Customer

:secondaryActors:
1. None

tbrief:
1. The Customer adds an item to their shopping basket.

ipre:
1. The Customer is browsing products.

:flow:

1. The Customer selects a product

2. The Customer selects "add item". :

3. The system adds the item to the Customer's shopping basket.
4. :inc:DisplayBasket

ipost:
1. A product has been added to the Customer's basket.
2. The contents of the basket are displayed.

:alt:
1. None

ireq:
1. None

Figure A2.1
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file UseCase.sss’

:schema:
UseCase.sss

1name:
Write the name of the use case here. Use case names are in UpperCamelCase with
no spaces.

rid:
Write the unique project identifier for the use case here.

1parents:
Write the names of the parent use cases here.
If this use case has no parents, write None here.

:primaryActors:
Write the names of the primary actors here.
There must be at Teast one primary actor.

:secondaryActors:

List the names of the secondary actors here.

Secondary actors participate in the use case, they do not start the use case.
If there are no secondary actors, write None here.

rbrief:
Write a brief description of your use case here. This description should be no
more than a couple of paragraphs.

ipre:
Write the preconditions here, one on each Tine.
If the use case has no preconditions, write None here.

:flow:
Write the main fiow here.
Each step should be time-ordered and declarative.
rext:WriteExtensionPointsLikeThis
Note that extension points are NOT numbered.
If you need to show nested steps
Indent them by one space for each level of indent Tike this.
Include other use cases like this :inc:AnotherUseCase.
This is the final step. ‘

1post:
Write the postconditions here, one on each Tine.
If there are no postconditions, write None here.

Figure A2.2
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:alt:
List the names of the alternative flows here, one on each Tine.
If there are no alternative flows, write None here.

‘req:
List any special requirements related to the use case here. These are
typically non-functional requirements.

If there are no special requirements, write None here.

Figure A2.2 Continued

Figure A2.3 shows the example use case from Figure A2.1, transformed
into XML by one of the SUMR tools.

Once the use case is in XML format, you can use the generated XSL
stylesheets to transform it further. The most flexible option is to transform
the XML into XML-FO; you can then use Apache FOP (http://xml.apache.org/
fop/index.html) to render this into a wide range of other output formats
including PDF and PostScript. Figure A2.4 shows the use case rendered as
PDF using the default XML-FO stylesheet generated from the schema. The
default style isn't much to look at, but you can customize it as much as you
like by editing the generated stylesheet that produces it.

Finally, Figure A2.5 shows a simple structured editor for SUMR docu-
ments that we include in the toolset. This can validate a use case or actor
against its schema, and has syntax highlighting and autonumbering. It is a
petfectly serviceable tool for small-to-medium size use case models.

You can get more information about SUMR, and download the tools and
example schemas, from our website (www.umlandtheunifiedprocess.com).

We hope you enjoy using this tool set. We value any feedback that you
might send us via our website.
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file AddltemToBasket.uc

<?xml version="1.0" encoding="UTF-8"7>
<UseCase.sss>
<schemaSection>
<schema>UseCase.sss</schema>
</schemaSection>
<nameSection>
<name>AddItemToBasket</name>
</nameSection>
<idSection>
<id>2</id>
</idSection>
<parentsSection>
<parents>1. None</parents>
</parentsSection>
<primaryActorsSection>
<primaryActors>1. Customer</primaryActors>
</primaryActorsSection>
<secondaryActorsSection>
<secondaryActors>1. None</secondaryActors>
</secondaryActorsSection>
<briefSection>
<brief>1. The Customer adds an item to their shopping basket.</brief>
</briefSection>
<preSection>
<pre>1. The Customer is browsing products.</pre>
</preSection>
<flowSection>
<flow>1. The Customer selects a product</flow>
<flow>2. The Customer selects "add item".</flow>
<flow>3. The system adds the item to the Customer's shopping basket.</flow>
<flow>4. :inc:DisplayBasket</flow>
</flowSection>
<postSection>
<post>1. A product has been added to the Customer's basket.</post>
<post>2. The contents of the basket are displayed.</post>
</postSection>
<altSection>
<alt>1. None</alt>
</altSection>
<reqSection>
<reg>1l. None</reg>
</reqSection>
</UseCase.sss>

Figure A2.3
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B h R BB B PR OB O BB 0O RARENENEN PN IRONPRO RPN ARsNeN0ENUONENONARON0N D EE0REsN0N0N0N0NCRANANANPNPORPENONIRNURAANRNIsA0DBALOANESORARSD

Part 6 Supplementary material

566

AcceptPaymentByCard.CreditCardPaym

AcceptPaymentByCard CreditLimitExcee

AddItemToBasket

AddProductToCatalog

BrowseProducts

CancelOpenOrder

Checkout

CloseOrder

CreateNewCustomer

CreateNewUser

DeleteCustomer

DeleteProductFromCatalog

DeleteUser

DisplayBasket

DisplayOpenOrders

FindBooks

FindCDs

A FindProducts

1LegonCustomer

gardProcessingCompany

Customer

Dispatcher

ExtensionlUseCase.sss

ES
1. CardProcessingCompany
2. InventorySystem
3. Dispatcher

. The system accepts payment for an order by credit card.
. The Customer is logged on to the system.
. Some inventory items have been provisionally reserved for the Customer.

. The use case begins when the Customer accepts the order.

2. The system retrieves the Customer's credit card details.

3. The system sends a message to the CardProcessingCompany that includes merchant identifier, merchant authentication, name on
card, number of card, expiry date of card, amount of transaction .

4. The CardProcassingCompany authorises the transaction.

InventorySystem

Shopkeeper

| SystemAdministratar

User

5. The system natifies the Customer that the card transaction has been accepted.

16. The system gives the Custamer an order reference number for tracking the order.

. The system tells the InventorySysten to reserve the required items.

18, The system sends the order to the Dispatcher.

Figure A2.5

i 3
1. The order status has been set to pending.
2. The Customar’s credit card has been debited by the appropriate amount.
3. Some inventory items have been reserved to caver the order.
4. The order has been sent to the Dispatcher.

9. The system changes the order's state to pending.
10. The system displays an order confirmation that the Customer may print out.

el
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Abbreviations in class names, 137
abs operation, 508
Abstract classes, 210, 391
Abstract operations, 210-211
Abstraction )
in class inheritance, 210-211
dependencies in, 198-200
levels of, 211
Accept event actions
in activity diagrams, 314-317
time, 296-297
Access
for collections, 515
scope for, 147-148
«access» dependency, 200, 229-230
Acronyms in class names, 137
Action nodes, 293-294
accept time event, 296-297
in activity diagrams, 286287
call, 294-296, 537
with tokens, 288-289
Actions
in states, 444-445
for transitions, 446
Activations
in lifelines, 246
in sequence diagrams, 253
Active classes in concurrency, 420-422
Activities
in activity diagrams. See Activity diagrams
in states, 443-445
in UP and RUP, 33
Activity diagrams, 283-285
action nodes in
accept time event, 296-297
call, 294-296

execution of, 293-294
with tokens, 288-289
activities in, 286-288
partitions, 290-293
semantics, 288-289
advanced, 309-310
central buffer nodes in, 322-323
connectors in, 311
control nodes in, 286, 297-301
decision and merge, 298-299
fork and join, 300-301
initial and final, 298
events in, 314-317
exception handling in, 312-313
expansion nodes in, 313-314
features of, 285
interaction overview, form of, 323-325
interruptible activity regions in,
311-312
multicast and multireceive in, 320-321
object flows in, 286, 318-320
object nodes in, 286, 301-305
activity parameters in, 304-305
as buffers, 302-303
in representation of, 305-306
state representation in, 303
OCLin, 537
parameter sets in, 321-322
signals in, 314-317
streaming in, 317-318
summary, 307-308, 325-327
in unified process, 285-286

Activity parameters in object nodes,

304-305

Activity partitions, 290-293
Actor classifier, 19
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Actors in use case modeling, 69-70 Analysis workflow, 119
generalization of, 97-99 activity diagrams for, 286
identifying, 72-73 artifacts metamodel, 121
in specification, 80 detail of, 122
primary, 80 features of, 120
secondary, 80 models for, 122-123
time as, 73 summary, 124
Adornments, 17-18, 136 and operator, 507
after keyword, 453 AndroMDA tool, 9
Aggregation any operator, 519
vs. composition, 134, 363-364 append operator, 518
vs. inheritance, 351-352 Archetype patterns, 170-171
semantics, 364-367 Architectural analysis, 231-232
Algorithms, plug-in, 405 Architecturally significant components,
allInstances operation, 505-506 482
alt operator, 257 Architecture, 23-24
branching with, 258-261 in design workflow, 338-339
with continuations, 280-281 in implementation workflow, 482-483
Alternative flows, 85-88 and layering pattern, 406-407
finding, 89 ArcStyler tool, 9
number of, 89-90 Arrow operator (—>) for collection operations,
Analysis classes, 155-158 513
in analysis packages, 224 «artifact» stereotype, 486-488
diagrams for, 243 Artifacts, 33
features of, 158-159, 160-161 in analysis workflow, 121
finding in deployment, 486-490
archetype patterns for, 170-171 in design workflow, 333-335
by CRC analysis, 165-167 in implementation workflow, 477-478
by noun/verb analysis, 163~1635 manifesting components, 400, 486
by RUP stereotypes, 167-169 trace relationships, 335
first-cut analysis models, 171 asBag operator, 514
parts of, 159-160 asOrderedSet operator, 514
rules of thumb, 162-163 asSequence operator, 514
summary, 172-173 assert operator, 258
Analysis models asSet operator, 514
and design models, 334 Associations
rules of thumb, 122-123 in aggregation, 366
in use case realization—design, 416 attributes and, 190-191
Analysis packages. See Packages bidirectional, 376-377
Analysis relationships. See classes for, 191-193, 377-378

Relationships of components, 400
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features of, 180-181
inherited, 542-544
for interfaces, 390
multiplicity in, 182-187
navigability of, 187-189
in OCL navigation, 523-526,
540-543
qualified
features of, 193-194
navigation through, 541-542
refining, 363
reflexive, 185
syntax of, 181-182
types of
many-to-many, 375-376
many-to-one, 370-371
one-to-many, 371
one-to-one, 369-370
Asterisks (*)
in communication diagrams,
265-266
Asymmetry
in aggregation, 365-366
of composition, 367
Asynchronous communication
for submachines, 467
in use case realization, 246-247
at operator, 516
Atomic behavior
in concurrency, 424
in design classes, 348
attach operation, 545
Attributes
analysis class, 159
associations and, 190-191
component, 400
" and composition, 368
constraints on, 256
design class, 344-346
for interfaces, 390
object, 132

of requirements, 59-60

scope of, 147-148

and state, 443

syntax, 138-142

visibility, 138-139
Automatic transitions, 446
Axioms, 34-35

Backplanes, semantic, 16
Bags, 374, 512
Base use cases, 103
Baselines, 37
Behavioral state machines, 440
Behaviors
call action nodes and, 294-296
of object nodes, 303
of objects, 127-128
reusing, 465
Benefit attribute, 60
Bidirectional associations, 179, 376-377
Bidirectional links, 179
Bidirectional relationships, 234
«bind» stereotype, 355-356
Binding, 355-356
Black boxes
components as, 399-400
subsystems as, 426
body: expression, 503, 530-531
Booch, Grady, 7, 31
Booch method, 5-6
Boolean type
features of, 507-508
iterator operations, 519-520
semantics of, 140
Boundaries
packages defining, 224
in use case modeling, 71
«boundary» RUP stereotype, 167-168
Brainstorming
in CRC analysis, 166
for requirements, 64
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Branching CIM (computer-independent model), 8
in communication diagrams, 267-268 Class classifier, 19
in interaction overview diagrams, 324 Class generalization, 207
in main flow, 82-85 Class scope, 147
with opt and alt, 258-261 Class style notation for interfaces,
transitions, 448 391-392
break operator ' Classes, 125, 132-134
iteration with, 261-263 abstract, 210, 391
semantics of, 257 activity partitions for, 291
Brief descriptions, use case, 80 analysis. See Analysis classes
Buffers, object nodes as, 302-303, 322-323 association, 191-193, 377-378
«buildComponent» stereotype, 402 attributes for, 138-142
Building blocks, UML, 11-15 dependencies between, 195-196
Business models design. See Design classes
activity diagrams for, 285, 286 designing, 342-344
in use case modeling, 70 finding, 163-171
inheritance in, 208-211, 350-354
C++ language instantiation of, 135
abstract classes in, 391 moving between packages, 233
constructors in, 148, 247-248 names of, 137
destructors in, 150, 247-248 names in object names, 132
inheritance in, 351 notation for. See Notation
interface names in, 392 and objects, 134-135
link implementation in, 177 operations for, 142-146
overriding operations in, 209 partitioning, 219
primitive types in, 368 as powertypes, 218-220
template support for, 356 relationships with. See Relationships
C# language state machines for modeling,
constructors in, 148, 247-248 440-441
destructors in, 150, 247-248 stereotype syntax for, 146
inheritance in, 351, 352 structured, 379-382
template support for, 356 summary, 151-153
Call action nodes, 294-296, 536 as templates, 132
«call» dependency, 197 templates for, 354-356
Call events, 449-450 Classification, 133-134
CBD (component-based development), Classifiers
399 and instances, 18
«centralBuffer» nodes, 322-323 structured, 378-379
«centralBuffer» stereotype, 303 in use case realizations, 244
Change events, 452-453 Cohesion
Child packages, 231 for analysis packages, 233

Choice pseudo-states, 448 in design classes, 349
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Collaboration
messages for, 130
in structured classifiers, 379
Collaborators in CRC analysis, 165-167
collect operator
for collections, 525
for iterators, 519
Collections, 141
features of, 511-513
loops for, 263
maps, 374
opetations for, 371-372, 513
access, 515
comparison, 514
conversion, 514
query, 514-515
selection, 516-518
working with, 371-374
collectNested operator
for collections, 525
for iterators, 519
Colons (:) in names
action, 292
object, 132
package, 226
powertype, 219
Color in UML models, 20
Combined fragments, 256-257
branching in, 258-261
iterations in, 261-263
Commas (,) for actions, 292
Comments, 504-505
Common mechanisms
adornments, 17-18
divisions, 18-19
extensibility, 19-22
specifications, 15-17
Communication. See Messages
Communication diagrams, 264-265
branching in, 267-268
concurrency in, 425-426
iteration in, 265-266
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Comparison operations

for collections, 514

in OCL, 506
{complete} constraint, 217
Complete models, 17
Completeness in design classes, 347-348
Complex deviations in specifications, 81
Complex nesting of packages, 227
Complexity with interfaces, 408
Component-based development (CBD), 399
Component-based modeling, 170-171
Component classifier, 19
Components, 389-390

activity partitions for, 291

architecturally significant, 482

from artifacts, 486

features of, 399-402

in interfaces, 399

stereotypes, 402

subsystems, 403

summary, 410-411
Composite icons, 459
Composite states

features of, 458-460

orthogonal, 462-465

simple, 460-462
Composite structured diagrams, 381
Composition

vs. aggregation, 134, 363-364

attributes and, 368

semantics, 367-368

with structured classes, 378-382
Computer-independent model (CIM), 8
concat operator, 509
Conceptual entities, classes for, 170
Concrete operations

vs. abstract, 210

overriding, 214
Concurrency, 419

active classes in, 420-422

in communication diagrams, 425-426

fork and join control nodes for, 299-301
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Concurrency, continued
in interaction overview diagrams, 324
in sequence diagrams, 422-425
Conditional extensions, 109
Conditions in communication diagrams, 267
Configuration management, packages for, 224
Connecting transitions for state machine, 447
Connectors and links, 177-178
in activity diagrams, 311
in communication diagrams, 265
of components, 400-401
in object diagrams, 178-179
paths for, 179-180
in structured classifiers, 378-379, 381
consider operator, 258
Consistent models, 17
Constraint languages, 499
Constraints, 20
in association classes, 378
on expansion nodes, 313-314
generalization, 217
in interfaces, 390
multiplicity, 182-187
in OCL, 503
in sequence diagrams, 254-256
in structured classifiers, 379-380
in timing diagrams, 427
Construction phase, 37-39, 41-43, 476
Constructor operations, 135, 148-150,
247-248
Context classifiers, 244
Context-free questions in requirements
interviews, 63
Context in OCL
expression, 501-502
package, 500-501
Contextual instances, navigation within,
522-523
Continuations in use case realizations,
279-281
Continuous streaming in activity diagrams,
317-318
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Contracts
abstract classes as, 210
interfaces as, 391
in polymorphism, 212
Control flows in activity diagrams, 286
Control nodes in activity diagrams, 286-287,
297-301
decision and merge, 298-299
fork and join, 299-301
initial and final, 298
«control» RUP stereotype, 167, 168-169
Conversion operations
for collections, 514
in OCL, 506
Could have requirements, 59
count operator, 515
Coupling
in analysis classes, 161
in analysis models, 123
in analysis packages, 233
in architectural analysis, 232
in design classes, 350
inheritance in, 351
CRC analysis, finding classes by, 165-167
«Create» stereotype, 248
Creation messages in use case realizations,
247-248
critical operator, 257, 422-423
Curved paths for links, 180
Cyclic package dependencies, 234-235

Data-hiding, 127-130
Decision control nodes, 298-299
«decisionInput» stereotype, 298
Declarative languages, 498
Decomposition, functional, 112-113
Decoupling

components, 400-401

layers, 406
Deep history in state machines,

469-470

Deep inheritance trees, 162
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def: expression, 503, 531-533
Default values in parameters, 145
Define operation, 503
Deleting
filters for, 61-62
packages, 233
Dependencies, 195-196
in abstraction, 198-200
«derive», 199
«refine», 199
«substitute», 198
«trace», 198, 229
in aggregation, 365
in bidirectional associations, 376-377
of components, 400-401
in composition, 367
interfaces for, 408
between layers, 406
of packages, 228-230, 234-235
permission, 200
«access», 200, 229-230
«import», 200, 229
«permit», 200
usage, 196-198
«call», 197
«instantiate», 134-135, 198
«parameter», 197-198
«send», 198
«use», 196-197, 228-229
Deployment, 481
architectural implementation, 482-483
artifacts in, 486-489
diagrams for, 483-484
example, 491
nodes in, 484-485
summary, 491-492
in use case realization design, 416
views, 23
«deployment spec» stereotype, 488
derive: expression, 503, 533-534
«derive» dependency, 199
Derived value operator, 503
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Descriptions in specifications, 80
Descriptor form of deployment diagrams,
483
Design classes, 341-342
anatomy of, 345-347
features of, 344-345
inheritance in, 350-354
nested, 357
relationships between, 363
summatry, 358-360
templates for, 354-356
well-formed, 347-349
Design workflow, 331
architectural design in, 338-339
artifacts metamodel, 333-335
for classes, 342-344
detail of, 337-338
features of, 332-333
multiple models in, 336-337
relationships in, 335
summatry, 339-340
Designing
to contracts, 391
with interfaces, 404-407
subsystems, 389
«destroy» stereotype, 248
Destruction messages, 247-248
Destructor operation, 148-150, 247-248
detach operation, 545
Detail
in analysis workflow, 122
in design workflow, 337-338
in implementation workflow, 478-479
in requirements workflow, 53-54
in use cases, 77-78
Deviations in specifications, 81
Device boundary classes, 167-168
«device» stereotype, 484
Diagrams, 12-15
activity. See Activity diagrams
analysis class, 243-244
class, 136-137
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Diagrams, continued
communication, 264-265
branching in, 267-268
concurrency in, 425-426
iteration in, 265-266
component, 400
composite structure, 381
deployment, 483-484
interaction
in design, 417-419
OCL in, 5§35-536
in use case realizations, 243-244,
248-249
navigability on, 187-189
sequence
concurrency in, 422-425
interaction in, 274-276
in use case realizations, 249-256
state machine, 442-443
timing, 427-430
use case, 75
Dictionaries
maps, 374
project glossaries, 75-77
«directory» stereotype, 489
Disciplines, 33
{disjoint} constraint, 217
Distortion filters, 61-62
div operation, 508
Divisions, 18-19
do keyword, 445
«document» stereotype, 488
Documenting sequence diagrams, 253-254
DOORS tool, 56-57, 90
Dot operator
in navigation, 524-525
for tuples, 510
Duration
accept time event action nodes for, 297
in sequence diagrams, 256
Dynamic connections, links as, 178
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Eclipse Modeling Framework, 9
Edges
in activity diagrams, 286
with tokens, 289
Effort attribute, 60
«EJB» stereotypes, 489
EJBs (Enterprise JavaBeans), 400
Elaboration phase, 37-41, 476
Flicitation for requirements, 61-62
Elided models, 17
Embedded systems, concurrency in, 420
Encapsulated namespaces, packages for, 224
Encapsulation, 127-130
Enterprise JavaBeans (EJBs), 400
«entity» stereotype, 167, 169, 402
Entry events, 445
Equal signs (=)
for Boolean type, 507
for collection comparisons, 516
for OCL comparisons, 506
for strings, 509-510
Equivalent objects, 528
Events
accept action
in activity diagrams, 314-317
time, 296-297
in state machines, 439-440, 448-449
call, 449
change, 452453
signal, 450-451
time, 453
transition, 446
Exception handling in activity diagrams,
312-313
excludes operator, 515
excludesAll operator, 515
excluding operator, 517
«executable» stereotype, 488
«execution environment» stereotype, 484
exists operator, 519 :
Exit events, 445
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Expansion nodes in activity diagrams, 313-314

Explicit binding, 355
Expressions in OCL
bodies, 504
collections. See Collections
comments, keywords, and precedence
rules, 504-505
infix operators in, 511
iteration operations, 518-522
primitive types in, 506-509
tuples in, 509-510
type system, 505-506
body:, 530-531
context, 501-502
def:, 531-533
derive:, 533-534
init:, 531
inv:, 526-529
let, 533
OclMessage, 544-546
pre:, post:, and @pre, 529-530
syntax, 498-500
types, 502-503
«extend» stereotype, 105-110
Extensibility mechanisms, 19-22
Extension points, 99, 105-107
extension use cases
conditional, 109
features of, 105-107
multiple insertion segments in, 108-109
«external» stereotype, 292

Facade patterns, 405-406
Feature lists, 70
FIFO (first-in, first-out) buffers, 303
«file» stereotype, 488
Filters, 61-62
Final control nodes, 298
Find actors
in requirements workflow, 54
in use case modeling, 69-77

Finding
alternative flows, 89
analysis classes
archetype patterns for, 170-171
by CRC analysis, 165-167
by noun/verb analysis, 163-165
by RUP stereotypes, 167-169
analysis packages, 232-234
interfaces, 404
requirements, 61-63
First-cut analysis models, 171
First-in, first-out (FIFO) buffers, 303
first operator, 516
Flags for submachine communication, 467
flatten operator, 514
Flexibility
of components, 400-401
of interfaces, 396-397, 408
Floating-point numbers
semantics of, 140
working with, 508-509
floor operation, 509
Flows
in activity diagrams, 286, 318-320
alternative, 85-90
branching in, 82
if keyword, 83
for keyword, 84
while keyword, 85
in lifelines, 246
in specifications, 81-85
tokens for, 288-289
Focus of control
in lifelines, 246
nesting of, 252, 253
in sequence diagrams, 253
For loops
in main flow, 84
in sequence diagrams, 263
forAll operator, 519, 520
forEach operator, 263
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Fork control nodes, 300-301

Found messages in use case realizations, 248

Fragile base class problem, 351

Fragments in use case realizations, 256-257
branching in, 258-261

HashMap class, 374

hasReturned operator, 544

“has sent” operator, 544

Helper operations, 531-533
Hierarchies in associations, 186-187

iterations in, 261-263
Frames, 12
«framework» stereotype, 226
Functional decomposition, 112-113
Functional requirements, 57-58
Functoids, 162
Fusion method, 6

Garbage collection, 248

Gates in interaction occurrences, 277-278

“get messages” operator, 544
Generalization, 206-207

class, 207

packages, 231

powertypes, 218-220

sets, 216-218

in use case modeling

actor, 97-99
use case, 99-102

Generalization filters, 61-62
Generic form interaction diagrams, 245
Glossaries, 75-77
Greater than signs (>)

for Boolean type, 507

for collection comparisons, 516

for OCL comparisons, 506

for strings, 509
Groups

for analysis packages, 232-234

port, 398-399
Guard conditions

in activity diagrams, 536

for decision nodes, 298-299

for fragments, 256-257

in interaction diagrams, 535

in state machines, 537

for transitions, 446

High cohesion, 349
History, state machine, 468-470
Homonyms, 76

Identical objects, 528
Identifying
actors, 72-73
use cases, 74-75
Identity property, 127
IDs, use case, 80
If keyword
Boolean expressions for, 508
in main flow, 83
ignore operator, 258
Immutable collections, 512
Immutable strings, 508
«implementation» stereotype, 402
Implementation, 19
architectural, 482-483
vs. specifications, 389-391
views, 23
workflow, 475-476
artifacts metamodel, 477-478
details of, 478-479
features of, 476-477
summary, 480
implies operator, 507
«import» dependencies, 200, 229
in parameter, 144
Inception phase, 37-40
«include» stereotype, 102-105
includes operator, 515
includesAll operator, 515
including operator, 517
inclusion use cases, 103
{incomplete} constraint, 217
Incomplete models, 17
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Inconsistent models, 17 Integer type
Increments in UP, 35, 37 semantics of, 140
indexOf operator, 516 working with, 508-509
Infix operators, 511 Interaction diagrams
Inheritance, 205-206 in design, 417-419
abstract operations in, 210-211 OCL in, 535-536
vs. aggregation, 351-352 in use case realizations, 243-244, 248-249
of associations, 542-544 Interaction overview diagrams, 323-325
class, 208-211 Interactions
in design classes, 350-354 interaction occurrences, 274-276
vs. interface realization, 353-354, 394-398 continuations with, 279-281
multiple, 211, 352-353 gates in, 277-278
overriding, 99-100, 208-209 parameters in, 276-277
sumimary, 221-222 subsystems, 426-427
in use case generalization, 99-100 in use cases realizations, 244
Inheritance trees, 162 Interface boundary classes, 167-168
init: expression, 503, 531 Interface classifier, 19
Initial control nodes, 298 Interface realization vs. inheritance, 353-354,
Initial values 394-398
notation for, 141-142 Interfaces, 19, 389-390
operation for, 503, 531 advantages and disadvantages, 408
inout parameter, 144 for component-based development, 399
Input effects in activity diagrams, 319-320 component stereotypes, 402
Inputs for interactions, 277-278 designing with, 404-407
insertAt operator, 518 features of, 389-391
Insertion segments, multiple, 108-109 finding, 404
Instance form of diagrams ports for, 398-399
deployment, 483 provided and required, 391-393
interaction, 245 summary, 408-411
Instance scope, 147 Internal structure of components, 400-401
Instances Internal visibility, 139
artifact, 486 Interruptible activity regions, 311-312
of association classes, 193 intersection operator, 516
contextual, 501, 522-523 Interval specifications for sequences, 512
features of, 18 Interviews for requirements, 63
navigation within, 522-523 inv: expression, 503, 526-529
objects as, 133 invariant operator, 503, 526-529
«instantiate» dependency, 134-135, 198 "is a" relationships, 350
Instantiation "is kind of" principle, 352-353
class, 135 isEmpty operator, 515
template, 355-356 isOperationCall operator, 544

unified process, 34 isSignalSent operator, 544
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isUnique operator, 519 declarative, 498
iterate operator, 521-522 filters in, 61-62
Iteration Last-in, first-out (LIFO) buffers, 303

last operation, 516
Layers in architecture

in communication diagrams, 265-266
in interaction overview diagrams,

324
with loop and break, 261-263
operations for, 518-522
in unified process, 35-37
Iterative expansion nodes, 314
iUML tool, 9

J2EE server, 490-491
Jacobson, Ivar, 29-31
JAR (Java ARchive) files, 400
«JAR» stereotype, 489
Java language
collections in, 372
constructors in, 148, 247-248
destructors in, 150, 247248
inheritance in, 351, 352
interfaces in, 391
links implementation in, 177
nested classes in, 357
overriding in, 209
primitive types in, 368
profiles for, 489
standard libraries in, 393, 407
template support for, 356
«JavaClassFile» stereotype, 489
«JavaSourceFile» stereotype, 489
JMechanic for Java tool, 348-349
Join control nodes, 300-301
Junction pseudo-states, 447

Keys for maps, 374
Keywords
in expressions, 504
in OCL, 504-505

Languages
for analysis models, 123
constraint, 499

arranging, 231-232
patterns in, 406-407
Less than signs (<)
for Boolean type, 507
for collection comparisons, 516
for OCL comparisons, 506
for strings, 509
let expression, 503, 533
Levels of abstraction, 211
Libraries
in Java, 393, 407
wxPython, 433-434
«library» stereotype, 488
Lifelines
in communication diagrams, 265
~ constraints on, 256
in continuations, 280-281
with interaction occurrences, 276
messages for, 246
in sequence diagrams, 249-252
in timing diagrams, 427-429
in use case realizations, 244-245
LIFO (last-in, first-out) buffers, 303
Links and connectors, 177-178
in activity diagrams, 311
in communication diagrams, 265
of components, 400-401
in object diagrams, 178-179
paths for, 179-180
in structured classifiers, 378, 381

Listening in requirements interviews, 63

Logical groupings, packages for, 224
Logical views, 23-24
Lollipop style notation, 391-392
Loop operations, 257
and currency, 422-425
iteration with, 261-263

. Lost messages in use case realizations, 248
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Low coupling in design classes, 350

lowerCamelCase naming convention, 132,

138, 143

Main flow
alternative, 85-90
branching in, 82
if keyword, 83
for keyword, 84
while keyword, 85
in specifications, 81-85
«manifest» relationship, 478
Many-to-many associations, 375-376
Many-to-one associations, 370-371
Maps, 374
max operation, 508
MDA (Model Driven Architecture), 7-9
Merge control nodes, 298-299
«merge» dependency, 230
Messages
in diagrams
activity, 535-536
communication, 265
sequence, 249-252
timing, 429
with interaction occurrences, 276
for objects, 130-131
in polymorphism, 213-214
for submachines, 467
in use case realizations, 246-248
Metaclasses, 218
Methods, 128
min operation, 508
Minus signs (-)
for comments, 504
for visibility, 138
mod operation, 508
Model Driven Architecture (MDA), 7-9
«modelLibrary» stereotype, 226
Models
for alternative flows, 85-90
for analysis workflow, 122-123
for collection classes, 372-373

in design workflow, 336-337
for requirements, 56
use case. See Use case modeling
MoSCoW criteria, 59-60
Moving classes between packages, 233
Multicast in activity diagrams, 320-321
Multiple associations, navigation across,
525-526
Multiple inheritance, 211, 352-353
Multiple insertion segments, 108-109
Multiple models in design workflow,
336-337
Multiplicity
in associations, 182-185
hierarchies and networks, 186-187
reflexive, 185-186
notation for, 140-141
of ports, 399
in relationships, 369
in structured classifiers, 378

Multireceive in activity diagrams, 320-321

Multithreading, 422
Must have requirements, 59

Named sets of public features, interfaces for, 389

Names
analysis classes, 159-161
associations, 181-182
classes, 137
composite structure diagrams, 381
in constructors, 148 - -
interfaces, 392
lifelines, 244
objects, 131-132
operations, 142-143
package elements, 500-501
packages, 224
ports, 398
powertypes, 219
qualified, 226-227
role, 181-182, 378
tuple parts, 509
use case, 79-80
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Namespaces, packages for, 224, 226-227

Navigability
of associations, 187-189
in relationships, 369
Navigation in OCL, 523
to and from association classes,
540-541
across associations, 523-526
within contextual instances,
522-523
through qualified associations, 541
neg operator, 257
Nested items
classes, 357
collections, 513
components, 400-401
nodes, 484
packages, 227-228
states, 459
Networks in associations, 186-187
Node classifier, 19
Nodes, 286, 536-537
action
accept time event, 296-297
call, 294-296
execution of, 293-294
with tokens, 288-289
central buffer, 322-323
control, 286, 297
decision and merge, 298-299
fork and join, 299-301
initial and final, 298
in deployment, 484-485
expansion, 313-314
object, 286, 301-302
activity parameters in, 304-306
buffers for, 302-303
pins in, 305-306
state representation in, 303
Non-functional requirements, 57-58
{nonunique} property, 373-374
not operator, 507-508
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Notation
for classes, 136-137
advanced attribute syntax, 142
attributes, 138-142
initial values, 141-142
multiplicity, 140-141
name convention for, 137
operations, 142-146
stereotypes, 146
type, 140
for objects, 131-132
notEmpty operator, 515
notify operation, 545
Noun/verb analysis, finding classes by,
163-165
Null values, 141
Number signs (#) for visibility, 138

Numbering in communication diagrams, 265

Object Constraint Language. See OCL (Object

Constraint Language)
Obiject flows, 286, 301, 318-320
Object Modeling Technique (OMT), 5-6
Object nodes in activity diagrams, 286,
301-302
activity parameters in, 304-305
as buffers, 302-303
pin representation in, 305-306
state representation in, 303-304
Obijectory, 30
Obijects, 10, 125-126
attributes for, 132
classes for, 134-135, 170
in concurrency, 420
constructing and destructing, 148-150,
247-248
diagrams for, 178-179
encapsulation of, 128-130
identical and equivalent, 528
messaging for, 130-131
notation for, 131-132
properties of, 127-129
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reactive, 439
relationships with classes. See Relationships
scope of, 147
summary, 151-153
tokens for, 288-289
in use case realizations, 247-248
Oblique paths for links, 180
OCL (Object Constraint Language)
in activity diagrams, 537
benefits of, 497-498
expressions in. See Expressions in OCL
features of, 497
inherited associations in, 542-544
in interaction diagrams, 535-537
navigation in, 522-526
to and from association classes, 540-541
across associations, 523-526
within contextual instances, 522-523
through qualified associations, 541
package context and pathnames in, 500-501
in state machines, 537-540
summary, 546-550
OclAny type, 505-506
OclMessage expressions, 505, 544-546
OclState type, 505
OclType type, 505-506
OclVoid type, 505
Omnipotent analysis classes, 162
OMT (Object Modeling Technique), 5-6
one operator, 519
One-to-many associations, 371~
One-to-one associations, 369-370
OO flowcharts. See Activity diagrams
Operands, 256-257
Operations, 127
in behaviors, 128-129
call action nodes for, 294-296
for classes, 142-146
analysis, 159
dependencies with, 196
design, 345-348
inheritance in, 210-211

for collections, 371-372, 513
access, 515-516
comparison, 514
conversion, 514
query, 514-515
selection, 516-518
of components, 400
for interfaces, 390
iteration, 518-522
overriding, 209
parameters in
default values, 145
direction, 143-145
lists, 142-143
precedence rules for, 504-505
query, 145-146
reusable, 404
scope of, 147-148
syntax, 142-146
in use case realizations, 256-263
visibility, 138-139
opt operator, 257, 258-261
Optimizations in design classes, 348
or operator, 507
{ordered} property, 373-374
OrderedSets, 374
Ordering of object nodes, 303
Organizational units, 291
Organizing requirements, 58-59
Orthogonal composite states, 462-465
Orthogonal paths forlinks; 180
out parameter, 144
Output effects in activity diagrams,
319-320
Outputs for interactions, 277-278
{overlapping} constraint, 217
Overmodeling collection classes, 373
Overriding inheritance
process, 208-209
in use case generalization, 99-100
Overview diagrams, interaction, 323-325
Ownership in aggregation, 365
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Package context, 500-501 Permission dependencies, 200
Packages, 223 «permit» dependency, 200
architectural analysis, 231-235 Petri Nets, 284
dependencies, 195, 200, 228-230, 234-235 Phases in unified process
features of, 224-226 construction, 37-39, 41-43
finding, 232-234 elaboration, 37-41
generalization, 231 inception, 37-40
for namespaces, 226-227 transition, 37-39, 43-44
nested, 227-228 Physical objects, classes for, 170
summary, 234-237 Pins in object nodes, 305-306
visibility of, 138-139 Platform-independent model (PIM), 8
Paperwork, classes for, 170 Platform-specific model (PSM), 8
par operator Plug-in algorithms, 405
and concurrency, 422-425 Plus signs (+) for visibility, 138
semantics of, 257 Points in time, action nodes for, 297
Parallel expansion nodes, 314 Polymorphism, 205-206
Parallel working, packages for, 224 ‘ example, 213-215
«parameter» dependency, 197 features of, 211-212
Parameters inheritance in, 351
in activity diagrams, 321-322 in interface realization, 394
in constructors, 148-149 summary, 221-222
in interaction occurrences, 276-277 Ports for interfaces, 398-399
in object nodes, 304-306 Positive edge triggered change events, 452
in operations post: expression, 503, 529-530
default values, 145 Postconditions
direction, 143-145 ' in OCL, 503, 529-530
lists, 142-143 in specifications, 80-81
templates for, 355-356 in use case generalization, 99
Parent actors, 98 Powertypes, 218-220
Parent use cases, 99-102 pre: expression, 503, 529-530
Parentheses () for precedence, 505 @pre expression, 529-530
Partitions Precedence rules, 504-505
activity, 290-293 Preconditions
class, 219 in OCL, 503, 529-530
Pathnames in specifications, 80-81
in OCL, 500-501 in use case generalization, 99
in packages, 226 prepend operator, 518
Paths for links, 179-180 Primary actors, 80
Patterns Primary scenarios, 81
archetype, 170-171 Primitive types
facade, 406-407 for attributes, 368

Performance in design classes, 348 in OCL, 140, 506-509
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Primitiveness in design classes, 348-349
Prioritize use cases, 54
Private visibility

of analysis packages, 225

semantics of, 138-139
Problem domains, design classes from, 344
«process» stereotype, 402
Process views, 23
product operator, 517
Profiles

Java, 489

UML, 22
Project glossaries, 75-77
Properties

of objects, 127-128

in OCL navigation, 522
Protected visibility, 138-139
Protocol state machines, 440
Protocols in interfaces, 390, 398
Prototype user interfaces, 54
Provided interfaces, 391-393
Pseudo-attributes, 191
Pseudo-states for transition connections, 448
PSMs (platform-specific models), 8
Public visibility

of analysis packages, 225

semantics of, 138-139
Python language

return values in, 145

template support for, 356

for use case editor, 433-434

Qualified associations
features of, 193-194
navigation through, 541
Qualified names, 226-227
Quantifiers, universal, 62
Query operations, 145-146
for collections, 514-515
in OCL, 503, 506
Questionnaires for requirements, 63-64
Questions in requirements interviews, 63
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Rational Objectory Process (ROP), 31
Rational Rose tool, 56
Rational Unified Process (RUP), 32-33
Reactive objects, 439
Real-Time Studio tool, 441
Real-time systems, timing diagrams for, 427-430
Real type
semantics of, 140
working with, 508-509
ref operator, 257, 276-277
«refine» dependency, 198-199
Reflexive aggregation relationships, 366
Reflexive associations, 185-186
Regions
interruptible, 311-312
for submachines, 458-460
Reified relationships, 375
association classes, 377-378
bidirectional associations, 376-377
many-to-many associations, 375-376
Reitmann, Rich, 31
reject operator, 520
Relationships, 12, 175-176, 361-362
aggregation in
and composition, 363-364
semantics for, 364-367
artifact trace, 335
associations in. See also Associations
many-to-many, 375-376
many-to-one, 370-371
one-to-many, 371
one-to-one, 369-370
collections, 371-374
components, 400
composition in
and aggregation, 363-364
semantics for, 367-368
with structured classes, 379-382
with structured classifiers, 378-379
dependencies, 195-200
in design, 335, 363
features of, 177
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Relationships, continued
in generalization, 206-207
links, 177-180
in packages, 234-235
refining, 368-369
reified, 375
association classes, 377-378
bidirectional associations, 376-377
many-to-many associations, 375-376
for states, 443
in structured classifiers, 378
summary, 201-203, 382-386
transitivity of, 230
in use case generalization, 99
Remainder operation, 509
repeat loops in sequence diagrams, 263
Repetition in main flow, 83-84
Required interfaces, 391-393
Requirements
attributes of, 59-60
elicitation of, 6162
finding, 61-64
functional and non-functional, 57-58
importance of, 55
interviews for, 63
models for, 56
in use case modeling, 70
in use case realization design, 416
organizing, 58-59
questionnaires for, 63-64
tracing, 90-91
well-formed, 56-57
workflow, 49-50
artifacts metamodel, 52-53
defining, 55-60
detail of, 53-54
features of, 51-52
sumimary, 65-66
workshops for, 64
Requirements engineering, 51
RequisitePro tool, 56, 90
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Respomnsibilities
in analysis classes, 161-162
in CRC analysis, 165-167
result operator, 544
Return messages in use case realizations,
246-247
return parameter, 144
Return types, 142-143
Reuse
of operations, 404
submachines for, 465
templates for, 355
Risk attribute, 60
Roles, 32-33
activity partitions for, 291
for associations, 181-182
in structured classifiers, 378, 381
ROP (Rational Objectory Process), 31
round operation, 509
Royce, Walker, 31
RUP (Rational Unified Process), 32-33
RUP stereotypes, finding classes by, 167-169

Scenarios in specifications, 81
Scope
for access, 147-148
of interaction occurrences, 276
«script» stereotype, 488
Scripts for sequence diagrams, 253-254
SDL (Specification and Description Language),
30
Secondary actors, 80
Secondary scenarios, 81
Security systems, concurrency for, 420-422
Segments, multiple insertion, 108-109
Selection behaviors of object nodes, 303
Selection operations, 516-518
«selection» stereotype, 303, 319
select operator, 520
Selectors for lifelines, 245
Self-delegation in sequence diagrams, 252
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self keyword
for context, 501
in OCL navigation, 523
Semantic backplanes, 16
Semantic boundaries, packages for, 224
Semantics
activity, 288-289
aggregation, 364-367
composition, 367-368
Semicolons (;) for actions, 449
«send» stereotype, 198
Sending signals in activity diagrams, 314-317
SEP (software engineering process), 28
seq operator, 257
Sequence diagrams
concurrency in, 422-425
interaction occurrences in, 274-276
in use case realizations, 249
activation in, 253
documenting, 253-254
lifelines and messages in, 249-252
state invariants and constraints in,
254-256
Sequence numbers in communication dia-
grams, 425-426
Sequences, 374, 512-513
«service» stereotype, 402
Services
and encapsulation, 130
interfaces for, 391
Sets, 374
generalization, 216-218
of object nodes, 303
Shallow history in state machines, 468-469
Should have requirements, 59
Side effects
in OCL expressions, 497
in query operations, 145
Signal classifiers, 19
Signal events, 450-451
«signal» stereotype, 314
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Signals

in activity diagrams, 314-317

for messages, 246
Signatures

in interface operations, 390

message, 130-131

for operations, 142-143

in overriding, 209

in polymorphism, 212, 214
Simple composite states, 460-462
Simple deviations, 81
Simplicity

in analysis models, 123

in analysis packages, 233

in use cases, 111
Size

analysis classes, 162

use cases, 111
size operator

for collection queries, 515

for strings, 509
Slashes (/) for comments, 504
Smalltalk language

return types in, 143

template support for, 356
Software engineering process (SEP), 28
Software requirements specification (SRS), 53
Software requirements workflow, 5253
Solution domains, design classes from, 344
sortedBy operator, 520
Source nodes with tokens, 289
«source» stereotype, 488
Spaghetti code, 350
Specialization, 207
Specification and Description Language (SDL), 30
«specification» stereotype, 402
Specifications, 15-17, 78-79

actors in, 80

alternative flows in, 85-90

for artifacts, 486

in behaviors, 128
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Specifications, continued
brief descriptions in, 80
vs. implementations, 389-391
in interfaces, 390-391
main flow in, 81-85
preconditions and postconditions in, 80-81
use case IDs, 80
use case names, 79-80
SRS (software requirements specification), 53
Stability attribute, 60
Stakeholders
activity diagrams for, 286
in analysis models, 123
in requirements, 51
Stand-alone style pins, 306
Standard libraries in Java, 393, 407
State dependent behavior, 128
State invariants in sequence diagrams,
254-256
State machines, 437-438
advanced, 457-458
behavioral and protocol, 440
for class models, 440-441
diagrams for, 442-443
events in, 439-440, 448-449
call, 449
change, 452-453
signal, 450-451
time, 453
transition, 446
features of, 439
history, 468-470
OCL in, 537-540
states in. See States
submachine communication, 467
summary, 453-455, 470-471
transitions for, 439-440
branching, 448
connecting, 447
features of, 445-447
in UP, 441
State property, 127-129
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States, 439-440, 443-444
composite
features of, 458-460
orthogonal, 462-465
simple, 460-462
in object nodes, 303
submachine, 465-466
syntax, 444445
in timing diagrams, 427-429
Status attribute, 60
Step in main flow feature, 99
Stereotypes, 20-21, 134-135
«access» 200, 229-230
«artifact» 487-488
«bind» 355-356
«boundary» 167-168
«buildComponent» 402
«call» 197
«centralBuffer» 303
«control» 168-169
«create» 248
«decisionlnput» 298
«deployment» 488
«derive» 199
«destroy» 248
«device» 484
«directory» 489
«document» 488
«E]B» 489
«entity» 169, 402
«executable» 488
«execution environment» 484
«extend» 105-107
«external» 292
«file» 488
«framework» 226
«implementation» 402
«import» 200, 229
«include» 102-105
«instantiate» 134-135, 198
«JavaClassFile» 489
«JavaSourceFile» 489
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«library» 488 states in, 465-466
«manifest» 478 synchronization of, 462-464, 467
«merge» 230 subOrderedSet operator, 518

«modelLibrary» 226
«parameter» 197-198
«permit» 200
«process» 402

subSequence operator, 518
Substates, 460
Substitutability principle, 394
«substitute» dependency, 198

«refine» 199 substring operator, 510

«script» 488 «subsystem» stereotype, 402-403
«selection» 303, 319 Subsystems, 403

«send» 198 designing, 389

«service» 402 interactions, 426-427

«signal» 314 ‘ Sufficiency in design classes, 347-348
«source» 488 Sufficiently complete models, 17

«specification» 402
«substitute» 198
«subsystem» 402-403 for candidate requirements, 91
«topLevel» 224 use case editor example, 430-435
«trace» 198, 229 Superstates

«transformation» 320 benefits of, 460

«use» 196-197, 228-229 history for, 468-469

for analysis packages, 226 symmetricDifference operator, 517

class, 146, 160 Synchronization of submachines, 462-464,
component, 402 467

sum operator, 515
SUMR toolset

finding classes by, 167-169
in interfaces, 390
for packages, 224

Synchronous messages in use case realizations,
246-247
Synonyms in project glossaries, 76

Stream expansion nodes, 314 System boundaries in use case modeling, 71
Streaming in activity diagrams,
317-318 Tagged values
strict operator, 257 for analysis classes, 160
String type features of, 21-22
semantics of, 140 in interfaces, 390
working with, 508, 510 Target nodes with tokens, 289
Structure, 10-11, 37-39 TargetRelease attribute, 60
Structured classes, 378-382 Taxonomies, 58
Structured classifiers, 378-379, 400 Templates
Subclasses for invariants, 527 classes as, 135
Subjects in use case modeling, 71 collections as, 512-513
Submachines, 458-459 for design classes, 354-356
communication with, 467 Testing
in orthogonal composite states, 462 state machines, 441



ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Textures in UML models, 20 UML basics, 3-5
Things, 12 architecture, 23-24
Time building blocks, 11-15

in activity diagrams, 296-297 common mechanisms, 15-16

as actor, 73 adornments, 17-18

events, 453 divisions, 18-19

in sequence diagrams, 251 extensibility, 19-22

in state machines, 453 specifications, 15-17
Timing diagrams, 427-430 development of, 5-7
tolnteger operator, 509 and MDA, 7-9
Token games, 289-290 objects in, 10
toLower operator, 509 structure of, 10-11
«topLevel» stereotype, 224 summary, 24-26
toReal operator, 509 . unification in, 9-10
toUpper operator, 509 Unidirectional links, 179
Trace relationships, artifact, 335 Unified process, 27-28
«trace» dependency, 198, 229 activities

in RUP, 32-33 in use case detailing, 77-78

in use case realization-design, 416 in use case modeling, 69-77
Tracing requirements, 90-91 activity diagrams in, 285-286
Traffic cases, 30 axioms, 34-35
«transformation» condition, 320 development of, 29-32
Transition phase, 37-39, 43-44 features of, 28-29
Transitions in state machines, 439-440 instantiating, 34

branching, 448 ‘ iterative and incremental processes, 35-37

connecting, 447 phases in

features of, 445447 construction, 37-39, 41-43
Transitive aggregation, 365 : elaboration, 37-41
Transitive composition, 367 inception, 37-40
Transitivity in dependencies, 230 transition, 37-39, 43-44
Triggers and RUP, 32-33

for alternative flows, 88 structure, 37-39

for events, 316, 452 summary, 44-45
Tuples, 509-510 Unified Software Development Process (USDP),
Types 28

for attributes, 368 unijon operator, 516

for lifelines, 244 {unique} property, 373-374

notation for, 140 Units, packages for, 224

in OCL, 506-509 Universal quantifiers, 62

in structured classifiers, 378 UnlimitedNatural type, 140

for tuples, 510 {unordered} property, 373-374



Upper bounds of object nodes, 302
UpperCamelCase naming convention
for classes, 137
for interfaces, 392
Usage dependencies, 196-198

USDP (Unified Software Development Process),

28
Use case classifier, 19
Use case modeling, 67-68
actions in, 111
advanced, 95-97, 110
applying, 91-92
extends in, 105-109
features of, 69
functional decomposition in, 112-113
generalization in
actor, 97-99
use case, 99-102
hints and tips for, 111-113
includes in, 102-105
project glossaries in, 75-77
requirements tracing in, 90-91
size and simplicity of, 111
specifications. See Specifications
summary, 92-94, 113-115
unified process activities
in use case detailing, 77-78
in use case modeling, 69-77
in use case realization-design, 416
Use case realization—-design, 413-414
concurrency modeling, 419-420
active classes in, 420-422

in communication diagrams, 425-426

in sequence diagrams, 422-425
consequences of, 415-416
example, 430-435
interaction diagrams in, 417-419
parts of, 416
subsystem interactions, 426-427
summary, 436
timing diagrams, 427-430

Use case realizations-analysis, 239-242
advanced, 273
in analysis packages, 224
combined fragments and operators in,
256-263
communication diagrams in,
264-268
continuations in, 279-281
elements of, 243-244
features of, 242
interactions in, 244
diagrams, 243-244, 248-249
occurrences, 274-276
lifelines in, 244-245
messages in, 246-248
sequence diagrams in, 249-256
sumimary, 268-271, 281-282
Use cases
activity partitions for, 291
in analysis packages, 224
analyzing. See Analysis classes
detailing, 77-78
diagrams for, 75
editor example, 430-435
identifying, 74-75, 80
names for, 79-80
in requirements workflow, 54
in unified process activities, 77-78
views, 23
«use» dependency, 196-197, 228-229
User interface boundary classes, 167-168
Utility classes for attributes, 368

Variables, 531-533

Vector class, 372

Views, 23. See also Diagrams

Visibility
for analysis classes, 160
of analysis packages, 225
of ports, 398-399
working with, 138-139



Visual Basic language
interface names in, 392
template support for, 356

Want to have requirements, 59
Well-formed design classes,
347-349

Well-formed requirements, 56-57
when keyword, 453
While loops

in main flow, 85

in sequence diagrams, 263

Windows. See Diagrams
Workers, 32-33
Workflow
analysis. See Analysis workflow
design. See Design and design workflow
implementation. See Implementation
iteration, 36-37
requirements. See Requirements
Workshops for requirements, 64
WxPython library, 433-434

xor operator, 507



