
15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 1/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 9. FunctorsChapter 9. Functors
Up until now, we've seen OCaml's modules play an important but limited role. In particular, we've

seen them as a mechanism for organizing code into units with speci�ed interfaces. But OCaml's

module system can do much more than that, serving as a powerful tool for building generic code

and structuring large-scale systems. Much of that power comes from functors.

Functors are, roughly speaking, functions from modules to modules, and they can be used to

solve a variety of code-structuring problems, including:

Dependency injection

Makes the implementations of some components of a system swappable. This is particularly

useful when you want to mock up parts of your system for testing and simulation purposes.

Autoextension of modules

Functors give you a way of extending existing modules with new functionality in a standardized

way. For example, you might want to add a slew of comparison operators derived from a base

comparison function. To do this by hand would require a lot of repetitive code for each type, but

functors let you write this logic just once and apply it to many di�erent types.

Instantiating modules with state

Modules can contain mutable states, and that means that you'll occasionally want to have

multiple instantiations of a particular module, each with its own separate and independent

mutable state. Functors let you automate the construction of such modules.

These are really just some of the uses that you can put functors to. We'll make no attempt to

provide examples of all of the uses of functors here. Instead, this chapter will try to provide

examples that illuminate the language features and design patterns that you need to master in

order to use functors e�ectively.

A TRIVIAL EXAMPLEA TRIVIAL EXAMPLE

Let's create a functor that takes a module containing a single integer variable x and returns a new

module with x incremented by one. This is intended to serve as a way to walk through the basic

mechanics of functors, even though it's not something you'd want to do in practice.

First, let's de�ne a signature for a module that contains a single value of type int:

module type X_int = sig val x : int end;;
module type X_int = sig val x : int end

OCaml Utop ∗ functors/main.topscript ∗ all code

Now we can de�ne our functor. We'll use X_int both to constrain the argument to the functor

and to constrain the module returned by the functor:

module Increment (M : X_int) : X_int = struct
 let x = M.x + 1
 end;;
module Increment : functor (M : X_int) -> X_int

OCaml Utop ∗ functors/main.topscript , continued (part 1) ∗ all code

One thing that immediately jumps out is that functors are more syntactically heavyweight than

ordinary functions. For one thing, functors require explicit (module) type annotations, which

ordinary functions do not. Technically, only the type on the input is mandatory, although in

practice, you should usually constrain the module returned by the functor, just as you should use

an mli, even though it's not mandatory.

The following shows what happens when we omit the module type for the output of the functor:

module Increment (M : X_int) = struct
 let x = M.x + 1
 end;;
module Increment : functor (M : X_int) -> sig val x : int end

OCaml Utop ∗ functors/main.topscript , continued (part 2) ∗ all code

We can see that the inferred module type of the output is now written out explicitly, rather than

being a reference to the named signature X_int.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 2/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

We can use Increment to de�ne new modules:

module Three = struct let x = 3 end;;
module Three : sig val x : int end
module Four = Increment(Three);;
module Four : sig val x : int end
Four.x - Three.x;;
- : int = 1

OCaml Utop ∗ functors/main.topscript , continued (part 3) ∗ all code

In this case, we applied Increment to a module whose signature is exactly equal to X_int. But we

can apply Increment to any module that satis�es the interface X_int, in the same way that the

contents of an ml �le must satisfy the mli. That means that the module type can omit some

information available in the module, either by dropping �elds or by leaving some �elds abstract.

Here's an example:

module Three_and_more = struct
 let x = 3
 let y = "three"
 end;;
module Three_and_more : sig val x : int val y : string end
module Four = Increment(Three_and_more);;
module Four : sig val x : int end

OCaml Utop ∗ functors/main.topscript , continued (part 4) ∗ all code

The rules for determining whether a module matches a given signature are similar in spirit to the

rules in an object-oriented language that determine whether an object satis�es a given interface.

As in an object-oriented context, the extra information that doesn't match the signature you're

looking for (in this case, the variable y) is simply ignored.

A BIGGER EXAMPLE: COMPUTING WITH INTERVALSA BIGGER EXAMPLE: COMPUTING WITH INTERVALS

Let's consider a more realistic example of how to use functors: a library for computing with

intervals. Intervals are a common computational object, and they come up in di�erent contexts

and for di�erent types. You might need to work with intervals of �oating-point values or strings

or times, and in each of these cases, you want similar operations: testing for emptiness, checking

for containment, intersecting intervals, and so on.

Let's see how to use functors to build a generic interval library that can be used with any type

that supports a total ordering on the underlying set over which you want to build intervals.

First we'll de�ne a module type that captures the information we'll need about the endpoints of

the intervals. This interface, which we'll call Comparable, contains just two things: a comparison

function and the type of the values to be compared:

module type Comparable = sig
 type t
 val compare : t -> t -> int
 end ;;
module type Comparable = sig type t val compare : t -> t -> int end

OCaml Utop ∗ functors/main.topscript , continued (part 5) ∗ all code

The comparison function follows the standard OCaml idiom for such functions, returning 0 if the

two elements are equal, a positive number if the �rst element is larger than the second, and a

negative number if the �rst element is smaller than the second. Thus, we could rewrite the

standard comparison functions on top of compare.

compare x y < 0 (* x < y *)
compare x y = 0 (* x = y *)
compare x y > 0 (* x > y *)

OCaml ∗ functors/compare_example.ml ∗ all code

(This idiom is a bit of a historical error. It would be better if compare returned a variant with

three cases for less than, greater than, and equal. But it's a well-established idiom at this point,

and unlikely to change.)

The functor for creating the interval module follows. We represent an interval with a variant type,

which is either Empty or Interval (x,y), where x and y are the bounds of the interval. In

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/compare_example.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 3/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

addition to the type, the body of the functor contains implementations of a number of useful

primitives for interacting with intervals:

module Make_interval(Endpoint : Comparable) = struct

 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty

 (** [create low high] creates a new interval from [low] to
 [high]. If [low > high], then the interval is empty *)
 let create low high =
 if Endpoint.compare low high > 0 then Empty
 else Interval (low,high)

 (** Returns true iff the interval is empty *)
 let is_empty = function
 | Empty -> true
 | Interval _ -> false

 (** [contains t x] returns true iff [x] is contained in the
 interval [t] *)
 let contains t x =
 match t with
 | Empty -> false
 | Interval (l,h) ->
 Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

 (** [intersect t1 t2] returns the intersection of the two input
 intervals *)
 let intersect t1 t2 =
 let min x y = if Endpoint.compare x y <= 0 then x else y in
 let max x y = if Endpoint.compare x y >= 0 then x else y in
 match t1,t2 with
 | Empty, _ | _, Empty -> Empty
 | Interval (l1,h1), Interval (l2,h2) ->
 create (max l1 l2) (min h1 h2)

 end ;;
module Make_interval :
 functor (Endpoint : Comparable) ->
 sig
 type t = Interval of Endpoint.t * Endpoint.t | Empty
 val create : Endpoint.t -> Endpoint.t -> t
 val is_empty : t -> bool
 val contains : t -> Endpoint.t -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 6) ∗ all code

We can instantiate the functor by applying it to a module with the right signature. In the following

code, rather than name the module �rst and then call the functor, we provide the functor input as

an anonymous module:

module Int_interval =
 Make_interval(struct
 type t = int
 let compare = Int.compare
 end);;
module Int_interval :
 sig
 type t = Interval of int * int | Empty
 val create : int -> int -> t
 val is_empty : t -> bool
 val contains : t -> int -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 7) ∗ all code

If the input interface for your functor is aligned with the standards of the libraries you use, then

you don't need to construct a custom module to feed to the functor. In this case, we can directly

use the Int or String modules provided by Core:

module Int_interval = Make_interval(Int) ;;
module Int_interval :
 sig
 type t = Make_interval(Core.Std.Int).t = Interval of int * int | Empty
 val create : int -> int -> t
 val is_empty : t -> bool

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 4/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 val contains : t -> int -> bool
 val intersect : t -> t -> t
 end
module String_interval = Make_interval(String) ;;
module String_interval :
 sig
 type t =
 Make_interval(Core.Std.String).t =
 Interval of string * string
 | Empty
 val create : string -> string -> t
 val is_empty : t -> bool
 val contains : t -> string -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 8) ∗ all code

This works because many modules in Core, including Int and String, satisfy an extended

version of the Comparable signature described previously. Such standardized signatures are

good practice, both because they make functors easier to use, and because they encourage

standardization that makes your codebase easier to navigate.

We can use the newly de�ned Int_interval module like any ordinary module:

let i1 = Int_interval.create 3 8;;
val i1 : Int_interval.t = Int_interval.Interval (3, 8)
let i2 = Int_interval.create 4 10;;
val i2 : Int_interval.t = Int_interval.Interval (4, 10)
Int_interval.intersect i1 i2;;
- : Int_interval.t = Int_interval.Interval (4, 8)

OCaml Utop ∗ functors/main.topscript , continued (part 9) ∗ all code

This design gives us the freedom to use any comparison function we want for comparing the

endpoints. We could, for example, create a type of integer interval with the order of the

comparison reversed, as follows:

module Rev_int_interval =
 Make_interval(struct
 type t = int
 let compare x y = Int.compare y x
 end);;
module Rev_int_interval :
 sig
 type t = Interval of int * int | Empty
 val create : int -> int -> t
 val is_empty : t -> bool
 val contains : t -> int -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 10) ∗ all code

The behavior of Rev_int_interval is of course di�erent from Int_interval:

let interval = Int_interval.create 4 3;;
val interval : Int_interval.t = Int_interval.Empty
let rev_interval = Rev_int_interval.create 4 3;;
val rev_interval : Rev_int_interval.t = Rev_int_interval.Interval (4, 3)

OCaml Utop ∗ functors/main.topscript , continued (part 11) ∗ all code

Importantly, Rev_int_interval.t is a di�erent type than Int_interval.t, even though its

physical representation is the same. Indeed, the type system will prevent us from confusing

them.

Int_interval.contains rev_interval 3;;
Characters 22-34:
Error: This expression has type Rev_int_interval.t
 but an expression was expected of type Int_interval.t

OCaml Utop ∗ functors/main.topscript , continued (part 12) ∗ all code

This is important, because confusing the two kinds of intervals would be a semantic error, and

it's an easy one to make. The ability of functors to mint new types is a useful trick that comes up a

lot.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 5/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Making the Functor AbstractMaking the Functor Abstract

There's a problem with Make_interval. The code we wrote depends on the invariant that the

upper bound of an interval is greater than its lower bound, but that invariant can be violated. The

invariant is enforced by the create function, but because Interval.t is not abstract, we can

bypass the create function:

Int_interval.is_empty (* going through create *)
 (Int_interval.create 4 3) ;;
- : bool = true
Int_interval.is_empty (* bypassing create *)
 (Int_interval.Interval (4,3)) ;;
- : bool = false

OCaml Utop ∗ functors/main.topscript , continued (part 13) ∗ all code

To make Int_interval.t abstract, we need to restrict the output of Make_interval with an

interface. Here's an explicit interface that we can use for that purpose:

module type Interval_intf = sig
 type t
 type endpoint
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end;;
module type Interval_intf =
 sig
 type t
 type endpoint
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 14) ∗ all code

This interface includes the type endpoint to give us a way of referring to the endpoint type.

Given this interface, we can redo our de�nition of Make_interval. Notice that we added the type

endpoint to the implementation of the module to match Interval_intf:

module Make_interval(Endpoint : Comparable) : Interval_intf = struct
 type endpoint = Endpoint.t
 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty

 ...

 end ;;
 module Make_interval : functor (Endpoint : Comparable) -> Interval_intf

OCaml Utop ∗ functors/main-15.rawscript ∗ all code

Sharing ConstraintsSharing Constraints

The resulting module is abstract, but it's unfortunately too abstract. In particular, we haven't

exposed the type endpoint, which means that we can't even construct an interval anymore:

module Int_interval = Make_interval(Int);;
module Int_interval :
 sig
 type t = Make_interval(Core.Std.Int).t
 type endpoint = Make_interval(Core.Std.Int).endpoint
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end
Int_interval.create 3 4;;
Characters 20-21:
Error: This expression has type int but an expression was expected of type
 Int_interval.endpoint

OCaml Utop ∗ functors/main.topscript , continued (part 16) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main-15.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 6/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

To �x this, we need to expose the fact that endpoint is equal to Int.t (or more generally,

Endpoint.t, where Endpoint is the argument to the functor). One way of doing this is through a

sharing constraint, which allows you to tell the compiler to expose the fact that a given type is

equal to some other type. The syntax for a simple sharing constraint is as follows:

<Module_type> with type <type> = <type'>

Syntax ∗ functors/sharing_constraint.syntax ∗ all code

The result of this expression is a new signature that's been modi�ed so that it exposes the fact

that type de�ned inside of the module type is equal to type' whose de�nition is outside of it.

One can also apply multiple sharing constraints to the same signature:

<Module_type> with type <type1> = <type1'> and <type2> = <type2'>

Syntax ∗ functors/multi_sharing_constraint.syntax ∗ all code

We can use a sharing constraint to create a specialized version of Interval_intf for integer

intervals:

module type Int_interval_intf =
 Interval_intf with type endpoint = int;;
module type Int_interval_intf =
 sig
 type t
 type endpoint = int
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 17) ∗ all code

We can also use sharing constraints in the context of a functor. The most common use case is

where you want to expose that some of the types of the module being generated by the functor

are related to the types in the module fed to the functor.

In this case, we'd like to expose an equality between the type endpoint in the new module and

the type Endpoint.t, from the module Endpoint that is the functor argument. We can do this as

follows:

module Make_interval(Endpoint : Comparable)
 : (Interval_intf with type endpoint = Endpoint.t)
 = struct

 type endpoint = Endpoint.t
 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty

 ...

 end ;;
module Make_interval :
 functor (Endpoint : Comparable) ->
 sig
 type t
 type endpoint = Endpoint.t
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main-18.rawscript ∗ all code

So now, the interface is as it was, except that endpoint is known to be equal to Endpoint.t. As a

result of that type equality, we can again do things that require that endpoint be exposed, like

constructing intervals:

module Int_interval = Make_interval(Int);;
module Int_interval :
 sig
 type t = Make_interval(Core.Std.Int).t
 type endpoint = int
 val create : endpoint -> endpoint -> t

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/sharing_constraint.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/multi_sharing_constraint.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main-18.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 7/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 end
let i = Int_interval.create 3 4;;
val i : Int_interval.t = <abstr>
Int_interval.contains i 5;;
- : bool = false

OCaml Utop ∗ functors/main.topscript , continued (part 19) ∗ all code

Destructive SubstitutionDestructive Substitution

Sharing constraints basically do the job, but they have some downsides. In particular, we've now

been stuck with the useless type declaration of endpoint that clutters up both the interface and

the implementation. A better solution would be to modify the Interval_intf signature by

replacing endpoint with Endpoint.t everywhere it shows up, and deleting the de�nition of

endpoint from the signature. We can do just this using what's called destructive substitution.

Here's the basic syntax:

<Module_type> with type <type> := <type'>

Syntax ∗ functors/destructive_sub.syntax ∗ all code

The following shows how we could use this with Make_interval:

module type Int_interval_intf =
 Interval_intf with type endpoint := int;;
module type Int_interval_intf =
 sig
 type t
 val create : int -> int -> t
 val is_empty : t -> bool
 val contains : t -> int -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 20) ∗ all code

There's now no endpoint type: all of its occurrences of have been replaced by int. As with

sharing constraints, we can also use this in the context of a functor:

module Make_interval(Endpoint : Comparable)
 : Interval_intf with type endpoint := Endpoint.t =
 struct

 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty

 ...

 end ;;
 module Make_interval :
 functor (Endpoint : Comparable) ->
 sig
 type t
 val create : Endpoint.t -> Endpoint.t -> t
 val is_empty : t -> bool
 val contains : t -> Endpoint.t -> bool
 val intersect : t -> t -> t
 end

OCaml Utop ∗ functors/main-21.rawscript ∗ all code

The interface is precisely what we want: the type t is abstract, and the type of the endpoint is

exposed; so we can create values of type Int_interval.t using the creation function, but not

directly using the constructors and thereby violating the invariants of the module:

module Int_interval = Make_interval(Int);;
module Int_interval :
 sig
 type t = Make_interval(Core.Std.Int).t
 val create : int -> int -> t
 val is_empty : t -> bool
 val contains : t -> int -> bool
 val intersect : t -> t -> t
 end

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/destructive_sub.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main-21.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 8/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Int_interval.is_empty
 (Int_interval.create 3 4);;
- : bool = false
Int_interval.is_empty
 (Int_interval.Interval (4,3));;
Characters 40-48:
Error: Unbound constructor Int_interval.Interval

OCaml Utop ∗ functors/main.topscript , continued (part 22) ∗ all code

In addition, the endpoint type is gone from the interface, meaning we no longer need to de�ne

the endpoint type alias in the body of the module.

It's worth noting that the name is somewhat misleading, in that there's nothing destructive about

destructive substitution; it's really just a way of creating a new signature by transforming an

existing one.

Using Multiple InterfacesUsing Multiple Interfaces

Another feature that we might want for our interval module is the ability to serialize, i.e., to be

able to read and write intervals as a stream of bytes. In this case, we'll do this by converting to

and from s-expressions, which were mentioned already in Chapter 7, Error Handling. To recall,

an s-expression is essentially a parenthesized expression whose atoms are strings, and it is a

serialization format that is used commonly in Core. Here's an example:

Sexp.of_string "(This is (an s-expression))";;
- : Sexp.t = (This is (an s-expression))

OCaml Utop ∗ functors/main.topscript , continued (part 23) ∗ all code

Core comes with a syntax extension called Sexplib which can autogenerate s-expression

conversion functions from a type declaration. Attaching with sexp to a type de�nition signals to

the extension to generate the converters. Thus, we can write:

type some_type = int * string list with sexp;;
type some_type = int * string list
val some_type_of_sexp : Sexp.t -> int * string list = <fun>
val sexp_of_some_type : int * string list -> Sexp.t = <fun>
sexp_of_some_type (33, ["one"; "two"]);;
- : Sexp.t = (33 (one two))
Sexp.of_string "(44 (five six))" |> some_type_of_sexp;;
- : int * string list = (44, ["five"; "six"])

OCaml Utop ∗ functors/main.topscript , continued (part 24) ∗ all code

We'll discuss s-expressions and Sexplib in more detail in Chapter 17, Data Serialization with S-

Expressions, but for now, let's see what happens if we attach the with sexp declaration to the

de�nition of t within the functor:

module Make_interval(Endpoint : Comparable)
 : (Interval_intf with type endpoint := Endpoint.t) = struct

 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty
 with sexp

 ...

 end ;;
 Characters 136-146:
 Error: Unbound value Endpoint.t_of_sexp

OCaml Utop ∗ functors/main-25.rawscript ∗ all code

The problem is that with sexp adds code for de�ning the s-expression converters, and that code

assumes that Endpoint has the appropriate sexp-conversion functions for Endpoint.t. But all

we know about Endpoint is that it satis�es the Comparable interface, which doesn't say anything

about s-expressions.

Happily, Core comes with a built-in interface for just this purpose called Sexpable, which is

de�ned as follows:

module type Sexpable = sig
 type t
 val sexp_of_t : t -> Sexp.t

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
http://github.com/realworldocaml/examples/blob/master/code/functors/main-25.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 9/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 val t_of_sexp : Sexp.t -> t
end

OCaml ∗ functors/sexpable.ml ∗ all code

We can modify Make_interval to use the Sexpable interface, for both its input and its output.

First, let's create an extended version of the Interval_intf interface that includes the functions

from the Sexpable interface. We can do this using destructive substitution on the Sexpable

interface, to avoid having multiple distinct type t's clashing with each other:

module type Interval_intf_with_sexp = sig
 include Interval_intf
 include Sexpable with type t := t
 end;;
module type Interval_intf_with_sexp =
 sig
 type t
 type endpoint
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 26) ∗ all code

Equivalently, we can de�ne a type t within our new module, and apply destructive substitutions

to all of the included interfaces, Interval_intf included, as shown in the following example.

This is somewhat cleaner when combining multiple interfaces, since it correctly re�ects that all

of the signatures are being handled equivalently:

module type Interval_intf_with_sexp = sig
 type t
 include Interval_intf with type t := t
 include Sexpable with type t := t
 end;;
module type Interval_intf_with_sexp =
 sig
 type t
 type endpoint
 val create : endpoint -> endpoint -> t
 val is_empty : t -> bool
 val contains : t -> endpoint -> bool
 val intersect : t -> t -> t
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 27) ∗ all code

Now we can write the functor itself. We have been careful to override the sexp converter here to

ensure that the data structure's invariants are still maintained when reading in from an s-

expression:

module Make_interval(Endpoint : sig
 type t
 include Comparable with type t := t
 include Sexpable with type t := t
 end)
 : (Interval_intf_with_sexp with type endpoint := Endpoint.t)
 = struct

 type t = | Interval of Endpoint.t * Endpoint.t
 | Empty
 with sexp

 (** [create low high] creates a new interval from [low] to
 [high]. If [low > high], then the interval is empty *)
 let create low high =
 if Endpoint.compare low high > 0 then Empty
 else Interval (low,high)

 (* put a wrapper around the autogenerated [t_of_sexp] to enforce
 the invariants of the data structure *)
 let t_of_sexp sexp =
 match t_of_sexp sexp with
 | Empty -> Empty
 | Interval (x,y) -> create x y

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/sexpable.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 10/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 (** Returns true iff the interval is empty *)
 let is_empty = function
 | Empty -> true
 | Interval _ -> false

 (** [contains t x] returns true iff [x] is contained in the
 interval [t] *)
 let contains t x =
 match t with
 | Empty -> false
 | Interval (l,h) ->
 Endpoint.compare x l >= 0 && Endpoint.compare x h <= 0

 (** [intersect t1 t2] returns the intersection of the two input
 intervals *)
 let intersect t1 t2 =
 let min x y = if Endpoint.compare x y <= 0 then x else y in
 let max x y = if Endpoint.compare x y >= 0 then x else y in
 match t1,t2 with
 | Empty, _ | _, Empty -> Empty
 | Interval (l1,h1), Interval (l2,h2) ->
 create (max l1 l2) (min h1 h2)
 end;;
module Make_interval :
 functor
 (Endpoint : sig
 type t
 val compare : t -> t -> int
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 end) ->
 sig
 type t
 val create : Endpoint.t -> Endpoint.t -> t
 val is_empty : t -> bool
 val contains : t -> Endpoint.t -> bool
 val intersect : t -> t -> t
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 end

OCaml Utop ∗ functors/main.topscript , continued (part 28) ∗ all code

And now, we can use that sexp converter in the ordinary way:

module Int_interval = Make_interval(Int) ;;
module Int_interval :
 sig
 type t = Make_interval(Core.Std.Int).t
 val create : int -> int -> t
 val is_empty : t -> bool
 val contains : t -> int -> bool
 val intersect : t -> t -> t
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 end
Int_interval.sexp_of_t (Int_interval.create 3 4);;
- : Sexp.t = (Interval 3 4)
Int_interval.sexp_of_t (Int_interval.create 4 3);;
- : Sexp.t = Empty

OCaml Utop ∗ functors/main.topscript , continued (part 29) ∗ all code

EXTENDING MODULESEXTENDING MODULES

Another common use of functors is to generate type-speci�c functionality for a given module in a

standardized way. Let's see how this works in the context of a functional queue, which is just a

functional version of a FIFO (�rst-in, �rst-out) queue. Being functional, operations on the queue

return new queues, rather than modifying the queues that were passed in.

Here's a reasonable mli for such a module:

type 'a t

val empty : 'a t

(** [enqueue el q] adds [el] to the back of [q] *)
val enqueue : 'a t -> 'a -> 'a t

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 11/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(** [dequeue q] returns None if the [q] is empty, otherwise returns
 the first element of the queue and the remainder of the queue *)
val dequeue : 'a t -> ('a * 'a t) option

(** Folds over the queue, from front to back *)
val fold : 'a t -> init:'acc -> f:('acc -> 'a -> 'acc) -> 'acc

OCaml ∗ functors/fqueue.mli ∗ all code

The preceding Fqueue.fold function requires some explanation. It follows the same pattern as

the List.fold function we described in the section called “Using the List Module E�ectively”.

Essentially, Fqueue.fold q ~init ~f walks over the elements of q from front to back, starting

with an accumulator of init and using f to update the accumulator value as it walks over the

queue, returning the �nal value of the accumulator at the end of the computation. fold is a quite

powerful operation, as we'll see.

We'll implement Fqueue the well known trick of maintaining an input and an output list so that

one can e�ciently enqueue on the input list and e�ciently dequeue from the output list. If you

attempt to dequeue when the output list is empty, the input list is reversed and becomes the new

output list. Here's the implementation:

open Core.Std

type 'a t = 'a list * 'a list

let empty = ([],[])

let enqueue (in_list, out_list) x =
 (x :: in_list,out_list)

let dequeue (in_list, out_list) =
 match out_list with
 | hd :: tl -> Some (hd, (in_list, tl))
 | [] ->
 match List.rev in_list with
 | [] -> None
 | hd :: tl -> Some (hd, ([], tl))

let fold (in_list, out_list) ~init ~f =
 let after_out = List.fold ~init ~f out_list in
 List.fold_right ~init:after_out ~f:(fun x acc -> f acc x) in_list

OCaml ∗ functors/fqueue.ml ∗ all code

One problem with Fqueue is that the interface is quite skeletal. There are lots of useful helper

functions that one might want that aren't there. The List module, by way of contrast, has

functions like List.iter, which runs a function on each element; and List.for_all, which

returns true if and only if the given predicate evaluates to true on every element of the list. Such

helper functions come up for pretty much every container type, and implementing them over

and over is a dull and repetitive a�air.

As it happens, many of these helper functions can be derived mechanically from the fold

function we already implemented. Rather than write all of these helper functions by hand for

every new container type, we can instead use a functor to add this functionality to any container

that has a fold function.

We'll create a new module, Foldable, that automates the process of adding helper functions to a

fold-supporting container. As you can see, Foldable contains a module signature S which

de�nes the signature that is required to support folding; and a functor Extend that allows one to

extend any module that matches Foldable.S:

open Core.Std

module type S = sig
 type 'a t
 val fold : 'a t -> init:'acc -> f:('acc -> 'a -> 'acc) -> 'acc
end

module type Extension = sig
 type 'a t
 val iter : 'a t -> f:('a -> unit) -> unit
 val length : 'a t -> int
 val count : 'a t -> f:('a -> bool) -> int
 val for_all : 'a t -> f:('a -> bool) -> bool
 val exists : 'a t -> f:('a -> bool) -> bool
end

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/fqueue.mli
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html#using-the-list-module-effectively
http://github.com/realworldocaml/examples/blob/master/code/functors/fqueue.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 12/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(* For extending a Foldable module *)
module Extend(Arg : S)
 : (Extension with type 'a t := 'a Arg.t) =
struct
 open Arg

 let iter t ~f =
 fold t ~init:() ~f:(fun () a -> f a)

 let length t =
 fold t ~init:0 ~f:(fun acc _ -> acc + 1)

 let count t ~f =
 fold t ~init:0 ~f:(fun count x -> count + if f x then 1 else 0)

 exception Short_circuit

 let for_all c ~f =
 try iter c ~f:(fun x -> if not (f x) then raise Short_circuit); true
 with Short_circuit -> false

 let exists c ~f =
 try iter c ~f:(fun x -> if f x then raise Short_circuit); false
 with Short_circuit -> true
end

OCaml ∗ functors/foldable.ml ∗ all code

Now we can apply this to Fqueue. We can create an interface for an extended version of Fqueue

as follows:

type 'a t
include (module type of Fqueue) with type 'a t := 'a t
include Foldable.Extension with type 'a t := 'a t

OCaml ∗ functors/extended_fqueue.mli ∗ all code

In order to apply the functor, we'll put the de�nition of Fqueue in a submodule called T, and then

call Foldable.Extend on T:

include Fqueue
include Foldable.Extend(Fqueue)

OCaml ∗ functors/extended_fqueue.ml ∗ all code

Core comes with a number of functors for extending modules that follow this same basic pattern,

including:

Container.Make

Very similar to Foldable.Extend.

Comparable.Make

Adds support for functionality that depends on the presence of a comparison function, including

support for containers like maps and sets.

Hashable.Make

Adds support for hashing-based data structures including hash tables, hash sets, and hash heaps.

Monad.Make

For so-called monadic libraries, like those discussed in Chapters 7 and 18. Here, the functor is

used to provide a collection of standard helper functions based on the bind and return

operators.

These functors come in handy when you want to add the same kind of functionality that is

commonly available in Core to your own types.

We've really only covered some of the possible uses of functors. Functors are really a quite

powerful tool for modularizing your code. The cost is that functors are syntactically heavyweight

compared to the rest of the language, and that there are some tricky issues you need to

understand to use them e�ectively, with sharing constraints and destructive substitution being

high on that list.

All of this means that for small and simple programs, heavy use of functors is probably a mistake.

But as your programs get more complicated and you need more e�ective modular architectures,

functors become a highly valuable tool.

< Previous< Previous Next >Next >

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/functors/foldable.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/extended_fqueue.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/functors/extended_fqueue.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html

15/01/2019 Chapter 9. Functors / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/functors.html 13/13

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffunctors.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml

