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Preface

Algorithmic jdeas are pervasive, and their reach is apparent in examples both
within computer science and beyond. Some of the major shifts in Internet
routing standards can be viewed as debates over the deficiencies of one
shortest-path algorithm and the relative advantages of another. The basic
notions used by biologists to express similarities among genes and genomes
have algorithmic definitions. The concerns voiced by economists over the
feasibility of combinatorial auctions in practice are rooted partly in the fact that
these auctions contain computationally intractable search problems as special
cases. And algorithmic notions aren’t just restricted to well-known and long-
standing problems; one sees the reflections of these ideas on a regular basis,
in novel issues arising across a wide range of areas. The scientist from Yahoo!
who told us over lunch one day about their system for serving ads to users was
describing a set of issues that, deep down, could be modeled as a network flow
problem. So was the former student, now a management consultant working
on staffing protocols for large hospitals, whom we happened to meet on a trip
to New York City.

The point is not simply that algorithms have many applications. The
deeper issue is that the subject of algorithms is a powerful lens through which
to view the field of computer science in general. Algorithmic problems form
the heart of computer science, but they rarely arrive as cleanly packaged,
mathematically precise questions. Rather, they tend to come bundled together
with lots of messy, application-specific detail, some of it essential, some of it
extraneous. As a result, the algorithmic enterprise consists of two fundamental
components: the task of getting to the mathematically clean core of a problem,
and then the task of identifying the appropriate algorithm design techniques,
based on the structure of the problem. These two components interact: the
more comfortable one is with the full array of possible design techniques,
the more one starts to recognize the clean formulations that lie within messy
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problems out in the world. At their most effective, then, algorithmic ideas do
not just provide solutions to well-posed problems; they form the language that
lets you cleanly express the underlying questions.

The goal of our book is to convey this approach to algorithms, as a design
process that begins with problems arising across the full range of computing
applications, builds on an understanding of algorithm design techniques, and
results in the development of efficient solutions to these problems. We seek
to explore the role of algorithmic ideas in computer science generally, and
relate these ideas to the range of precisely formulated problems for which we
cari design and analyze algorithms. In other words, what are the underlying
issues that motivate these problems, and how did we choose these particular
ways of formulating them? How did we recognize which design principles were
appropriate in different situations?

In keeping with this, our goal is to offer advice on how to identify clean
algorithmic problem formulations in complex issues from different areas of
computing and, from this, how to design efficient algorithms for the resulting

problems. Sophisticated algorithms are ofien best understood by reconstruct- -

ing the sequence of ideas—including false starts and dead ends—that led from
simpler initial approaches to the eventual solution. The result is a style of ex-
position that does not take the most direct route from problem statement to
algorithm, but we feel it better reflects the way that we and our colleagues
genuinely think about these questions.

Overview

The book is intended for students who have completed a programming-
based two-semester introductory computer science sequence (the standard
“CS1/CS2” courses) in which they have written programs that implement
basic algorithms, manipulate discrete structures such as trees and graphs, and
apply basic data structures such as arrays, lists, queues, and stacks. Since
the interface between CS1/CS2 and a first algorithms course is not entirely
standard, we begin the book with self-contained coverage of topics that at
some institutions are familiar to students from CS1/CS2, but which at other
institutions are included in the syllabi of the first algorithms course. This
material can thus be treated either as a review or as new material; by including
it, we hope the book can be used in a broader array of courses, and with more
flexibility in the prerequisite knowledge that is assumed.

In keeping with the approach outlined above, we develop the basic algo-
rithm design techniques by drawing on problems from across many areas of
computer science and related fields. To mention a few representative examples
here, we include fairly detailed discussions of applications from systems and
networks (caching, switching, interdomain routing on the Internet), artificial
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intelligence (planning, game playing, Hopfield networks), computer vision
(image segmentation), data mining (change-point detection, clustering), op-
erations research (airline scheduling}, and computational biology (sequence
alignment, RNA secondary structure).

The notion of computational intractability, and NP-completeness in par-
ticular, plays a large role in the book. This is consistent with how we think
about the overall process of algorithm design. Some of the time, an interest-
ing problem arising in an application area will be amenable to an efficient
solution, and some of the time it will be provably NP-complete; in order to
fully address a new algorithmic problem, one should be able to explore both
of these options with equal familiarity. Since so many natural problems in
computer science are NP-complete, the development of methods to deal with
intractable problems has become a crucial issue in the study of algorithms,
and our book heavily reflects this theme. The discovery that a problem is NP-
complete should not be taken as the end of the story, but as an invitation to
begin looking for approximation algorithms, heuristic local search techniques,
or tractable special cases. We include extensive coverage of each of these three
approaches.

Problems and Solved Exercises

An important feature of the book is the collection of problems. Across all
chapters, the book includes over 200 problems, almost all of them developed
and class-tested in homework or exams as part of our teaching of the course
at Cornell. We view the problems as a crucial component of the book, and
they are structured in keeping with our overall approach to the material. Most
of them consist of extended verbal descriptions of a problem arising in an
application area in computer science or elsewhere out in the world, and part of
the problem is to practice what we discuss in the text: setting up the necessary
notation and formalization, designing an algorithm, and then analyzing it and
proving it correct. (We view a complete answer to one of these problems as
consisting of all these components: a fully explained algorithm, an analysis of
the running time, and a proof of correctness.) The ideas for these problems
come in large part from discussions we have had over the years with people
working in different areas, and in some cases they serve the dual purpose of
recording an interesting (though manageable) application of algorithms that
we haven’t seen written down anywhere else.

To help with the process of working on these problems, we include in
each chapter a section entitled “Solved Exercises,” where we take one or more
problems and describe how to go about formulating a solution. The discussion
devoted to each solved exercise is therefore significantly longer than what
would be needed simply to write a complete, correct solution (in other words,

XV
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significantly longer than what it would take to receive full credit if these were
being assigned as homework problems). Rather, as with the rest of the text,
the discussions in these sections should be viewed as trying to give a sense
of the larger process by which one might think about problems of this type,
culminating in the specification of a precise solution.

It is worth mentioning two points concerning the use of these problems
as homework in a course. First, the problems are sequenced roughly in order
of increasing difficulty, but this is only an approximate guide and we advise
against placing too much weight on it: since the bulk of the problems were
designed as homework for our undergraduate class, large subsets of the
problems in each chapter are really closely comparable in terms of difficulty.
Second, aside from the lowest-numbered ones, the problems are designed to
involve some investment of time, both to relate the problem description to the
algorithmic techniques in the chapter, and then to actually design the necessary
algorithm. In our undergraduate class, we have tended to assign roughly three
of these problems per week.

Pedagogical Features and Supplements

In addition to the problems and solved exercises, the book has a number of
further pedagogical features, as well as additional supplements to facilitate its
use for teaching.

As noted earlier, a large number of the sections in the book are devoted
to the formulation of an algorithmic problem—including its background and
underlying motivation—and the design and analysis of an algorithm for this
problem. To reflect this style, these sections are consistently structured around
a sequence of subsections: “The Problem,” where the problem is described
and a precise formulation is worked out; “Designing the Algorithm,” where
the appropriate design technique is employed to develop an algorithm; and
“Analyzing the Algorithm,” which proves properties of the algorithm and
analyzes its efficiency. These subsections are highlighted in the text with an
icon depicting a feather. In cases where extensions to the problem or further
analysis of the algorithm is pursued, there are additional subsections devoted
to these issues. The goal of this structure is to offer a relatively uniform style
of presentation that moves from the initial discussion of a problem arising in a
computing application through to the detailed analysis of a method to solve it.

A number of supplements are available in support of the book itself. An
instructor’s manual works through all the problems, providing full solutions to
each. A set of lecture slides, developed by Kevin Wayne of Princeton University,
is also available; these slides follow the order of the book’s sections and can
thus be used as the foundation for lectures in a course based on the book. These
files are available at www.aw.com. For instructions on obtaining a professor
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login and password, search the site for either “Kleinberg” or “Tardos” or
contact your local Addison-Wesley representative.

Finally, we would appreciate receiving feedback on the book. In particular,
as in any book of this length, there are undoubtedly errors that have remained
in the final version. Comments and reports of errors can be sent to us by e-mail,
at the address algbook@cs.cornell.edu; please include the word “feedback”
in the subject line of the message.

Chapter-by-Chapter Synopsis

Chapter 1 starts by introducing some representative algorithmic problems. We
begin immediately with the Stable Matching Problem, since we feel it sets
up the basic issues in algorithm design more concretely and more elegantly
than any abstract discussion could: stable matching is motivated by a natural
though complex real-world issue, from which one can abstract an interesting
problem statement and a surprisingly effective algorithm to solve this problem.
The remainder of Chapter 1 discusses a list of five “representative problems”
that foreshadow topics from the remainder of the course. These five problems
are interrelated in the sense that they are all variations and/or special cases
of the Independent Set Problem; but one is solvable by a greedy algorithm,
one by dynamic programming, one by network flow, one (the Independent
Set Problem itself) is NP-complete, and one is PSPACE-complete. The fact that
closely related problems can vary greatly in complexity is an important theme
of the book, and these five problems serve as milestones that reappear as the
bock progresses.

Chapters 2 and 3 cover the interface to the CS1/CS2 course sequence
mentioned earlier. Chapter 2 introduces the key mathematical definitions and
notations used for analyzing algorithms, as well as the motivating principles
behind them. It begins with an informal overview of what it means for a prob-
lem to be computationally tractable, together with the concept of polynomial
time as a formal notion of efficiency. It then discusses growth rates of func-
tions and asymptotic analysis more formally, and offers a guide to commonly
occurring functions in algorithm analysis, together with standard applications
in which they arise. Chapter 3 covers the basic definitions and algorithmic
primitives needed for working with graphs, which are central to so many of
the problems in the book. A number of basic graph algorithms are often im-
plemented by students late in the CS1/CS2 course sequence, but it is valuable
to present the material here in a broader algorithm design context. In par-
ticular, we discuss basic graph definitions, graph traversal techniques such
as breadth-first search and depth-first search, and directed graph concepts
including strong connectivity and topological ordering.

xvii
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Chapters 2 and 3 also present many of the basic data structures that will
be used for implementing algorithms throughout the book; more advanced
data structures are presented in subsequent chapters. Our approach to data
structures is to introduce them as they are needed for the implementation of
the algorithms being developed in the book. Thus, although many of the data
structures covered here will be familiar to students from the CS1 /CS2 sequence,
our focus is on these data structures in the broader context of algorithm design
and analysis.

Chapters 4 through 7 cover four major algorithm design techniques: greedy
algorithms, divide and conquer, dynamic programming, and network flow.
With greedy algorithms, the challenge is to recognize when they work and
when they don’t; our coverage of this topic is centered around a way of clas-
sifying the kinds of arguments used to prove greedy algorithms correct. This
chapter concludes with some of the main applications of greedy algorithms,
for shortest paths, undirected and directed spanning trees, clustering, and
compression. For divide and conquer, we begin with a discussion of strategies

for solving recurrence relations as bounds on running times; we then show -

how familiarity with these recurrences can guide the design of algorithms that
improve over straightforward approaches to a number of basic problems, in-
cluding the comparison of rankings, the computation of closest pairs of points
in the plane, and the Fast Fourier Transform. Next we develop dynamic pro-
gramming by starting with the recursive intuition behind it, and subsequently
building up more and more expressive recurrence formulations through appli-
cations in which they naturally arise. This chapter concludes with extended
discussions of the dynamic programming approach to two fundamental prob-
lems: sequence alignment, with applications in computational biology; and
shortest paths in graphs, with connections to Internet routing protocols. Fi-
nally, we cover algorithms for network flow problems, devoting much of our
focus in this chapter to discussing a large array of different flow applications.
To the extent that network flow is covered in algorithms courses, students are
often left without an appreciation for the wide range of problems to which it
can be applied; we try to do justice to its versatility by presenting applications
to load balancing, scheduling, image segmentation, and a number of other
problems.

Chapters 8 and 9 cover computational intractability. We devote most of
our attention to NP-completeness, organizing the basic NP-complete problems
thematically to help students recognize candidates for reductions when they
encounter new problems. We build up to some fairly complex proofs of NP-
completeness, with guidance on how one goes about constructing a difficult

Teduction. We also comsider types of computational hardness beyond NP-

completeness, particularly through the topic of PSPACE-completeness. We
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find this is a valuable way to emphasize that intractability doesn’t end at
NP-completeness, and PSPACE-completeness also forms the underpinning for
some central notions from artificial intelligence—planning and game playing—
that would otherwise not find a place in the algorithmic landscape we are
surveying.

Chapters 10 through 12 cover three major techniques for dealing with com-
putationally intractable problems: identification of structured special cases,
approximation algorithms, and local search heuristics. Qur chapter on tractable
special cases emphasizes that instances of NP-complete problems arising in
practice may not be nearly as hard as worst-case instances, because they often
contain some structure that can be exploited in the design of an efficient algo-

. rithm. We illustrate how NP-complete problems are often efficiently solvable

when restricted to tree-structured inputs, and we conclude with an extended
discussion of tree decompositions of graphs. While this topic is more suit-
able for a graduate course than for an undergraduate one, it is a technique
with considerable practical utility for which it is hard to find an existing
accessible reference for students. Our chapter on approximation algorithms
discusses both the process of designing effective algorithms and the task of
understanding the optimal solution well enough to obtain good bounds on it.
As design techniques for approximation algorithms, we focus on greedy algo-
rithms, linear programming, and a third method we refer to as “pricing,” which
incorporates ideas from each of the first two. Finally, we discuss local search
heuristics, including the Metropolis algorithm and simulated annealing. This
topic is often missing from undergraduate algorithms courses, because very
little is known in the way of provable guarantees for these algorithms; how-
ever, given their widespread use in practice, we feel it is valuable for students
to know something about them, and we also include some cases in which
guarantees can be proved.

Chapter 13 covers the use of randomization in the design of algorithms.
This is a topic on which several nice graduate-level books have been written.
Our goal here is to provide a more compact introduction to some of the
ways in which students can apply randomized techniques using the kind of
background in probability one typically gains from an undergraduate discrete
math course.

Use of the Book

The book is primarily designed for use in a first undergraduate course on
algorithms, but it can also be used as the basis for an introductory graduate
course.

When we use the book at the undergraduate level, we spend roughly
one lecture per numbered section; in cases where there is more than one
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lecture’s worth of material in a section (for example, when a section provides
further applications as additional examples), we treat this extra material as a
supplement that students can read about outside of lecture. We skip the starred
sections; while these sections contain important topics, they are less central
to the development of the subject, and in some cases they are harder as well.
We also tend to skip one or two other sections per chapter in the first half of
the book (for example, we tend to skip Sections 4.3, 4.7-4.8, 5.5-5.6, 6.5, 7.6,
and 7.11). We cover roughly half of each of Chapters 11-13.

This last point is worth emphasizing: rather than viewing the later chapters
as “advanced.” and hence off-limits to undergraduate algorithms courses, we
have designed them with the goal that the first few sections of each should
be accessible to an undergraduate audience. Our own undergraduate course
involves material from all these chapters, as we feel that all of these topics
have an important place at the undergraduate level.

Finally, we treat Chapters 2 and 3 primarily as a review of material from
earlier courses; but, as discussed above, the use of these two chapters depends
heavily on the relationship of each specific course to its prerequisites.

The resulting syllabus looks roughly as follows: Chapter 1; Chapters 4-8
(excluding 4.3, 4.7-4.9, 5.5-5.6, 6.5, 6.10, 7.4, 7.6, 7.11, and 7.13); Chapter 9
(briefly); Chapter 10, Sections.10.1 and 10.2; Chapter 11, Sections 11.1, 11.2,
11.6, and 11.8; Chapter 12, Sections 12.1-12.3; and Chapter 13, Sections 13.1-
13.5.

The book also naturally supports an introductory graduate course on
algorithms. Our view of such a course is that it should introduce students
destined for research in all different areas to the important current themes in
algorithm design. Here we find the emphasis on formulating problems to be
useful as well, since students will soon be trying to define their own research
problems in many different subfields. For this type of course, we cover the
later topics in Chapters 4 and 6 (Sections 4.5-4.9 and 6.5-6.10), cover all of
Chapter 7 (moving more rapidly through the early sections), quickly cover NP-
completeness in Chapter 8 (since many beginning graduate students will have
seen this topic as undergraduates), and then spend the remainder of the time
on Chapters 10-13. Although our focus in an introductory graduate course is
on the more advanced sections, we find it useful for the students to have the
full book to consult for reviewing or filling in background knowledge, given
the range of different undergraduate backgrounds among the students in such
a course.

Finally, the book can be used to support self-study by graduate students,
researchers, or computer professionals who want to get a sense for how they
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might be able to use particular algorithm design techniques in the context of
their own work. A number of graduate students and colleagues have used
portions of the book in this way.
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the pop-cultural firmament. (It was probably just in our imaginations.) Now,
several years after the hype and stock prices have come back to earth, one can
appreciate that in some ways computer science was forever changed by this
period, and in other ways it has remained the same: the driving excitement
that has characterized the field since its early days is as strong and enticing as
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Introduction: Some
Representative Problems

1.1 A First Problem: Stable Matching

As an opening topic, we look at an algorithmic problem that nicely illustrates
many of the themes we will be emphasizing. It is motivated by some very
natural and practical concerns, and from these we formulate a clean and
simple statement of a problem. The algorithm to solve the problem is very
clean as well, and most of our work will be spent in proving that it is correct
and giving an acceptable bound on the amount of time it takes to terminate
with an answer. The problem itself—the Stable Matching Problem—has several
origins.

/ﬁ The Problem

The Stable Matching Problem originated, in part, in 1962, when David Gale
and Lloyd Shapley, two mathematical economists, asked the question: Could
one design a college admissions process, or a job recruiting process, that was
self-enforcing? What did they mean by this?

To set up the question, let’s first think informally about the kind of situation
that might arise as a group of friends, all juniors in college majoring in
computer science, begin applying to companies for summer internships. The
crux of the application process is the interplay between two different types
of parties: companies (the employers) and students (the applicants). Each
applicant has a preference ordering on companies, and each company—once
the applications come in—forms a preference ordering on its applicants. Based
on these preferences, companies extend offers to some of their applicants,
applicants choose which of their offers to accept, and people begin heading
off to their summer internships.
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Gale and Shapley considered the sorts of things that could start going
wrong with this process, in the absence of any mechanism to enforce the status
quo. Suppose, for example, that your friend Raj has just accepted a summer job
at the large telecommunications company CluNet. A few days later, the small
start-up company WebExodus, which had been dragging its feet on making a
few final decisions, calls up Raj and offers him a summer job as well. Now, Raj
actually prefers WebExodus to CluNet—won over perhaps by the laid-back,
anything-can-happen atmosphere—and so this new development may well
cause him to retract his acceptance of the CluNet offer and go to WebExodus
instead. Suddenly down one sumimer intern, CluNet offers a job to one of its
wait-listed applicants, who promptly retracts his previous acceptance of an
offer from the software giant Babelsoft, and the situation begins to spiral out
of control.

Things look just as bad, if not worse, from the other direction. Suppose

that Raj’s friend Chelsea, destined to go to Babelsoft but having just heard Raj’s
story, calls up the people at WebExodus and says, “You know, I'd really rather

spend the summer with you guys than at Babelsoft.” They find this very easy"

to believe; and furthermore, on looking at Chelsea’s application, they realize
that they would have rather hired her than some other student who actually
is scheduled to spend the summer at WebExodus. In this case, if WebExodus
were a slightly less scrupulous company, it might well find some way to retract
its offer to this other student and hire Chelsea instead.

Situations like this can rapidly generate a lot of chaos, and many people—
both applicants and employers—can end up unhappy with the process as well
as the outcome. What has gone wrong? One basic problem is that the process
is not self-enforcing—if people are allowed to act in their self-interest, then it
risks breaking down.

We might well prefer the following, more stable situation, in which self-

interest itself prevents offers from being retracted and redirected. Consider

another student, who has arranged to spend the summer at CluNet but calls
up WebExodus and reveals that he, too, would rather work for them. But in
this case, based on the offers already accepted, they are able to reply, “No, it
turns out that we prefer each of the students we’ve accepted to you, so we're
afraid there’s nothing we can do.” Or consider an employer, earnestly following
up with its top applicants who went elsewhere, being told by each of them,
“No, I’'m happy where I am.” In such a case, all the outcomes are stable—there
are no further outside deals that can be made.

So this is the question Gale and Shapley asked: Given a set of preferences
among employers and applicants, can we assign applicants to employers so
that for every employer E, and every applicant A who is not scheduled to work
for E, at least one of the following two things is the case?

1.1 A First Problem: Stable Matching

(i) E prefers every one of its accepted applicants to A; or
(if) A prefers her current situation over working for employer E.

If this holds, the outcome is stable: individual self-interest will prevent any
applicant/employer deal from being made behind the scenes.

Gale and Shapley proceeded to develop a striking algorithmic solution to
this problem, which we will discuss presently. Before doing this, let’s note that
this is not the only origin of the Stable Matching Problem. It turns out that for
a decade before the work of Gale and Shapley, unbeknownst to them, the
National Resident Matching Program had been using a very similar procedure,
with the same underlying motivation, to match residents to hospitals. Indeed,
this system, with relatively little change, is still in use today.

This is one testament to the problem’s fundamental appeal. And from the
point of view of this book, it provides us with a nice first domain in which

to reason about some basic combinatorial definitions and the algorithms that
build on them.

Formulating the Problem To get at the essence of this concept, it helps to
make the problem as clean as possible. The world of companies and applicants
contains some distracting asymmetries. Each applicant is looking for a single
company, but each company is looking for many applicants; moreover, there
may be more (or, as is sometimes the case, fewer) applicants than there are

available slots for summer jobs. Finally, each applicant does not typically apply
to every company.

Itis useful, at least initially, to eliminate these complications and arrive at a
more “bare-bones” version of the problem: each of n applicants applies to each
of n companies, and each company wants to accept a single applicant. We will
see that doing this preserves the fundamental issues inherent in the problem;
in particular, our solution to this simplified version will extend directly to the
more general case as well.

Following Gale and Shapley, we observe that this special case can be
viewed as the problem of devising a system by which each of n men and
n women can end up getting married: our problem naturally has the analogue
of two “genders”—the applicants and the companies—and in the case we are

considering, everyone is seeking to be paired with exactly one individual of
the opposite gender.!

! Gale and Shapley considered the same-sex Stable Matching Problem as well, where there is only a
single gender. This is motivated by related applications, but it turns out to be fairly different at a

technical level. Given the applicant-employer application we're considering here, we’ll be focusing
on the version with two genders.
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So consider a set M = {my, ..., m,} of n men, and a set W= {w,, ..., wg}
of n women. Let M x W denaote the set of all possible ordered pairs of the form
(m,w), where m e M and w € W. A matching S is a set of ordered pairs, each
from M x W, with the property that each member of M and each member of
W appears in at most one pair in S. A perfect matching 5’ is a matching with
the property that each member of M and each member of W appears in exactly
one pair in §'.

Matchings and perfect matchings are objects that will recur frequently
throughout the book; they arise naturally in modeling a wide range of algo-
rithmic problems. In the present situation, a perfect matching corresponds
simply to a way of pairing off the men with the women, in such a way that
everyone ends up married to somebody, and nobody is married to more than
one person—there is neither singlehood nor polygamy.

‘Now we can add the notion of preferences to this setting. Each manm e M
ranks all the women; we will say that m prefers w to w' if m ranks w higher
than w’. We will refer to the ordered ranking of m as his preference list. We will
not allow ties in the ranking. Each woman, analogously, ranks all the men.

Given a perfect matching S, what can go wrong? Guided by our initial
motivation in terms of employers and applicants, we should be worried about
the following situation: There are two pairs (m,w) and (m',w’) in S (as
depicted in Figure 1.1) with the property that m prefers w’ to w, and w' prefers
m to m’. In this case, there’s nothing to stop m and w' from abandoning their
current partners and heading off together; the set of marriages is not self-
enforcing. We’ll say that such a pair (m, w') is an instability with respect to S:
(m,w') does not belong to S, but each of m and w’ prefers the other to their
partner in S.

Our goal, then, is a set of marriages with no instabilities. We’ll say that
a matching S is stable if (i) it is perfect, and (ii) there is no instability with
respect to S. Two questions spring immediately to mind: :

o Does there exist a stable matching for every set of preference lists?

o Given a set of preference lists, can we efficiently construct a stable
matching if there is one?

Some Examples To illustrate these definitions, consider the following two
very simple instances of the Stable Matching Problem.

First, suppose we have a set of two men, {m, m'}, and a set of two women,
{w, w'}. The preference lists are as follows:

m prefers w to w'.

m' prefers w to w'.
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w prefers m to m’.

w' prefers m to m’.

If we think about this set of preference lists intuitively, it represents complete
agreement: the men agree on the order of the women, and the women agree
on the order of the men. There is a unique stable matching here, consisting
of the pairs (m, w) and (m’, w'). The other perfect matching, consisting of the
pairs (', w) and (m, w'), would not be a stable matching, because the pair
(m, w) would form an instability with respect to this matching. (Both m and
w would want to leave their respective partners and pair up.)

Next, here’s an example where things are a bit more intricate. Suppose
the preferences are

m prefers w to w'.
m' prefers w' to w.
w prefers m’ to m.

w' prefers m to m’.

What’s going on in this case? The two men’s preferences mesh perfectly with
each other (they rank different women first), and the two women’s preferences
likewise mesh perfectly with each other. But the men’s preferences clash
completely with the women’s preferences.

In this second example, there are two different stable matchings. The
matching consisting of the pairs (m, w) and (m’, w') is stable, because both
men are as happy as possible, so neither would leave their matched partner.
But the matching consisting of the pairs (m’, w) and (m, w’) is also stable, for
the complementary reason that both women are as happy as possible. This is
an important point to remember as we go forward—it’s possible for an instance
to have more than one stable matching.

/A Designing the Algorithm

We now show that there exists a stable matching for every set of preference
lists among the men and women. Moreover, our means of showing this will
also answer the second question that we asked above: we will give an efficient
algorithm that takes the preference lists and constructs a stable matching.

Let us consider some of the basic ideas that.motivate the algorithm.

o Initially, everyone is unmarried. Suppose an unmarried man m chooses
the woman w who ranks highest on his preference list and proposes to
her. Can we declare immediately that (m, w) will be one of the pairs in our
final stable matching? Not necessarily: at some point in the future, a man
m’ whom w prefers may propose to her. On the other hand, it would be
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dangerous for w to reject m right away; she may never receive a proposal
Woman w will become from someone she ranks as highly as m. So a natural idea would be to

engaged fo m if she have the pair (m, w) enter an intermediate state—engagement.
prefers him to m’.

o Suppose we are now at a state in which some men and women are free—

Q not engaged—and some are engaged. The next step could look like this.

An arbitrary free man m chooses the highest-ranked woman w to whom

Q he has not yet proposéd, and he proposes to her. If w is also free, then m

(7 ) ( ) and w become engaged. Otherwise, w is already engaged to some other

man m’. In this case, she determines which of m or m’ ranks higher

Q-—————-O on her preference list; this man becomes engaged to w and the other
becomes free.

o Finally, the algorithm will terminate when no one is free; at this morgen?,

all engagements are declared final, and the resulting perfect matching is

returned.

: Here is a concrete description of the Gale-Shapley algorithm, with Fig-

Figure 1.2 An intermediate  ure 1.2 depicting a state of the algorithm.

state of the G-S algorithm

when a free man m is propos-
ing to a woman w. Tnitially all meM and weW are free

While there is a man m who is free and hasn't proposed to

every woman
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to whom m has not yet proposed
If w is free then
(m,w) become engaged
Else w is currently engaged to m’
If w prefers m’ to m then
m remains free
Else w prefers m to m’
(m, w) become engaged
m’ becomes free
Endif
Endif
Endwhile
Return the set § of engaged pairs

An intriguing thing is that, although the G-S algorithm is quite simple
to state, it is not immediately obvious that it returns a stable matching, or
even a perfect matching. We proceed to prove this now, through a sequence

of intermediate facts.

1.1 A First Problem: Stable Matching

/A% Analyzing the Algorithm

First consider the view of a woman w during the execution of the algorithm.
For a while, no one has proposed to her, and she is free. Then a man m may
propose to her, and she becomes engaged. As time goes on, she may receive
additional proposals, accepting those that increase the rank of her partner. So
we discover the following.

(1.1) w remains engaged from the point at which she receives her first
proposal; and the sequence of partners to which she is engaged gets better and
better (in terms of her preference list).

The view of a man m during the execution of the algorithm is rather
different. He is free until he proposes to the highest-ranked woman on his
list; at this point he may or may not become engaged. As time goes on, he
may alternate between being free and being engaged; however, the following
property does hold.

(1.2)  The sequence of women to whom m proposes gets worse and worse (in
terms of his preference list).

Now we show that the algorithm terminates, and give a bound on the
maximum number of iterations needed for termination.

(1.3) TheGS algoriihm terminates after at most n? iterations of the While
loop. :

Proof. A useful strategy for upper-bounding the running time of an algorithm,
as we are trying to do here, is to find a measure of progress. Namely, we seek
some precise way of saying that each step taken by the algorithm brings it
closer to termination.

In the case of the present algorithm, each iteration consists of some man
proposing (for the only time) to a woman he has never proposed to before. So
if we let P(t) denote the set of pairs (m, w) such that m has proposed to w by
the end of iteration ¢, we see that for all ¢, the size of P(t + 1) is strictly greater
than the size of P(t). But there are only n? possible pairs of men and women
in total, so the value of P(-) can increase at most n? times over the course of
the algorithm. It follows that there can be at most n? itetations. m

Two points are worth noting about the previous fact and its proof. First,
there are executions of the algorithm (with certain preference lists) that can
involve close to n? iterations, so this analysis is not far from the best possible.
Second, there are many quantities that would not have worked well as a
progress measure for the algorithm, since they need not strictly increase in each
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iteration. For example, the number of free individuals could remain constant
from one iteration to the next, as could the number of engaged pairs. Thus,
these quantities could not be used directly in giving an upper bound on the
maximum possible number of iterations, in the style of the previous paragraph.
Let us now establish that the set S returned at the termination of the
algorithm is in fact a perfect matching. Why is this not immediately obvious?
Essentially, we have to show that no man can “fall off” the end of his preference
list; the only way for the While loop to exit is for there to be no free man. In
this case, the set of engaged couples would indeed be a perfect matching.

So the main thing we need to show is the following.

(1.4) If mis free at some point in the execution of the algorithm, then there
is a wornan to whom he has not yet proposed.

Proof. Suppose there comes a point when m is free but has already proposed
to every woman. Then by (1.1), each of the n women is engaged at this point
in time. Since the set of engaged pairs forms a matching, there must also be
n engaged men at this point in time. But there are only n men total, and m is
not engaged, so this is a contradiction. =

(1.5) The set S returned at termination is a perfect matching.

Proof. The set of engaged pairs always forms a matching. Let us suppose that
the algorithm terminates with a free man m. At termination, it must be the
case that m had already proposed to every woman, for otherwise the While
loop would not have exited. But this contradicts (1.4), which says that there
cannot be a free man who has proposed to every woman. =

Finally, we prove the main property of the algorithm—namely, that it
results in a stable matching.

(1.6) Consider an execution of the G-S algorithm that returns a set of pairs
S. The set S is a stable matching.

Proof. We have already seen, in (1.5), that S is a perfect matching. Thus, to
prove S is a stable matching, we will assume that there is an instability with
respect to S and obtain a contradiction. As defined earlier, such an instability
would involve two pairs, (m, w) and (m’, w’), in S with the properties that

o m prefers w' to w, and

e w' prefers m to m’.

In the execution of the algorithm that produced S, m’s last proposal was, by
definition, to w. Now we ask: Did m propose to w' at some earlier point in
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this execution? If he didn’t, then w must occur higher on m’s preference list
than w', contradicting our assumption that m prefers w’ to w. If he did, then
he was rejected by w' in favor of some other man m”, whom w' prefers to m.
m’ is the final partner of w’, so either m” = m’ or, by (1.1), w’ prefers her final
partner mm’ to m”; either way this contradicts our assumption that w' prefers
mtom'.

It follows that S is a stable matching. =

Extensions

We began by defining the notion of a stable matching; we have just proven
that the G-S algorithm actually constructs one. We now consider some further
questions about the behavior of the G-S algorithm and its relation to the
properties of different stable matchings.

To begin with, recall that we saw an example earlier in which there could
be multiple stable matchings. To recap, the preference lists in this example
were as follows:

m prefers w to w'.
m’ prefers w’ to w.
w prefers m’ to m.

w' prefers m to m'.

Now, in any execution of the Gale-Shapley algorithm, m will become engaged
to w, m’ will become engaged to w’ (perhaps in the other order), and things
will stop there. Thus, the other stable matching, consisting of the pairs (m’, w)
and (m, w'), is not attainable from an execution of the G-S algorithm in which
the men propose. On the other hand, it would be reached if we ran a version of
the algorithm in which the women propose. And in larger examples, with more
than two people on each side, we can have an even larger collection of possible
stable matchings, many of them not achievable by any natural algorithm.

This example shows a certain “unfairness” in the G-S algorithm, favoring
men. If the men’s preferences mesh perfectly (they all list different women as
their first choice), then in all runs of the G-S algorithm all men end up matched
with their first choice, independent of the preferences of the women. If the
women’s preferences clash completely with the men’s preferences (as was the
case in this example), then the resulting stable matching is as bad as possible
for the women. So this simple set of preference lists compactly summarizes a
world in which someone is destined to end up unhappy: women are unhappy
if men propose, and men are unhappy if women propose.

Let’s now analyze the G-S algorithm in more detail and try to understand
how general this “unfairness” phenomenon is.
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To begin with, our example reinforces the point that the G-S algorithm
is actually underspecified: as long as there is a free man, we are allowed to
choose any free man to make the next proposal. Different choices specify
different executions of the algorithm; this is why, to be careful, we stated (1.6)
as “Consider an execution of the G-S algorithm that returns a set of pairs S,”
instead of “Consider the set S returned by the G-S algorithm.”

Thus, we encounter another very natural question: Do all executions of
the G-S algorithm yield the same matching? This is a genre of question that
arises in many settings in computer science: we have an algorithm that runs
asynchronously, with different independent components performing actions
that can be interleaved in complex ways, and we want o know how much
variability this asynchrony causes in the final outcome. To consider a very
different kind of example, the independent components may not be men and
women but electronic components activating parts of an airplane wing; the
effect of asynchrony in their behavior can be a big deal.

In the present context, we will see that the answer to our question is
surprisingly clean: all executions of the G-S algorithm yield the same matching.
We proceed to prove this now.

All Executions Yield the Same Matching There are a number of possible
ways to prove a statement such as this, many of which would result in quite
complicated arguments. It turns out that the easiest and most informative ap-
proach for us will be to uniquely characterize the matching that is obtained and
then show that all executions result in the matching with this characterization.

What is the characterization? We’ll show that each man ends up with the
“best possible partner” in a concrete sense. (Recall that this is true if all men
prefer different women.) First, we will say that a woman w is a valid partner
of a man m if there is a stable matching that contains the pair (m, w). We will
say that w is the best valid partner of m if w is a valid partner of m, and no
woman whom m ranks higher than w is a valid partner of his. We will use
best(m) to denote the best valid partner of m. '

Now, let §* denote the set of pairs {(mm, best(mm)) : m € M}. We will prove
the following fact.

(1.7)  Every execution of the G-S algorithm results in the set S*. o

This statement is surprising at a number of levels. First of all, as defined,
there is no reason to believe that S* is a matching at all, let alone a stable
matching. After all, why couldn’t it happen that two men have the same best
valid partner? Second, the result shows that the G-S algorithm gives the best

- possible outcome for every man simultaneously; there is no stable matching

in which any of the men could have hoped to do better. And finally, it answers
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our question above by showing that the order of proposals in the G-S algorithm
has absolutely no effect on the final outcome.

Despite all this, the proof is not so difficult.

Proof. Let us suppose, by way of contradiction, that some execution & of the
G-S algorithm results in a matching S in which some man is paired with a
woman who is not his best valid partner. Since men propose in decreasing
order of preference, this means that some man is rejected by a valid partner
during the execution € of the algorithm. So consider the first moment during
the execution € in which some man, say m, is rejected by a valid partner w.
Again, since men propose in decreasing order of preference, and since this is
the first time such a rejection has occurred, it must be that w is m’s best valid
partner best(m).

The rejection of m by w may have happened either because m proposed
and was turned down in favor of w’s existing engagement, or because w broke
her engagement to m in favor of a better proposal. But either way, at this
moment w forms or continues an engagement with a man m’ whom she prefers
to m.

Since w is a valid partner of m, there exists a stable matching S’ containing
the pair (m, w). Now we ask: Who is m’ paired with in this matching? Suppose
it is a woman w' # w.

Since the rejection of m by w was the first rejection of a man by a valid
partner in the execution &, it must be that i’ had not been rejected by any valid
partner at the point in € when he became engaged to w. Since he proposed in
decreasing order of preference, and since w' is clearly a valid partner of v/, it
must be that m’ prefers w to w'. But we have already seen that w prefers m’
to m, for in execution & she rejected m in favor of m’. Since (m’, w) ¢, it
follows that (7n’, w) is an instability in S'.

This contradicts our claim that § is stable and hence contradicts our initial
assumption. m

So for the men, the G-S algorithm is ideal. Unfortunately, the same cannot
be said for the women. For a woman w, we say that m is a valid partner if
there is a stable matching that contains the pair (;m, w). We say that m is the
worst valid partner of w if m is a valid partner of w, and no man whom w
ranks lower than m is a valid partner of hers.

(1.8) In the stable matching S*, each woman is paired with her worst valid
partner.

Proof. Suppose there were a pair (m, w) in S* such that m is not the worst
valid partner of w. Then there is a stable matching S’ in which w is paired

11
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with a man m’ whom she likes less than m. In §’, m is paired with a woman
w' # w; since w is the best valid partner of m, and w' is a valid partner of m,
we see that m prefers w to w'.

But from this it follows that (m, w) is an instability in S, contradicting the
claim that S’ is stable and hence contradicting our initial assumption. =

Thus, we find that our simple example above, in which the men’s pref-
erences clashed with the women’s, hinted at a very general phenomenon: for
any input, the side that does the proposing in the G-5 algorithm ends up with
the best possible stable matching (from their perspective), while the side that
does not do the proposing correspondingly ends up with the worst possible
stable matching.

1.2 Five Representative Problems

The Stable Matching Problem provides us with a rich example of the process of
algorithm design. For many problems, this process involves a few significant
steps: formulating the problem with enough mathematical precision that we
can ask a concrete question and start thinking about algorithms to solve
it; designing an algorithm for the problem; and analyzing the algorithm by
proving it is correct and giving a bound on the running time so as to establish
the algorithm’s efficiency.

This high-level strategy is carried out in practice with the help of a few
fundamental design techniques, which are very useful in assessing the inherent
complexity of a problem and in formulating an algorithm to solve it. As in any
area, becoming familiar with these design techniques is a gradual process; but
with experience one can start recognizing problems as belonging to identifiable
genres and appreciating how subtle changes in the statement of a problem can
have an enormous effect on its computational difficulty.

To get this discussion started, then, it helps to pick out a few representa-
tive milestones that we’ll be encountering in our study of algorithms: cleanly
formulated problems, all resembling one another at a general level, but differ-
ing greatly in their difficulty and in the kinds of approaches that one brings
to bear on them. The first three will be solvable efficiently by a sequence of
increasingly subtle algorithmic techniques; the fourth marks a major turning
point in our discussion, serving as an example of a problem believed to be un-
solvable by any efficient algorithm; and the fifth hints at a class of problems
believed to be harder still.

The problems are self-contained and are all motivated by computing

applications. To talk about some of them, though, it will help to use the
terminology of graphs. While graphs are a common topic in earlier computer
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science courses, we’ll be introducing them in a fair amount of depth in
Chapter 3; due to their enormous expressive power, we’ll also be using them
extensively thronghout the book. For the discussion here, it’s enough to think
of a graph G as simply a way of encoding pairwise relationships among a set
of objects. Thus, G consists of a pair of sets (V, E)—a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e € E as a two-element subset of V: e = {u, v} for some
u,v €V, where we call u and v the ends of e. We typically draw graphs as in
Figure 1.3, with each node as a small circle and each edge as a line segment
joining its two ends.

Let’s now turn to a discussion of the five representative problems.

Interval Scheduling

Consider the following very simple scheduling problem. You have a resource—
it may be a lecture room, a supercomputer, or an electron microscope—and
many people request to use the resource for periods of time. A request takes
the form: Can I reserve the resource starting at time s, until time f2 We will
assume that the resource can be used by at most one person at a time. A
scheduler wants to accept a subset of these requests, rejecting all others, so
that the accepted requests do not overlap in time. The goal is to maximize the
number of requests accepted.

More formally, there will be n requests labeled 1, . . ., n, with each request
i specifying a start time s; and a finish time f;. Naturally, we have s; < f; for all
i. Two requests  and j are compatible if the requested intervals do not overlap:
that is, either request i is for an earlier time interval than request j (f; < 5i)s
or request { is for a later time than request j (f; < s;). We’ll say more generally
that a subset A of requests is compatible if all pairs of requests i,j € A, i #j are

compatible. The goal is to select a compatible subset of requests of maximum
possible size.

We illustrate an instance of this Interval Scheduling Problem in Figure 1.4.
Note that there is a single compatible set of size 4, and this is the largest
compatible set.

Y

Figure 1.4 An instance of the Interval Scheduling Problem.
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We will see shortly that this problem can be solved by a very natural
algorithm that orders the set of requests according to a certain heuristic and
then “greedily” processes them in one pass, selecting as large a compatible
subset as it can. This will be typical of a class of greedy algorithms that we
will consider for various problems——myopic rules that process the input one
piece at a time with no apparent look-ahead. When a greedy algorithm can be
shown to find an optimal solution for all instances of a problem, it’s often fairly
surprising. We typically learn something about the structure of the underlying
problem from the fact that such a simple approach can be optimal.

Weighted Interval Scheduling

In the Interval Scheduling Problem, we sought to maximize the number of
requests that could be accommodated simultanecusly. Now, suppose more
generally that each request interval i has an associated value, or weight,
v; > 0; we could picture this as the amount of money we will make from
the it individual if we schedule his or her request. Our goal will be to find a
compatible subset of intervals of maximum total value. ‘

The case in which v; = 1 for each { is simply the basic Interval Scheduling
Problem; but the appearance of arbitrary values changes the nature of the
maximization problem quite a bit. Consider, for example, that if v; exceeds
the sum of all other v;, then the optimal solution must include interval 1
regardless of the configuration of the full set of intervals. So any algorithm
for this problem must be very sensitive to the values, and yet degenerate to a
method for solving (unweighted) interval scheduling when all the values are
equal to 1. ‘

There appears to be no simple greedy rule that walks through the intervals
one at a time, making the correct decision in the presence of arbitrary values.
Instead, we employ a technique, dynamic programming, that builds up the
optimal value over all possible solutions in a compact, tabular way that leads
to a very efficient algorithm.

Bipartite Matching

When we considered the Stable Matching Problem, we defined a matching to
be a set of ordered pairs of men and women with the property that each man
and each woman belong to at most one of the ordered pairs. We then defined
a perfect matching to be a matching in which every man and every woman
belong to some pair.

We can express these concepts more generally in terms of graphs, and in

* order to do this it is useful to define the notion of a bipartite graph. We say that

a graph G = (V, E) is bipartite if its node set V can be partitioned into sets X
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and Y in such a way that every edge has one end in X and the othef end in Y.
A bipartite graph is pictured in Figure 1.5; often, when we want to emphasize
a graph’s “bipartiteness,” we will draw it this way, with the nodes in X and
Y in two parallel columns. But notice, for example, that the two graphs in

Figure 1.3 are also bipartite.

Now, in the problem of finding a stable matching, matchings were built
from pairs of men and women. In the case of bipartite graphs, the edges are
pairs of nodes, so we say that a matching in a graph G = (V, E) is a set of edges
M C E with the property that each node appears in at most one edge of M.
M is a perfect matching if every node appears in exactly one edge of M.

To see that this does capture the same notion we encountered in the Stable
Matching Problem, consider a bipartite graph G’ with a set X of n men, aset Y
of n women, and an edge from every node in X to every node in Y. Then the
matchings and perfect matchings in G’ are precisely the matchings and perfect
matchings among the set of men and women.

In the Stable Matching Problem, we added preferences to this picture. Here,
we do not consider preferences; but the nature of the problem in arbitrary
bipartite graphs adds a different source of complexity: there is not necessarily
an edge from every x € X to every y € Y, so the set of possible matchings has
quite a complicated structure. In other words, it is as though only certain pairs
of men and women are willing to be paired off, and we want to figure out
how to pair off many people in a way that is consistent with this. Consider,
for example, the bipartite graph G in Figure 1.5: there are many matchings in
G, but there is only one perfect matching. (Do you see it?)

Matchings in bipartite graphs can model situations in which objects are
being assigned to other objects. Thus, the nodes in X can represent jobs, the
nodes in Y can represent machines, and an edge (x;, ¥ can indicate that
machine y; is capable of processing job x;. A perfect matching is then a way
of assigning each job to a machine that can process it, with the property that
each machine is assigned exactly one job. In the spring, computer science
departments across the country are often seen pondering a bipartite graph in
which X is the set of professors in the department, Y is the set of offered
courses, and an edge (x;, y;) indicates that professor x; is capable of teaching
course y;. A perfect matching in this graph consists of an assignment of each
professor to a course that he or she can teach, in such a way that every course
is covered.

Thus the Bipartite Matching Problem is the following: Given an arbitrary
bipartite graph G, find a matching of maximum size. If |X| = | Y| = n, then there
is a perfect matching if and only if the maximum matching has size n. We will
find that the algorithmic techniques discussed earlier do not seem adequate
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Figure 1.6 A graph whose
largest independent set has
size 4.
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for providing an efficient algorithm for this problem. There is, however, a very
elegant and efficient algorithm to find a maximum matching; it inductively
builds up larger and larger matchings, selectively backtracking along the way.
This process is called augmentation, and it forms the central component in a
large class of efficiently solvable problems called nefwork flow problems.

Independent Set

Now let’s talk about an extremely general problem, which includes most of
these earlier problems as special cases. Given a graph G=(V,E), we say
a set of nodes S C V is independent if no two nodes-in S are joined by an
edge. The Independent Set Problem is, then, the following: Given G, find an
independent set that is as large as possible. For example, the maximum size of
an independent set in the graph in Figure 1.6 is four, achieved by the.four-node
independent set {1, 4, 5, 6}.

The Independent Set Problem encodes any situation in which you are
trying to choose from among a collection of objects and there are pairwise
conflicts among some of the objects. Say you have n friends, and some pairs
of them don’t get along. How large a group of your friends can you invite to
dinner if you don’t want any interpersonal tensions? This is simply the largest
independent set in the graph whose nodes are your friends, with an edge
between each conflicting pair.

Interval Scheduling and Bipartite Matching can both be encoded as special
cases of the Independent Set Problem. For Interval Scheduling, define a graph
G = (V,E) in which the nodes are the intervals and there is an edge between
each pair of them that overlap; the independent sets in G are then just the
compatible subsets of intervals. Encoding Bipartite Matching as a special case
of Independent Set is a little trickier to see. Given a bipartite graph G’ = (V', E),
the objects being chosen are edges, and the conflicts arise between two edges
that share an end. (These, indeed, are the pairs of edges that cannot belong
to a common matching.) So we define a graph G = (V,E) in which the node
set V is equal to the edge set E' of G'. We define an edge between each pair
of elements in V that correspond to edges of G’ with a common end. We can
now check that the independent sets of G are precisely the matchings of G'.
While it is not complicated to check this, it takes a little concentration to deal
with this type of “edges-to-nodes, nodes-to-edges” transformation.?

2 ror those who are curious, we note that not every instance of the Independent Set Problem can arise

_in this way from Interval Scheduling or from Bipartite Matching; the full independent Set Problem

really is more general. The graph in Figure 1.3(a) cannot arise as the “conflict graph” in an instance of
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© Given the generality of the Independent Set Problem, an efficient algorithm
to solve it would be quite impressive. It would have to implicitly contain
algorithms for Interval Scheduling, Bipartite Matching, and a host of other
natural optimization problems.

The current status of Independent Set is this: no efficient algorithm is
known for the problem, and it is conjectured that no such algorithm exists.
The obvious brute-force algorithm would try all subsets of the nodes, checking
each to seeifitis independent, and then recording the largest one encountered.
1t is possible that this is close to the best we can do on this problem. We will
see later in the book that Independent Set is one of a large class of problems
that are termed NP-complete. No efficient algorithm is known for any of them;
but they are all equivalent in the seunse that a solution to any one of them
would imply, in a precise sense, a solution to all of them.

Here’s a natural question: Is there anything good we can say about the
complexity of the Independent Set Problem? One positive thing is the following:
If we have a graph G on 1,000 nodes, and we want to convince you that it
contains an independent set S of size 100, then it’s quite easy. We simply
show you the graph G, circle the nodes of S in red, and let you check that
no two of them are joined by an edge. So there really seems to be a great
difference in difficulty between checking that something is a large independent
set and actually finding a large independent set. This may look like a very basic
observation—and it is—but it turns out to be crucial in understanding this class
of problems. Furthermore, as we’ll see next, it's possible for a problem to be
so hard that there isn’t even an easy way to “check” solutions in this sense.

Competitive Facility Location

Finally, we come to our fifth problem, which is based on the following two-
player game. Consider two large companies that operate café franchises across
the country—let’s call them JavaPlanet and Queequeg’s Coffee—and they are
currently competing for market share in a geographic area. First JavaPlanet
opens a franchise; then Queequeg’s Coffee opens a franchise; then JavaPlanet;
then Queequeg’s; and so on. Suppose they must deal with zoning regulations
that require no two franchises be located too close together, and each is trying
to make its locations as convenient as possible. Who will win?

Let’s make the rules of this “game” more concrete. The geographic region
in question is divided into n zones, labeled 1,2, ..., n. Each zone i has a

Interval Scheduling, and the graph in Figure 1.3(b) cannot arise as the “conflict graph” in an instance
of Bipartite Matching.
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Figure 1.7 An instance of the Competitive Facility Location Problem.

value b;, which is the revenue obtained by either of the companies if it opens
a franchise there. Finally, certain pairs of zones (i, j) are adjacent, and local
zoning laws prevent two adjacent zones from each containing a franchise,
regardless of which company owns them. (They also prevent two franchises
from being opened in the same zone.) We model these conflicts via a graph
G = (V,E), where V is the set of zones, and (i,j) is an edge in E if the
zomes i and j are adjacent. The zoning requirement then says that the full
set of franchises opened must form an independent set in G.

Thus our game consists of two players, P, and P,, alternately selecting
nodes in G, with P; moving first. At all times, the set of all selected nodes
must form an independent set in G. Suppose that player P, has a target bound
B, and we want to know: is there a strategy for P, so that no matter how P;
plays, P, will be able to select a set of nodes with a total value of at least B?
We will call this an instance of the Competitive Facility Location Problemn.

Consider, for example, the instance pictured in Figure 1.7, and suppose
that P,’s target bound is B = 20. Then P, does have a winning strategy. On the
other hand, if B = 25, then P, does not.

One can work this out by looking at the figure for a while; but it requires
some amount of case-checking of the form, “If P, goes here, then P, will go
there; but if P, goes over there, then P, will go here. . . . ” And this appears to
be intrinsic to the problem: not only is it computationally difficult to determine
whether P, has a winning strategy; on a reasonably sized graph, it would even
be hard for us to convince you that P, has a winning strategy. There does not
seem 1o be a short proof we could present; rather, we'd have o lead you on a
lengthy case-by-case analysis of the set of possible moves.

This is in contrast to the Independent Set Problem, where we believe that
finding a large solution is hard but checking a proposed large solution is easy.
This contrast can be formalized in the class of PSPACE-complete problems, of
which Competitive Facility Location is an example. PSPACE-complete prob-
lems are believed to be strictly harder than NP-complete problems, and this
conjectured lack of short “proofs” for their solutions is one indication of this
greater hardness. The notion of PSPACE-completeness turns out {o capture a
large collection of problems involving game-playing and planning; many of

* these are fundamental issues in the area of artificial intelligence.

Solved Exercises

Solved Exercises

Solved Exercise 1

Consider a town with n men and n women seeking to get married to one
another. Each man has a preference list that ranks all the women, and each
woman has a preference list that ranks all the men.

The set of all 2n people is divided into two categories: good people and
bad people. Suppose that for some number k, 1 <k <n — 1, there are k good
men and & good women; thus there are n — k bad men and nn — k bad women.

Everyone would rather marry any good person than any bad person.
Formally, each preference list has the property that it ranks each good person
of the opposite gender higher than each bad person of the opposite gender: its
first k entries are the good people (of the opposite gender) in some order, and
its next n — k are the bad people (of the opposite gender) in some order.

Show that in every stable matching, every good man is married to a good
womarn.

Solution A natural way to get started thinking about this problem is to
assume the claim is false and try to work toward obtaining a contradiction.
What would it mean for the claim to be false? There would exist some stable
matching M in which a good man m was married to a bad woman w.

Now, let’s consider what the other pairs in M look like. There are k good
men and k good women. Could it be the case that every good woman is married
to a good man in this matching M? No: one of the good men (namely, m) is
already married to a bad woman, and that leaves only k - 1 other good men.
So even if all of them were married to good women, that would still leave some
good woman who is married to a bad man.

Let w’ be such a good woman, who is married to a bad man. It is now
easy to identify an instability in M: consider the pair (m, w'). Each is good,
but is married to a bad partner. Thus, each of m and w’ prefers the other to
their current partner, and hence (m, w') is an instability. This contradicts our
assumption that M is stable, and hence concludes the proof.

Solved Exercise 2

We can think about a generalization of the Stable Matching Problem in which
certain man-woman pairs are explicitly forbidden. In the case of employers and
applicants, we could imagine that certain applicants simply lack the necessary
qualifications or certifications, and so they cannot be emploved at certain
companies, however desirable they may seem. Using the analogy to marriage
between men and women, we have a set M of n men, a set W of n women,
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and a set F € M x W of pairs who are simply not allowed to get married. Each
man m ranks all the women w for which (m, w) ¢ F, and each woman w’ ranks
all the men m’ for which (m/, w’) €F.

In this more general setting, we say that a matching S is stable if it does
not exhibit any of the following types of instability.

(i) There are two pairs (m,w) and (', w’) in S with the property that

(m,w') ¢ F, m prefers w’ to w, and w’ prefers m to m'. (The usual kind
_ of instability.)

(ii) There is a pair (m,w) € S, and a man 7/, so that m’ is not part of any
pair in the matching, (', w) ¢ F, and w prefers m’ to m. (A single man
is more desirable and not forbidden.) _

(iii) There is a pair (m, w) € S, and a woman w’, so that w’ is not part of
any pair in the matching, (m, w') ¢ F, and m prefers w' to w. (A single
woman is more desirable and not forbidden.)

(iv) There is a man m and a woman w, neither of whom is part of any pair

in the matching, so that (m,w) ¢ F. (There are two single people with’

nothing preventing them from getting married to each other.)

Note that under these more general definitions, a stable matching need not be
a perfect matching.

Now we can ask: For every set of preference lists and every set of forbidden
pairs, is there always a stable matching? Resolve this question by doing one of
the following two things: (a) give an algorithm that, for any set of preference
lists and forbidden pairs, produces a stable matching; or (b) give an example
of a set of preference lists and forbidden pairs for which there is no stable
matching.

Solution The Gale-Shapley algorithm is remarkably robust to variations on
the Stable Matching Problem. So, if you’re faced with a new variation of the
problem and can’t find a counterexample to stability, it’s often a good idea to
check whether a direct adaptation of the G-S algorithm will in fact produce
stable matchings.

That turns out to be the case here. We will show that there is always a
stable matching, even in this more general model with forbidden pairs, and
we will do this by adapting the G-S algorithm. To do this, let’s consider why
the original G-S algorithm can’t be used directly. The difficulty, of course, is
that the G-S algorithm doesn’t know anything about forbidden pairs, and so
the condition in the While loop,

While there is a man m who is free and hasn't proposed to
every woman,

Solved Exercises

won’t work: we don’t want m to propose to a woman w for which the pair
(m,w) is forbidden. :

Thus, let’s consider a variation of the G-S algorithm in which we make
only one change: we modify the While loop to say,

While there is a man m who is free and hasn't proposed to
every woman w for which (m,w) ¢F.

Here is the algorithm in full.

Initially all meM and we W are free
While there is a man m who is free and hasn't proposed to
every woman w for which (m,w)¢F
Choose such a man m
Let w be the highest-ranked woman in m's preference list
to which m has not yet proposed
If w is free then
(m, w) become engaged
Else w is currently engaged to m’
If w prefers m' to m then
m remains free
Else w prefers m to m'
(m, w) become engaged
m’ becomes free
Endif
Endif
Endwhile

Return the set S of engaged pairs

We now prove that this yields a stable matching, under our new definition
of stability.

To begin with, facts (1.1), (1.2), and (1.3) from the text remain true (in
particular, the algorithm will terminate in at most n? iterations). Also, we
don’t have to worry abont establishing that the resulting matching S is perfect
(indeed, it may not be). We also notice an additional pairs'of facts. If m is
a man who is not part of a pair in S, then m must have proposed to every
nonforbidden woman; and if w is a woman who is not part of a pair in S, then
it must be that no man ever proposed to w.

Finally, we need only show

(1.9)  There is no instability with respect to the returned matching S.
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Proof. Our general definition of instability has four parts: This means that we
have to make sure that none of the four bad things happens.

First, suppose there is an instability of type (i), consisting of pairs (m, w)
and (', w') in S with the property that (m, w') ¢ F, m prefers w' to w, and w’
prefers m to m’. It follows that /. must have proposed to w'; so w' rejected m,
and thus she prefers her final partner to m—a contradiction.

Next, suppose there is an instability of type (ii), consisting of a pair
(m,w) € S, and a man m’, so that m’ is not part of any pair in the matching,
(', w) ¢ F, and w prefers m’ to m. Then m’ must have proposed to w and
been rejected; again, it follows that w prefers her final partner to m’'—a
contradiction.

Third, suppose there is an instability of type (iii), consisting of a pair
(m,w) € S, and a woman w/, so that w’ is not part of any. pair in the matching,
(m,w) ¢ F, and m prefers w’ to w. Then no man proposed to w' at all;
in particular, m never proposed to w/, and so he must prefer w to w'—a
contradiction.

Finally, suppose there is an instability of type (iv), consisting of a man

m and a woman w, neither of which is part of any pair in the matching,
so that (m, w) ¢ F. But for m to be single, he must have proposed to every
nonforbidden woman; in particular, he must have proposed to w, which means
she would no longer be single—a contradiction. =

Exercises

1. Decide whether you think the following statement is true or false. If it is
true, give a short explanation. If it is false, give a counterexample.

True or false? In every instance of the Stable Matching Problem, there is a
stable matching containing a pair (m,w) such that m is ranked first on the
preference list of w and w is ranked first on the preference list of m.

2. Decide whether you think the following statement is true or false. If it is
true, give a short explanation. If it is false, give a counterexample.

True or false? Consider an instance of the Stable Matching Problem in which
there exists a man m and a woman w such that m is ranked first on the
preference list of w and w is ranked first on the preference list of m. Then in
every stable matching S for this instance, the pair (m, w) belongs to S.

3. There are many other settings in which we can ask questions related
to some type of “stability” principle. Here's one, involving competition
between two enterprises.

Exercises

Suppose we have two television networks, whom we'll call A and B.
There are n prime-time programming slots, and each network has n TV
shows. Each network wants to devise a schedule—an assignment of each
show to a distinct slot—so as to attract as much market share as possible.

Here is the way we determine how well the two networks perform
relative to each other, given their schedules. Each show has a fixed rating,
which is based on the number of people who watched it last year; we'll
assume that no two shows have exactly the same rating. A network wins a
given time slot if the show that it schedules for the time slot has a larger
rating than the show the other network schedules for that time slot. The
goal of each network is to win as many time slots as possible.

Suppose in the opening week of the fall season, Network A reveals a
schedule $ and Network B reveals a schedule T. On the basis of this pair
of schedules, each network wins certain time slots, according to the rule
above. We'll say that the pair of schedules (S, T) is stable if neither network
can unilaterally change its own schedule and win more time slots. That
is, there is no schedule §’ such that Network A wins more slots with the
pair (5, T) than it did with the pair (S, T); and symmetrically, there is no
schedule T’ such that Network B wins more slots with the pair (S, T') than
it did with the pair (S, T).

The analogue of Gale and Shapley’s question for this kind of stability
is the following: For every set of TV shows and ratings, is there always
a stable pair of schedules? Resolve this question by doing one of the
following two things:

{a) give an algorithm that, for any set of TV shows and associated
ratings, produces a stable pair of schedules; or

(b) give an example of a set of TV shows and associated ratings for
which there is no stable pair of schedules.

. Gale and Shapley published their paper on the Stable Matching Problem

in 1962; but a version of their algorithm had already been in use for
ten years by the National Resident Matching Program, for the problem of
assigning medical residents to hospitals.

Basically, the situation was the following. There were m hospitals,
each with a certain number of available positions for hiring residents. |
There were n medical students graduating in a given year, each interested
in joining one of the hospitals. Each hospital had a ranking of the students
in order of preference, and each student had a ranking of the hospitals
in order of preference. We will assume that there were more students
graduating than there were slots available in the m hospitals.

23



24

Chapter 1 Introduction: Some Representative Problems

The interest, naturally, was in finding a way of assigning each stu‘dent
to at most one hospital, in such a way that all available positions in all
hospitals were filled. (Since we are assuming a surplus of studt.ants, there
would be some students who do not get assigned to any hospital.)

We say that an assignment of students t0 hospitals is stable if neither
of the following situations arises.

e First type of instability: There are students s and s, and a hospital &,
so that
- sis assigned to h, and
- ¢ is assigned to no hospital, and
- hprefers s’ tos.
e Second type of instability: There are students s and §, and hospitals
h and I/, so that
- sis assigned to h, and
s is assigned to i/, and
h prefers s’ to s, and
' prefers h to k', 7

So we basically have the Stable Matching Problem, except that ()
hospitals generally wantmore than one resident, and (ii) there is a surplus
of medical students.

Show that there is always a stable assignment of students to hospi-
tals, and give an algorithm to find one.

1

t

{

. The Stable Matching Problem, as discussed in the text, assumes that all

men and women have a fully ordered list of preferences. In this problem
we will consider a version of the problemin which men and women can be
indifferent between certain options. As before we have a set M of n men
and a set W of n women. Assume each man and each woman ranks .the
members of the opposite gender, but now we allow ties in the re.mlq.ng.
For example (with n=4), a woman could say that m is ranked in first
place; second place is a tie between m, and ms (she has no preferencel
between them); and m, is in last place. We will say that w prefers m to m
if m is ranked higher than m’ on her preference list (they are not tied).

With indifferences in the rankings, there could be two natural notions
for stability. And for each, we can ask about the existence of stable
matchings, as follows.

(@) A strong instability in a perfect matching S consists of amanm an‘d
a woman w, such that each of m and w prefers the other tq their
partner in S. Does there always exist a perfect matching with no

Exercises

strong instability? Either give an example of a set of men and women
with preference lists for which every perfect matching has a strong
instability; or give an algorithim that is guaranteed to find a perfect
matching with no strong instability.

(b) A weak instability in a perfect matching S consists of a man m and
a woman w, such that their partners in S are w’ and m’, respectively,
and one of the following holds:

- m prefers w to v/, and w either prefers m to m’ or is indifferent
between these two choices; or
- w prefers m to m’, and m either prefers w to w' or is indifferent
between these two choices.
In other words, the pairing hetween m and w is either preferred
by both, or preferred by one while the other is indifferent. Does
there always exist a perfect matching with no weak instability? Either
give an example of a set of men and women with preference lists
for which every perfect matching has a weak instability; or give an

algorithm that is guaranteed to find a perfect matching with no weak
instability.

6. Peripatetic Shipping Lines, Inc., is a shipping company that owns n ships

and provides service to n ports. Each of its ships has a schedule that says,
for each day of the month, which of the ports it's currently visiting, or
whether it’s out at sea. (You can assume the “month” here has m days,
for some m > n.) Each ship visits each port for exactly one day during the
month. For safety reasons, PSL Inc. has the following strict requirement:

(1) No two ships can be in the same port on the same day.

The company wants to perform maintenance on all the ships this
month, via the following scheme. They want to truncate each ship’s
schedule: for each ship §;, there will be some day when it arrives in its
scheduled port and simply remains there for the rest of the month (for
maintenance). This means that S; will not visit the remaining ports on
its schedule (if any) that month, but this is okay. So the truncation of
S;i's schedule will simply consist of its original schedule up to a certain
specified day on which it is in a port P; the remainder of the truncated
schedule simply has it remain in port P. ‘

Now the company’s question to you is the following: Given the sched-
ule for each ship, find a truncation of each so that condition () continues
to hold: no two ships are ever in the same port on the same day.

Show that such a set of truncations can always be found, and give an
algorithm to find them.
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Example. Suppose we have two ships and two ports, and the “month” has
four days. Suppose the first ship’s schedule is

port Py; at sea; port P,; at sea
and the second ship’s schedule is
at sea; port Py; at sea; port P,

Then the (only) way to choose truncations would be to have the first ship
remain in port P, starting on day 3, and have the second ship remain in
port P, starting on day 2.

. Some of your friends are working for CluNet, a builder of large commu-

nication networks, and they are looking at algorithms for switching in a
particular type of input/output crossbar.

Here is the setup. There are n input wires and n output wires, each
directed from a source to a terminus. Each input wire meets each output
wire in exactly one distinct point, at a special piece of hardware called

a junction box. Points on the wire are naturally ordered in the direction :

from source to terminus; for two distinct points x and y on the same
wire, we say that x is upstream from y if x is closer to the source than
y, and otherwise we say x is downstrean from y. The order in which one
input wire meets the output wires is not necessarily the same as the order
in which another input wire meets the output wires. (And similarly for
the orders in which output wires meet input wires.) Figure 1.8 gives an
example of such a collection of input and output wires.

Now, here’s the switching component of this situation. Each input
wire is carrying a distinct data stream, and this data stream must be
switched onto one of the output wires. If the stream of Input i is switched
onto Output j, at junction box B, then this stream passes through all
junction boxes upstream from B on Input i, then through B, then through
all junction boxes downstream from B on Output j. It does not matier
which input data stream gets switched onto which output wire, but
each input data stream must be switched onto a different output wire.
Furthermore—and this is the tricky constraint—no two data streams can
pass through the same junction box following the switching operation.

Finally, here’s the problem. Show that for any specified pattern in
which the input wires and output wires meet each other (each pair meet-
ing exactly once), a valid switching of the data streams can always be
found—one in which each input data stream is switched onto a different
output, and no two of the resulting streams pass through the same junc-
tion box. Additionally, give an algorithm to find such a valid switching.

. Exercises

Output 1
> (meets Input 2
before Input 1)

Output 2
(meets Input 2
before Input 1)

O Junction Junction
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Input 1 Input 2
(meets Output 2 (meets Output 1
before Output 1) before Output 2)

flglng 1.8 .An example with two input wires and two output wires. Input 1 has its
J.uncqon W}th Output 2 upstream from its junction with Output 1; Input 2 has its
Junctl.on with Output 1 upstream from its junction with Qutput 2. A valid solution is
to switch the data stream of Input 1 onto Output 2, and the data stream of Input 2
onto Qutput 1. On the other hand, if the stream of Input 1 were switched onto Qutput
1, and the stream of Input 2 were switched onto Output 2, then both streams would

gﬁss ﬂzlrough the junction box at the meeting of Input 1 and Qutput 2—and this is not
owed.

8. For this problem, we will explore the issue of truthfulness in the Stable
Matching Problem and specifically in the Gale-Shapley algorithm. The
. basic question is: Can a man or a woman end up better off by lying about
his or her preferences? More concretely, we suppose each participant has
a true preference order. Now consider a woman w. Suppose w prefers man
m to m’, but both m and m' are low on her list of preferences. Can it be the
case that by switching the order of m and m’ on her list of preferences (i.e.,
by falsely claiming that she prefers m’ to m) and running the algorithm
with this false preference list, w will end up with a man m” that she truly
prefers to both m and m'? (We can ask the same question for men, but
will focus on the case of women for purposes of this question.)

Resolve this question by doing one of the following two things:

(a) Give a proof that, for any set of preference lists, switching the

order of a pair on the list cannot improve a woman’s partner in the Gale-
Shapley algorithm; or
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(b) Give an example of a set of preference lists for which there is
a switch that would improve the partner of a woman who switched

preferences.

Notes and Further Reading

The Stable Matching Problem was first defined and analyzed by Gale and
Shapley (1962); according to David Gale, their motivation for th? pr.obh?m
came from a story they had recently read in the New Yorker about‘ the intricacies
of the college admissions process (Gale, 2001). Stable matcmng has groyvn
into an area of study in its own right, covered in books by Gusﬁem and Irving
(1989) and Knuth (1997c). Gusfield and Irving also provide a I}ICE S}lrvey of
the “parallel” history of the Stable Matching Problem as a technique m.vented
for matching applicants with employers in medicine and other professions.

As discussed in the chapter, our five representative problems will b.e
central o the book’s discussions, respectively, of greedy algorithms, dynamic

programming, network flow, NP-completeness, and PSPACE-completeness. -

We will discuss the problems in these contexts later in the book.

2

Basics of Algorithm Analysis

Analyzing algorithms involves thinking about how their resource require-
ments—the amount of time and space they use—will scale with increasing
input size. We begin this chapter by talking about how to put this notion on a
concrete footing, as making it concrete opens the door to a rich understanding
of computational tractability. Having done this, we develop the mathematical
machinery needed to talk about the way in which different functions scale
with increasing input size, making precise what it means for one function to
grow faster than another.

We then develop running-time bounds for some basic algorithms, begin-
ning with an implementation of the Gale-Shapley algorithm from Chapter 1
and continuing to a survey of many different running times and certain char-
acteristic types of algorithms that achieve these running times. In some cases,
obtaining a good running-time bound relies on the use of more sophisticated
data structures, and we conclude this chapter with a very useful example of
such a data structure: priority queues and their implementation using heaps.

2.1 Computational Tractability

A major focus of this book is to find efficient algorithms for computational
problems. At this level of generality, our topic seems to .encompass the whole
of computer science; so what is specific to our approach here?

First, we will try to identify broad themes and design principles in the
development of algorithms. We will look for paradigmatic problems and ap-
proaches that illustrate, with a minimum of irrelevant detail, the basic ap-
proaches to designing efficient algorithms. At the same time, it would be
pointless to pursue these design principles in a vacuum, so the problems and
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approaches we consider are drawn from fundamental issues that arise through-
out computer science, and a general study of algorithms turns out to serve as
a nice survey of computational ideas that arise in many areas.

Another property shared by many of the problems we study is their
fundamentally discrete nature. That is, like the Stable Matching Problem, .t}‘1ey
will involve an implicit search over a large set of combinatorial possibilities;
and the goal will be to efficiently find a solution that satisfies certain clearly
delineated conditions.

As we seek to understand the general notion of computational efficiency,
we will focus primarily on efficiency in running time: we want algorithms that
run quickly. But it is important that algorithms be efficient in their use of other
resources as well. In particular, the amount of space (or memory) used by an
algorithm is an issue that will also arise at a number of points in the book, and
we will see techniques for reducing the amount of space needed to perform a
computation.

Some Initial Attempts at Defining Efficiency

The first major question we need to answer is the following: How should we
turn the fuzzy notion of an “efficient” algorithm into something more concrete?

A first attempt at a working definition of efficiency is the following.

Proposed Definition of Efficiency (1): An algorithm is efficient if, when
implemented, it runs quickly on real input instances.

Let’s spend a little time considering this definition. At a certain level, i‘t’s haI'd
to argue with: one of the goals at the bedrock of our study of algorithms is
solving real problems quickly. And indeed, thereis a significant area of research
devoted to the careful implementation and profiling of different algorithms for
discrete computational problems. :

But there are some crucial things missing from this definition, even if our
main goal is to solve real problem instances quickly on real computers. The
first is the omission of where, and how well, we implement an algorithm. Even
bad algorithms can run quickly when applied to small test cases on extremely
fast processors; even good algorithms can run slowly when they are coded
sloppily. Also, what is a “real” input instance? We don’t know the ful% range of
input instances that will be encountered in practice, and some input instances
can be much harder than others. Finally, this proposed definition above does
not consider how well, or badly, an algorithm may scale as problem sizes grow
to unexpected levels. A common situation is that two very different algorithms
will perform comparably on inputs of size 100; multiply the input size tenf'old,
and one will still run quickly while the other consumes a huge amount of time.

2.1 Computational Tractability

So what we could ask for is a concrete definition of efficiency that is
platform-independent, instance-independent, and of predictive value with
respect to increasing input sizes. Before focusing on any specific consequences
of this claim, we can at least explore its implicit, high-level suggestion: that
we need to take a more mathematical view of the situation.

We can use the Stable Matching Problem as an example to guide us. The
input has a natural “size” parameter N; we could take this to be the total size of
the representation of all preference lists, since this is what any algorithm for the
problem will receive as input. N is closely related to the other natural parameter
in this problem: n, the number of men and the number of women. Since there
are 2n preference lists, each of length n, we can view N = 2n?, suppressing
more fine-grained details of how the data is represented. In considering the
problem, we will seek to describe an algorithm at a high level, and then analyze
its running time mathematically as a function of this input size N.

Worst-Case Running Times and Brute-Force Search

To begin with, we will focus on analyzing the worst-case running time: we will
look for a bound on the largest possible running time the algorithm could have
over all inputs of a given size N, and see how this scales with N. The focus on
worst-case performance initially seems quite draconian: what if an algorithm
performs well on most instances and just has a few pathological inputs on
which it is very slow? This certainly is an issue in some cases, but in general
the worst-case analysis of an algorithm has been found to do a reasonable job
of capturing its efficiency in practice. Moreover, once we have decided to go
the route of mathematical analysis, it is hard to find an effective alternative to
worst-case analysis. Average-case analysis—the obvious appealing alternative,
in which one studies the performance of an algorithm averaged over “random”
instances—can sometimes provide considerable insight, but very often it can
also become a quagmire. As we observed earlier, it’s very hard to express the
full range of input instances that arise in practice, and so attempts to study an
algorithm’s performance on “random” input instances can quickly devolve into
debates over how a random input should be generated: the same algorithm
can perform very well on one class of random inputs and very poorly on
another. After all, real inputs to an algorithm are generally not being produced
from a random distribution, and so average-case analysis risks telling us more
about the means by which the random inputs were generated than about the
algorithm itself.

So in general we will think about the worst-case analysis of an algorithm’s
running time. But what is a reasonable analytical benchmark that can tell us
whether a running-time bound is impressive or weak? A first simple guide
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is by comparison with brute-force search over the search space of possible
solutions.

Let’s return to the example of the Stable Matching Problem. Even when
the size of a Stable Matching input instance is relatively small, the search
space it defines is enormous (there are 7! possible perfect matchings between
n men and n women), and we need to find a matching that is stable. The
natural “brute-force” algorithm for this problemn would plow through all pe‘rf‘ect
matchings by enumeration, checking each to see if it is stable. The s'urpnsmg
punchline, in a sense, to our solution of the Stable Matching Problem 1§ that we
needed to spend time proportional only to N in finding a stable matchmg from
among this stupendously large space of possibilities. This was a conclusion w.e
reaéhed at an analytical level. We did not implement the algorithm and try it
out on sample preference lists; we reasoned about it mathematically. Yet, at tl}e
same time, our analysis indicated how the algorithm could be implemented in
practice and gave fairly conclusive evidence that it would be a big improvement
over exhaustive enumeration.

This will be a common theme in most of the problems we study: a compact "
representation, implicitly specifying a giant search space. For most qf j[l‘1e‘se
problems, there will be an obvious brute-force solution: try all possibilities
and see if any one of them works. Not only is this approach almost always too
slow to be useful, it is an intellectual cop-out; it provides us with absolutely
no insight into the structure of the problem we are studying. And. so if there
is a common thread in the algorithms we emphasize in this book, it would be
the following alternative definition of efficiency.

Proposed Definition of Efficiency (2): An algorithm is efficient if it achieves
qualitatively better worst-case performance, at an analytical level, than
brute-force search.

This will turn out to be a very useful working definition for us. Algorithms
that improve substantially on brute-force search nearly always contair.l a
valuable heuristic idea that makes them work; and they tell us something
about the intrinsic structure, and computational tractability, of the underlying
problem itself.

But if there is a problem with our second working definition, it is vague-
ness. What do we mean by “qualitatively better performance?” This suggests
that we consider the actual running time of algorithms more carefully, and try
to quantify what a reasonable running time would be.

Polynomial Time as a Definition of Efficiency

When people first began analyzing discrete algorithms mathematically—a
thread of research that began gathering momentum through the 1960s—

2.1 Computational Tractability

a consensus began to emerge on how to quantify the notion of a “reasonable”
running time. Search spaces for natural combinatorial problems tend to grow
exponentially in the size N of the input; if the input size increases by one, the
number of possibilities increases multiplicatively. We’d like a good algorithm
for such a problem to have a better scaling property: when the input size
increases by a constant factor—say, a factor of 2—the algorithm should only
slow down by some constant factor C.

Arithmetically, we can formulate this scaling behavior as follows. Suppose
an algorithm has the following property: There are absolute constants ¢ > 0
and d > 0 so that on every input instance of size N, its running time is
bounded by cN? primitive computational steps. (In other words, its running
time is at most proportional to N9.) For now, we will remain deliberately
vague on what we mean by the notion of a “primitive computational step”—
but it can be easily formalized in a model where each step corresponds to
a single assembly-langnage instruction on a standard processor, or one line
of a standard programming language such as C or Java. In any case, if this
running-time bound holds, for some ¢ and d, then we say that the algorithm
has a polynomial running time, or that it is a polynomial-time algorithm. Note
that any polynomial-time bound has the scaling property we’re looking for. If
the input size increases from N to 2N, the bound on the running time increases
from cNY to c(2N)4 = ¢ - 24N, which is a slow-down by a factor of 24. Since d is
a constant, so is 29; of course, as one might expect, lower-degree polynomials
exhibit better scaling behavior than higher-degree polynomials.

From this notion, and the intuition expressed above, emerges our third
attempt at a working definition of efficiency.

Proposed Definition of Efficiency (3): An algorithm is efficient if it has a
polynomial running time.

Where our previous definition seemed overly vague, this one seems much

~ too prescriptive. Wouldn’t an algorithm with running time proportional to

n'®—and hence polynomial—be hopelessly inefficient? Wouldn’t we be rel-

~ atively pleased with a nonpolynomial running time of n!*+-020%¢™2 The an-

swers are, of course, “yes” and “yes.” And indeed, however much one may
try to abstractly motivate the definition of efficiency in'terms of polynomial
time, a primary justification for it is this: It really works. Problems for which
polynomial-time algorithms exist almost invariably turn out to have algorithms
with running times proportional to very moderately growing polynomials like
n, nlogn, n?, or n3. Conversely, problems for which no polynomial-time al-
gorithm is known tend to be very difficult in practice. There are certainly

-exceptions to this principle in both directions: there are cases, for example, in
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i i ifferent algorithms on inputs of
i'l;li];]e(:;s?ﬁlg gikzlz, mgocuemsse:r gggg;?ngging)iﬁhﬁfgigk{—levg instructions per §econd.
In cases where the running time exceeds 10% years, we simply record the algorithm as
taking a very long time.
n nlogyn . n? no 15" oo n!

n=10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n =30 <lsec <lsec <1sec < 1sec <1 sec 18 min  10% years
n=>50 < 1 sec < 1 sec < 1 sec < 1 sec 11 min 36 years very long
n =100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 107 years very long
n ==1,000 < 1 sec < 1 sec 1 sec 18 min very long very long very long
n = 10,000 < 1sec < 1 sec 2 min 12 days very long very long very long
n = 100,000 < 1 sec 2 sec 3 hours 32 years very long very long very long
n = 1,000,000 1 sec 20 sec ~ 12 days 31,710 years very long very long very-long

which an algorithm with exponential worst-case behavior generally runs well
on the kinds of instances that arise in practice; and there are also cases Wh'ere
the best polynomial-time algorithm for a problem is comgletely impracnccjﬂ
due to large constants or a high exponent on the polynomial bound. 'All @s
serves to reinforce the point that our emphasis on worst-case, ponnognaLUme
bounds is only an abstraction of practical situations. But overwhelmingly, the
concrete mathematical definition of polynomial time has turned out to corre-
spond surprisingly well in practice to what we obser\'fe about the efficiency of
algorithms, and the tractability of problems, in real life.

One further reason why the mathematical formalism and the empirical
evidence seem to line up well in the case of polynomial-time solvability is 'that
the gulf between the growth rates of polynomial and exponential fiinctions
is enormous. Suppose, for example, that we have a processor th%lt execut'es
a million high-level instructions per secongl, and we have algorithms with
running-time bounds of n, nlog, 1, n?, n3, 1.5%, 2", and nl I'n Table 2.1,
we show the running times of these algorithms (in seconds, minutes, days,
or years) for inputs of size n = 10, 30, 50, 100, 1,000, 10,000, 100,000, and
1,000,000.

There is a final, fundamental benefit to making our definition of efficiency
so specific: it becomes negatable. It becomes possible to express the noti'on
that there is no efficient algorithm for a particular problem. In a sense, bgmg
able to do this is a prerequisite for turning our study of algorithn'ls into
good science, for it allows us to ask about the existence or nonexistence
of efficient algorithms as a well-defined question. In contrast, both of our

2.2 Asymptotic Order of Growth

previous definitions were completely subjective, and hence limited the extent
to which we could discuss certain issues in concrete terms.

In particular, the first of our definitions, which was tied to the specific
implementation of an algorithm, turned efficiency into a moving target: as
processor speeds increase, more and more algorithms fall under this notion of
efficiency. Our definition in terms of polynomial time is much more an absolute
notion; it is closely connected with the idea that each problem has an intrinsic

level of computational tractability: some admit efficient solutions, and others
do not.

2.2 Asymptotic Order of Growth

Our discussion of computational tractability has turned out to be intrinsically
based on our ability to express the notion that an algorithm’s worst-case
running time on inputs of size n grows at a rate that is at most proportional to
some function f(n). The function f(n) then becomes a bound on the running

time of the algorithm. We now discuss a framework for talking about this
concept.

We will mainly express algorithms in the pseudo-code style that we used
for the Gale-Shapley algorithm. At times we will need to become more formal,
but this style of specifying algorithms will be completely adequate for most
purposes. When we provide a bound on the running time of an algorithm,
we will generally be counting the number of such pseudo-code steps that
are executed; in this context, one step will consist of assigning a value o a
variable, looking up an entry in an array, following a pointer, or performing
an arithmetic operation on a fixed-size integer.

When we seek to say something about the running time of an algorithm on
inputs of size n, one thing we could aim for would be a very concrete statement
such as, “On any input of size n, the algorithm runs for at most 1.62n2 +
3.5n + 8 steps.” This may be an interesting statement in some contexts, but as
a general goal there are several things wrong with it. First, getting such a precise
bound may be an exhausting activity, and more detail than we wanted anyway.
Second, because our ultimate goal is to identify broad classes of algorithms that
have similar behavior, we’d actually like to classify running times at a coarser
level of granularity so that similarities among different algorithms, and among
different problems, show up more clearly. And finally, extremely detailed
statements about the number of steps an algorithm executes are often—in
a strong sense—meaningless. As just discussed, we will generally be counting
steps in a pseudo-code specification of an algorithm that resembles a high-
level programming language. Each one of these steps will typically unfold
into some fixed number of primitive steps when the program is compiled into
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an intermediate representation, and then into some further number of steps
depending on the particular architecture being used to do the computing. So
the most we can safely say is that as we look at different levels of computational
abstraction, the notion of a “step” may grow or shrink by a constant factor—
for example, if it takes 25 low-level machine instructions to perform one
operation in our high-level language, then our algorithm that took at most
1.6212 + 3.51 + 8 steps can also be viewed as taking 40.5n% + 87.5n + 200 steps
when we analyze it at a level that is closer to the actual hardware.

0, 2, and ©

For all these Teasons, we want to express the growth rate of running times
and other functions in a way that is insensitive to constant factors and low-
order terms. In other words, we’d like to be able to take a running time like
the one we discussed above, 1.62n% + 3.5n + 8, and say that it grows like n?,
up to constant factors. We now discuss a precise way to do this.

Asymptotic Upper Bounds Let T(n) be a function—say, the worst-case run-

ning time of a certain algorithm on an input of size n. (We will assume that '

all the functions we talk about here take nonnegative values.) Given another
function f(n), we say that T(n) is O(f(1)) (read as “T(n) is order f(n)”) if, for
sufficiently large n, the function T'(n) is bounded above by a constant multiple
of f(1). We will also sometimes write this as T(n) = O(f(n)). More precisely,
T(n) is O(f(n)) if there exist constants ¢ > 0 and ng > 0 so that for all n > ny,
we have T(n) < c - f(n). In this case, we will say that T is asymptotically upper-
bounded by f. It is important to note that this definition requires a constant ¢
to exist that works for all n; in particular, ¢ cannot depend on 7.

As an example of how this definition lets us express upper bounds on
running times, consider an algorithm whose running time (as in the earlier
discussion) has the form T(n) = pn? + gn + r for positive constants p, g, and
r. We'd like to claim that any such function is 0O(n?). To see why, wé notice
that for all n > 1, we have gn < gn?, and r < rn2. So we can write

T(n)=pnz—|—qn—|—rspnzqtqnzqtmzz(p—l—q+r)n2

for all n > 1. This inequality is exactly what the definition of O(-) requires:
T(n) <cn?, where c=p+q-+T7.

Note that O(:) expresses only an upper bound, not the exact growth rate
of the function. For example, just as we claimed that the function T(n) =
pr? +qn + 1 is O(n?), it’s also correct to say that it's 0(13). Indeed, we just
argued that T(M) < (@ +4q+ rn?, and since we also have n? < n3, we can

. conclude that T(n) < (p+ g+ )n® as the definition of O(n3) requires. The

fact that a function can have many upper bounds is not just a trick of the
notation; it shows up in the analysis of running times as well. There are cases

2.2 Asymptotic Order of Growth

where an algorithm has been proved to have running time O(n3);’ some years
Pass, geople apalyze the same algorithm more carefully, and they show that
in fact its running time is O(n?). There was nothing wrong with the first result;

it Wa§ a cgrrect upper bound. It’s simply that it wasn’t the “tightest” possible
running time. -

Asymptotic Lower Bounds There is a complementary notation for lower
pounds. Often when we analyze an algorithm—say we have just proven that
its worst-case running time T(n) is O(n?)—we want to show that this upper
bou'nd is the best one possible. To do this, we want to express the notion that for
arbitrarily large input sizes n, the function T(n) is at least a constant multiple of
some specific function f(n). (In this example, f () happens to be n2.) Thus, we
say that T(n) is Q(f(n)) (also written T(n) = Q (f(n))) if there exist const;mts
€ > 0and ny > 0 so that for all n > n, we have T(n) > € - f(n). By analogy with
O(-) notation, we will refer to T in this case as being asymptotically lower-

bfounded by f. Again, note that the constant ¢ must be fixed, independent
of n. '

'I:hlS definition works just like O(-), except that we are bounding the
function T'(n) from below, rather than from above. For example, returning
to the function T(n) = pn® 4+ gn + r, where p, g, and r are positive’constants
lgt’s claim that T(n) = Q(n2). Whereas establishing the upper bound involveci
“inflating” the terms in T(n) until it looked like a constant times n2, now we
need to do the opposite: we need to reduce the size of T(n) until it fooks like
a constant times n?. It is not hard to do this; for all n > 0, we have

T(n) =pn®+qn+r > pn?,

which meets what is required by the definition of €2 (-) with € = p>0.

Just as we discussed the notion of “tighter” and “weaker” upper bounds
the same'lssue arises for lower bounds. For example, it is correct to say that
our function T(n) = pn®+ gn +r is Q(n), since T(n) > pn® > pn.

Asymptotically Tight Bounds If we can show that a running time T(n) is
both O(f(n)) and also Q(f(n)), then in a natural sense we’ve found the “right”
bound: T(n) grows exactly like f(n) to within a constant factor. This, for

example, is the conclusion we can draw from the fact tha
: t T(n) = pn?
is both O(n?) and Qn?). W

There is a notation to express this: if a function T'(n) is both O(f(n)) and
Q(f(n)), we say that T(n) is ©(f(n)). In this case, we say that f(n) is an
asymptotically tight bound for T(n). So, for example, our analysis above shows
that T(n) = pn? + qn +r is O (n?).

'Asymptotically tight bounds on worst-case running times are nice things
to find, since they characterize the worst-case performance of an algorithm
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precisely up to constant factors. And as the definition of ©(-) shc;)vvsél (;nlemi’a:lr
obtain such bounds by closing the gap between an'upper'boun an o
bound. For example, sometimes you will read a (slightly informally p Esase
sentence such as “An upper bound of O(n®) has been shown on the W(inr's hcthe
running time of the algorithm, but there is no 'ex.'an'lple @own on vx'rt tgcn e
algorithm runs for more than Q(n?) steps.” This is gnph’mﬂy an invita 1nn !
search for an asymptotically tight bound on the algorithm’s worst-case ru g
" i i ight bound directly by

Sometimes one can also obtain an asymptopcally' tight 01:111 recty o
computing a limit as n goes to infinity. Essentially, if the ratlo' oﬁmtyc ons
f(n) and g(n) converges to a positive constant as 1. goes to in g

f(n) = B M)
(2.1) Let f and g be two functions that

L f®
A2 g(n)

exists and is equal to some number ¢ > 0. Then f(n) = ©(g)).

Proof. We will use the fact that the limit exists and is po'siFiye to show that
f(n) =0(g(n)) and f(n) = Q(g(n)), as rgqm'xed by the definition of ®(").

Since

lim f(n) =c>0,

n—»00 g(n)

it follows from the definition of a limit that there is some g beyond Whlchh;h}e;
ratio is always between %c and 2c. Thus, f(n) < 2cg(n) for all n z ?’-W h(; :
implies that f(n) = 0(g(M)); and f(n) > %cg(n) for all n > ny, which imp
that f(n) = Q(gm). =

Properties of Asymptotic Growth Rates .
Having seen the definitions of O, €2, and @, it is useful to explore some ol their
basic properties. '
TITansftiv?ty A first property is transitivity: if a funf:tion fis as'yrrilptotlcalelz
upper-bounded by a function g, and if g in .turn is asymptotlgadybupi -
bounded by a function A, then f is asyrnptotlcally upger—boun e 'ye ; .as
similar property holds for lower bounds. We write this more precisely

follows.

(2.2)
(a) Iff=0(g) and g = O(h), then f = O(h).
(b) Iff=9(g) and g§= Q(h), then f = Q(h).

2.2 Asymptotic Order of Growth

Proof. We’ll prove part (a) of this claim; the proof of part (b) is very similar.

For (a), we’re given that for some constants ¢ and ng, we have f(n) < cg(n)
for all n > ny. Also, for some (potentially different) constants ¢’ and n,, we
have g(n) < c’h(n) for all n > ng. So consider any number n that is at least as
large as both n and ny. We have f(n) < cg(n) < cc’h(n), and so f(n) < cc’h(n)

for all n > max(ng, ng). This latter inequality is exactly what is required for
showing that f =O(h). =

Combining parts (a) and (b) of (2.2), we can obtain a similar result
for asymptotically tight bounds. Suppose we know that f = 0©(g) and that
8 = ©(h). Then since f = 0(g) and g = O(h), we know from part (a) that
f =O(h); since f = Q(g) and g = Q (h), we know from part (b) that f = Q(h).
It follows that f = ®(h). Thus we have shown

(2.3) Iff=0() and g =O(h), then f = Oh).

Sums of Functions 1t is also useful to have results that quantify the effect of
adding two functions. First, if we have an asymptotic upper bound that applies
to each of two functions f and g, then it applies to their sum.

(2.4) Supposethat f and g are two functions such that for some other function
h, we have f = O(h) and g = O(h). Then f + g = O(h).

Proof. We’re given that for some constants ¢ and ng, we have f(n) < ¢h(n)
for all n>ny. Also, for some (potentially different) constants ¢’ and g,
we have g(n) <c’h(n) for all n > ng. So consider any number n that is at
least as large as both ny and ng. We have f(n) + g(n) < ch(n) + ¢’h(n). Thus
f() +8) < (c+ cHh(n) for all n > max(ng, ng), which is exactly what is
required for showing that f +g=0(h). =

There is a generalization of this to sums of a fixed constant number of
functions k, where k may be larger than two. The result can be stated precisely
as follows; we omit the proof, since it is essentially the same as the proof of
(2.4), adapted to sums consisting of k terms rather than just two.

(2.5) Let k be a fixed constant, and let f;,f5, . . ., fr and h be functions such
that f;= O(h) for all i. Then fi+f,+ - -+ f, = O(h).

There is also a consequence of (2.4) that covers the following kind ‘of
sitnation. It frequently happens that we’re analyzing an algorithm with two
high-level parts, and it is easy to show that one of the two parts is slower
than the other. We’d like to be able to say that the running time of the whole
algorithm is asymptotically comparable to the running time of the slow part.
Since the overall running time is a sum of two functions (the running times of
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the two parts), results on asymptotic bounds for sums of functions are directly
relevant.

(2.6) Suppose that f and g are two functions (taking nonnegative va_lues)
such that g = O(f). Then f + g = ©(f). In other words, f is an asymptotically
tight bound for the combined function f + 8.

Proof. Clearly f + g = Q(f), since for all n >0, we have f(n) +g(m) = ().
So to complete the proof, we need to show that f + g = O(f).

But this is a direct consequence of (2.4): we're ‘given the fact that g = O(f),
and also f = O(f) holds for any function, so by (2.4) we have f +g=0(f). =

This result also extends to the sum of any fixed, constant numb'er of
functions: the most rapidly growing among the functions is an asymptotically

tight bound for the sum.

Asymptotic Bounds for Some Common Functions

There are a number of functions that come up repeatedly in the analysis of

algorithms, and it is useful to consider the asymptotic properties of some of
the most basic of these: polynomials, logarithms, and exponentials.

Polynomials Recall that a polynomial is a function that can be written in
the form f(n) = adg + ain + an®+-- -+ azn? for some integer constant d > 0,
where the final coefficient a, is nonzero. This value d is called the degree of the
polynomial. For example, the functions of the form pn? 4+ gn + r (with p # 0)
that we considered earlier are polynomials of degree 2.

A basic fact about polynomials is that their asymptotic rate of growth is
determined by their “high-order term”—the one that determines the degree.
We state this more formally in the following claim. Since we are concerned hfere
only with functions that take nonnegative values, we Wlll restrict our attention
to polynomials for which the high-order term has a positive coefficient az > 0.

(2.7) Letf be a polynomial of degree d, in which the coefficient a4 is positive.
Then f = O(n9).

Proof. We write f =ag+an+ an®+ -+ asn?, where agz > 0. The upper
bound is a direct application of (2.5). First, notice that coefficients g; for j < d
may be negative, but in any case we have ajnj < ]ajlnd for all n > 1. Thus each
term in the polynomial is O(n9). Since f is a sum of a constant number of
functions, each of which is O(n9), it follows from (2.5) that f is om%). =

One can also show that under the conditions of (2.7), we have f=Q (nd),
and hence it follows that in fact f = ©(n%).

2.2 Asymptotic Order of Growth-

This is a good point at which to discuss the relationship between these
types of asymptotic bounds and the notion of polynomial time, which we
arrived at in the previous section as a way to formalize the more elusive concept
of efficiency. Using O(-) notation, it’s easy to formally define polynomial time:
a polynomial-time algorithm is one whose running time T(n) is O(n4) for some
constant d, where d is independent of the input size.

So algorithms with running-time bounds like O(n?) and O(n3) are
polynomial-time algorithms. But it’s important to realize that an algorithm
can be polynomial time even if its running time is not written as n raised
to some integer power. To begin with, a number of algorithms have running
times of the form O(n*) for some number x that is not an integer. For example,
in Chapter 5 we will see an algorithm whose running time is O(n!-*%); we will
also see exponents less than 1, as in bounds like O(/1) = O(n/3).

To take another common kind of example, we will see many algorithms
whose running times have the form O(nlogn). Such algorithms are also
polynomial time: as we will see next, logn <n for all n> 1, and hence
nlogn <n? for all n > 1. In other words, if an algorithm has running time
O(nlog n), then it also has running time O(n%), and so it is a polynomial-time
algorithm.

Logarithms Recall that log, n is the number x such that b* = n. One way
to get an approximate sense of how fast log, n grows is to note that, if we
round it down to the nearest integer, it is one less than the number of digits
in the base-b representation of the number n. (Thus, for example, 1+ log, 7,
rounded down, is the number of bits needed to represent n.)

So logarithms are very slowly growing functions. In particular, for every
base b, the function log;, n is asymptotically bounded by every function of the
form n*, even for (noninteger) values of x arbitrary close to 0.

(2.8) Forevery b > 1and every x > 0, we have log, n = O(n%).

One can directly translate between logarithms of different bases using the
following fundamental identity:

This equation explains why you’ll often notice people writing bounds like
O(log n) without indicating the base of the logarithm. This is not sloppy
usage: the identity above says that log, n = E‘g‘lﬁ -logy, 1, so the point is that
log, n = ®(log, n), and the base of the logarithm is not important when writing
bounds using asymptotic notation.
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Exponentials Exponential functions are functions of the fOl'H.l f(n)‘ =" for
some constant base r. Here we will be concerned with the case in whichr > 1,
which results in a very fast-growing function. )

In particular, where polynomials raise 7 to a fixed exponent, exponential
raise a fixed number to n as a power; this leads to much faster rates of grovs{th.
One way to summarize the relationship between polynomials and exponentials
is as follows.

(2.9) Foreveryr>1andeveryd> 0, we have n? = O(@™).

In particular, every exponential grows faster than every polynoxpial. And e‘ls
we saw in Table 2.1, when you plug in actual values of 1, the differences in
growth rates are really quite impressive.

Just as people write O(log ) without specifying the base, ygu’}’l a1§o see
people write “The running time of this algorithm is ‘exponen‘tlal, Wl.thout
specifying which exponential function they have in mind. U%ﬂlke thfe liberal
use of log n, which is justified by ignoring constant factors, this generic use of

the term “exponential” is somewhat sloppy. In particular, for different bases

r> s> 1, it is never the case that 7 = ©(s™). Indeed, this would require that
for some constant ¢ > 0, we would have ™ < cs™ for all sufficiently large 7.
But rearranging this inequality would give (r/s)" < ¢ for all sufficiently 1arg‘e
1. Since r > s, the expression (r/s)" is tending to infinity with n, and so it

_ cannot possibly remain bounded by a fixed constant c.

So asymptotically speaking, exponential functions are all different. Sﬁll,
it’s usually clear what people intend when they inexactly write “The runm.ng
time of this algorithm is exponential”—they typically mean that the mnn}ng
time grows at least as fast as some exponential function, ar.1d all expon.enuals
grow so fast that we can effectively dismiss this algorithm w1thqut Worlqng out
further details of the exact running time. This is not entirely fair. Occaspnally
there’s more going on with an exponential algorithm than first appea'rs, as
we’ll see, for example, in Chapter 10; but as we argued in the first section of
this chapter, it’s a reasonable rule of thumb.

Taken together, then, logarithms, polynomials, and exponentials serve as
useful landmarks in the range of possible functions that you encounter when
analyzing running times. Logarithms grow more slowly than polynomials, and
polynomials grow more slowly than exponentials.

2.3 Implementing the Stable Matchjng Algorithm
Using Lists and Arrays

We've now seen a general approach for expressing bounds on ﬁ‘le rqnm'ng
time of an algorithm. In order to asymptotically analyze the running time of

2.3 Implementing the Stable Matching Algorithm Using Lists and Arrays

2o

an algorithm expressed in a high-level fashion—as we expressed the Gale-
Shapley Stable Matching algorithm in Chapter 1, for example—one doesn’t
have to actually program, compile, and execute it, but one does have to think
about how the data will be represented and manipulated in an implementation
of the algorithm, so as to bound the number of computational steps it takes.

The implementation of basic algorithms using data structures is something
that you probably have had some experience with. In this book, data structures
will be covered in the context of implementing specific algorithms, and so we
will encounter different data structures based on the needs of the algorithms
we are developing. To get this process started, we consider an implementation
of the Gale-Shapley Stable Matching algorithm; we showed earlier that the
algorithm terminates in at most n? iterations, and our implementation here
provides a corresponding worst-case running time of O(n?), counting actual
computational steps rather than simply the total number of iterations. To get
such a bound for the Stable Matching algorithm, we will only need to use two
of the simplest data structures: lists and arrays. Thus, our implementation also
provides a good chance to review the use of these basic data structures as well.

In the Stable Matching Problem, each man and each woman has a ranking
of all members of the opposite gender. The very first question we need to
discuss is how such a ranking will be represented. Further, the algorithm
maintains a matching and will need to know at each step which men and
women are free, and who is matched with whom. In order to implement the
algorithm, we need to decide which data structures we will use for all these
things.

An important issue to note here is that the choice of data structure is up
to the algorithm designer; for each algorithm we will choose data structures
that make it efficient and easy to implement. In some cases, this may involve
preprocessing the input to convert it from its given input representation into a
data structure that is more appropriate for the problem being solved.

Aljrays and Lists

To start our discussion we will focus on a single list, such as the list of women
in order of preference by a single man. Maybe the simplest way to keep a list
of n elements is to use an array A of length r1, and have A[i] be the i® element
of the list. Such an array is simple to implement in essentially all standard
programming languages, and it has the following properties.

© We can answer a query of the form “What is the i'® element on the list2”
in O(1) time, by a direct access to the value A[i].

o If we want to determine whether a particular element e belongs to the
list (i.e., whether it is equal to A[{] for some i), we need to check the
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elements one by one in O(n) time, assuming we don’t know anything
about the order in which the elements appear in A.

o If the array elements are sorted in some clear way (either numerically
or alphabetically), then we can determine whether an element e belongs
to the list in O(log i) time using binary search; we will not need to use
binary search for any part of our stable matching implementation, but
we will have more to say about it in the next section.

An array is less good for dynamically maintaining a list of elements that
changes over time, such as the list of free men in the Stable Matching algorithm;
since men go from being free to engaged, and potentially back again, a list of
free men needs to grow and shrink during the execution of the algorithm. It
is generally cumbersome to frequently add or delete elements to a list that is
maintained as an array.

An alternate, and often preferable, way to maintain such a dynamic set
of elements is via a linked list. In a linked list, the elements are sequenced

together by having each element point to the next in the list. Thus, for each -

element v on the list, we need to maintain a pointer to the next element; we
set this pointer to null if 7 is the last element. We also have a pointer First
that points to the first element. By starting at First and repeatedly following
pointers to the next element until we reach null, we can thus traverse the entire
contents of the list in time proportional to its length.

A generic way to implement such a linked list, when the set of possible
elements may not be fixed in advance, is to allocate a record e for each element
that we want to include in the list. Such a record would contain a field e.val
that contains the value of the element, and a field e.Next that contains a
pointer to the next element in the list. We can create a doubly linked list, which
is traversable in both directions, by also having a field e.Prev that contains
a pointer to the previous element in the list. (e.Prev = null if e is the first
element.) We also include a pointer Last, analogous to First, that points to
the last element in the list. A schematic illustration of part of such a list is
shown in the first line of Figure 2.1.

A doubly linked list can be modified as follows.

o Deletion. To delete the element e from a doubly linked list, we can just
“splice it out” by having the previous element, referenced by e.Prev, and
the next element, referenced by e.Next, point directly to each other. The
deletion operation is illustrated in Figure 2.1.

o Insertion. To insert element e between elements d and f in a list, we
“splice it in” by updating d.Next and f.Prev to point to e, and the Next
and Prev pointers of e to point to d and f, respectively. This operation is
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Before deleting e:

Element e
val ‘ val val
1 & e
After deleting e:
Element e
val val | val
=5t | [ T =

\/

Figure 2.1 A schemati i 1 .
an element e. ¢ representation of a doubly linked list, showing the deletion of

essentially the reverse of deletion, and indeed one can see this operation
at work by reading Figure 2.1 from bottom to top.

Insgrting or deleting e at the beginning of the list involves updating the First
pointer, rather than updating the record of the element before e.

Wl'lile lists are good for maintaining a dynamically changing set, they also
have c'hsadvantages. Unlike arrays, we cannot find the it element o£ the list in
O(1) time: to find the i™ element, we have to follow the Next pointers startin,
from the beginning of the list, which takes a total of O(i) time. °

Given the relative advantages and disadvantages of arrays and lists, it may
happen that we receive the input to a problem in one of the two form;lts and
want to convert it into the other. As discussed earlier, such preprocessiﬁg is
qﬁen useful; and in this case, it is easy to convert between the array and
list representations in O(n) time. This allows us to freely choose the data

stmf:ture that suits the algorithm better and not be constrained by the way
the information is given as input.

Implementing the Stable Matching Algorithm

I\'I ext we will use arrays and linked lists to implement the Stable Matching algo-
rithm from Chapter 1. We have already shown that the algorithm terminatef in
a.t most n? iterations, and this provides a type of upper bound on the running
nme.'Ho'wever, if we actually want to implement the G-S algorithm so that it
mns in time proportional to n?, we need to be able to implement each iteration
in constant time. We discuss how to do this now.

For simplicity, assume that the set of men and women are both {1, ..., n}
To ensure this, we can order the men and women (say, alphabetically), and
associate number i with the i man m; or i" women w; in this order. This
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assumption (or notation) allows us to define an array indexed by all men
or all women. We need to have a preference list for each man and for eeflch
woman. To do this we will have two arrays, one for women'’s pref'erence lists
and one for the men’s preference lists; we will use ManPref[m, i] to dex}ote
the i® woman on man m’s preference list, and similarly WomanPref [w, i] to
be the i® man on the preference list of woman w. Note th.?lt the 2amount of
space needed to give the preferences for all 2n individuals is O(n%), as each
person has a list of length 7.

We need to consider each step of the algorithm and understand what data
structure allows us to implement it efficiently. Essentially, we need to be able
to do each of four things in constant time.

1. We need to be able to identify a free man.
2. We need, for a man m, to be able to identify the highest-ranked woman
to whom he has not yet proposed.

3. For a woman w, we need to decide if w is currently engaged, and if she

is, we need to identify her current partner.
4. For a woman w and two men m and m’, we need to be able to decide,
again in constant time, which of m or m’ is preferred by w.

N,

First, consider selecting a free man. We will do this by maintaining the set
of free men as a linked list. When we need 1o select a free man, we take the
first tnan m on this list. We delete m from the list if he becomes engaged, aqd
possibly insert a different man m’, if some other man m’ becomes free. In this
case, m’ can be inserted at the front of the list, again in constant time.

Next, consider a man m. We need to identify the highest-ranked woman
to whom he has not yet proposed. To do this we will need fo maintain an extra
array Next that indicates for each man m the position of the next woman he
will propose to on his list. We initialize Next[m]= 1 for all men m. If amanm
needs to propose to a womat, he’ll propose to w = ManPref [m,Next[m]], and
once he proposes to w, we increment the value of Next[m] by one, regardless
of whethet or not w accepts the proposal. »

Now assume man m proposes to woman w; we need to be able to ide.ntify
the man m’ that w is engaged to (if there is such a man). We c‘an do this by
maintaining an array Current of length 7, where Current[w] is the woman
w’s current partner m’. We set Current [w] to a special null symbol when we
need to indicate that woman w is not currently engaged; at the start of the
algorithm, Current[w] is initialized to this null symbol for all women w.

To sum up, the data structures we have set up thus far can implement the
operations (1)-(3) in O(1) time each.

2.4 A Survey of Common Running Times

Maybe the trickiest question is how to maintain women'’s preferences to
keep step (4) efficient. Consider a step of the algorithm, when man m proposes
to a woman w. Assume w is already engaged, and her current partner is
m’ =Current[w]. We would like to decide in O(1) time if woman w prefers m
or m'. Keeping the women’s preferences in an array WomanPref, analogous to
the one we used for men, does not work, as we would need to walk through
w’s list one by one, taking O(n) time to find m and m’ on the list. While O(n)
is still polynomial, we can do a lot better if we build an auxiliary data structure
at the beginning.

At the start of the algorithm, we create an n x n array Ranking, where
Ranking(w, m] contains the rank of man m in the sorted order of w’s prefer-
ences. By a single pass through w’s preference list, we can create this array in
linear time for each woman, for a total initial time investment proportional to
n?. Then, to decide which of m or m’ is preferred by w, we simply compare
the values Rankingw, m] and Ranking{w, m'].

This allows us to execute step (4) in constant time, and hence we have
everything we need to obtain the desired running time.

(2.10)  The data structures described above allow us to implemenfthe G-S

algorithm in O(n?) time.

2.4 A Survey of Common Running Times

When trying to analyze a new algorithm, it helps to have a rough sense of
the “landscape” of different running times. Indeed, there are styles of analysis
that recur frequently, and so when one sees running-time bounds like O(n),
O(nlog n), and O(n?) appearing over and over, it's often for one of a very
small number of distinct reasons. Learning to recognize these common styles
of analysis is a long-term goal. To get things under way, we offer the following

survey of common running-time bounds and some of the typical approaches
that lead to them.

Earlier we discussed the notion that most problems have a natural “search
space”--the set of all possible solutions—and we noted that a unifying theme
in algorithm design is the search for algorithms whose performance is more
efficient than a brute-force enumeration of this search space. In approaching a
new problem, then, it often helps to think about two kinds of bounds: one on
the running time you hope to achieve, and the other on the size of the problem’s
natural search space (and hence on the running time of a brute-force algorithm
for the problem). The discussion of running times in this section will begin in
many cases with an analysis of the brute-force algorithm, since it is a useful
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way to get one’s bearings with respect to a problem; the task of improving on
such algorithms will be our goal in most of the book. '

Linear Time

An algorithm that runs in O(n), or linear, time has a very natural property:
its running time is at most a constant factor times the size of the input. One
basic way to get an algorithm with this running time is to process the input
in a single pass, spending a constant amount of time on each item of input
encountered. Other algorithms achieve a linear time bound for more subtle
reasons. To illustrate some of the ideas here, we consider two simple linear-
time algorithms as examples.

Computing the Maximum Computing the maximum of n numbers, for ex-
ample, can be performed in the basic “one-pass” style. Suppose the numbers
are provided as input in either a list or an array. We process the numbers
a,,d,, . .. ,d, in order, keeping a running estimate of the maximum as we go.

Each time we encounter a number g;, we check whether g; is larger than our

current estimate, and if so we update the estimate to a;.

max = @,
For i=2 ton
If @g; > max then
set max=q;
Endif
Endfor

In this way, we do constant work per element, for a total running time of O(1).

Sometimes the constraints of an application force this kind of one-pass
algorithm on you—for example, an algorithm running on a high-speed switch
on the Internet may see a stream of packets flying past it, and it can try
computing anything it wants to as this stream passes by, but it can only perform
a constant amount of computational work on each packet, and it can’t save
the stream so as to make subsequent scans through it. Two different subareas
of algorithms, online algorithms and data stream algorithms, have developed
to study this model of computation.

Merging Two Sorted Lists Often, an algorithm has a running time of O(1),
but the reason is more complex. We now describe an algorithm for merging
two sorted lists that stretches the one-pass style of design just a little, but still
has a linear running time.

Suppose we are given two lists of n numbers each, a;,a, ..., dn and
by, by, . .., by, and each is already arranged in ascending order. We’d like to
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merge these into a single list ¢;, ¢, . . . , ¢y, that is also arranged in ascending
order. For example, merging the lists 2, 3, 11,19 and 4, 9, 16, 25 results in the
output 2, 3,4,9, 11, 16, 19, 25.

To do this, we could just throw the two lists together, ignore the fact that
they’re separately arranged in ascending order, and run a sorting algorithm.
But this clearly seems wasteful; we’d like to make use of the existing order in
the input. One way to think about designing a better algorithm is to imagine
performing the merging of the two lists by hand: suppose you’re given two
piles of numbered cards, each arranged in ascending order, and you’d like to
produce a single ordered pile containing all the cards. If you look at the top
card on each stack, you know that the smaller of these two should go first on

the output pile; so you could remove this card, place it on the output, and now
iterate on what’s left.

In other words, we have the following algorithm.

To merge sorted lists A = a,...,a, and B=by,..., by

Maintain a Current pointer into each list, initialized to
point to the front elements

While both lists are nonempty:
Let a; and b; be the elements pointed to by the Current pointer
Append the smaller of these two to the output list
Advance the Current pointer in the list from which the

smaller element was selected
EndWhile

Once one list is empty, append the remainder of the other list
to the output

See Figure 2.2 for a picture of this process.

Append the smaller of
a; and b; to the output.

I Merged result

Figure 2.2 To merge sorted lists A and B, we repeatedly extract the smaller item from
the front of the two lists and append it to the output.
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Now, to show a linear-time bound, one is tempted to describe an argument
like what worked for the maximum-finding algorithm: “We do constant work
per element, for a total running time of O(n)” But it is actually not true that
we do only constant work per element. Suppose that n is an even number, and
consider the lists A=1,3,5,...,2n—1 and B=n,n+2,n+4,...,3n—2.
The number b, at the front of list B will sit at the front of the Yst for n/2
iterations while elements from A are repeatedly being selected, and hence
it will be involved in §(n) comparisons. Now, it is true that each element
can be involved in at most O(n) comparisons (at worst, it is compared with
each element in the other list), and if we sum this over all elements we get
a running-time bound of O(n?). This is a correct bound, but we can show
something much stronger.

The better way to argue is to bound the number of iterations of the While
loop by an “accounting” scheme. Suppose we charge the cost of each iteration
to the element that is selected and added to the outpuf list. An element can
be charged only once, since at the moment it is first charged, it is added

to the output and never seen again by the algorithm. But there are only 2n -

elements total, and the cost of each iteration is accounted for by a charge to
some element, so there can be at most 2n iterations. Each iteration involves a
constant amount of work, so the total running time is O(n), as desired.

While this merging algorithm iterated through its input lists in order, the
“interleaved” way in which it processed the lists necessitated a slightly subtle
running-time analysis. In Chapter 3 we will see linear-time “algorithms for
graphs that have an even more complex flow of control: they spend a constant
amount of time on each node and edge in the underlying graph, but the order
in which they process the nodes and edges depends on the structure of the
graph.

O(n log n) Time

O(n log n) is also a very common running time, and in Chapter 5 we will
see one of the main reasons for its prevalence: it is the running time of any
algorithm that splits its input into two equal-sized pieces, solves each piece
recursively, and then combines the two solutions in linear time.

Sorting is perhaps the most well-known example of a problem that can be
solved this way. Specifically, the Mergesort algorithm divides the set of input
numbers into two equal-sized pieces, sorts each half recursively, and then
merges the two sorted halves into a single sorted output list. We have just
seen that the merging can be done in linear time; and Chapter 5 will discuss
how to analyze the recursion so as to get a bound of O(nlog ) on the overall
running time. '
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One also frequently encounters O(72 log i) as a running time sinfply be-
Fause there are many algorithms whose most expensive step is to sort the
input. For example, suppose we are given a set of n time-stamps x, x5, ..., X
on which copies of a file arrived at a server, and we’d like to find the largesi
interval of time between the first and last of these time-stamps during which
go copy of the file arrived. A simple solution to this problem is to first sort the
time-stamps x;, X, . . . , X, and then process them in sorted order, determining
the sizes of the gaps between each number and-its successor in ascending
qrder. The largest of these gaps is the desired subinterval. Note that this algo-
rithm requires O(rn log ) time to sort the numbers, and then it spends constant
work on each number in ascending order. In other words, the remainder of the

algorithm after sorting follows the basic recipe for linear time that we discussed
earlier.

Quadratic Time

Here’s a basic problem: suppose you are given n points in the plane, each
specified by (x,y) coordinates, and you’d like to find the pair of points that
are closest together. The natural brute-force algorithm for this problem would
enumerate all pairs of points, compute the distance between each pair, and
then choose the pair for which this distance is smallest.

What is the running time of this algorithm? The number of pairs of points
is (3) = M2=D, and since this quantity is bounded by in?, it is O(n?. More
crudely, the number of pairs is O(n?) because we multiply the number of
ways of choosing the first member of the pair (at most 1) by the number
o“f ways of choosing the second member of the pair (also at most n). The
distance between points (x;, y;) and (%, ¥;) can be computed by the formula
\/ (x; — %)% + (¥; — y;)* in constant time, so the overall running time is O(n?).
This example illustrates a very common way in which a running time of O(n?)

gﬂses: performing a search over all pairs of input items and spending constant
time per pair.

' Quadratic time also arises naturally from a pair of nested loops: An algo-
rithm consists of a loop with O(n) iterations, and each iteration of the loop
launches an internal loop that takes O(n) time. Multiplying these two factors
of n together gives the running time. )

' The‘ brute-force algorithm for finding the closest palr of points can be
written in an equivalent way with two nested loops:

For each input point (x;y))
For each other input point (x;,y;)

Compute distance d=\/(xi - X% 4+ O - y)?
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If d is less than the current minimum, update minimum to d
Endfor
Endfor

Note how the “inner” loop, over (x;,y;), has O(n) iterations, each taking
constant time; and the “outer” loop, over (x;, ¥;), has O(n) iterations, each
invoking the inner loop once.

It’s important to notice that the algorithm we’ve been discussing for the
Closest-Pair Problem really is just the brute-force approach: the natural search
space for this problem has size O(n?), and we’re simply enumerating it. At
first, one feels there is a certain inevitability about this quadratic algorithm—
we have to measure all the distances, don’t we?—but in fact this is an illusion.
In Chapter 5 we describe a very clever algorithm that finds the closest pair of
points in the plane in only O(n2log n) time, and in Chapter 13 we show how
randomization can be used to reduce the running time to O(m).

Cubic Time

More elaborate sets of nested loops often lead to algorithms that run in
O@3) time. Consider, for example, the following problem. We are given sets
S1,S3, ..., Sy, each of which is a subset of {1,2,...,n}, and we would like
to know whether some pair of these sets is disjoint—in other words, has no
elements in common.

What is the running time needed to solve this problem? Let’s suppose that
each set S; is represented in such a way that the elements of S; can be listed in
constant time per element, and we can also check in constant time whether a
given number p belongs to S;. The following is a direct way to approach the
problem.

For pair of sets §; and §;
Determine whether §; and §5; have an element in common
Endfor

This is a concrete algorithm, but to reason about its running time it helps to
open it up (at least conceptually) into three nested loops.

For each set §;
For each other set §;
For each element p of §;
Determine whether p also belongs to §;
Endfor
If no element of S; belongs to 5; then
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Report that §; and S; are disjoint
Endif
Endfor
Endfor

Each of the sets has maximum size O(n), so the innermost loop takes time
O(n). Looping over the sets S; involves O(n) iterations around this innermost
loop; and looping over the sets S; involves O(n) iterations around this. Multi-
plying these three factors of n together, we get the running time of O(713).

For this problem, there are algorithms that improve on O(n®) running
time, but they are quite complicated. Furthermore, it is not clear whether

the improved algorithms for this problem are practical on inputs of reasonable
size.

O(n%) Time

In the same way that we obtained a running time of O(n?) by performing brute-
force search over all pairs formed from a set of 7 items, we obtain a running
time of O(n%) for any constant kK when we search over all subsets of size k.

Consider, for example, the problem of finding independent sets in a graph,
which we discussed in Chapter 1. Recall that a set of nodes is independent
if no two are joined by an edge. Suppose, in particular, that for some fixed
constant k, we would like to know if a given n-node input graph G has an
independent set of size k. The natural brute-force algorithm for this problem
would enumerate all subsets of k nodes, and for each subset S it would check
whether there is an edge joining any two members of S. That is,

For each subset S of k nodes
Check whether S constitutes an independent set
If S is an independent set then
Stop and declare success
Endif
Endfor
If no k-node independent set was found then
Declare failure
Endif

To understand the running time of this algorithm, we need to consider two
quantities. First, the total number of k-element subsets in an n-element set is

<n>=n(n—l)(n—Z)-~-(n—-k+1) <£’j
k kk—Dtk~2)---@@Q) ~ k'
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Since we are treating k as a constant, this quantity is O(n%). Thus, the outer
loop in the algorithm above will run for O(n%) iterations as it tries all k-node
subsets of the n nodes of the graph.

Inside this loop, we need to test whether a given set 5 of k nodes constitutes
an independent set. The definition of an independent set tells us that we need
to check, for each pair of nodes, whether there is an edge joining them. Henc'e
this is a search over pairs, like we saw earlier in the discussion of quadratic
time; it requires looking at (S) that is, O(k?), pairs and spending constant time
on each. ~

Thus the total running time is O(k?n¥). Since we are treating k as a constant
here, and since constants can be dropped in O(-) notation, we can write this
running time as O(%).

Independent Set is a principal example of a problem believed to Pe compu-
tationally hard, and in particular it is believed that no algorithm to find k-nodg
independent sets in arbitrary graphs can avoid having some dependence on k
in the exponent. However, as we will discuss in Chapter 10 in the context of

a related problem, even once we’ve conceded that brute-force search over k-

element subsets is necessary, there can be different ways of going about this
that lead to significant differences in the efficiency of the computation.

Beyond Polynomial Time

The previous example of the Independent Set Problem starts us rapidly.down
the path toward running times that grow faster than any polynomial. In
particular, two kinds of bounds that come up very frequently are 2" and nl,
and we now discuss why this is so.

Suppose, for example, that we are given a graph and wa.nt to find an
independent set of maximum size (rather than testing for the emsteflce of one
with a given number of nodes). Again, people don’t know of algorithms that
improve significantly on brute-force search, which in this case would look as
follows.

For each subset S of nodes
Check whether S constitutes an independent set
If S is a larger independent set than the largest seen so far then
Record the size of S as the current maximum
Endif
Endfor

This is very much like the brute-force algorithm for k-node independent sets,
except that now we are iterating over all subsets of the graph. The total number
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of subsets of an n-element set is 27, and so the outer loop in this algorithm
will run for 2" iterations as it tries all these subsets. Inside the loop, we are
checking all pairs from a set S that can be as large as n nodes, so each iteration
of the loop takes at most O(n?) time. Multiplying these two together, we geta
running time of O(n?2").

Thus see that 2" arises naturally as a running time for a search algorithm
that must consider all subsets. In the case of Independent Set, something
at least nearly this inefficient appears to be necessary; but it’s important
to keep in mind that 2" is the size of the search space for many problems,
and for many of them we will be able to find highly efficient polynomial-
time algorithms. For example, a brute-force search algorithm for the Interval
Scheduling Problem that we saw in Chapter 1 would look very similar to the
algorithm above: try all subsets of intervals, and find the largest subset that has
no overlaps. But in the case of the Interval Scheduling Problem, as opposed
to the Independent Set Problem, we will see (in Chapter 4) how to find an
optimal solution in O(nlog n) time. This is a recurring kind of dichotomy in
the study of algorithms: two algorithms can have very similar-looking search
spaces, but in one case you’re able to bypass the brute-force search algorithm,
and in the other you aren’t.

The function n! grows even more rapidly than 2", so it’s even more
menacing as a bound on the performance of an algorithm. Search spaces of
size n! tend to arise for one of two reasons. First, n! is the number of ways to
match up n items with n other items—for example, it is the number of possible
perfect matchings of n men with n women in an instance of the Stable Matching
Problem. To see this, note that there are n choices for how we can match up
the first man; having eliminated this option, there are n — 1 choices for how we
can match up the second man; having eliminated these two options, there are
n — 2 choices for how we can match up the third man; and so forth. Multiplying
all these choices out, we get n(n — H)(n —2) --- 2)(1) =n!

Despite this enormous set of possible solutions, we were able to solve
the Stable Matching Problem in O(n?) iterations of the proposal algorithm.
In Chapter 7, we will see a similar phenomenon for the Bipartite Matching
Problem we discussed earlier; if there are n nodes on each side of the given
bipartite graph, there can be up to n! ways of pairing them up. However, by
a fairly subtle search algorithm, we will be able to find the largest bipartite
matching in O(n®) time.

The function n! also arises in problems where the search space consists
of all ways to arrange n items in order. A basic problem in this genre is the
Traveling Salesman Problem: given a set of n cities, with distances between
all pairs, what is the shortest tour that visits all cities? We assume that the
salesman starts and ends at the first city, so the crux of the problem is the
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implicit search over all orders of the remaining n — 1 cities, leadi.ng to a search
space of size (n — 1)L In Chapter 8, we will see that Traveling Salesman
is another problem that, like Independent Set, belongs to the class of NP-
complete problems and is believed to have no efficient solution.

Sublinear Time
Finally, there are cases where one encounters running times that are a§ymp-
totically smaller than linear. Since it takes linear time just to read the input,
these situations tend to arise in a model of computation where the input can be
“queried” indirectly rather than read completely, and the goal is to minimize
the amount of querying that must be done.

Perhaps the best-known example of this is the binary search algorithm.

Given a sorted array A of n numbers, we’d like to determine Whethe.r a givep
number p belongs to the array. We could do this by reading the entire array,

but we’d like to do it much more efficiently, taking advantage of the fact that .

the array is sorted, by carefully probing particular entries. In particular, we
probe the middle entry of A and get its value—say it is g—and we compare g
to p. If ¢ = p, we’re done. If ¢ > p, then in order for p to belong to the array
A, it must lie in the lower half of A; so we ignore the upper half of A from
now on and recursively apply this search in the lower half. Finally, if g <p,
then we apply the analogous reasoning and recursively search in the upper
half of A.

The point is that in each step, there’s a region of A where p might.possibly
be; and we’re shrinking the size of this region by a factor of two with every
probe. So how large is the “active” region of A after k probes? It starts at size
n, so after k probes it has size at most (3)*n.

Given this, how long will it take for the size of the active region-to be
reduced to a constant? We need k to be large enough so that (%)k =0(1/n),
and to do this we can choose k =log, n. Thus, when k =log, n, the size of
the active region has been reduced to a constant, at which point the recursion
bottoms out and we can search the remainder of the array directly in constant
time.

So the running time of binary search is O(log i), because of this succes§ive
shrinking of the search region. In general, O(log n) arises as a time bound
whenever we’re dealing with an algorithm that does a constant amount of
work in order to throw away a constant fraction of the input. The crucial fact
is that O(log n) such iterations suffice to shrink the input down to constant
size, at which point the problem can generally be solved directly.

2.5 A More Complex Data Structure: Priority Queues

2.5 A More Complex Data Structure:
Priority Queues

Our primary goal in this book was expressed at the outset of the chapter:
we seek algorithms that improve qualitatively on brute-force search, and in
general we use polynomial-time solvability as the concrete formulation of
this. Typically, achieving a polynomial-time solution to a nontrivial problem
is not something that depends on fine-grained implementation details; rather,
the difference between exponential and polynomial is based on overcoming
higher-level obstacles. Once one has an efficient algorithm to solve a problem,
however, it is often possible to achieve further improvements in running time

by being careful with the implementation details, and sometimes by using
more complex data structures.

Some complex data structures are essentially tailored for use in a single
kind of algorithm, while others are more generally applicable. In this section,
we describe one of the most broadly useful sophisticated data structures,
the priority queue. Priority queues will be useful when we describe how to
implement some of the graph algorithms developed later in the book. For our
purposes here, it is a useful illustration of the analysis of a data structure that,

unlike lists and arrays, must perform some nontrivial processing each time it
is invoked.

/4 The Problem

In the implementation of the Stable Matching algorithm in Section 2.3, we
discussed the need to maintain a dynamically changing set S (such as the set
of all free men in that case). In such situations, we want to be able to add
elements to and delete elements from the set S, and we want to be able to
select an element from S when the algorithm calls for it. A priority queue is
designed for applications in which elements have a priority value, or key, and
each time we need to select an element from S, we want to take the one with
highest priority.

A priority queue is a data structure that maintains a set of elements S,
where each element v € S has an associated value key(v) that denotes the
priority of element v; smaller keys represent higher priorities. Priority queues
support the addition and deletion of elements from the set, and also the
selection of the element with smallest key. Our implementation of priority

queues will also support some additional operations that we summarize at the
end of the section.

A motivating application for priority queues, and one that is useful to keep
in mind when considering their general function, is the problem of managing
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real-time events such as the scheduling of processes on a computer. Each
process has a priority, or urgency, but processes do not arrive in order of
their priorities. Rather, we have a current set of active processes, and we want
to be able to extract the one with the currently highest priority and run it.
We can maintain the set of processes in a priority queue, with the key of a
process representing its priority value. Scheduling the highest-priority process
corresponds to selecting the element with minimum key from the priority
queue; concurrent with this, we will also be inserting new processes as they
arrive, according to their priority values.

How efficiently do we hope to be able to execute the operations in a priority
queue? We will show how to implement a priority queue containing at most
n elements at any time so that elements can be added and deleted, and the
element with minimum key selected, in O(log n) time per operation.

Before discussing the implementation, let us point out a very basic appli-
cation of priority queues that highlights why O(log n) time per operation is
essentially the “right” bound to aim for.

(2.11) A sequence of O(n) priority queue operations can be used to sort a set ‘

of n numbers.

Proof. Set up a priority queue H, and insert each number into H with its value
as a key. Then extract the smallest number one by one until all numbers have
been extracted; this way, the numbers will come out of the priority queue in
sorted order. =

Thus, with a priority queue that can perform insertion and the extraction
of minima in O(log n) per operation, we can soIt n numbers in O(n log n)
time. It is known that, in a comparison-based model of computation (when
each operation accesses the input only by comparing a pair of numbers),
the time needed to sort must be at least proportional to nlogn, so. 2.11)
highlights a sense in which O(log n) time per operation is the best we can
hope for. We should note that the situation is a bit more complicated than
this: implementations of priority queues more sophisticated than the one we
present here can improve the running time needed for certain operations, and
add extra functionality. But (2.11) shows that any sequence of priority queue
operations that results in the sorting of n numbers must take time at least
proportional to n log nn in total.

A Data Structure for Implementing a Priority Queue

We will use a data structure called a heap to implement a priority queue.
Before we discuss the structure of heaps, we should consider what happens
with some simpler, more natural approaches to implementing the functions
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of a priority queue. We could just have the elements in a list, and separately
have a pointer labeled Min to the one with minimum key. This makes adding
new elements easy, but extraction of the minimum hard. Specifically, finding
the minimum is quick—we just consult the Min pointer—but after removing
this minimum element, we need to update the Min pointer to be ready for the

next operation, and this would require a scan of all elements in O(n) time to
find the new minimum.

This complication suggests that we should perhaps maintain the elements
in the sorted order of the keys. This makes it easy to extract the element with
smallest key, but now how do we add a new element to our set? Should we
have the elements in an array, or a linked list? Suppose we want to add s
with key value key(s). If the set S is maintained as a sorted array, we can use
binary search to find the array position where s should be inserted in O(log n)
time, but to insert s in the array, we would have to move all later elements
one position to the right. This would take O(n) time. On the other hand, if we
maintain the set as a sorted doubly linked list, we could insert it in O(1) time
into any position, but the doubly linked list would not support binary search,

and hence we may need up to O(n) time to find the position where s should
be inserted.

The Definition of a Heap So in all these simple approaches, at least one of
the operations can take up to O(n) time—much more than the O(log n) per
operation that we’re hoping for. This is where heaps come in. The heap data
structure combines the benefits of a sorted array and list for purposes of this
application. Conceptually, we think of a heap as a balanced binary tree as
shown on the left of Figure 2.3. The tree will have a root, and each node can
have up to two children, a left and a right child. The keys in such a binary tree
are said to be in heap order if the key of any element is at least as large as the
key of the element at its parent node in the tree. In other words,

Heap order: For every element v, at a node i, the element w at i’s parent
satisfies key(w) < key(v).

In Figure 2.3 the numbers in the nodes are the keys of the correspondiﬁg
elements.

Before we discuss how to work with a heap, we need to consider what data
structure should be used to represent it. We can use pointers: each node at the
heap could keep the element it stores, its key, and three pointers pointing to
the two children and the parent of the heap node. We can avoid using pointers,
however, if a bound N is known in advance on the total number of elements
Fhat will ever be in the heap at any one time. Such heaps can be maintained
In an array H indexed by i =1,...,N. We will think of the heap nodes as
corresponding to the positions in this array. H[1] is the root, and for any node
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Each node’s key is at least
as large as its parent’s.

11‘215 l1013l7111‘15|17|20|9 |15\8|16|Xl

Figure 2.3 Values in a heap shown as a binary tree on the left, and represented as an
array on the right. The arrows show the children for the top three nodes in the tree.

at position i, the children are the nodes at positions leftChild(i) = 21 and

rightChild(i) = 2i+ 1. So the two children of the root are at positions 2 and
3, and the parent of a node at position i is at position parent(i) = [i/2]. If
the heap has n < N elements at some time, we will use the first n positions
of the array to store the n heap elements, and use length(H) to denote the
number of elements in H. This representation keeps the heap balanced at all
times. See the right-hand side of Figure 2.3 for the array representation of the
heap on the left-hand side. .

Implementing the Heap Operations

The heap element with smallest key is at the root, so it takes O(1) time to
identify the minimal element. How do we add or delete heap elements? First
consider adding a new heap element v, and assume that our heap H hasn <N
elements so far. Now it will have n -+ 1 elements. To start with, we can add the
new element v to the final position i =n + 1, by setting H[i] = v. Unfortunately,
this does not maintain the heap property, as the key of element v may be
smaller than the key of its parent. So we now have something that is almost-a
heap, except for a small “damaged” part where v was pasted on at the end.

We will use the procedure Heapify-up to fix our heap. Letj = parent(l) =

li/2] be the parent of the node i, and assume H[j]l=w. If key[v] < key[w],
then we will simply swap the positions of v and w. This will fix the heap
_property at position i, but the resulting structure will possibly fail to satisfy
the heap property at position j—in other words, the site of the “damage” has
moved upward from i to j. We thus call the process recursively from position
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The Heapify-up process is moving
element v toward the root.

i}%grrz V%;; ;ﬁe Eeapgfy;luflprt%cess. Key 3 (at position 16) is too small (on the left)
g keys 3 an , the heap violation mo !
the tree (o et p ves one step closer to the root of

j = parent(i) to continue fixing the heap by pushing the damaged part upward.
Figure 2.4 shows the first two steps of the process after an insertion.

Heapify-up(H,i):
If i>1 then
let j=parent(i) = [i/2]
If key[H[il]<key[H[j]] then
swap the array entries H[i] and H[j]
Heapify-up(H,j)
Endif
Endif

To see why Heapify-up works, eventually restoring the heap order, it
helps to understand more fully the structure of our slightly damaged heap in
the 'H‘xiddle of this process. Assume that H is an array, and v is the element in
9051t10n i. We say that H is almost a heap with the key of H[i} too small, if there
is a value « > key(v) such that raising the value of key(v) to @ would make
_the resulting array satisfy the heap property. (In other words, element v in H[{]
Is too small, but raising it to « would fix the problem.) One important point
to note is that if H is almost a heap with the key of the root (i.e., H[1]) too
small, then in fact it is a-heap. To see why this is true, consider that if raising
the value of H[1] to « would make H a heap, then the value of H[1] must
also be smaller than both its children, and hence it already has the heap-order
property.
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(2.12) The procedure Heapify-up(H, i) fixes the heap property in O(log i)
time, assuming that the array H is almost a heap with the key of H[i] too small.
Using Heapify—up we can insert a new element in a heap of n elements in
O(log n) time.

Proof. We prove the statement by induction on . If i = 1 there is nothing to
prove, since we have already argued that in this case H is actually a heap.
Now consider the case in which i > 1: Let v=H [il, j = parent(d), w=H [,
and B = key(w). Swapping elements v and w takes O(1) time. We claim that
after the swap, the array H is either a heap or almost a heap with the key of
HJj] (which now holds v) too small. This is true, as setting the key value at
node j to g would make H a heap.

So by the induction hypothesis, applying Heapify-up(j) recursively will
produce a heap as required. The process follows the tree-path from position i
to the root, so it takes O(log i) time.

To insert a new element in a heap, we first add it as the last element. if the

new element has a very large key value, then the array is a heap. Otherwise,
it is almost a heap with the key value of the new element too small. We use
Heapify-up to fix the heap property. =

Now consider deleting an element. Many applications of priority quenes
don’t require the deletion of arbitrary elements, but only the extraction of
the minimum. In a heap, this corresponds to identifying the key at the root
(which will be the minimuim) and then deleting it; we will refer to this oper-
ation as ExtractMin(H). Here we will implement a more general operation
Delete(H, i), which will delete the element in position i. Assume the heap
currently has n elements. After deleting the element HIi], the heap will have
only n — 1 elements; and not only is the heap-order property violated, there
is actually a “hole” at position 7, since H [i] is now empty. So as a first step,
to patch the hole in H, we move the element w in position n to position i.
After doing this, H at least has the property that its n — 1 elements are in the
first n — 1 positions, as required, but we may well still not have the heap-order
property. :

However, the only place in the heap where the order might be violated is
position i, as the key of element w may be either too small or too big for the
position i. If the key is too small (that is, the violation of the heap property is
between node i and its parent), then we can use Heapify-up(?) to reestablish
the heap order. On the other hand, if key[w] is too big, the heap property
may be violated between i and one or both of its children. In this case, we will
use a procedure called Heapify—down, closely analogous to Heapify-up, that

2.5 A More Complex Data Structure: Priority Queues

The Heépi fy-down pracess
is moving element w down,
toward the leaves.

Figure 2.5 The Heapify~-down process:. Key 21 (at position 3) is too big (on the left).

After swapping keys 21 and 7, the heap violat
o the wes tonshe ) p violation moves one step closer to the bottom

swaps the elerpent at position i with one of its children and proceeds down
the tree recursively. Figure 2.5 shows the first steps of this process.

Heapify-down(H,i):
Let n= length(H)
If 2i>n then
Terminate with H unchanged
Else if 2i<n then
Let left=2i, and right=2i+1
Let j be the index that minimizes key[H[left]] and key[H[rightl]
Else if 2i=n then
Let j=2i
Endif
If key[HI[j1] < key[H[i]] then
swap the array entries HI[i] and HI[j]
Heapify-down(H, j)
Endif

' Assume that H is an array and w is the element in position i. We say that
H is almost a heap with the key of H[i] too big, if there is a-value « < key(w)
sugh that lowering the value of key(w) to « would make the result?ng array
sf'msfy the heap property. Note that if H[i] corresponds to a leaf in the heap
(1@., it has no children), and H is almost a heap with H[{]too big, then in fact
H is a heap. Indeed, if lowering the value in H[{] would make H a heap, then
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H[i] is already larger than its parent and hence it already has the heap-order
property.

(2.13) The procedure Heapify-down(H, i) fixes the heap property in O(log 1)
time, assuming that H is almost a heap with the key value of H[i] too big. Using
Heapify-up or Heapify-down we can delete a new element in a heap of n
elements in O(log n) time.

Proof. We prove that the process fixes the heap by reverse induction on the
value i. Let n be the number of elements in the heap. If 2i > n, then, as we
just argued above, His a heap and hence there is nothing to prove. Otherwise,
let j be the child of i with smaller key value, and let w=HIjl. Swapping the
array elements w and v takes O(1) time. We claim that the resulting array is
either a heap or almost a heap with H[j]=v too big. This is true as setting
key(v) = key(w) would make H a heap. Now j=>2i, sO by the induction
hypothesis, the recursive call to Heapify-down fixes the heap property.

The algorithm repeatedly swaps the element originally at position down,
following a tree-path, so in O(log 1) iterations the process results in a heap.

To use the process to remove arn element v = H[i] from the heap, we replace
H[i] with the last element in the array, H[n]=w. 1f the resulting array is not a
heap, it is almost a heap with the key value of H[{] either too small or too big.
We use Heapify-down or Heapify—-down 10 fix the heap property in O(log 1)
fime. =

Implementing Priority Queues with Heaps

The heap data structure with the Heapify-down and Heapify-up operations
can efficiently implement a priority queue that is constrained to hold at most
N elements at any point in time. Here we summarize the operations we will
use. .

o StartHeap(N) returns an empty heap H that is set up to store at most N
elements. This operation takes O(NV) time, as it involves initializing the
array that will hold the heap.

o Insert(H,v) inserts the item v into heap H. If the heap currently has n
elements, this takes O(log n) time.

e FindMin(H) identifies the minimum element in the heap H but does not
remove it. This takes O(1) time.

o Delete(H, i) deletes the element in heap position i. This is implemented
in O(log n) time for heaps that have n elements.

e ExtractMin(H) identifies and deletes an element with minimum key
value from a heap. This is a combination of the preceding two operations,
and so it takes O(log n) time.

Solved Exercises

There is a second class of operations in which we want to operate on :

Zlemellljts by name, rathe.r than by their position in the heap. For example, in
thnum er of' graph algorithms that use heaps, the heap elements are node; of
e graph with key values that are computed during the algorithm. At various

points in these algorithms, we want to i
. S operate on a particular nod
of where it happens to be in the heap. © regardess

i T10 be 'alble. to acces§ 'given elements of the priority queue efficiently, we
ply maintain an additional array Position that stores the current position

of each element (each node) in the h ;
eap. We .
further operations. p can now implement the following

[2]
Tg delete the elemenF v, we apply Delete(H ,Position[v]). Maintaining
this array does not increase the overall running time, and so we can
delete an element v from a heap with n nodes in O(log n) time.

© An additional operation that is used by some algorithms is ChangeK
'(H » U, ), which changes the key value of element v to key(v) =goz ;Y
%mple'ment this operation in O(log n) time, we first need to be abl' to
identify the position of element v in the array, which we do b u:ino
the array Position. Once we have identified the position of elerient vg

g
p

Solved Exercises

Solved Exercise 1

Take the following list of functions and arrange them in ascending order of

growth rate. That is, if function i i
. : » g(n) immediately follows functi i
your list, then it should be the case that f(n) is O(g(n)). oo

fi(m) = 10"
f(n) =n'3
f3(n) =n"

fa(m) =log, n
fS(n) — Zﬂllogz n
Solution We can deal with functions fi, f;, and fa very easily, since they

belong to the basic families of exponentials, polynomials, and logarithms

In particular, by (2.8), we h _ .
f2(n) = O(fi(n)). we have f;(n) = O(f,()); and by (2.9)," we have
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Now, the function f; isn’t so hard to deal with. It starts out smaller than
10", but once n > 10, then clearly 10" < n™. This is exactly what we need for
the definition of O(-) notation: for all n > 10, we have 10" < cn™, where in this
case ¢ = 1, and so 10" = O(n™).

Finally, we come to function fs, which is admittedly kind of strange-
looking. A useful rule of thumb in such sitnations is to try taking logarithms
to see whether this makes things clearer. In this case, log, f5(n) = {/1og, n =
(log, 1)/2. What do the logarithms of the other functions look like? log fy(n) =
log, log, n, while log f,(n) = % log, n. All of these can be viewed as functions
of log, n, and so using the notation z = log, n, we can write

1
log f(n) = 32

log fa(n) =log, z
log fs(n) =2/

Now it’s easier to see what’s going on. First, for z > 16, we have log, z < ‘
Z1/2. But the condition z > 16 is the same as n > 216 =65, 536; thus once
n > 216 we have log f4(n) < log f5(n), and so fy(m) = fs(m). Thus we can write
f4(n) = O(fs(n)). Similarly we have z/2 < 1z once z > 9—in other words,
once 1 > 22 = 512. For n above this bound we have log fs(n) <log fo(n) and
hence fs(11) <f>(n), and so we can write fs(n) = O(f(n)). Essentially, we
have discovered that 2v1°82™ is a function whose growth rate lies somewhere
between that of logarithms and polynomials.

Since we have sandwiched fs between f; and f,, this finishes the task of
putting the functions in order.

Solved Exercise 2
Let f and g be two functions that take normegative values, and suppose that
f=0(g). Show that g = Q.-

Solution This exercise is a way to formalize the intuition that O(-) and (-
are in a sense opposites. 1t is, in fact, not difficult to prove; it is just a matter
of unwinding the definitions.

We're given that, for some constants ¢ and ny, we have f(n) < cg(n) for
all n > ng. Dividing both sides by ¢, we can conclude that g(n) = -};f(n) for
all n > n,. But this is exactly what is required to show that g = € (f): we have
established that g(n) is at least a constant multiple of f (1) (where the constant
is %), for all sufficiently large n (at least ng)-

Exercises

Exercises

1. Suppose you have algorithms with the five running times listed below
(Assume these are the exact running times.) How much slower do each of

these algorithms get when i i
you (a) double the input size i
the input size by one? ’ o () Tnerease

(@ n?
) »?
(c) 100n?
(d) nlogn
(&) 2"

2. Suppose you have algorithms with the six running times listed below
(Assume these are the exact number of operations performed as a funcl
tion of the input size n.) Suppose you have a computer that can perform
10 operations per second, and you need to compute a result in at most
fm hour of computation. For each of the algorithms, what is the largest
input size n for which you would be able to get the result within an hour?
@ n? |

b) »°
(c) 100n?
(d) nlogn
(e) 27
Hn 2%

3. Take the following list of functions and arrange them in ascending order
9f grow@ rate. T]?at is, if function g(n) immediately follows function f(n)
in your list, then it should be the case that f(n) is O(g(n)).

v h@=n*3
—Fmy=vIn
v i =n+10
) =10"

4 fs(n) = 100"
fs(m) =n?logn
4. Take the following list of functions and arrange them in ascending order

'of gro@ rate. Tl'lat is, if function g(n) immediately follows function f(n)
in your list, then it should be the case that f(n) is O(g(n)).
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[ gy(n) =2V18"

L g(m=2"
| gam) =n*?

g5(n) = n(log )’

& (n) = nlog n
, gem =22
g =2"

Assume you have functions f and g such that f(n) is O(g(n)). For each of

the following statements, decide whether you think it is true or false and

give a proof or counterexample.
(@) log, f(n)is O(log, 8(m)-

) 2f () s o(zg(n))_

© f@?is 0.

Consider the following basic problem. You're given an array A consisting

of n integers A[1], A[2], ..., Aln. You'd like t(.) output a two~dunen511c:)rti1:i
n-by-n array B in which B[, j] (for i < j) contains the sum ()f ar;ay zlue e
A[i] through A[j}l—that is, the sum Alfl+Ali+1] + o 4 f.l[]]. (T e,v e ot
array entry B(i, j] is left unspecified whenever i > j, s0 1t doesn’t m.
what is output for these values.)

Here's a simple algorithm to solve this problem.

For i=1, 2,...,1
For j=i+1, i+2,...,0
Add up array entries Ali] through Alj]
Store the result in BIi,]]
Endfor
Endfor

(a) For some function f that you should choose, give a boun(?l of th(?f
form O(f(n)) on the running time of this algorithm on an input o
size n (i.e., a bound on the number of operations performed by the

‘ algorithm). . -

(b) For this same function f, show that the running time of the algor'rca]l
on an input of size n is also Q(f(m))- (This shows an asymptotically
tight bound of ©(f(m)) on the running time.)

(© Although the algorithm you analyzed in parts (a) and (b) is the most
natural way to solve the problem—after all, it just iterates through

Exercises

the relevant entries of the array B, filling in a value for each—it
contains some highly unnecessary sources of inefficiency. Give a
different algorithm to solve this problem, with an asymptoticaily
better running time. In other words, you should design an algorithm
with running time O(g(n)), where lim,,_, ., g(n)/f (1) = 0.

7. There’s a class of folk songs and holiday songs in which each verse
consists of the previous verse, with one extra line added on. “The Twelve
Days of Christmas” has this property; for example, when you get to the
fifth verse, you sing about the five golden rings and then, reprising the
lines from the fourth verse, also cover the four calling birds, the three
French hens, the two turtle doves, and of course the partridge in the‘pear
tree. The Aramaic song “Had gadya” from the Passover Haggadah works
like this as well, as do many other songs. :

These songs tend to last a long time, despite having relatively short
scripts. In particular, you can convey the words plus instiuctions for one
of these songs by specifying just the new line that is added in each verse,
without having towrite out all the previous lines each time. (So the phrase
“five golden rings” only has to be written once, even though it will appear
in verses five and onward.)

There’s something asymptotic that can be apalyzed here. Suppose,
for concreteness, that each line has a length that is bounded by a constant
¢, and suppose that the song, when sung out loud, runs for n words total.
Show how to encode such a song using a script that has length f(n), for
a function f(n) that grows as slowly as possible.

8. You're doing some stress-testing on various models of glass jars to

determine the height from which they can be dropped and still not break.
The setup for this experiment, on a particular type of jar, is as follows.
You have a ladder with n rungs, and you want to find the highest rung
from which you can drop a copy of the jar and not have it break. We call
this the highest safe rung.

It might be natural to try binary search: drop a jar from the middle
rung, see if it breaks, and then recursively try from rung n/4 or n/4
depending on the outcome. But this has the drawback that you could
break a lot of jars in finding the answer.

If your primary goal were to conserve jars, on the other hand, you
could try the following strategy. Start by dropping a jar from the first
rung, then the second rung, and so forth, climbing one higher each time
until the jar breaks. In this way, you only need a single jar—at the moment
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it breaks, you have the correct answer—but you may have to drop it n
times (rather than logn as in the binary search solution).

So here is the trade-off: it seems you can perform fewer drops if
you're willing to break more jars. To understand better how this trade-
off works at a quantitative level, let’s consider how to run this experiment
given a fixed “budget” of k > 1jars. In other words, you have to determine
the correct answer—the highest safe rung—and can use at most k jars in
doing so.

(@) Suppose you are given a budget of k =2 jars. Describe a strategy for
finding the highest safe rung that requires you to drop a jar at most
f(n) times, for some function f(n) that grows slower than linearly. (In
other words, it should be the case that lim,_. f(m)/n = 0.)

(b) Now suppose you have a budget of k> 2 jars, for some given k.
Describe a strategy for finding the highest safe rung using at most
k jars. If fi(n) denotes the number of times you need to drop a jar
according to your strategy, then the functions fi> 2. fs, - - -.should have
the property thateach grows asymptotically slower than the previous’
one: lim,_, o fi(m)/f—1(m) = 0 for each k.

Notes and Further Reading

Polynomial-time solvability emerged as a formal notion of efficiency by a
gradual process, motivated by the work of a number of researchers includ-
ing Cobham, Rabin, Edmonds, Hartmanis, and Stearns. The survey by Sipser
(1992) provides both a historical and technical perspective on these develop-
ments. Similarly, the use of asymptotic order of growth notation to bound the
running time of algorithms—as opposed to working out exact formulas with
leading coefficients and lower-order terms—is a modeling decision that was
quite non-obvious at the time it was introduced; Tarjan’s Turing Award lecture
(1987) offers an interesting perspective on the early thinking of researchers
including Hopcroft, Tarjan, and others on this issue. Further discussion of
asymptotic notation and the growth of basic functions can be found in Knuth
(1997a).

The implementation of priority queunes using heaps, and the application to
sorting, is generally credited to Williams (1964) and Floyd (1964). The priority
queue is an example of a nontrivial data structure with many applications; in
later chapters we will discuss other data structures as they become useful for
the implementation of particular algorithms. We will consider the Union-Find
data structure in Chapter 4 for implementing an algorithm to find minimum-

SR

Notes and Further Reading

cost spanning trees, and we will discuss randomized hashing in Chapter 13
A number of other data structures are discussed in the book by Tarjan (1983).
The LE.I‘DA library (Library of Efficient Datatypes and Algorithms) of Meh]hon;
and Ndher (1999) offers an extensive library of data structures useful i

combinatorial and geometric applications. "
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Graphs

Our focus in this book is on problems with a discrete flavor. Just as continuous
mathematics is concerned with certain basic structures such as real numbers,
vectors, and matrices, discrete mathematics has developed basic combinatorial
structures that lie at the heart of the subject. One of the most fundamental and
expressive of these is the graph.

The more one works with graphs, the more one tends to see them ev-
erywhere. Thus, we begin by introducing the basic definitions surrounding
graphs, and list a spectrum of different algorithmic settings where graphs arise
naturally. We then discuss some basic algorithmic primitives for graphs, be-
ginning with the problem of connectivity and developing some fundamental
graph search techniques.

3.1 Basic Definitions and Applications

Recall from Chapter 1 that a graph G is simply a way of encoding pairwise
relationships among a set of objects: it consists of a collection V of nodes
and a collection E of edges, each of which “joins” two of the nodes. We thus
represent an edge e € E as a two-element subset of V: e = {u, v} for some
u,v eV, where we call u and v the ends of e.

Edges in a graph indicate a symmetric relationship between their ends.
Often we want to encode asymmetric relationships, and for this we use the
closely related notion of a directed graph. A directed graph G’ consists of a set
of nodes V and a set of directed edges E'. Each €’ € E' is an ordered pair (11, v);
in other words, the roles of u and v are not interchangeable, and we call u the
tail of the edge and v the head. We will also say that edge ¢’ leaves node u and
enters node v.
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When we want to emphasize that the graph we are considering is not
directed, we will call it an undirected graph; by default, however, the term
“graph” will mean an undirected graph. It is also worth mentioning two
warnings in our use of graph terminology. First, although an edge e in an
undirected graph should properly be written as a set of nodes {u, v}, one will
more often see it written (even in this book) in the notation used for ordered
pairs: e = (u, v). Second, a node in a graph is also frequently called a vertex;
in this context, the two words have exactly the same meaning.

Examples of Graphs Graphs are very simple to define: we just take a collec-
tion of things and join some of them by edges. But at this level of abstraction,
it’s hard to appreciate the typical kinds of situations in which they arise. Thus,
we propose the following list of specific contexts in which graphs serve as
important models. The [ist covers a lot of ground, and it’s not important to
remember everything on it; rather, it will provide us with a lot of useful ex-
amples against which to check the basic definitions and algorithmic problems
that we’ll be encountering later in the chapter. Also, in going through the list,
it’s useful to digest the meaning of the nodes and the meaning of the edges in.
the context of the application. In some cases the nodes and edges both corre-
spond to physical objects in the real world, in others the nodes are real objects
while the edges are virtual, and in still others both nodes and edges are pure

abstractions.

1. Transportation networks. The map of Toutes served by an airline carrier
naturally forms a graph: the nodes are airports, and there is an edge from
1 to v if there is a nonstop flight that departs from u and arrives at v.
Described this way, the graph is directed; but in practice when there is an
edge (u, v), there is almost always an edge (v, i), SO We would not lose
much by treating the airline route map as an undirected graph with edges
joining pairs of airports that have nonstop flights each way. Looking at
such a graph (you can generally find them depicted in the backs of in-
flight airline magazines), we’'d quickly notice a few things: there are often
a small number of hubs with a very large number of incident edges; and
it’s possible to get between any two nodes in the graph via a very small
number of intermediate stops.

Other transportation networks can be modeled in a similar way. For
example, we could take a rail network and have a node for each terminal,
and an edge joining u and v if there’s a section of railway track that
goes between them without stopping at any intermediate terminal. The
standard depiction of the subway map in a major city is a drawing of
such a graph.

2. Communication networks. A collection of computers connected via a
communication network can be naturally modeled as a graph in a few
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different ways. First, we could have a node for each computer and
an edge joining u and v if there is a direct physical link connecting
them. Alternatively, for studying the large-scale structure of the Internet
pegple often define a node to be the set of all machines controlled b;
a single Internet service provider, with an edge joining u and v if there
is a direct peering relationship between them-—roughly, an agreement
to exchange data under the standard BGP protocol that governs global
Internet routing. Note that this latter network is more “virtual” than

the for.mer, since the links indicate a formal agreement in addition to
a physical connection.

In studying wireless networks, one typically defines a graph where
the nodes are computing devices situated at locations in physical space
and there is an edge from u to v if v is close enough to u to receive a signai
'from it. Note that it’s often useful to view such a graph as directed, since
1t‘ may be the case that v can hear u’s signal but u cannot hear u’s’signal
'(1f, for example, u has a stronger transmitter). These graphs are also
interesting from a geometric perspective, since they roughly correspond

to putting down points in the plane and then joining pairs that are close
together.

. Information networks. The World Wide Web can be naturally viewed as a

directed graph, in which nodes correspond to Web pages and there is an
fedge from u to v if u has a hyperlink to v. The directedness of the graph
Is crucial here; many pages, for example, link to popular news sites
but these sites clearly do not reciprocate all these links. The structure o%
all these hyperlinks can be used by algorithms to try inferring the most

important pages on the Web, a technique employed by most current
search engines.

' The hypertextual structure of the Web is anticipated by a number of
@formatmn networks that predate the Internet by many decades. These
include the network of cross-references among articles in an encyclopedia

or other ‘reference work, and the network of bibliographic citations
among scientific papers.

- Social networks. Given any collection of people who interact (the em-

ployees of a company, the students in a high school, or the residents of
a small town), we can define a network whose nodes are people, with
an edge joining u and v if they are friends with one another. We could
have the edges mean a number of different things instead of friendship:
tpe undirected edge (u, v) could mean that uz and v have had a roman:
tic relationship or a financial relationship; the directed edge (u, v) could
mean that u seeks advice from v, or that u lists v in his or her e-mail
address book. One can also imagine bipartite social networks based on a

75



76

Chapter 3 Graphs

notion of affiliation: given a set X of people and a set Y of organizations,
we could define an edge betweenu e X andveY if person u belongs to
organization v.

Networks such as this are used extensively by sociologists to study
the dynarmics of interaction among people. They can be used to identify
the most “influential” people in a company or organization, to model
trust relationships in a financial or political setting, and to track the
spread of fads, rumors, jokes, diseases, and e-mail viruses.

5. Dependency networks. It is natural to define directed graphs that capture
the interdependencies among a collection of objects. For example, given
the list of courses offered by a college or university, we could have a
node for each course and an edge from u to v if u is a prerequisite for v.
Given a list of functions or modules in a large software system, we could
have a node for each function and an edge from u to v if u invokes v by a
function call. Or given a set of species in an ecosystem, we could define
a graph—a food web—in which the nodes are the different species and
there is an edge from u to v if u consumes v. :

This is far from a complete list, too far to even begin tabulating its
omissions. It is meant simply to suggest some examples that are useful to
keep in mind when we start thinking about graphs in an algorithmic context.

Paths and Connectivity One of the fundamental operations in a graph is
that of traversing a sequence of nodes connected by edges. In the examples
just listed, such a traversal could correspond to a user browsing Web pages by
following hyperlinks; a rumor passing by word of mouth from you to someone
halfway around the world; or an airline passenger traveling from San Francisco
to Rome on a sequence of flights.

With this notion in mind, we define a path in an undirected graph
G = (V, E) to be a sequence P of nodes vy, V3, - - - » V-1, Uk with the property
that each consecutive pair v;, v, is joined by an edge in G. P is often called

a path from vy to vy, or a vy path. For example, the nodes 4,2,1,7,8 form

a path in Figure 3.1. A path is called simple if all its vertices are distinct from
one another. A cycle is a path vy, v, . . ., Ug—1, Vg I which k > 2, the first k — 1
nodes are all distinct, and v; = v—in other words, the sequence of nodes
“cycles back” to where it began. All of these definitions carry over naturally
to directed graphs, with the following change: in a directed path or cycle,
each pair of consecutive nodes has the property that (v;, v;4) is an edge. In
other words, the sequence of nodes in the path or cycle must respect the
directionality of edges.

We say that an undirected graph is connected if, for every pair of nodes u
and v, there is a path from u to v. Choosing how to define connectivity of a
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Figure 3.1 Two drawings of the same tree. On the right, the tree is rooted at node 1.

direcFed graph is a bit more subtle, since it’s possible for u to have a path to
v while v has no path to u. We say that a directed graph is strongly connected

if, for every two nodes u and v, there is a path from u to v and a path from v
to u.

' In addition to simply knowing about the existence of a path between some
pair of nodes u and v, we may also want to know whether there is a short path
Thus we define the distance between two nodes u and v to be the Immmum
number of edges in a u-v path. (We can designate some symbol like co to
denote the distance between nodes that are not connected by a path.) The
term distance here comes from imagining G as representing a communication
or transportation network; if we want to get from u to v, we may well want a
route with as few “hops” as possible.

Ti“ees' We say that an undirected graph is a tree if it is connected and does not
contain a cycle. For example, the two graphs pictured in Figure 3.1 are trees.

In a strong sense, trees are the simplest kind of connected graph: deleting any
edge from a tree will disconnect it.

For thinking about the structure of a tree T, it is useful to roor it at a
particular node r. Physically, this is the operation of grabbing T at the node r
and letting the rest of it hang downward under the force of gravity, like a
mobile. More precisely, we “orient” each edge of T away from.r; for eac’h other
noc%e v, we declare the parent of v to be the node u that directly precedes v
on its path from r; we declare w to be a child of v if v is the parent of w. More
generally, we say that w is a descendant of v (or v is an ancestor of w) if v lies
on the path from the root to w; and we say that a node x is a leaf if it has no
descendants. Thus, for example, the two pictures in Figure 3.1 correspond to
the same tree T—the same pairs of nodes are joined by edges—but the drawing
on the right represents the result of rooting T at node 1.
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Rooted trees are fundamental objects in computer science, because they
encode the notion of a hierarchy. For example, we can imagine the rooted tree
in Figure 3.1 as corresponding to the organizational structure of a tiny nine-
person company; employees 3 and 4 report to employee 2; employees 2, 5,
and 7 report to employee 1; and so on. Many Web sites are organized according
to a tree-like structure, to facilitate navigation. A typical computer science
department’s Web site will have an entry page as the root; the People page is
a child of this entry page (as is the Courses page); pages entitled Faculty and
Students are children of the People page; individual professors’ home pages
are children of the Faculty page; and so on.

For our purposes here, rooting a tree T can make certain questions about T
conceptually easy to answer. For example, given a tree T on i nodes, how many
edges does it have? Each node other than the root has a single edge leading
“upward” to its parent; and conversely, each edge leads upward from precisely
one non-root node. Thus we have very easily proved the following fact.

(3.1) Every n-node tree has exactly n — 1 edges.

In fact, the following stronger statement is true, although we do not prove
it here.

(3.2) Let G be an undirected graph on n nodes. Any two of the following
statements implies the third.

(i) G is connected.
(ii) G does not contain a cycle.
(iii) G has n — 1 edges.

We now turn to the role of trees in the fundamental algorithmic idea of
graph traversal. ‘

3.2 Graph Connectivity and Graph Traversal

Having built up some fundamental notions regarding graphs, we turn to a very
basic algorithmic question: node-to-node connectivity. Suppose we are given a
graph G = (V, E) and two particular nodes s and t. We’d like to find an efficient
algorithm that answers the question: Is there a path from s to t in G? We will
call this the problem of determining s-t connectivity.

For very small graphs, this question can often be answered easily by visual
inspection. But for large graphs, it can take some work to search for a path.
Indeed, the s-t Connectivity Problem could also be called the Maze-Solving
Problem. If we imagine G as a maze with a room corresponding to each node,
and a hallway corresponding to each edge that joins nodes (rooms) together,

3.2 Graph Connectivity and Graph Traversal
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Figure 3.2 In thi
thrggigh 2 his graph, node 1 has paths to nodes 2 through 8, but not to nodes 9

then the problem is to start in a room s and find your way to another designated
room t. How efficient an algorithm can we design for this task?

. In this section, we describe two natural algorithms for this problem at a
hlgf{ level: breadth-first search (BFS) and depth-first search {DFS). In the next
section we discuss how to implement each of these efficiently, building on a
data structure for representing a graph as the input to an algorithm.

Breadth-First Search

Perhaps the simplest algorithm for determining s-t connectivity is breadth-first
search (BFS), in which we explore outward from s in all possible directions

adding nodes one “layer” at a time. Thus we start with s and include all nodes,
’.Lhat are joined by an edge to s—this is the first layer of the search. We then
include all additional nodes that are joined by an edge to any node in the first

layer—this is the second layer. We continue in this way until no new nodes
are encountered.

In the example of Figure 3.2, starting with node 1 as s, the first layer of
the search would consist of nodes 2 and 3, the second layer would consist of
no@es 4, 5,7, and 8, and the third layer would consist just of node 6. At this
point the search would stop, since there are no further nodes that could be

added (and in particular, note that nodes 9 through 13 are never reached by
the search). ‘

f}s this example reinforces, there is a natural physical interpretation to the
algorithm. Essentially, we start at s and “flood” the graph with an expanding
wave that grows to visit all nodes that it can reach. The layer containing a
node represents the point in time at which the node is reached.

We can define the layers Ly, L,, L3, . . . constructed by the BFS algorithm
more precisely as follows.
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o Layer L, consists of all nodes that are neighbors of s. (For notational
reasons, we will sometimes use layer Lo 10 denote the set consisting just
of s.)

o Assuming that we have defined layers Ly,...,Lj thenlayer L; consists
of all nodes that do not belong to an earlier layer and that have an edge
to a node in layer L;.

Recalling our definition of the distance between two nodes as the minimum
number of edges on a path joining them, we see that layer L, is the set of all
nodes at distance 1 from s, and more generally layer L; is the set of all nodes
at distance exactly j from s. A node fails to appear in any of the layers if and
only if there is no path to it. Thus, BFS is not only determining the nodes that s
can reach, it is also computing shortest paths to them. We sum this up in the
following fact.

(3.3) Foreachj=>1, layerL; produced by BFS consists of all nodes at distance

exactly j from s. There is a path from s to t if and only if t appears in some .

layer.

A further property of breadth-first search is that it produces, in a very
natural way, a tree T rooted at s on the set of nodes reachable from s.
Specifically, for each such node v (other than s), consider the moment when
v is first “discovered” by the BFS algorithm; this happens when some node u
inlayer L; is being examined, and we find that it has an edge to the previously
unseen node v. At this moment, we add the edge (u,v) to the tree T—u
becomes the parent of v, representing the fact that u is “responsible” for
completing the path to v. We call the tree T that is produced in this way a
breadth-first search tree. : ’

Figure 3.3 depicts the construction of a BFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of BFS that produces this
tree can be described as follows.

(a) Starting from node 1, layer L, consists of the nodes {2, 3}.

(b) Layer L; is then grown by considering the nodes in layer L; in order (say,
first 2, then 3). Thus we discover nodes 4 and 5 as soon as we look at 2,
s0 2 becomes their parent. When we consider node 2, we also discover
an edge to 3, but this isn’t added to the BFS tree, since we already know
about node 3.

We first discover nodes 7 and 8 when we look at node 3. On the other
hand, the edge from 3 to 5 is another edge of G that does not end up in

3.2 Graph Connectivity and Graph Traversal

(a)

Figure 3.3 The construction of a breadth-fir
i Ctic -first search tree T for the graph in Fi
with (a), (b), and (c) depicting the successive layers that are added. %rnepso]llild éﬁt;reiifé

the edges of T; the dotted edges are i
o e cotted g in t‘he connected component of G containing node

the BFS tree, because by the time we 1 i
, ook at this edge out of node 3
already know about node 5. ° e

(c) We then consider the nodes in layer L, in order, but the only new node
discovered when we look through L, is node 6, which is added to layer

L;. Note that the edges (4, 5) and (7, 8) don’t get added to the BFS tree
because they don’t result in the discovery of new nodes. ’

(d) Nonew nodes are discovered when node 6 is examined, so nothing is put

in layer L,, and the algorithm terminates. Th .
in Figure 3.3(c). ee is depicted

. We nc;)tice the}t as we ran BFS on this graph, the nontree edges all either
ninected nodes 1¥1 t'he same layer, or connected nodes in adjacent layers. We
now prove that this is a property of BFS trees in general.

(3.4) Let T be a breadth-first search tree, let x and y be nodés inT bélonging

to layers L; and L; respectively, and let (x,y) b ; o
by at most 1. ! (x,y) be an edge of G. Then i and j differ

'Proof.'Suppose by way of contradiction that i and j differed by more than 1;
in particular, suppose i <j - 1. Now consider the point in the BFS algorithn;
when the edges incident to x were being examined. Since x belongs to layer
'Ll-, t'he only nodes discovered from x belong to layers L;,, and earlier; hen}(,:e
ity is a neighbor of x, then it should have been discovered by this poir’lt at th :
latest and hence should belong to layer L;, ; or earlier. = )
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Current component
containing

u ¢ (1t is safe to add v.

Figure 3.4 When growing the connected component containing s, we look for nodes
like v that have not yet been visited.

Exploring a Connected Component

The set of nodes discovered by the BFS algorithm is precisely those reachable
from the starting node s. We will refer to this set R as the connected com'pc.)nent
of G containing s; and once we know the connected component contmg s, -
we can simply check whether ¢ belongs to it so as to answer the question of
s-t connectivity.

Now, if one thinks about it, it’s clear that BFS is just one possible way to
produce this component. At a more general level, we can build the ?omponent
R by “exploring” G in any order, starting from s. To start off, we define R = {s}.
Then at any point in time, if we find an edge (u, v) where 1 € R and v ZR, we
can add v to R. Indeed, if there is a path P from s to u, t.hen there is a path
from s to v obtained by first following P and then following the edge (u,v).
Figure 3.4 illustrates this basic step in growing the component R.

Suppose we continue growing the set R untﬂ.there ar.e no more edges
leading out of R; in other words, we run the following algorithm.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,Vv) where ueR and vER
Add v to R

Endwhile

Here is the key property of this algorithm.

(35) . ThesetR pfbdﬁced aik the é'nd;of’the:algorith'm is preci;ely the connected
’(COfVI'lp'OTLént of’G’c,ontqin‘lings.j EET , I

3.2 Graph Connectivity and Graph Traversal

Proof. We have already argued that for any node v € R, there is a path from s
to v.

Now, consider a node w ¢ R, and suppose by way of contradiction, that
there is an s-w path P in G. Since s € R but w ¢ R, there must be a first node v
on P that does not belong to R; and this:node v is not equal to s. Thus there is
a node u immediately preceding v on P, so (u, v) is an edge. Moreover, since v
is the first node on P that does not belong to R, we must have u € R. It follows
that (u, v) is an edge where u € R and v ¢ R; this contradicts the stopping rule
for the algorithm. = -

For any node ¢ in the component R, observe that it is easy to recover the
actual path from s to t along the lines of the argument above: we simply record,
for each node v, the edge (u, v) that was considered in the iteration in which
v was added to R. Then, by tracing these edges backward from t, we proceed
through a sequence of nodes that were added in earlier and earlier iterations,
eventually reaching s; this defines an s-t path.

To conclude, we notice that the general algorithm we have defined to
grow R is underspecified, so how do we decide which edge to consider next?
The BFS algorithm arises, in particular, as a particular way of ordering the
nodes we visit—in successive layers, based on their distance from s. But
there are other natural ways to grow the component, several of which lead
to efficient algorithms for the connectivity problem while producing search
patterns with different structures. We now go on to discuss a different one of
these algorithms, depth-first search, and develop some of its basic properties.

Depth-First Search

Another natural method to find the nodes reachable from s is the approach you
might take if the graph G were truly a maze of interconnected rooms and you
were walking around in it. You’d start from s and try the first edge leading out
ofit, to a node v. You’d then follow the first edge leading out of v, and continue
in this way until you reached a “dead end”—a node for which you had already
explored all its neighbors. You’d then backtrack until you got to a node with
an unexplored neighbor, and resume from there. We call this algorithm depth-
first search (DFS), since it explores G by going as deeply as possible and only
retreating when necessary.

DFS is also a particular implementation of the generic component-growing
algorithm that we introduced earlier. It is most easily described in recursive
form: we can invoke DFS from any starting point but maintain global knowl-
edge of which nodes have already been explored.
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DFS(u) :
Mark u as "Explored" and add u to R
For each edge (u,v) incident to u
If v is not marked "Explored" then
Recursively invoke DFS(v)
Endif
Endfor

To apply this to s-t connectivity, we simply declare all nodes initially to be not
explored, and invoke DFS(s).

There are some fundamental similarities and some fundamental differ-
ences between DFS and BFS. The similarities are based on the fact that they
both build the connected component containing s, and we will see in the next
section that they achieve qualitatively similar levels of efficiency. )

While DFS ultimately visits exactly the same set of nodes as BFS, it typically -

does so in a very different order; it probes its way down long paths, potentially
getting very far from s, before backing up to try nearer unexplored nodes. We
can see a reflection of this difference in the fact that, like BFS, the DFS algorithm
yields a natural rooted tree T on the component containing s, but the tree will
generally have a very different structure. We make s the root of the tree T,
and make u the parent of v when u is responsible for the discovery of v. That
is, whenever DFS(v) is invoked directly during the call to DFS(12), we add the
edge (u,v) to T. The resulting tree is called a depth-first search tree of the
component K.

Figure 3.5 depicts the construction of a DFS tree rooted at node 1 for the
graph in Figure 3.2. The solid edges are the edges of T; the dotted edges are
edges of G that do not belong to T. The execution of DFS begins by building a
path on nodes 1,2, 3, 5, 4. The execution reaches a dead end at 4, since there
are no new nodes to find, and so it “backs up” to 5, finds node 6, backs up
again to 3, and finds nodes 7 and 8. At this point there are no new nodes to find
in the connected component, so all the pending recursive DFS calls terminate,

.one by one, and the execution comes 10 an end. The full DFS tree is depicted
in Figure 3.5(g).

This example suggests the characteristic way in which DFS trees look
different from BFS trees. Rather than having root-to-leaf paths that are as short
as possible, they tend to be quite narrow and deep. However, as in the case
of BFS, we can say something quite strong about the way in which nontree
edges of G must be arranged relative to the edges of a DFS tree T as in the
figure, nontree edges can only connect ancestors of T to descendants.

3.2 Graph Connectivity and Graph Traversal

Figure 3.5 The construction of a de i

: CHc pth-first search tree T for the graph in Fi

zsgtlz S(a) thgcl)ugh (8) depicting the nodes as they are discovered in seqﬁence. ]g];lé‘esgéi,
ges are the edges of T; the dotted edges are edges of G that do not belong to T.

To establish this, we first observe the followi

' , owing property of th
algorithm and the tree that it produces. 8 propey "o
1(73.6) Fora given r?cursive call DFS(u), all nodes that are marked “Explored”
i :D;Jeen the invocation and end of this recursive call are descendants of u

Using (3.6), we prove

(3.7) Let T be a depth-first search tree, let x and y be nodes vin T, and let
(x,y) be an edge of G that is not an edge of T. Then one of x or y is an ancestor

of the other.
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Proof. Suppose that (x,y) is an edge of G that is not an edge of T, and suppose
without loss of generality that x is reached first by the DFS algorithm. When
the edge (x,y) is examined during the execution of DFS(x), it is not added
to T because y is marked “Explored.” Since y was not marked “Explored”
when DFS(x) was first invoked, it is a node that was discovered between the
invocation and end of the recursive call DFS(x). It follows from (3.6) that y is

a descendant of x. =

The Set of All Connected Components

So far we have been talking about the connected component containing a
particular node s. But there is a connected component associated with each
node in the graph. What is the relationship between these components?

In fact, this relationship is highly structured and is expressed in the
following claim.

(3.8) For any two nodes s and t in a graph, their connected components are
either identical or disjoint. :

This is a statement that is very clear intuitively, if one looks at a graph like
the example in Figure 3.2. The graph is divided into multiple pieces with no
edges between them; the largest piece is the connected component of nodes
1 through 8, the medium piece is the connected component of nodes 11, 12,
and 13, and the smallest piece is the connected component of nodes 9 and 10.
To prove the statement in general, we just need to show how to define these

“pieces” precisely for an arbitrary graph.

Proof. Consider any two nodes s and ¢ in a graph G with the property that
there is a path between s and t. We claim that the connected components
containing s and t are the same set. Indeed, for any node v in the component
of s, the node v must also be reachable from t by a path: we can just walk
from t to s, and then on from s to v. The same reasoning works with the roles
of s and t reversed, and so a node is in the component of one if and only if it
is in the component of the other.

On the other hand, if there is no path between s and t, then there cannot
be a node v that is in the connected component of each. For if there were such
a node v, then we could walk from s to v and then on to f, constructing a
path between s and t. Thus, if there is no path between s and t, then their
connected components are disjoint. =

This proof suggests a natural algorithm for producing all the connected
components of a graph, by growing them one component at a time. We start
with an arbitrary node s, and we use BFS (or DFS) to generate its connected

3.3 Implementing Graph Traversal Using Queues and Stacks

component. We then find a node v (if any) that was not visited by the search
from s, and iterate, using BFS starting from v, to generate its connected
component—which, by (3.8), will be disjoint from the component of s. We
continue in this way until all nodes have been visited.

3.3 Implementing Graph Traversal Using Queues
and Stacks

So far we have been discussing basic algorithmic primitives for working with
graphs without mentioning any implementation details. Here we discuss how
to use lists and arrays to represent graphs, and we discuss the trade-offs
between the different representations. Then we use these data structures to
implement the graph traversal algorithms breadth-first search (BFS) and depth-
first search (DFS) efficiently. We will see that BFS and DFS differ essentially
only in that one uses a queue and the other uses a stack, two simple data
structures that we will describe later in this section.

Representing Graphs

There are two basic ways to represent graphs: by an adjacency matrix and
by an adjacency list representation. Throughout the book we will use the
adjacency list representation. We start, however, by reviewing both of these
representations and discussing the trade-offs between them.

A graph G = (V, E) has two natural input parameters, the number of nodes
|V|, and the number of edges |E|. We will use n=|V| and m = |E| to denote
these, respectively. Running times will be given in terms of both of these two
parameters. As usual, we will aim for polynomial running times, and lower-
degree polynomials are better. However, with two parameters in the runm'ng
time, the comparison is not always so clear. Is O(m?) or O(7%) a better running
time? This depends on what the relation is between n and m. With at most
Oile edge between any pair of nodes, the number of edges m can be at most
(5) < n®. On the other hand, in many applications the graphs of interest are
connected, and by (3.1), connected graphs must have at least m > — 1 edges.
But these comparisons do not always tell us which of two running times (such
as m? and n?) are better, so we will tend to keep the running times in terms
of both of these parameters. In this section we aim to.implément the basic
graph search algorithms in time O(m + n). We will refer to this as linear time,
sil.lce it takes O(m + n) time simply to read the input. Note that when we work
with connected graphs, a running time of O(m + 1) is the same as O(mm), since
m>mn-—1.

. Consider a graph G = (V, E) with n nodes, and assume the set of nodes
is V={1,...,n}. The simplest way to represent a graph is by an adjacency
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matrix, which is an n x n matrix A where Alu, v] is equal to 1 if the graph
contains the edge (i, v) and 0 otherwise. 1f the graphis undirected, the matrix A
is symmetric, with Alu, vl=Alv, u] for all nodes u,v e V. The adjacency
matrix representation allows us to check in O(1) time if a given edge (u, V) is
present in the graph. However, the representation has two basic disadvantages.

o The representation takes ©(n?) space. When the graph has many fewer
edges than n2, more compact representations are possible.

e Many graph algorithms need to examine all edges incident to a given node
v. In the adjacency matrix representation, doing this involves considering
all other nodes w, and checking the matrix entry Alv, w] to see whether
the edge (v, w) is present—and this takes ®(n) time. In the worst case,
v may have ©(n) incident edges, in which case checking all these edges
will take ® () time regardless of the representation. But many graphs in
practice have significantly fewer edges incident to most nodes, and so it
would be good to be able to find all these incident edges more efficiently.

The representation of graphs used throughout the book is the adjacency
list, which works better for sparse graphs—that is, those with many fewer than
n? edges. In the adjacency list representation there is a record for each node v,
containing a list of the nodes to which v has edges. To be precise, we have an
array Adj, where Adj[v] is a record containing a list of all nodes adjacent to
node v. For an undirected graph G = (V, E), each edge e = (v, w) € E occurs on
two adjacency lists: node w appears o1l the list for node v, and node v appears
on the list for node w.

Let’s compare the adjacency matrix and adjacency list representations.
First consider the space required by the representation. An adjacency matrix
requires O(n?) space, since it uses ann x n matrix. In contrast, we claim that
the adjacency list representation requires only O(m + n) space. Here is why.
First, we need an array of pointers of length n to set up the lists in Adj, and
then we need space for all the lists. Now, the lengths of these lists may differ
from node to node, but we argued in the previous paragraph that overall, each
edge e = (v, w) appears in exactly two of the lists: the one for v and the one
for w. Thus the total length of all lists is 2m = o@m).

Another (essentially equivalent) way to justify this bound is as follows.
We define the degree n, of a node v to be the number of incident edges it has.
The length of the list at Adj[v] is list is 72,, 50 the total length over all nodes is
0 (Xvev n,). Now, the sum of the degrees in a graph is a quantity that often
comes up in the analysis of graph algorithms, s0 it is useful to work out what

this sum is.

(3.9) ZveV ny, = 2M.
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Proof. Each edge e = (v, w) contributes exactly twice to this sum: once in the .

quan?ity Ty and once in the quantity n,,. Since the sum is the total of the
contributions of each edge, it is 2m. =

' We sum up the comparison between adjacency matrices and adjacency
lists as follows.

(3.}0) The. adjacency matrix representation of a graph requires O(n?) space,
while the adjacency list representation requires only O(m + n) spdce.

Since we have already argued that m < n?, the bound O(m + n) is never

worse than O(n?); and it is much better when the underlyi i
: ; erlying graph
with m much smaller than n?. VI BEDR B Spane

. Now we consider the ease of accessing the information stored in these two
dlffergnt representations. Recall that in an adjacency matrix we can check in
O(1) time if a particular edge (u, v) is present in the graph. In the adjacency list
representation, this can take time proportional to the degree O(n,): we have to
follow the pointers on u’s adjacency list to see if edge v occurs gn the list. On

the other hand, if the algorithm is currently looking at a node u, it can read .

the list of neighbors in constant time per neighbor.

In view of this, the adjacency list is a natural representation for explorihg
graphs. If the algorithm is currently looking at a node u, it can read this list
of neighbors in constant time per neighbor; move to a neighbor v once it
encox.}nters it on this list in constant time; and then be ready to read the list
a559c1ated with node v. The list representation thus corresponds to a physical
notion of “exploring” the graph, in which you learn the neighbors of a node
u once you arrive at u, and can read them off in constant time per neighbor.

Queues and Stacks

Many algorithms have an inner step in which they need to process a set of
el‘eynents, such the set of all edges adjacent to a node in a graph, the set of
VlSlte.d nodes in BFS and DFS, or the set of all free men in the Stable Matching
algorithm. For this purpose, it is natural to maintain the set of elements to be
considered in a linked list, as we have done for maintaining the set of free men
in the Stable Matching algorithm.

One i@portant issue that arises is the order in which to consider the
elements in such a list. In the Stable Matching algorithm, the order in which
we Fonsidered the free men did not affect the outcome, although this required
a fairly subtle proof to verify. In many other algorithms, such as DFS and BFS
the order in which elements are considered is crucial. ’
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Two of the simplest and most natural options are to maintain a set of
elements as either a queue or a stack. A gueue is a set from which we extract
elements in first-in, first-out (FIFO) order: we select elements in the same order
in which they were added. A stack is a set from which we extract elements
in last-in, first-out (LIFO) order: each time we select an element, we choose
the one that was added most recently. Both queues and stacks can be easily
implemented via a doubly linked list. In both cases, we always select the first
element on our list; the difference is in where we insert a new element. In a
queue a new element is added to the end of the list as the last element, while
in a stack a new element is placed in the first position on the list. Recall that a
doubly linked list has explicit First and Last pointers to the beginning and
end, respectively, so each of these insertions can be done in constant time.

Next we will discuss how to implement the search algorithms of the
previous section in linear time. We will see that BFS can be thought of as
using a queue to select which node to consider next, while DFS is effectively
using a stack. '

Implementing Breadth-First Search

The adjacency list data structure is ideal for implementing breadth-first search.
The algorithm examines the edges leaving a given node one by one. When we
are scanning the edges leaving u and come to an edge (u,v), we need to
know whether or not node v has been previously discovered by the search.
To make this simple, we maintain an array Discovered of length n and set
Discovered[v] = true as soon as our search first sees v. The algorithm, as
described in the previous section, constructs layers of nodes Ly, Ly, . . . , where
L; is the set of nodes at distance i from the source s. To maintain the nodes in
a layer L;, we have a list L[{] for each i=0,1,2, ....

BFS(s):
Set Discovered[s] = true and Discovered[v] = false for all other v
Initialize L[0] to consist of the single element s
Set the layer counter i=0
Set the current BFS tree T=0
While L[i] is not empty
Initialize an empty list L[i+1]
For each node u € L[i]
Consider each edge (u,v) incident to u
If Discovered[v] = false then
Set Discovered{v] = true
Add edge (u,v) to the tree T
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Add v to the list L[i+1]
Endif
Endfor
Increment the layer counter { by one
Endwhile

In this implementation it does not matter whether we manage each list
L[i] as a queue or a stack, since the algorithm is allowed to consider the nodes
in a layer L; in any order. '

(3.11)  The above implementation of the BFS algorithm runs in time O(m + 1)
(i.e., linear in the input size), if the graph is given by the adjacency lis
representation. '

Proof. As a first step, it is easy to bound the running time of the algorithm
by O(n?) (a weaker bound than our claimed O(m + n)). To see this, note that
there are at most n lists L[] that we need to set up, so this takes O(n) time.
Now we need to consider the nodes u on these lists. Each node occurs on at
most one list, so the For loop runs at most n times over all iterations of the
While loop. When we consider a node u, we need to look through all edges
(u, v) incident to u. There can be at most n such edges, and we spend O(1)
time considering each edge. So the total time spent on one iteration of the For
loop is at most O(n). We’ve thus concluded that there are at most n iterations
of the For loop, and that each iteration takes at most O(n) time, so the total
time is at most O(n?).

To get the improved O(m -+ n) time bound, we need to observe that the
For loop processing a node u can take less than O(n) time if u has only a
few neighbors. As before, let n, denote the degree of node u, the number of
edges incident to u. Now, the time spent in the For loop considering edges
incident to node u is O(n,), so the total over all nodes is O _uev y)- Recall
from (3.9) that }°, .y 7, = 2m, and so the total time spent considering edges
over the whole algorithm is O(m). We need O(n) additional time to set up
lists and manage the array Discovered. So the total time spent is O(m + n)
as claimed. =

We described the algorithm using up to n separate lists L[i] for each layer
L;. Instead of all these distinct lists, we can implement the algorithm using a
single list L that we maintain as a queue. In this way, the algorithm processes
nodes in the order they are first discovered: each time a node is discovered,
it is added to the end of the queue, and the algorithm always processes the
edges out of the node that is currently first in the queue.

91



92

Chapter 3 Graphs

If we maintain the discovered nodes in this order, then all nodes in layer L;
will appear in the queue ahead of all nodesinlayerL; ., fori=0,1,2... . Thus,
all nodes in layer L; will be considered in a contiguous sequence, followed
by all nodes in layer L., and so forth. Hence this implementation in terms
of a single queue will produce the same result as the BFS implementation

above.

Implementing Depth-First Search

We now consider the depth-first search algorithm: In the previous section we
presented DFS as a recursive procedure, which is a natural way to specify it.
However, it can also be viewed as almost identical to BFS, with the difference
that it maintains the nodes to be processed in a stack, rather than in a queue.
Essentially, the recursive structure of DFS can be viewed as pushing nodes
onto a stack for later processing, while moving on to more freshly discovered
nodes. We now show how to implement DFS by maintaining this stack of
nodes to be processed explicitly. ‘

In both BES and DFS, there is a distinction between the act of discovering
a node v—the first time it is seen, when the algorithm finds an edge leading
to v—and the act of exploring a node v, when all the incident edges to v are
scanned, resulting in the potential discovery of further nodes. The difference
between BFS and DFS lies in the way in which discovery and exploration are
interleaved.

In BFS, once we started to explore a node u in layer L;, we added all its
newly discovered neighbors to the next layer L;;,, and we deferred actually
exploring these neighbors until we got to the processing of layer Li;. In
contrast, DFS is more impulsive: when it explores a node u, it scans the
neighbors of u until it finds the first not-yet-explored node v (if any), and
then it immediately shifts attention to exploring v. '

To implement the exploration strategy of DFS, we first add all of the nodes
adjacent to u to our list of nodes to be considered, but after doing this we
proceed to explore a new neighbor v of u. As we explore v, in turn, we add
the neighbors of v to the list we're maintaining, but we do so in stack ordet,
so that these neighbors will be explored before we return to explore the other
neighbors of u. We only come back to other nodes adjacent to u when there
are no other nodes left.

In addition, we use an array Explored analogous to the Discovered array
we used for BFS. The difference is that we only set Explored[v] to be true
when we scan v’s incident edges (when the DFS search is at v), while BFS sets
Discovered[v] to true as soon as U is first discovered. The implementation

in full looks as follows.
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DFS(s):
Initialize S to be a stack with one element s
While S is not empty
Take a node u from S
If Explored[u] = false then
Set Explored[u] = true
For each edge (u,v) incident to u
Add v to the stack S
Endfor
Endif
Endwhile

' There is one final wrinkle to mention. Depth-first search is underspecified
since the adjacency list of a node being explored can be processed in any order’
Note that the above algorithm, because it pushes all adjacent nodes onto thé
stack before considering any of them, in fact processes each adjacency list

T S

(3;2). The above algorithm implements DFS, in the sensé that it' visiis fhe
no fes in exactly the same order as the recursive DFS procedure in the previous
‘sect’zoryl (except that each adjacency list is processed in reverse order).

If we want the algorithm to also find the DFS tree, we need to have each
node u on the stack S maintain the node that “caused” u to get added to
the stack. This can be easily done by using an array parent and settin
parent[vli=u when we add node v to the stack due to edge (u,v) Wheﬁ
we mark a node u # s as Explored, we also can add the edge (u I;ar'ent fu])
to the tre? T. Note that a node v may be in the stack S multiple’times as it
can be adjacent to multiple nodes u that we explore, and each such nodé adds
a copy of v to the stack S. However, we will only use one of these copies to
explore node v, the copy that we add last. As a result, it suffices to maintain one
value Earent [v] for each node v by simply overwriting the value parent[v]
every time we add a new copy of v to the stack S.

The main step in the algorithm is to add and delete nodes to and from
the stack S, which takes O(1) time. Thus, to bound the running time, we
need tg bound the number of these operations. To count the number of s’tack
operations, it suffices to count the number of nodes added to S, as each node
needs to be added once for every time it can be deleted from S.’

; How many elements ever get added to S? As before, let n, denote the
egrefe of node v. I'\Iode v will be added to the stack S every time one of its
n, adjacent nodes is explored, so the total number of nodes added to S is at
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most ¥, 1, = 2m. This proves the desired O(m + 1) bound on the running
u
time of DFS.

(3.13) Theabove implementation of the DFS algor{'thm runsin tim'e o@m +Zz.11
(i.e., linear in the input size), if the graph is given by the adjacency lis
representation.

Finding the Set of All Connected Components |
In the previous section we talked about how one c'an use BF'S (or DFZ) to ﬁnil1
all connected components of a graph. We start with an arbitrary node ;1 Zn
we use BFS {or DFS) to generate its connected component. W? then n'na
node v (if any) that was not visited by the search from s and lterati,i 1}1151bg
BFS (or DFS) starting from v to generate its connected co'mporlxent.—w c u,n ti,{
(3.8), will be disjoint from the component of s. We continue in this way 7
all nodes have been visited. v |
Although we earlier expressed the running time of BFS a'nd DFS as hO(tr]n t—;
n), where m and n are the total number of edges and nodes 11'1 the graph, (t) '
BFS and DFS in fact spend work only on edges and nodes in thefc;nne;ee i
component containing the starting node. (They never se.e any o ;:3 ;5 o
nodes or edges.) Thus the above algorithm, although it may run o
DFS a number of times, only spends a constant amount of W9rk on a give'S
edge or node in the iteration when the connecteq compon.ent it bfalong's ot }H
under consideration. Hence the overall running time of this algorithm is sti

Oo(m + n).

3.4 Testing Bipartiteness: An Application of
Breadth-First Search

Recall the definition of a bipartite graph: it is one where the node set V cag
be partitioned into sets X and Y in such a way t'hat evlery edge has one en
in X and the other end in Y. To make the discussion a little smoothe'r, vt\;e cal?[
imagine that the nodes in the set X are colored red, and the. nqdes 1'11 .fe' tse
Y are colored blue. With this imagery, we can say a graph is bipartite if i 1(51
possible to color its nodes red and blue so that every edge has one red en
and one blue end.

/=~ The Problem i
:In the earlier chapters, we saw examples of bipartite' graphs. Here we start by
asking: What are some natural examples of a nonbipartite graph, one where
no such partition of V is possible?

5
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Clearly a triangle is not bipartite, since we can color one node red, another
one blue, and then we can’t do anything with the third node. More generally,
consider a cycle C of odd length, with nodes numbered 1,2, 3, . . ., 2k, 2k + 1.
If we color node 1 red, then we must color node 2 blue, and then we must color
node 3red, and so on—coloring odd-numbered nodes red and even-numbered
nodes blue. But then we must color node 2k + 1 red, and it has an edge to node
1, which is also red. This demonstrates that there’s no way to partition C into
red and blue nodes as required. More generally, if a graph G simply contains

an odd cycle, then we can apply the same argument; thus we have established
the following.

(3.14) Ifa 8raph G is bipah‘ite, ther it cannot contain an odd cycle.

It is easy to recognize that a graph is bipartite when appropriate sets X
and Y (i.e., red and blue nodes) have actually been identified for us; and in
many seftings where bipartite graphs arise, this is natural. But suppose we
encounter a graph G with no annotation provided for us, and we’d like to
determine for ourselves whether it is bipartite—that is, whether there exists a
partition into red and blue nodes, as required. How difficult is this? We see from
(3.14) that an odd cycle is one simple “obstacle” to a graph’s being bipartite.
Are there other, more complex obstacles to bipartitness?

/= Designing the Algorithm

In fact, there is a very simple procedure to test for bipartiteness, and its analysis
can be used to show that odd cycles are the only obstacle. First we assume
the graph G is connected, since otherwise we can first compute its connected
components and analyze each of them separately. Next we pick any node s € V
and color it red; there is no loss in doing this, since s must receive some color.
It follows that all the neighbors of s must be colored blue, so we do this. It
then follows that all the neighbors of these nodes must be colored red, their
neighbors must be colored blue, and so on, until the whole graph is colored. At
this point, either we have a valid red/blue coloring of G, in which every edge
has ends of opposite colors, or there is some edge with ends of the same color.
In this latter case, it seems clear that there’s nothing we ‘could have done: G
simply is not bipartite. We now want to argue this point precisely and also
work out an efficient way to perform the coloring.

The first thing to notice is that the coloring procedure we have just
described is essentially identical to the description of BFS: we move outward
from s, coloring nodes as soon as we first encounter them. Indeed, another
way to describe the coloring algorithm is as follows: we perform BFS, coloring
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s red, all of layer L blue, all of layer L, red, and so on, coloring odd-numbered

layers blue and even-numbered layers red.

We can implement this on fop of BFS, by simply taking the implementation
of BFS and adding an extra array Color OVer the nodes. Whenever we get
to a step in BFS where we are adding a node v to a list L[i + 1], we assign
Color[v] = redifi+ 1lisaneven number, and Color[v] = blueifi+1 is an
odd number. At the end of this procedure, we simply scan all the edges and
determine whether there is any edge for which both ends received the same
color. Thus, the total running time for the coloring algorithm is O(m + 1), just

as it is for BFS.

4 Analyzing the Algorithm
We now prove a claim that shows this algorithm correctly determines whether
G is bipartite, and it also shows that we can find an odd cycle in G whenever

it is not bipartite.
(3.15) LetGbea connected graph, and let Ly, L,, . .. be the layers produced
by BFS starting at node s. Then exactly one of the following two things must

hold.

(i) There is no edge of G joining two nodes of the same layer. In. this case G
is a bipartite graph in which the nodes in even-numbered layers can be
colored red, and the nodes in odd-numbered layers can be colored blue.

The cycle through X, , (ii) There is an edge of G joining two nodes of the same layer. In this case, G
contains an odd-length cycle, and so it cannot be bipartite.

and z has odd length.

Proof. First consider case (i), where we suppose that there is no edge joining

two nodes of the same layer. By (3.4), we know that every edge of G joins nodes
either in the same layer or in adjacent layers. Our assumption for case (i) is
precisely that the first of these two alternatives never happens, so this means
that every edge joins two nodes in adjacent layers. But our coloring procedure
gives nodes in adjacent layers the opposite colors, and so every edge has ends
with opposite colors. Thus this coloring establishes that G is bipartite.

are in case (ii); why must G contain an odd cycle? We

Now suppose we
es of the same layer. Suppose

are told that G contains an edge joining two nod
this is the edge e = (x,¥), with x,y € L;. Also, for notational reasons, recall

Figure 3.6 If twonodes xand  that Lo (“layer 0”) is the set consisting of just s. Now consider the BFS tree T

y in the same layer are joined  produced by our algorithm, and let z be the node whose layer number is as

by an edge, then the cycle . . .. .

through x,y, and their lowest large as possible, subject to the condition that z is an ancestor of both x and y
in T; for obvious reasons, we can call z the lowest common ancestor of xand y.

common ancestor z has odd
length, demonstrating that  Suppose z € L;, where i < j. We now have the situation pictured in Figure 3.6.

the graph cannot be bipartite. - g, consider the cycle C defined by following the z-x path in T, then the edge e,

g
o
g

.
o
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f;ldlthen the )f-z pathin T. The length of this cycleis (j — i) + 1+ (j — i),-addin
e length of its three parts separately; this is equal to 2(j — i) + 1, hi, hi :
odd number. ®m e R

3.5 Connectivity in Directed Graphs

Thus far, we have been looking at problems on undirected graphs; we now

consider the extent to which th i
e .
graphs. se ideas carry over to the case of directed

Recall th.at in a directed graph, the edge (uz, v) has a direction: it goes fr
utov. II.l this way, the relationship between uz and v is asymme.tricg and t?nm
has qualitative effects on the structure of the resulting graph. In Sectio,né 1, f ;
e>.<amp1e, we discussed the World Wide Web as an instance c.>f alarge co' , 1Or
directed graph whose nodes are pages and whose edges are hyperliik’s Trl?p o
of browsing the Web is based on following a sequence of edges in this 'direité:ecc;
lg)lraph; E.ltnd the directionality is crucial, since it’s not generally possible to

rowse “backwards” by following hyperlinks in the reverse direction.

. A;l the same t.ime, a pumber of basic definitions and algorithms have
ural analogues in the directed case. This includes the adjacency list repre-

sentation and graph search algori
entaton and gorithms such as BFS and DFS. We now discuss

Representing Directed Graphs

glleo;cslsrato regreser;t t; directed graph for purposes of designing algorithms
' version of the adjacency list representati ,
undirected graphs. Now, instead ofy each nc?de h;\:ial?goerll siéieﬁiti?ﬁ?yﬁg o
each node has two lists associated with it: one list consists of nodes to lgh' ci)lrs
has e‘dges, and‘a second list consists of nodes from which it has edges Twhli{; ag
glgon.thm that is currently looking at a node u can read off the nodes r.eachable

y going one step forward on a directed edge, as well as the nodes that would
be reachable if one went one step in the reverse direction on an edge froxgl u

The Graph Search Algorithms

Breadth-first searcl.l and depth-first search are almost the same in directed
ia;hs :118 they z'u'e in gndirected graphs. We will focus here on BFS. We start
e él;e edse,ﬁ ;:lleﬁne a first layer of nod.es to consist of all those to which s has
ﬁrst-layér nc)de a Iiecond layer to consist of all additional nodes to which these
| es have an edge, and so forth. In this way, we discover nodes
‘ayer by l.ayer as they are reached in this outward search from s, and the nod
in layer j arfe precisely those for which the shortest path fTOT;L s has ex:ctTS
J edies. As in the undirected case, this algorithm performs at most constanz
work for each node and edge, resulting in a running time of O(mn + n)
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It is important to understand what this directed version of BFS is comput-
ing. In directed graphs, it is possible for a node s to have a path to a node t
even though t has no path to s; and what directed BFS is computing is the set
of all nodes t with the property that s has a path to t. Such nodes may or may
not have paths back to s.

There is a natural analogue of depth-first search as well, which also runs
in linear time and computes the same set of nodes. It is again a recursive
procedure that tries to explore as deeply as possible, in this case only following
edges according to their inherent direction. Thus, when DFS is at a node 1, it
recursively launches -a depth-first search, in order, for each node to which u

has an edge.

Suppose that, for a given node s, we wanted the set of nodes with paths
to s, rather than the set of nodes to which s has paths. An easy way to do this
would be to define a new directed graph, G, that we obtain from G simply
by reversing the direction of every edge. We could then run BFS or DFS in G™;
a node has a path from s in G™ if and only if it has a path to s in G.

Strong Connectivity
Recall that a directed graph is strongly connected if, for every two nodes u and
v, thereis a path fromutov and a path from v to . It’s worth also formulating
some terminology for the property at the heart of this definition; let’s say that
two nodes u and v in a directed graph are mutually reachable if there is a path
from u to v and also a path from v to u. (S0 a graph is strongly connected if
every pair of nodes is mutually reachable.)

Mutual reachability has a number of nice properties, many of them stem-
ming from the following simple fact.

(3.16) Ifuandvaremutually reachable, and v and w are mutually reachable,
then u and w are mutually reachable.

Proof. To construct a path from u to w, we first go from u to v (along the
path guaranteed by the mutual reachability of u and v), and then on from v
to w (along the path guaranteed by the mutual reachability of v and w). To
construct a path from w to u, we just reverse this reasoning: we first go from
w to v (along the path guaranteed by the mutual reachability of v and w), and
then on from v to u (along the path guaranteed by the mutual reachability of

gandv). =m

There is a simple linear-time algorithm to test if a directed graph is strongly
connected, implicitly based on (3.16). We pick any node s and run BFS in G
starting from s. We then also run BFS starting from s in G™. Now, if one of
these two searches fails to reach every node, then clearly G is not strongly
connected. But suppose we find that s has a path to every node, and that

3.6 Directed Acyclic Graphs and Topological Ordering

:;r}sfonicﬁz lllljjv Satia’ih to s. Then s and v are mutually reachable for every v

at every two nodes u and v are mutuall h : |

u are mutually reachable, and s and v are e G e
X mutually reachabl

also have that u and v are mutually reachable. & S0 by (316 we

deﬁfeyt;relajgiy with connected components in an undirected graph, we can
ng componernt containing a node s in a di J
set of all v such that s and v are m e it Soetr b
utually reachable. If one think i
algorithm in the previous i (ing the strong compmno
' paragraph is really computing the str
containing s: we run BFS startin i i o et of nodes
g from s both in G and in G™; th
reached by both searches is the s i i o s o
' : et of nodes with paths to a
hence this set is the strong component containing sp e from & and

- ugldlirei ?rg furthleir similarities between the notion of connected components
ed graphs and strong components in di
irected graphs. Recall th
. DG . at
onnected components naturally partitioned the graph, since any two were

either identical or disjoint. Stron
: . g components have this proper
for essentially the same reason, based on (3.16). property as well, end

(3.17) Forany two nodes s 3 )
. andt in a directed gra [ (
are either identical or disjoint. PR, el Sromg Compgnets

Elrotofl.1 Consider any two nodes s and ¢ that are mutually reachable; we claim
é(lj t e‘strong components containing s and t are identical. Indee’d for an
node v, if s and v are mutually reachable, then by (3.16), t and v are rjnutuaﬂirl

reachable as well. Similarly, i
e . y, if t and v are mutuall i
(3.16), s and v are mutually reachable. v reachable, then 2gain by

. aOIﬁ) ’(Lihe oﬂlller I%ar?d, if s and t are not mutually reachable, then there cannot
bee e tlfl that is in the strong component of each. For if there were such
e v, then s and v would be mutually reachable, and v and ¢t would be

mutually reachable, so fr 3 ;
reachable. m om (3.16) it would follow that s and t were mutually

In fact, although we will not discuss the details of this here, with more

work it is possible to compute th.
time of O(m -+ n). P e strong components for all nodes in a total

3.6 Directed Acyclic Graphs and
Topological Ordering
ifaac?l U?Fllrected graph has no cycles, then it has an extremely simple structure:
ofits connected components is a tree. But it is possible for a directed grapli

:131 h;ve no (directed) .cycles and still have a very rich structure. For example
ch graphs can have a large number of edges: if we start with the nodé
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In a topological ordering,‘ all
edges point from left to right.

i i DAG with a topological ordering,
i . A directed acyclic graph. (b) The same DA A
g;%egaz;?he labels on each node. (c) A different drawing of the same DAG, arrange

s0 as to emphasize the topological ordering.

set {1,2,...,n} and include an edge (i, j) whenever i <j, then the resulting
ed grap les.
directed graph has (3) edges but no cyc .

If a directed graph has no cycles, we call it-—n‘aturapy enough—a dlgect:c;
acyclic graph, or a DAG for short. (The term DAG is typically pronounce Ia :
word, not spelled out as an acronym.) In Figure 3.7(3) we see aln exaj.?peeezﬂ1
a DA&; although it may take some checking to convince oneself that it really

has no directed cycles.

¥ The Problem ‘
/];AGS are a very common structure in computer science, because; many knicls
discussed in Section 3.1 are acyclic.
dependency networks of the type we . ACYC
%fhuspDAGs czn be used to encode precedence relations ot dependencies 21 a
natural way. Suppose we have a set of tasks labeled {1, 2,‘. . T‘L} that nee;t tg
be performed, and there are dependencies among them stipulating, for ce a; ’
pairs i and j, that i must be performed before j. For examplg, the tasks Hrlllllasz e
it isi i tating that certain courses
courses, with prerequisite requirements s ain o
ond to a pipeline of computing
taken before others. Or the tasks may C(.)IIG?LEJ . > 0 .
jobs, with assertions that the output of job 1 is use?d in determining the input
to job j, and hence job i must be done before ]ob j. ‘ ‘

We can represent such an interdependent set of te%sks by mtrodu;mfgrz
node for each task, and a directed edge (i, ) Whenexfllelzlr i ﬂrlnust ‘t:lelz ﬁ(fgnzra; }? .
j ion i t all meaningful, the res

. If the precedence relation is t0 be a
]must be a DAG. Indeed, if it contained a cycle C, there'woulq be no Wg ;ooillcg
any of the tasks in C: since each task in C cannot begin until some othe

completes, no task in C could ever be done, since none could be done first.

T S
‘

3.6 Directed Acyclic Graphs and Topological Ordering

Let’s continue a little further with this picture of DAGs as precedence
relations. Given a set of tasks with dependencies, it would be natural to seek
a valid order in which the tasks could be performed, so that all dependencies
are respected. Specifically, for a directed graph G, we say that a topological
ordering of G is an ordering of its nodes as vy, v,, . . . , v, 50 that for every edge
(v;,vj), we have i < j. In other words, all edges point “forward” in the ordering.
A topological ordering on tasks provides an order in which they can be safely
performed; when we come to the task v, all the tasks that are required to
precede it have already been done. In Figure 3.7(b) we’ve labeled the nodes of
the DAG from part (a) with a topological ordering; note that each edge indeed
goes from a lower-indexed node to a higher-indexed node.

In fact, we can view a topological ordering of G as providing an immediate
“proof” that G has no cycles, via the following.

(3.18) If G has a topological ordering, then G is a DAG.

Proof. Suppose, by way of contradiction, that G has a topological ordering
V), V3, - - .5 Up, and also has a cycle C. Let v; be the lowest-indexed node on C,
and let v; be the node on C just before v;—thus (vj, v;) is an edge. But by our
choice of {, we have j > i, which contradicts the assumption that v, v,, . . ., U,
was a topological ordering. =

The proof of acyclicity that a topological ordering provides can be very
useful, even visually. In Figure 3.7(c), we have drawn the same graph as
in (a) and (b), but with the nodes laid out in the topological ordering. It is

immediately clear that the graph in (c) is a DAG since each edge goes from left
to right.

Computing a Topological Ordering The main question we consider here is
the converse of (3.18): Does every DAG have a topological ordering, and if so,
how do we find one efficiently? A method to do this for every DAG would be
very useful: it would show that for any precedence relation on a set of tasks

without cycles, there is an efficiently computable order in which to perform
the tasks.

/=~ Designing and Analyzing the Algorithm

In fact, the converse of (3.18) does hold, and we establish this via an efficient
algorithm to compute a topological ordering. The key to this lies in finding a
way to get started: which node do we put at the beginning of the topological
ordering? Such a node v; would need to have no incoming edges, since any
such incoming edge would violate the defining property of the topological
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ordering, that all edges point forward. Thus, we need to prove the following
fact. :

(3.19) In every DAG G, there is a node v with no incoming edges.

Proof. Let G be a directed graph in which every node has at least one incoming
edge. We show how to find a cycle in G; this will prove the claim. We pick
any node v, and begin following edges backward from v: since v has at least
one incoming edge (u,v), we can walk backward to u; then, since u has at
least one incoming edge (x, 1), we can walk backward to x; and so on. We
can continue this process indefinitely, since every node we encounter has an
incoming edge. But after n + 1steps, we will have visited some node w twice. If
we let C denote the sequence of nodes encountered between successive visits

to w, then clearly C forms a cycle. ®

In fact, the existence of such anode v is all we need to produce a topological
ordering of G by induction. Specifically, let us claim by induction that every
DAG has a topological ordering. This is clearly true for DAGs on one Or WO
nodes. Now suppose it is true for DAGs with up to some number of nodes 1.
Then, given a DAG G on 7 + 1 nodes, we find a node v with no incoming edges,
as guaranteed by (3.19). We place v first in the topological ordering; this is
safe, since all edges out of v will point forward. Now G—{v} is a DAG, since
deleting v cannot create any cycles that weren’t there previously. Also, G—{v}
has 1 nodes, so we can apply the induction hypothesis to obtain a topological
ordering of G—{v}. We append the nodes of G—{v} in this order after v; this is
an ordering of G in which all edges point forward, and hence it is a topological
ordering.

Thus we have proved the desired converse of (3.18).

(3.20) IfGis a DAG, then G has a topological ordering.

The inductive proof contains the following algorithm to compute a topo-
logical ordering of G.

To compute a topological ordering of G:

Find a node v with mo incoming edges and order it first

Delete v from G

Recursively compute a topological ordering of G—{v}
and append this order after v

In Figure 3.8 we show the sequence of node deletions that occurs when this
algorithm is applied to the graph in Figure 3.7. The shaded nodes in each
iteration are those with no incoming edges; the crucial point, which is what
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At the start, all nodes are active, s0 we call initiatlize ('a) and (‘FJ) Wltfh alsgigée
pass through the nodes and edges. Then, each 1tera't10n consists ct)h se eh algl
a node v from the set S and deleting it. After deleting v, we gob roFgCﬁve
nodes w to which v had an edge, and subtract one frorr} the num ﬂir 0 jmber
incoming edges that we are main;ainirtlg forow.thli nth‘:; 25(111(115?1']5 o ethxé mbe
of active incoming edges to w to drop 1o Zero, ac ' .

‘ne in this way, we keep track of nodes that are eligible for deletion at
zlrlotcif;ijlsv;ﬁlglsl;endi’ng constle)mt work per edge over the course of the whole

algorithm.

Solved Exercises

Solved Exercise 1 -
Consider the directed acyclic graph G in Figure 3.9. How many topologic
orderings does it have? | .
Solution Recall that a topological ordering of G”is an ordering of the;oci;:
as vy, Vy, - .. » Up SO that all edges point “forward”: for every edge (;, Up,
havei <]j.

So one way to answer this question would be to Wﬁte down ?lll 1S . 4d- E;i-nz .
1= 120 possible orderings and check whether each is a topological ordering.
But this would take a while. '

Instead, we think about this as follows. As we saw in'the text (Qr reasontntl)i
directly from the definition), the first node in a topological ordering inl;us b
one that has no edge coming into it. Analogously, the 1ast' node mttls ede ¢
that has no edge leaving it. Thus, in every topological ordering of G, the no
must come first and the node e must come last. .

Now we have to figure how the nodes b, ¢, and d can be arranged in thet
middle of the ordering. The edge (c, d) enforces the requirement that ¢ mus

come before d; but b can be placed anywhere relative to these.t\'zv'oE beforg
both, between ¢ and d, or after both. This exhausts all the possibilities, an

so we conclude that there are three possible topological orderings:
a,b,c,d,e
a,c,b,d,e

a,c,d,b,e

Solved Exercise 2

Some friends of yours are working on techniques for coordinating groups ?f
mobile robots. Each robot has a radio transmitter that it uses to communicate

Solved Exercises

with a base station, and your friends find that if the robots get too close to one
another, then there are problems with interference among the transmitters. So
a natural problem arises: how to plan the motion of the robots in such a way
that each robot gets to its intended destination, but in the process the robots
don’t come close enough together to cause interference problems.

We can model this problem abstractly as follows. Suppose that we have
an undirected graph G = (V, E), representing the floor plan of a building, and
there are two robots initially located at nodes a and b in the graph. The robot
at node a wants to travel to node ¢ along a path in G, and the robot at node b
wants to travel to node d. This is accomplished by means of a schedule: at
each time step, the schedule specifies that one of the robots moves across a
single edge, from one node to a neighboring node; at the end of the schedule,
the robot from node a should be sitting on ¢, and the robot from b should be
sitting on d.

A schedule is interference-free if there is no point at which the two robots
occupy nodes that are at a distance < r from one another in the graph, for a
given parameter r. We’ll assume that the two starting nodes a and b are at a
distance greater than r, and so are the two ending nodes ¢ and d.

Give a polynomial-time algorithm that decides whether there exists an
interference-free schedule by which each robot can get to its destination.

Solution This is a problem of the following general flavor. We have a set
of possible configurations for the robots, where we define a configuration
to be a choice of location for each one. We are trying to get from a given
starting configuration (a, b) to a given ending configuration (c, d), subject to
constraints on how we can move between configurations (we can only change

one robot’s location to a neighboring node), and also subject to constraints on
which configurations are “legal.”

This problem can be tricky to think about if we view things at the level of
the underlying graph G: for a given configuration of the robots—that is, the
current location of each one—it’s not clear what rule we should be using to
decide how to move one of the robots next. So instead we apply an idea that
can be very useful for situations in which we’re trying to perform this type of
search. We observe that our problem looks a lot like a path-finding problem,
not in the original graph G but in the space of all possible configurations.

Let us define the following (larger) graph H. The node set of H is the set
of all possible configurations of the robots; that is, H consists of all possible
pairs of nodes in G. We join two nodes of H by an edge if they represent
configurations that could be consecutive in a schedule; that is, (z,v) and
(', v') will be joined by an edge in H if one of the pairs u, u’ or v, v/ are equal,
and the other pair corresponds to an edge in G.

105



106

Chapter 3 Graphs

We can already observe that paths in H from (a, b) to (¢, d) correspond
to schedules for the robots: such a path consists precisely of a sequence of

tions in which, at each step, one robot crosses a single edge in G.

configura
on that the schedule should be

However, we have not yet encoded the noti
interference-free.

To do this, we simply delete from H all nodes that correspond to configura-
tions in which there would be interference. Thus we define H' to be the graph
obtained from H by deleting all nodes (u, v) for which the distance between
uz and v in G is at most 1.

The full algorithm is then as follows. We construct the graph H’, and then
run the connectivity algorithm from the text to determine whether there is a
path from (a, b) to (¢, d). The correctness of the algorithm follows from the
fact that paths in H' correspond to schedules, and the nodes in H’ correspond
precisely to the configurations in which there is no interference.

Finally, we need to consider the running time. Let n denote the number
of nodes in G, and m denote the number of edges in G. We’ll analyze the
running time by doing three things: (1) bounding the size of H' (which will in
general be larger than G), (2) bounding the time it takes to construct H', and
(3) bounding the time it takes to search for a path from (a, b) to (¢, d) in H.

1. First, then, let’s consider the size of H'. H' has at most n? nodes, since
its nodes correspond to pairs of nodes in G. Now, how many edges does
H’ have? A node (u, v) will have edges to (', v) for each neighbor o’
of u in G, and to (u, V') for each neighbor v of vin G. A simple upper
bound says that there can be at most 71 choices for (', v), and at most nt
choices for (i, '), so there are at most 2n edges incident to each node
of H'. Summing over the (at most) n? nodes of H', we have O(n3) edges.

(We can actually give a better bound of O(¢nn) on the number of
edges in H', by using the bound (3.9) we proved in Section 3.3 on the
sum of the degrees in a graph. We'll leave this as a further exercise.)

). Now we bound the time needed to construct H'. We first build H by
enumerating all pairs of nodes in G in time 0O(n?), and constructing edges
using the definition above in time O(7) per node, for a total of O(m3).
Now we need to figure out which nodes to delete from H so as to produce
H'. We can do this as follows. For each node u in G, we run a breadth-
first search from u and identify all nodes v within distance r of u. We list
all these pairs (u,v) and delete them from H. Each breadth-first search
in G takes time O(m + n), and we're doing one from each node, so the
total time for this part is O(mr + n%).
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3. N j |
ﬁgg zve gave H’, and s? we just need to decide whether there is a path
o tﬁ, ) to Fc, 4). This cf'm be done using the connectivity algorithm
e text In time that is linear in the number of nodes and edges

of H'. Since H' has O(n?) node
S d 3 s g
polynomial time as well. and O(n°) edges, this final step takes

Exercises

1. Consider the directed acycli i
( yclic graph G in Fi
ical orderings does it have? gore 310 Howmany topolog

\/2. Give an algorithm to detect whether a given undirected gra{ph contains

2 ;gc(l;at. i 1(:)1115 dgraph contains a cycle, then your algorithm should output
. not output all cycles in the gra ]
( : ph, just one of them.) Thi
running time of your algorithm sh ith
o oo o g should be O(m + n) for a graph with n

3 T . . . .
inhe a;goDnthm described in Section 3.6 for computing a topological order-
g of a DAG repeatedly finds a node with no incoming edges and deletes

gl g!

e aBBZ sGupégse ;hg;c we're given an arbitrary graph that may or may not
. Exten e topological ordering algorithm i

. . ‘ so that, given

I;Sut.dlrected graph.G, 1t outputs one of two things: (a) a to;?cl)logi(?ali

o t?;lling,‘ thus establishing that G is a DAG; or (b) a cycle in G, thus

]s; ablishing that G is not a DAG. The running time of your algc;rithm

should be O(m + n) for a directed graph with n nodes and m edges

4 .
Esggruerdfby tl:le efl(ample of that great Cornellian, Vladimir Nabokov, some
riends have become amateur lepidopteri ’
ey opiacngs ave .p pterists (they study butter-
y return from a trip with specimens i
flie - W] of butterfli
it is very difficult for them to tell how many distinct species they’(i:

canght—thanks to the fact th i
cousht at many species look very similar to one

bdo](:)lg: tciai) :;eyfrfwmm dl;vith n butterflies, and they believe that each
0 0 different species, which we’ll
> of ‘ , call A and B fi
fxgposes of this discussion. They'd like to divide the n specimens infc)cf
groups—those that belong to A and those that belong to B—but it's

very hard for them to directl
y label an i .
adopt the following approach. Y one specimen. So they decide to
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For each pair of specimens i and j, they study them carefully side by

side. If they're confident enough in their

judgment, then they label the

pair (i,j) either “gsame” (meaning they believe them both to come from
the same species) or «different” (meaning they believe them to come from

different species). They also have the op

tion of rendering no judgment

on a given pair, in which case we'll call the pair ambiguous.

So now they have the collection of n specimens, as well as a collection
of m judgments (either ugame” or “different”) for the pairs that were not
declared to be ambiguous. They'd like to know if this data is consistent

with the idea that each butterfly is from

one of species A or B. So more

concretely, we’'ll declare the m judgments to be consistent if it is possible
to label each specimen either A or B in such a way that for each pair (Z,J)
labeled “same,” it is the case that i and j have the same label; and for each

pair (i, j) labeled “different,” it is the case

that i and j have different lab els.

They're in the middle of tediously working out whether their judgments
are consistent, when one of them realizes that you probably have an
algorithm that would answer this question right away. .

Give an algorithm with running time O(m +n) that determines
whether the m judgments are consistent.

5. Abinary tree is arooted tree in which eac

hnode has at most two children.

Show by induction that in any binary tree the number of nodes with two
children is exactly one less than the number of leaves.

6. We have a connected graph G =(V, E), and a specific vertexu € V. Suppose
we compute a depth-first search tree rooted at u, and obtain a tree T that
includes all nodes of G. Suppose we then compute a breadth-first search
tree rooted at u, and obtain the same tree T. Prove that G=T. (In other
words, if T is both a depth-first gearch tree and a breadth-first search

tree rooted at u, then G cannot confain
T)

any edges that do not belong to

. Some friends of yours work on wireless networks, and they're currently

studying the properties of a network of

n mobile devices. As the devices

move around (actually, as their human owners move around), they define
a graph at any point in time as follows: there is a node representing each
of the n devices, and there is an edge between device i and device j if the
physical locations of i and j are no more than 500 meters apart. (If so, we
say that i and j are “in range” of each other.)

They'd like it to be the case that the network of devicesis connected at

all times, and so they've constrained th

e motion of the devices o satisfy
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Zlfle fcl)]lowing property: at all times, each device i is within 500 meters
at least n/2 of the other devices. (We’ll assume n is an even number.)

What they'd like to know is: D i
: Does this property by itself
the network will remain connected? ’ urantee et

Claim: Let G be a graph on n nodes, where 1 is an even number. If every node
of G has degree at least n/2, then G is connected.

Decide whether you think the claim i
. claim is true or false i
either the claim or its negation. B aproofof

8. A number of stories in the press about the structure of the Internet and
;he Web have fo<‘:used on some version of the following questione' I?cI)lw
Ce;rr e@mj\lr; ?;r;l tﬁlé:aél nodes in these networks? If you read these stories
N ;h . at many of them are confused about the difference

n the diameter of a network and the average distance in a network;

they often jump back and forth b
e satne thine. etween these concepts as though they're

. aAs mhthe text, wg say that the distance between two nodes u and v
themgr::fe’uG; (V;E) t;lsl the minimum number of edges in a path joining
; enote this by dist(u, v). We say that the di
o : . , V). e diameter of G is
e mf'mmum distance between any pair of nodes; and we'll denote thi
quantity by diam(G). i
i Let s.define a related quantity, which we'll call the average pairwise
ance in G (denoted apd(G)). We define apd(G) to be the average, over

all (3) sets of two distinct i
That is, nodes z and v, of the distance between z and v.

apd(G):{ Z dist(u, v) /<n>.
{u,v}cv 2

Here's a simple example to convin
: : ce yourself that there are graphs G
fqr which diam(G) # apd(G). Let G be a graph with three nodes u %ru? aild
with the two edges {u, v} and {v, w}. Then ' o
diam(G) = dist(u, w) = 2,
while

apd(G) = [dist(u, v) + dist(u, w) + dist(v, w)}/3 = 4/3.
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Of course, these two numbers aren’t all that far apart in the case of
this three-node graph, and so it’s natural to ask whether there’s always a
close relation between them. Here’s a claim that tries to make this precise.

Claim: There exists a positive natural number c so that for all connected graphs
G, it is the case that
diam(G) <c
apd(G)

Decide whether you think the claim is true or false, and give a proof of
either the claim or its negation.

VQ/There’s a patural intuition that two nodes that are far apart in a com-
munication network—separated by many hops—have a more tenuous
connection than two nodes that are close together. There are a number
of algorithmic results that are based to some extent on different ways of
making this notion precise. Here's one that involves the susceptibility of
paths to the deletion of nodes.

Suppose that an n-node undirected graph G= (V,E) contains two

nodes s and t such that the distance between s and t is strictly greater

than n/2. Show that there must exist some node v, not equal to either s

or t, such that deleting v from G destroys all st paths. (In other words,

| the graph obtained from G by deleting v contains no path from s to t.)
\ Give an algorithm with running.time O(m +n) 10 find such a node v.
|

10. A number of art museums around the country have been featuring work
by an artist named Mark Lombardi (1951-2000), consisting of a set of
intricately rendered graphs. Building on a great deal of research, these
graphs encode the relationships among people involved in major political
scandals over the past several decades: the nodes correspond to partici-
pants, and each edge indicates some type of relationship between a pair
of participants. And so, if you peer closely enough at the drawings, you
can trace out ominous-looking paths from a high-ranking U.S. govern-
ment official, to a former business partmer, 10 a bank in Switzerland, to
a shadowy arms dealer.

Such pictures form striking examples of social networks, which, as
we discussed in Section 3.1, have nodes representing people and organi-
zations, and edges representing relationships of various kinds. And the
short paths that abound in these networks have attracted considerable
attention recently, as people ponder what they mean. In the case of Mark
Lombardi’s graphs, they hint at the short set of steps that can carry you
from the reputable to the disreputable.

e e e G R e e R R e R
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Of course, a single, spurious short path between nodes v and w in
such a network may be more coincidental than anything else; a large
number of short paths between v and w can be much more convincing.
So in addition to the problem of computing a single shortest v-w path
in a graph G, social networks researchers have looked at the problem of
determining the number of shortest v-w paths.

This turns out to be a problem that can be solved efficiently. Suppose
we are given an undirected graph G = (V, E), and we identify two nodes v
and w in G. Give an algorithm that computes the number of shortest v-w
paths in G. (The algorithm should not list all the paths; just the number
suffices.) The running time of your algorithm should be O(m + n) for a
graph with n nodes and m edges.

You're helping some security analysts monitor a collection of networked
computers, tracking the spread of an online virus. There are n computers
in the system, labeled C}, C,, . .., C,, and as input you're given a collection
of trace data indicating the times at which pairs of computers commu-
nicated. Thus the data is a sequence of ordered triples (C;, G, ty); such a

triple indicates that C; and C; exchanged bits at time t. There are m triples
total.

We’ll assume that the triples are presented to you in sorted order of
time. For purposes of simplicity, we'll assume that each pair of computers
communicates at most once during the interval you're observing.

The security analysts you're working with would like to be able to
answer questions of the following form: If the virus was inserted into
computer C, at time x, could it possibly have infected computer C, by
time y? The mechanics of infection are simple: if an infected computer
C; communicates with an uninfected computer G at time f; (in other
words, if one of the triples (C;, G, ) or (G, G, t) appears in the trace
data), then computer C; becomes infected as well, starting at time te-
Infection can thus spread from one machine to another across a Sequence
of communications, provided that no step in this sequence involves a
move backward in time. Thus, for example, if C; is infected by time tes
and the trace data contains triples (C;, G, tp) and (G;, Gy, t;), where t <t,,
then C, will become infected via C;. (Note that it is okay for t;, to be equal
to ;; this would mean that ¢; had open connections to both C; and Cq at
the same time, and so a virus could move from ¢; to Gy

For example, suppose n =4, the trace data consists of the triples

(Cl’ CZ’ 4)) (CZ) C41 8): (C3y C4, 8), (Cl’ C4, 12),
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and the virus was inserted into computer C, at time 2. Then C; would be
infected at time 8 by a sequence of three steps: first C, becomes infected
at time 4, then C, gets the virus from G, at time 8, and then C; gets the
virus from C, at time 8. On the other hand, if the trace data were

(Cy, Cs,8), (C1,Cs,12), (C1, G, 14D,

and again the virus was inserted into computer C; at time 2, then G,
would not become infected during the period of observation: although
C, becomes infected at time 14, we see that C; only communicates with C,
before C, was infected. There is no sequence of communications moving
forward in time by which the virus could get from C; to C; in this second
example.

Design an algorithm that answers questions of this type: given a
collection of trace data, the algorithm should decide whether a virus
introduced at computer C, at time x could have infected computer C,
by time y. The algorithm should run in time O(m + ).

12. You're helping a group of ethnographers analyze some oral history data
they've collected by interviewing members of a village to learn about the
lives of people who've lived there over the past two hundred years.

From these interviews, they've learned about a set of n people (all
of them now deceased), whom we’ll denote Py, Py, ... ,P,. They've also
collected facts about when these people lived relative to one another.
Each fact has one of the following two forms:

e For some i and j, person P; died before person P; was born; or
o for someiandj, thelife spans of P; and P overlapped at least partially.

Naturally, they're not sure that all these facts are correct; memories
are not so good, and a lot of this was passed down by word of mouth. So
what they'd like you to determine is whether the data they've collected is
at least internally consistent, in the sense that there could have existed a
set of people for which all the facts they've learned simultaneously hold.

Give an efficient algorithm to do this: either it should produce pro-
posed dates of birth and death for each of the n people so that all the facts
hold true, or it should report (correctly) that no such dates can exist—that
is, the facts collected by the ethnographers are not internally consistent.

Notes and Further Reading

The theory of graphs is a large topic, encompassing both algorithmic and non-
algorithmic issues. It is generally considered to have begun with a paper by

T T

sensa

Notes and Further Reading

Euler‘(1736), grown through interest in graph representations of maps and
chemical compounds in the nineteenth century, and emerged as a systzma?i

area of study in the twentieth century, first as a branch of mathematics and lateC
also through its applications to computer science. The books by Berge (1976)r
Bollobas (1998), and Diestel (2000) provide substantial further coverage f
graph theory. Recently, extensive data has become available for studyin %aro

networks .that arise in the physical, biological, and social sciences andg thc§”e
hgs been interest in understanding properties of networks that spa;n all these
dlfferept domains. The books by Barabasi (2002) and Watts (2002) discuss th'e
emerging area of research, with presentations aimed at a general audience :

The pasi‘c graph trafrersal techniques covered in this chapter have numer-
ous applications. We will see a number of these in subsequent chapters, and
we refer the reader to the book by Tarjan (1983) for further results ’

Notes on the Exercises Exercise 12 i
is based o ; .
and Ron Shamir. n a result of Martin Golumbic
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In Wall Street, that iconic movie of the 1980s, Michael Douglas gets up in
front of a room full of stockholders and proclaims, “Greed . . . is good. Greed
is right. Greed works.” In this chapter, we’ll be taking a much more understated
perspective as we investigate the pros and cons of short-sighted greed in the
design of algorithms. Indeed, our aim is to approach a number of different
computational problems with a recurring set of questions: Is greed good? Does
greed work?

It is hard, if not impossible, to define precisely what is meant by a greedy
algorithm. An algorithm is greedy if it builds up a solution in small steps,
choosing a decision at each step myopically to optimize some underlying
criterion. One can often design many different greedy algorithms for the same
problem, each one locally, incrementally optimizing some different measure
on its way to a solution.

When a greedy algorithm succeeds in solving a nontrivial problem opti-
mally, it typically implies something interesting and useful about the structure
of the problem itself; there is a local decision rule that one can use to con-
struct optimal solutions. And as we’ll see later, in Chapter 11, the same is true
of problems in which a greedy algorithm can produce a solution that is guar-
anteed to be close to optimal, even if it does not achieve the precise optimum.
These are the kinds of issues we’ll be dealing with in this chapter. It’s easy to
invent greedy algorithms for almost any problem; finding cases in which they
work well, and proving that they work well, is the interesting challenge.

The first two sections of this chapter will develop two basic methods for
proving that a greedy algorithm produces an optimal solution to a problem.
One can view the first approach as establishing that the greedy algorithm stays
ahead. By this we mean that if one measures the greedy algorithm’s progress
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in a step-by-step fashion, one sees that it does better than any other algorithm
at each step; it then follows that it produces an optimal solution. The second
approach is known as an exchange argument, and it is more general: one
considers any possible solution to the problem and gradually transforms it
into the solution found by the greedy algorithm without hurting its quality.
Again, it will follow that the greedy algorithm must have found a solution that
is at least as good as any other solution.

Following our introduction of these two styles of analysis, we focus on
several of the most well-known applications of greedy algorithms: shortest
paths in a graph, the Minimum Spanning Tree Problem, and the construc-
tion of Huffman codes for performing data compression. They each provide
nice examples of our analysis techniques. We also explore an interesting re-
lationship between minimum spanning trees and the long-studied problem of
clustering. Finally, we consider a more complex application, the Minimum-
Cost Arborescence Problem, which further extends our notion of what a greedy
algorithm is. ’

4.1 Interval Scheduling: The Greedy Algorithm

Stays Ahead

Let’s recall the Interval Scheduling Problem, which was the first of the five
representative problems we considered in Chapter 1. We have a set of requests
{1,2,...,n}; the it request corresponds to an interval of time starting at s(i)
and finishing at f(i). (Note that we are slightly changing the notation from
Section 1.2, where we used s; rather than s(i) and f; rather than f(@). This
change of notation will make things easier to talk about in the proofs.) We’ll
say that a subset of the requests is compatible if no two of them gverlap in time,
and our goal is to accept as large a compatible subset as possible. Compatible
sets of maximum size will be called optimal.

A¥ Designing a Greedy Algorithm
Using the Interval Scheduling Problem, we can make our discussion of greedy
algorithms much more concrete. The basic idea in a greedy algorithm for
interval scheduling is to use a simple rule to select a first request i;. Once
a request i; is accepted, we reject all requests that are not compatible with ;.
We then select the next request i, to be accepted, and again reject all requests
that are not compatible with i,. We continue in this fashion until we run out
of requests. The challenge in designing a good greedy algorithm is in deciding
which simple rule to use for the selection—and there are many natural rules
for this problem that do not give good solutions.

Let’s try to think of some of the most natural rules and see how they work.

4.1 Interval Schedunling: The Greedy Algorithm Stays Ahead

o t’lilhe most obvigus rule might be to always select the available request
at starts earliest—that is, the one with minimal start time s(i). This
way our resource starts being used as quickly as possible.

B This method does not yield an optimal solution. If the earliest request
i 1?, for a very long interval, then by accepting request i we may have to
reject a lot of requests for shorter time intervals. Since our goal is to satisfy
as many requests as possible, we will end up with a suboptimal solution
In a really bad case—say, when the finish time f(i) is the rnaximurr;
among all requests—the accepted request i keeps our resource occupied
for the whole time. In this case our greedy method would accept a single
'request, while the optimal solution could accept many. Such a situatigon
is depicted in Figure 4.1(a).

This 'might suggest that we should start out by accepting the request that
regmres the smallest interval of time—namely, the request for which
f(@) — s(i) is as small as possible. As it turns out, this is a somewhat
better rule than the previous one, but it still can produce a suboptimal
schedule. For example, in Figure 4.1(b), accepting the short interval in

the middle would prevent us from accepti
i pting the other t ;
an optimal solution. 8 wo, which form

(@)
e — l
) -
1 ¥ i
}—“-—i *_—____‘{
()

Sgg;ims ?:ﬂni ig;fjaltllies of .thgl Interval Scheduling Problem on which natural greedy
e optimal solution. Int (a), it does not k i
e oy the opthn? , ot work to select the interval
s , not work to select the shortest i ; i i
does not work to select the interval with the fewest conflicts. ot ntervali and fn ) 1t
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o In the previous greedy rule, our problem was that the second request
competes with both the first and the third—that is, accepting this request
made us reject two other requests. We could design a greedy algorithm
that is based on this idea: for each request, we count the number of
other requests that are not compatible, and accept the request that has
the fewest number of noncompatible requests. (In other words, we select
the interval with the fewest «“conflicts.”) This greedy choice would lead
to the optimum solution in the previous example. In fact, it is quite a
bit harder to design a bad example for this rule; but it can be done, and
we’'ve drawn an example in Figure 4.1(c). The unique optimal solution
in this example is to accept the four requests in the top row. The greedy
method suggested here accepts the middle request in the second row and
thereby ensures a solution of size no greater than three.

A greedy rule that does lead to the optimal solution is based on a fourth
idea: we should accept first the request that finishes first, that is, the request
for which f(i) is as small as possible. This is also quite a natural idea: we ensure
that our resource becomes free as soon as possible while still satisfying one’
request. In this way we can maximize the time left to satisfy other requests.

Let us state the algorithm a bit more formally. We will use R to denote
the set of requests that we have neither accepted nor rejected yet, and use A
to denote the set of accepted requests. For an example of how the algorithm

runs, see Figure 4.2.

Initially let R be the set of all requests, and let A be empty
While R is not yet empty
Choose a request i€R that has the smallest finishing time

Add request i to A
Delete all requests from R that are not compatible with request i

EndWhile
Return the set A as the set of accepted requests

£ Analyzing the Algorithm
While this greedy method is quite natural, it is certainly not obvious that it
returns an optimal set of intervals. Indeed, it would only be sensible to reserve
judgment on its optimality: the ideas that led to the previous nonoptimal
versions of the greedy method also seemed promising at first.

As a start, we can immediately declare that the intervals in the set A
returned by the algorithm are all compatible.

(4.1) A is a compatible set of requests.

4.1 Interval Scheduling: The Greedy Algorithm Stays Ahead

: 6, 8
Intervals numbered in order t ! | } 3, ; 5, . l
} 2 1 1 4 i I 1 ‘ 7 ‘
e o ot e 4 8
Selecting interval 1 ; 1 { } 3, \ 5, .
et TR T 7,
38
Selecting interval 3 } 1 { } 3, ; 5, .
et 7
A 8
Selecting interval 5 I ! i ’ 3, ; S, .
e [
8
1 . —
3 5

Selecting interval 8

E}tg;rvzl A:Zariagnaﬁf e;*ulllln (;1; r_haiz1 cllniﬁrval Scheduling Algorithm. At each step the selected
terva’s are derker | hnéS. e intervals deleted at the corresponding step are

What vs{e need to show is that this solution is optimal. So, for purposes of
;(:mpanson, let O pe.an optimal set of intervals. Ideally one might want to show
eilt A=0, bl'It this is too much to ask: there may be many optimal solutions
?}?at T}q FEStI éﬁl 1s;hequal to a single one of them. So instead we will simply shovs;
=[0], that is, that A contains the same numb i
hence is also an optimal solution. e ofimervals a0 © and

The ‘1dea underlying the proof, as we suggested initially, will be to find
a sense in'which our greedy algorithm “stays ahead” of this’solution 0. W
:s;lglln;:sn;paffe ﬂ1:]he p;u’tial solutions that the greedy algorithm constructs to iI.litiai
nis of the soluti i i
e e by-sten o ltllic;r; (f) and show that the greedy algorithm is doing better
We introduce some notation to help with this proof. Let i ] .
of requests in A in the order they were L.aldded to Al.)Nofe ];Iitlllzl';lik lsjfmt?lzrsia
let the set of requests in O be denoted by j;, . . . , j,. Our goal is to .prove cht
k'= m. Assume that the requests in O are also ordered in the natural left-to-
r}gpt ordgr of the corresponding intervals, that is, in the order of the start and
finish points. Note that the requests in O are compatible, which implies that
the start points have the same order as the finish points. J ’ :

Y
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Can the greedy algorithm’s
rthinterval really finish later?

i?
' i 7 .
by 1

Jr Jr

i

T

Figure 4.3 The inductive step in the proof that the greedy algorithm stays ahead.

Our intuition for the greedy method came from wanting our resource to
become free again as soon as possible after satisfying the first request. And
indeed, our greedy rule guarantees that f(i;) < f(j;). This is the sense in which
we want to show that our greedy rule “stays ahead”—that each of its intervals
finishes at least as soon as the corresponding interval in the set O. Thus we now
prove that for each r > 1, the M accepted request in the algorithm’s schedule
finishes no later than the r' request in the optimal schedule. )

fl

(4.2) For all indices r < k we have f@i,) <f(r)-

Proof. We will prove this statement by induction. For r = 1 the statement is
clearly true: the algorithm starts by selecting the request i; with minimum
finish time.

Now let > 1. We will assume as our induction hypothesis that the
statement is true for r — 1, and we will try to prove it for r. As shown in
Figure 4.3, the induction hypothesis lets us assume that fli ) <fGr_1)- In
order for the algorithm’s r® interval not to finish earlier as well, it would
need to “fall behind” as shown. But there’s a simple reason why this could
not happen: rather than choose a later-finishing interval, the greedy algorithm
always has the option (at worst) of choosing j, and thus fulfilling the induction
step. .

We can make this argument precise as follows. We know (since O consists
of compatible intervals) that f(j,_1) < s(j). Combining this with the induction
hypothesis f(i,_1) < f(jr—1), we get f(i,_1) < 5(j)- Thus the interval j, is in the
set R of available intervals at the time when the greedy algorithm selects ;.
The greedy algorithm selects the available interval with smallest finish time;
since interval j, is one of these available intervals, we have f(i;) < f@.). This
completes the indnction step. =

Thus we have formalized the sense in which the greedy algorithm is
remaining ahead of O: for each r, the r interval it selects finishes at least
as soon as the ri' interval in ©. We now see why this implies the optimality
of the greedy algorithm’s set A.

41 . Interval Scheduling: The Greedy Algorithm Stays Ahead

(4.3) The greedy algorithm returns an optimal set A.

Proof. We will prove the statement by contradiction. If A is not optimal, then -

an optimal set O must have more requests, that is, we must have m > k.
Applying (4.2) with r =k, we get that f(i,) <f(y). Since m > k, there is a
request jp.; in O. This request starts after request j, ends, and hence after
iy ends. So after deleting all requests that are not compatible with requests
i1, ..., I the set of possible requests R still contains j.;. But the greedy
algorithm stops with request i, and it is only supposed to stop when R is
empty—a contradiction. =

Implementation and Running Time We can make our algorithm run in time
O(n log n) as follows. We begin by sorting the 2 requests in order of finishing
time and labeling them in this order; that is, we will assume that f(@) < f(j)
when i < j. This takes time O(r log n). In an additional O(n) time, we construct
an array S[1...n] with the property that S[i] contains the value s(i).

We now select requests by processing the intervals in order of increasing
(D). We always select the first interval; we then iterate through the intervals in
order until reaching the first interval j for which s(j) > f(1); we then select this
one as well. More generally, if the most recent interval we’ve selected ends
at time f, we continue iterating through subsequent intervals until we reach
the first j for which s(j) > f. In this way, we implement the greedy algorithm
analyzed above in one pass through the intervals, spending constant time per
interval. Thus this part of the algorithm takes time O(n).

Extensions

The Interval Scheduling Problem we considered here is a quite simple schedul-
ing problem. There are many further complications that could arise in practical
settings. The following point out issues that we will see later in the book in
various forms.

e In defining the problem, we assumed that all requests were known to
the scheduling algorithm when it was choosing the compatible subset.
It would also be natural, of course, to think about the version of the
problem in which the scheduler needs to make decisions about accepting
or rejecting certain requests before knowing about the full set of requests.
Customers (requestors) may well be impatient, and they may give up
and leave if the scheduler waits too long to gather information about all
other requests. An active area of research is concerned with such on-
line algorithms, which must make decisions as time proceeds, without
knowledge of future input.
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e Our goal was to maximize the number of satisfied requests. But we could
picture a situation in which each request has a different value to us. For
example, each request i could also have a value v; (the amount gained
by satisfying request i), and the goal would be to maximize our income:
the sum of the values of all satisfied requests. This leads to the Weighted
Interval Scheduling Problem, the second of the representative problems

we described in Chapter 1.

There are many other variants and combinations that can arise. We now
discuss one of these further variants in more detail, since it forms another case
in which a greedy algorithm can be used to produce an optimal solution.

A Related Problem: Scheduling All Intervals
The Problem In the Interval Scheduling Problem, there is a single resource
and many requests in the form of time intervals, so we must choose which
requests to accept and which to reject. A related problem arises if we have
many identical resources available and we wish to schedule all the requests
using as few resources as possible. Because the goal here is to partition
all intervals across multiple resources, we will refer to this as the Interval
Partitioning Problem.!

For example, suppose that each request corresponds to a lecture that needs

to be scheduled in a classroom for a particular interval of time. We wish to

satisfy all these requests, using as few classrooms as possible. The classrooms
at our disposal are thus the multiple resources, and the basic constraint is that
any two lectures that overlap in time must be scheduled in different classrooms.
Equivalently, the interval requests could be jobs that need to be processed for
a specific period of time, and the resources are machines capable of handling
these jobs. Much later in the book, in Chapter 10, we will see a different
application of this problem in which the intervals are routing requests that
need to be allocated bandwidth on a fiber-optic cable.

As an illustration of the problem, consider the sample instance in Fig-
ure 4.4(a). The requests in this example can all be scheduled using three
resources; this is indicated in Figure 4.4(b), where the requests are rearranged
into three rows, each containing a set of nonoverlapping intervals. In general,
one can imagine a solution using k resources as a rearrangement of the requests
into k rows of nonoverlapping intervals: the first row contains all the intervals

! The problem is also referred to as the Interval Coloring Problem; the terminology arises from
thinking of the different resources as having distinct colors—all the intervals assigned to a particular

resource are given the corresponding color.
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Figure 4.4 (a) An instance of the Interval Partitioni
: ance : 4 titioning Problem with ten interv
grccl)lugh 7. (b) A solution in yvltuch all intervals are scheduled using three resogisce(:'
row represents a set of intervals that can all be scheduled on a single resource .

assigned to the first resource, the second row contains all those assigned to
the second resource, and so forth.

Now, is there any hope of using just two resources in this sample instance?
f:learly the answer is no. We need at least three resources since, for exam le.
intervals a, b, and c all pass over a common point on the ﬁme«li;le and helrjlce’
thgy all need to be scheduled on different resources. In fact, oné can make
this last argument in general for any instance of Interval Partitioning. Suppose
we define the depth of a set of intervals to be the maximum number'ﬂlat ass
over any single point on the time-line. Then we claim ’

(4.4) In any instance of Interval Partitioni
( tioning, the number of resources need
is at least the depth of the set of intervals. ' “

Proof. Suonse a set of intervals has depth d, and let I, . . ., I all pass over a
Commgn point on the time-line. Then each of these intervals must be scheduled
on a different resource, so the whole instance needs at least d resources. =

' We now consider two questions, which turn out to be closely related
First, ‘ce'm we design an efficient algorithm that schedules all intervals using;
thé minimum possible number of resources? Second, is there always a schedule
using a number of resources that is equal to the depth? In effect, a positive
f'mswer to this second question would say that the only obstacles to £)arﬁﬁonin
mtel.'vals are purely local—a set of intervals all piled over the same point It’i
not immediately clear that there couldn’t exist other, “long-range” obste;cles
that push the number of required resources even higher.
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We now design a simple greedy algorithm that sched}ﬂes all int.ervals

using a number of resources equal to the depth. This i‘mmediately implies the
optimality of the algorithm: in view of (4.4), no solution c‘ould use a nuprer
of resources that is smaller than the depth. The analysis of our algonthm
will therefore illustrate another general approach to proving optima‘ht'y: one
finds a simple, “structural” bound asserting that every possible solution must
have at least a certain value, and then one shows that the algorithm under
consideration always achieves this bound.
Designing the Algorithm Let d be the depth of the set of intervals; we show
how to assign a label to each interval, where the labels come from the set' of
numbers {1, 2, ..., d}, and the assignment has the property that overlap;?mg
intervals are labeled with different numbers. This gives the desired solution,
since we can interpret each number as the name of a resource, and the label
of each interval as the name of the resource to which it is assigned.

The algorithm we use for this is a simple one-pass greedy strategy thé‘lt
orders intervals by their starting times. We go through the intervals in this
order, and try to assign to each interval we encounter a label that hasn’t already"
been assigned to any previous interval that overlaps it. Specifically, we have

the following description.

Sort the intervals by their start times, breaking ties arbitrarily
Let Ij,I3,...,I, denote the intervals in this order

For j=1,2,3,...,1

For each interval I; that precedes I in sorted order and overlaps it

Exclude the label of I; from consideration for [
Endfor
If there is any label from {1,2,...,
Assign a nonexcluded label to I
Else
Leave [ unlabeled
Endif
Endfor

d} that has not been excluded then

Analyzing the Algorithm We claim the following.

(4.5) If we use the greedy algorithm above, every interval will be assigned a
label, and no two overlapping intervals will receive the same label.

Proof. First let’s argue that no interval ends up unlabeleq. Consider one of
the intervals [;, and suppose there are t intervals earlier in the sortfad order
that overlap it. These t intervals, together with ;, form a set of t+1 mt‘ervals
that all pass over a common point on the time-line (namely, the start time of

e e
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), and so t +1<d. Thus t <d — 1. It follows that at least one of the d labels
is not excluded by this set of ¢ intervals, and so there is a label that can be
assigned to ;.

Next we claim that no two overlapping intervals are assigned the same
label. Indeed, consider any two intervals I and I’ that overlap, and suppose I
precedes I’ in the sorted order. Then when I’ is considered by the algorithm,
I is in the set of intervals whose labels are excluded from consideration;
consequently, the algorithm will not assign to I’ the label that it used forI. =

The algorithm and its analysis are very simple. Essentially, if you have
d labels at your disposal, then as you sweep through the intervals from left
to right, assigning an available label to each interval you encounter, you can
never reach a point where all the labels are currently in use.

Since our algorithm is using d labels, we can use (4.4) to conclude that it

is, in fact, always using the minimum possible number of labels. We sum this
up as follows.

(4.6) The greedy algorithm above schedules every interval on a resource,
using a number of resources equal to the depth of the set of intervals. This
is the optimal number of resources needed.

4.2 Scheduling to Minimize Lateness: An Exchange
Argument

We now discuss a scheduling problem related to the one with which we began
the chapter. Despite the similarities in the problem formulation and in the
greedy algorithm to solve it, the proof that this algorithm is optimal will require
a more sophisticated kind of analysis.

The Problem

Consider again a situation in which we have a single resource and a set of n
requests to use the resource for an interval of time. Assume that the resource is
available starting at time s. In contrast to the previous problem, however, each’
request is now more flexible. Instead of a start time and finish time, the request
i has a deadline d;, and it requires a contiguous time interval of length t;, but
it is willing to be scheduled at any time before the deadline. Each accepted
request must be assigned an interval of time of length ¢;, and different requests
must be assigned nonoverlapping intervals.

There are many objective functions we might seek to optimize when faced
with this situation, and some are computationally much more difficult than
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Length 1 Deadline 2
Job 1 [::::l |
Length 2 Deadline 4
Job2 [ | ‘
Length 3 Deadline 6

Job3 | l |

Solution: r | _ l - J

Job 1: Job 2: Job 3:
done at done at _ done atq e
time 1 time 1+2=3 timel1+2+3=

Figure 4.5 A sample instance of scheduling to minimize lateness.

others. Here we consider a very natural goal that can be optimized by a ire;cig
algorithm. Suppose that we plan to satisfy gach request, but we arteie a 2 e
to let certain requests run late. Thus, beginning at our gverall startd met ,this
will assign each request i an interval of time‘of length t,-} let us bleno eth o
interval by [s(), f(©], with f@) =s@® +t;. Unhk.e the previous proﬁ EISI;l ﬁme),
the algorithm must actually determine a start time (and hence a finl
for each interval. . o
We say that a request i is late if it misses the dea@me, that is, l-nf(l) >th ét
The lateness of such a request i is defined to be [; = f (z? — dl We ;1 S?;m o
l;= 0 if request i is not late. The goal in our.nev‘v optimization pro ‘e¥n il e
to schedule all requests, using nonoverlapping 1ptervds, so as to munlxlmduhn
maximum lateness, L = max; [;. This problem arises n.aturally when sche : %
jobs that need to use a single machine, and so we will refer to our requests a
jobs. .
] Figure 4.5 shows a sample instance of this problem, consistmrg1 of tth.r_(.e:
jobs: the first has length t; =1 and deadline d; = 2 the second has kzt.h-at
and d, = 4; and the third has 3= 3and d3=6. It Is not hard to ¢ fe(;:
scheduling the jobs in the order 1,2, 3 incurs a maximum lateness ot 0.

7 Designing the Algorithm | |
“What would a greedy algorithm for this problem look like? There are sev'era
natural greedy approaches in which we look at the data (t;, d;) about the jobs
and use this to order them according to some simple rule.

e One approach would beto schedule the jobs in order of in(‘:re.asing 1{3I1g1;h
t;, so as to get the short jobs out of the way quickly. This immediately
1

z
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looks too simplistic, since it completely ignores the deadlines of the jobs.
And indeed, consider a two-job instance where the first job has t; = 1 and
d; = 100, while the second job has t, = 10 and d, = 10. Then the second
job has to be started right away if we want to achieve lateness L. = 0, and
scheduling the second job first is indeed the optimal solution.

e The previous example suggests that we should be concerned about jobs
whose available slack time d; — t; is very small—they’re the ones that
need to be started with minimal delay. So a more natural greedy algorithm
would be to sort jobs in order of increasing slack d; — t;.

Unfortunately, this greedy rule fails as well. Consider a two-job
instance where the first job has t; = 1 and d; = 2, while the second job has
t, =10 and d, = 10. Sorting by increasing slack would place the second
job first in the schedule, and the first job would incur a lateness of 9. (It
finishes at time 11, nine units beyond its deadline.) On the other hand,
if we schedule the first job first, then it finishes on time and the second
job incurs a lateness of only 1.

There is, however, an equally basic greedy algorithm that always produces
an optimal solution. We simply sort the jobs in increasing order of their
deadlines d;, and schedule them in this order. (This rule is often called Earliest
Deadline First.} There is an intuitive basis to this rule: we should make sure
that jobs with earlier deadlines get completed earlier. At the same time, it’s a
little hard to believe that this algorithm always produces optimal solutions—
specifically because it never looks at the lengths of the jobs. Earlier we were
skeptical of the approach that sorted by length on the grounds that it threw
away half the input data (i.e., the deadlines); but now we’re considering a
solution that throws away the other half of the data. Nevertheless, Earliest
Deadline First does produce optimal solutions, and we will now prove this.

First we specify some notation that will be useful in talking about the
algorithm. By renaming the jobs if necessary, we can assume that the jobs are
labeled in the order of their deadlines, that is, we have

di<...<d,.

We will simply schedule all jobs in this order. Again, let s be the start time for
all jobs. Job 1 will start at time s = s(1) and end at time (1) = s(1) + t;; Job 2
will start at time s(2) = f(1) and end at time f(2) = s(2) + t,; and so forth. We

will use f to denote the finishing time of the last scheduled job. We write this
algorithm here.

Order the jobs in order of their deadlines
Assume for simplicity of notation that dj<...<d
Initially, f=s ‘

n
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Consider the jobs i=1,...,n in this order .
Assign job i to the time interval from s(@)=f to f)=f+1
Let f = f + &
End 4 . .
Return the set of scheduled intervals s, f@] for i=1,...,n
/¥ Analyzing the Algorithm

To reason about the optimality of the algorithm, we ﬁrst. ob.serve that Fhe
schedule it produces has no “gaps”—times When' the machmfa is not Worlgclglg
yet there are jobs left. The time that passes during a gap V\{ln pe (':al'led‘z e
time: there is work to be done, yet for some reason the. machine is 51t[t1ng }dle:
Not only does the schedule A produced by our algorithm ha.lve ng idle time;
it is also very easy to see that there is an optimal schedule with this property.

We do not write down a proof for this.
(4.7) There is an optimal schedule with no idle time.

Now, how can we prove that our schedule A is optimal, that is, i'ts
maximum lateness L is as small as possible? As in previous anfjlyses, we will
start by considering an optimal schedule O. Our plan here is to gradu§ﬂy
modify O, preserving its optimality at each step, but eventually transforming
it info a schedule that is identical to the schedule A found by the greedy
algorithm. We refer to this type of analysis as an exchange ar_gumer‘lt, and we
will see that it is a powerful way to think about greedy algorithms in general.

We first try characterizing schedules in the foﬂowing'way. We say that a
schedule A’ has an inversion if a job i with deadline d; is sched‘ulfac.l before
another job j with earlier deadline d; < d;. Not'ice th‘at, by deﬁmuan,‘ﬂ;e
schedule A produced by our algorithm has no inversions. If there are jobs
with identical deadlines then there can be many different schedules with no
inversions. However, we can show that all these schedules have the same

maximuim lateness L.

(4.8) All schedules with no inversions and no idle time have the same
maximum lateness.

Proof. If two different schedules have neither inversions nor idle time, t.hfn
they might not produce exactly the same order of jobs, but they can only dl.f er
in the order in which jobs with identical deadlines are scheduled. Consider
such a deadline d. In both schedules, the jobs with deadline d are all s.chedul'ed
consecutively (after all jobs with earlier deadlines and before all jobs with
later deadlines). Among the jobs with deadline d, the last one he‘ls the greatest
lateness, and this lateness does not depend on the order of the jobs. =

: 1
.
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&If_main step in showing the optimality of our algorithm is to establish
that there is an optimal schedule that has no inversions and no idle timejl‘o do
this, we will start with any optimal schedule having no idle time; we will then
convert it into a schedule with no inversions without increasing its maximum

lateness. Thus the resulting scheduling after this conversion will be optimal
as well.

(4.9) There is an optimal schedule that has no inversions and no idlé time.

Proof. By (4.7), there is an optimal schedule © with no idle time. The proof
will consist of a sequence of statements. The first of these is simple to establish.

(@) If O has an inversion, then there is a pair of jobs i and j such that jis
scheduled immediately after i and has d; < d.

Indeed, consider an inversion in which a job a is scheduled sometime before
ajob b, and d, > dj,. If we advance in the scheduled order of jobs from a to b
one at a time, there has to come a point at which the deadline we see decreases

for the first time. This corresponds to a pair of consecutive jobs that form an
inversion.

Now suppose O has at least one inversion, and by (a), leti andjbea pair of
inverted requests that are consecutive in the scheduled order. We will decrease
the number of inversions in © by swapping the requests 7 and jin the schedule
O. The pair (i, j) formed an inversion in O, this inversion is eliminated by the
swap, and no new inversions are created. Thus we have

(b) After swapping i and J we get a schedule with one less inversion.

The hardest part of this proof is to argue that the inverted schedule is also
optimal.

(c) The new swapped schedule has a maximum lateness no larger than that
of O. '

It ;‘s clear that if we can prove (c), then we are done: The initial schedule ©
can have at most (g) inversions (if all pairs are inverted), and hence after at

most (3) swaps we get an optimal schedule with no inversions.

So we now conclude by proving (c), showing that by swapping a pair of

consecutive, inverted jobs, we do not increase the maximum lateness L of the
schedule. =

Proof of (¢). We invent some notation to describe the schedule O: assume
that each request r is scheduled for the time interval [s(n), f("] and has
lateness I/. Let L' = max, I denote the maximum lateness of this schedule.
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Only the finishing times of i and ]j
are affected by the swap.

Before swapping:

[ .  gebi o | —dobj e [ 7]
|
d; d
J | (@)

After swapping: V

Ir‘ oo Jebj oo po o L Jobi
|
d; d;

(d)

Figure 4.6 The effect of swapping two consecutive, inverted jobs.

Let © denote the swapped schedule; we will use 5(r), f(r), I,, and L to denote
the corresponding quantities in the swapped schedule. o

Now recall our two adjacent, inverted jobs i and j. The 31tue}Uon is roughlayi

as pictured in Figure 4.6. The finishing time ofj before the swa;t>hls e)fagﬂjz' eql.(li j
inishing ti [ . Thus all jobs other than jobs i an

to the finishing time of i after the swap ther tha i

f(i)nish at the sfme time in the two schedules. Moreover, ]{)b j will get finished

earlier in the new schedule, and hence the swap does not increase the lateness

of job j.

Thus the only thing to worry about is job i: its IaFeness may hgve ?iilg
increased, and what if this actually raises the m.axm]u.m Iatene'ssbo' e
whole schedule? After the swap, job i finishes :at time (), WhEI'l ]o1 t] e
finished in the schedule ©. If job i is late in this new §chedu1e, its la enzet
is I, = f(i) — d; = f(j) — d;. But the crucial point is that  cannot be more Fz e
in tlhe schedulle O than j was in the schedule O. Specifically, our assumption
d; > d; implies that

L=f() —di<f()—d;=1.

Since the lateness of the schedule O was L' > Z]’. > I;, this shows that the swap
does not increase the maximum lateness of the schedule. =

The optimality of our greedy algorithm now follows immediately.

|
|
|

4.3 Optimal Caching: A More Complex Exchange Argument

(4.10)  The schedule A produced by the greedy algorithm has optimal maxi-
mum lateness L.

Proof. Statement (4.9) proves that an optimal schedule with no inversions
exists. Now by (4.8) all schedules with no inversions have the same maximum
lateness, and so the schedule obtained by the greedy algorithm is optimal. =

Extensions

There are many possible generalizations of this scheduling problem. For ex-
ample, we assumed that all jobs were available to start at the common start
time s. A natural, but harder, version of this problem would contain requests i
that, in addition to the deadline d; and the requested time t;, would also have
an earliest possible starting time 1;. This earliest possible starting time is usu-
ally referred to as the release time. Problems with release times arise naturally
in scheduling problems where requests can take the form: Can I reserve the
room for a two-hour lecture, sometime between 1 M. and 5 PM.2 Our proof
that the greedy algorithm finds an optimal solution relied crucially on the fact
that all jobs were available at the common start time s. (Do you see where?)
Unfortunately, as we will see later in the book, in Chapter 8, this more general
version of the problem is much more difficult to solve optimally.

4.3 Optimal Caching: A More Complex Exchange
Argument

We now consider a problem that involves processing a sequence of requests
of a different form, and we develop an alzerithm whose analysis requires

a more subtle use of the exchange argument. The problem is that of cache
maintenance.

/~¥ The Problem

To motivate caching, consider the following situation. You’re working on a
long research paper, and your draconian library will only allow you to have
eight books checked out at once. You know that you’ll probably need more
than this over the course of working on the paper, but at any point in time,
you'd like to have ready access to the eight books that are most relevant at
that time. How should you decide which books to check out, and when should

you return some in exchange for others, to minimize the number of times you
have to exchange a book at the library?

This is precisely the problem that arises when dealing with a memory
hierarchy: There is a small amount of data that can be accessed very guickly,
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and a large amount of data that requires more time to access; and you must
decide which pieces of data to have close at hand.

Memory hierarchies have been a ubiquitous feature of computers since
very early in their history. To begin with, data in the main memory of a
processor can be accessed much more quickly than the data on its hard disk;
but the disk has much more storage capacity. Thus, it is important to keep
the most regularly used pieces of data in main memory, and go to disk as
infrequently as possible. The same phenomenon, qualitatively, occurs with
on-chip caches in modern processors. These can be accessed in a few cycles,
and so data can be retrieved from cache much more quickly than it can be
retrieved from main memory. This is another level of hierarchy: small caches
have faster access time than main memory, which in turn is smaller and faster
to access than disk. And one can see extensions of this hierarchy in many
other settings. When one uses a Web browser, the disk often acts as a cache
for frequently visited Web pages, since going to disk is still much faster than
downloading something over the Internet. '

Caching is a general term for the process of storing a small amount of datd
in a fast memory so as to reduce the amount of time spent interacting with a
slow memory. In the previous examples, the on-chip cache reduces the need
to fetch data from main memory, the main memory acts as a cache for the
disk, and the disk acts as a cache for the Internet. (Much as your desk acts as
a cache for the campus library, and the assorted facts you're able to remember
without looking them up constitute a cache for the books on your desk.)

For caching to be as effective as possible, it should generally be the case
that when you go to access a piece of data, it is already in the cache. To achieve
this, a cache maintenance algorithm determines what to keep in the cache and
what to evict from the cache when new data needs to be brought in.

Of course, as the caching problem arises in different settings, it involves
various different considerations based on the underlying technology. For our
purposes here, though, we take an abstract view of the problem that underlies
most of these settings. We consider a set U of n pieces of data stored in main
memory. We also have a faster memory, the cache, that can hold k < n pieces
of data at any one time. We will assume that the cache initially holds some
set of k items. A sequence of data items D =d, dy, ..., dy drawn from U is
presented to us—this is the sequence of memory references we must process—
and in processing them we must decide at all times which k items to keep in the
cache. When item d; is presented, we can access it very quickly if it is already
in the cache; otherwise, we are required to bring it from main memory into
the cache and, if the cache is full, to evict some other piece of data that is
currently in the cache to make room for d;. This is called a cache miss, and we
want to have as few of these as possible.

|

4.3 Optimal Caching: A More Complex Exchange Argument

temThusé,ll on'a particular. sequence of memory references, a cache main-
o Illgeb go1"1thm determines an eviction schedule—specifying which items
ould be evicted from the cache at which points in the sequence—and this

o .
Suppose we have three items {a, b, c}, the cache size is k = 2, and we
are presented with the sequence -

a,b,c,b,c,a,b.

Su'ppo'se that the cache initially contains the items a and b. Then on th

third 1teg1 in the sequence, we could evict a so as to bﬁng in ¢ am(iE
on the sixth item we could evict ¢ so as to bring in a; we thereb ’incur
two cache misses over the whole sequence. After thinking aboutyit one

concludes that any eviction sch i
\ edule for this sequence i
least two cache misses. : et mClUdE i

pmcgsnsd:eigl opiratmg conditions, ca'lche maintenance algorithms must
process mer ;zfltrfe erences d, d,, . .. without knowledge of what’s coming

; or purposes of evaluating the quality of these algorithms
syst'ems researchers very early on sought to understand the nature of th,
optimal solution to the caching problem. Given a full sequence S of mcgmor;

/= Designing and Analyzing the Algorithm

In the 1960s, Les Belady showed th i
] , at the following si i
incur the minimum number of misses: § smple rule will always

When d; needs to be brought into the cache
evict the item that is needed the farthest into the future

:{\)/; Wtﬁl call thi? the Farthest-in-Future Algorithm. When it is time to evict
ething, we look at the next time that e i i ‘

ach item in the cache will be
referenced, and choose the one for which this is as late as possible.

. a;ms isa very'natural algorithm. At the same time, the fact that it is optimal
° tl?eqw.uences Is somewhat more subtle than it first appears. Why evict the
em that is needed farthest in the future, as opposed, for example, to the one

] u

a,b,c,d,a,d,e,a,d,b,c
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with k = 3 and items {a, b, c} initially in the cache. The Farthest-in-Future rule
will produce a schedule S that evicts ¢ on the fourth step and b on the seventh
step. But there are other eviction schedules that are just as good. Consider
the schedule ' that evicts b on the fourth step and ¢ on the seventh step,
incurring the same number of misses. So in fact it’s easy to find cases where
schedules produced by rules other than Farthest-in-Future are also optimal;
and given this flexibility, why might a deviation from Farthest-in-Future early
on not yield an actual savings farther along in the sequence? For example, on
the seventh step in our example, the schednle ' is actually evicting an item
(c) that is needed farther into the fature than the item evicted at this point by
Farthest-in-Future, since Farthest-in-Future gave up ¢ earlier on.

These are some of the kinds of things one should worry about before
concluding that Farthest-in-Future really is optimal. In thinking about the
example above, we quickly appreciate that it doesn’t really matter whether
b or ¢ is evicted at the fourth step, since the other one should be evicted at
the seventh step; so given a schedule where b is evicted first, we can swap
the choices of b and ¢ without changing the cost. This reasoning—swapping:
one decision for another—forms the first outline of an exchange argument that
proves the optimality of Farthest-in-Future.

Before delving into this analysis, let’s clear up one important issue. All
the cache maintenance algorithms we’ve been considering so far produce
schedules that only bring an item d into the cache in a step i if there is a
request to d in step i, and d is not already in the cache. Let us call such a
schedule reduced—it does the minimal amount of work necessary in a given
step. But in general one could imagine an algorithm that produced schedules
that are not reduced, by bringing in items in steps when they are not requested.
We now show that for every nonreduced schedule, there is an equally good
reduced schedule.

Let S be a schedule that may not be reduced. We define a new schedule
S__the reduction of S—as follows. In any step i where S brings in an item d
that has not been requested, our construction of § “pretends” to do this but
actually leaves d in main memory. Tt only really brings d into the cache in
the next step j after this in which d is requested. In this way, the cache miss
incurred by S in step j can be charged to the earlier cache operation performed
by S in step i, when it bronght in d. Hence we have the following fact.

(4.11) S is a reduced schedule that brings in at most as many items as the
schedule S.

Note that for any reduced schedule, the number of items that are brought
in is exactly the number of misses.

R P
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Zgg;ng the Optimalthy of Farthest-in-Future We now proceed with the
nge argument showing that Farthest-in-Fu i i

: -In-Future is optimal. Consid
arbitrary sequence D of memo e sehedule

ry references; let Sg- denote th
produced by Farthest-in-Future, and 1 st e the
od X et S* denote a schedule that inc
. ' urs th

minimum possible number of misses. We will now gradually “transform” thz

FE> n

Here is the basic fact we use to perform one step in the transformation

c(lzsl.slz) " rl(‘;et ’Sl tl;le c;l reduced schedule that makes thé S&me evzctzon de&'&ioﬁs
IF ugh the first j items in the sequence, for a ] ‘

] , number j. Then there is a
r'edzu‘:ed sc'hedule N tl‘.Lat makes the same eviction decisions as S e through the
| first j + ’1 items, and incurs no more misses than S does.

z’roofc.1 Conside:r thg ( + D request, to item d = d;,;. Since S and Sgr have
: Ogrrie ﬂ?p to this p01.nt., they have the same cache contents. If d is in thfcache
o 0 ét‘hEIE no eviction decision is necessary (both schedules are reduced)

SO o In Iact agrees with Sgr through step j ’

nd : p j+ 1, and we can set §' =
Similarly, if d needs to be bronght i it
rly, ght into the cache, but $ and Sy both evi

same item to make room for d, then we can again set §' =S i it the

- ig ghetigl.tegesting case arises when d needs to be brought into the cache

0 this S evicts item f while § icts i ’

Fr €VICts item e # f. Here S and Sz do

S:Ehalr:idy agree through step j + 1 since S has e in cache while Ser ha? fin
€. Hence we must actually do something nontrivial to construct §'

. ;&; a first sip, V\ie should have ' evict e rather than f. Now we need to
ensure that 5’ incurs no more misses than S

. An easy way to do thi

would be to have S’ agree with S f i Henee: bt thic
| or the remainder of the s ; i

is no longer possible, since S and &' h i aches o i
! , ave slightly different caches f i
point onward. So instead we’ll have §' i R
' try to get its cache back to the sam

state as S as quickly as possible, while not incurring unnecessary misses Oncg

the caches are the same, we can fini
’ an fi . . N
bapches o nish the construction of §’ by just having it

Specifically, from request j
Ay, j+ 2 onward, §' behaves exactly i i
of the following things happens for the first time. Y He Suntlone

6] Th'ere Is a request to an item g # e, f that is not in fhe cacheof S, and §
evicts e to.make room for it. Since §" and S only differ on e and f ;tan
be that g is not in the cache of ' either; so we can have §' evic’t f musc;
now the caches of S and S’ are the same. We can then have S’ b ,han
exactly like S for the rest of the sequence. S

(i) Therel isa rgquest to f, and S evicts an item ¢’. If ¢’ = e, then we're all
set: §’ can simply access f from the cache, and after this step the caches
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of S and S’ will be the same. If &’ # e, then we have §' ev/ict e'.as well, and
bring in e from main memory; this too result.s inS ,a‘nd §' having the samg
caches. However, we must be careful here, since S’ is no longer a red}lcje
schedule: it brought in e when it wasn’t immediately rlleed‘ed. Soto ﬁmsélz/
this part of the construction, we further Uansforr.n S’ to its redu.cut())nS/
using (4.11); this doesn’t increase the number of items brought in by &',
and it still agrees with Sgr through step j + 1.

Hence, in both these cases, we have a new reduced sched}lle s thatsacgirees
with Sg through the first j + 1 items and incur's Nno more misses thzlth S?S:
And crucially—here is where we use the deﬁnmg property of thfe F. fes -1ne
Future Algorithm—one of these two cases will arise befqre there Is are eretrlllct
to e. This is because in step j + 1, Farthest-in-Future evicted the item (e) tha
would be needed farthest in the future; so before there could be a request to

. Iv.
e, there would have to be a request to f, and then case (ii) above would app y.

Using this result, it is easy to complete the proof of o;_)timahty.m Wesbzgllali
with an optimal schedule S*, and use (4.12) .to constru'ct a scheq :13 L .
agrees with Sg through the first step. We continue applymg (4.12} induc hvthz
forj=1,2,3,...,m, producing schedules S]-.that agree with SF.F throug. ihe
first j steps. Each schedule incurs no more @sses than the previous one; an
by definition S,; = Sgp, since it agrees with it through the whole sequence.

Thus we have

(4.13) Sgp incurs nb moré misses than any other schedule S* and hence is
optimal.

Extensions: Caching under Real Operating Conditions

As mentioned in the previous subsection, Belady’s opt‘imal algorithm provides
a benchmark for caching performance; but in applications, one generally must
make eviction decisions on the fly without knowl‘edge c?f future reques;s.
Experimentally, the best caching algorithms under this regmrement seem‘to. e
variants of the Least-Recently-Used (LRU) Principle, which proposes evicting
the item from the cache that was referenced longest ago. o

If one thinks about it, this is just Belady’s Algorithm With the dlregnop
of time reversed—longest in the past rather than fa.rthest in the future. It. is
effective because applications generally exhibit lOC(.lllty of.reference: a mmng
program will generally keep accessing the things 1't hasj ]u‘st been a;:esagi
(It is easy to invent pathological exceptions to this principle, but fese e
relatively rare in practice.) Thus one wants to keep the more recently referenc

items in the cache.

4.4 Shortest Paths in a Graph

Long after the adoption of LRU in practice, Sleator and Tarjan showed that
one could actually provide some theoretical analysis of the performance of
LRU, bounding the number of misses it incurs relative to Farthest-in-Future.
We will discuss this analysis, as well as the analysis of a randomized variant
on LRU, when we return to the caching problem in Chapter 13.

4.4 Shortest Paths in a Graph

Some of the basic algorithms for graphs are based on greedy design principles.
Here we apply a greedy algorithm to the problem of finding shortest paths, and
in the next section we look at the construction of minimum-cost spanning trees.

=¥ The Problem

As we’ve seen, graphs are often used to model networks in which one trav-
els from one point to another—traversing a sequence of highways through
interchanges, or traversing a sequence of communication links through inter-
mediate routers. As a result, a basic algorithmic problem is to determine the
shortest path between nodes in a graph. We may ask this as a point-to-point
question: Given nodes u and v, what is the shortest u-v path? Or we may ask

for more information: Given a start node s, what is the shortest path from s to
each other node?

The concrete setup of the shortest paths problem is as follows. We are
given a directed graph G = (V, E), with a designated start node s. We assume
that s has a path to every other node in G. Each edge e has a length £, > 0,
indicating the time (or distance, or cost) it takes to traverse e. For a path P,
the length of P—denoted £(P)—is the sum of the lengths of all edges in P.
Our goal is to determine the shortest path from s to every other node in the
graph. We should mention that although the problem is specified for a directed
graph, we can handle the case of an undirected graph by simply replacing each

undirected edge e = (u, v) of length £, by two directed edges (u, v) and (v, w),
each of length ¢,.

/A~ Designing the Algorithm

In 1959, Edsger Dijkstra proposed a very simple greedy algorithm to solve the
single-source shortest-paths problem. We begin by describing an algorithm that
just determines the length of the shortest path from s to each other node in the
graph; it is then easy to produce the paths as well. The algorithm maintains a
set S of vertices u for which we have determined a shortest-path distance d(u)
from s; this is the “explored” part of the graph. Initially S = {s}, and d(s) = 0.
Now, for each node v € V-, we determine the shortest path that can be
constructed by traveling along a path through the explored part S to some
u €S, followed by the single edge (u, v). That is, we consider the quantity
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'(V) = Mile—(y,vyues AW + Le- We choose the node v € V—S for which this
quantity is minimized, add v to S, and define d(v) to be the value d'(v).

Dijkstra's Algorithm (G, &)
Let S be the set of explored nodes
For each ue$S, we store a distance d(u)
Initially S={s} and d(s)=0
While S#V
Select a node v¢S with at least one edge from S for which
d'(V) = MiNge(y, yymes 4@ + £ 18 a8 small as possible
Add v to S and define d(v)=d'(v)
EndWhile

It is simple to produce the s-u paths corresponding to the distances found
by Dijkstra’s Algorithm. As each node v is added to the set S, we simply record
the edge (u, v) on which it achieved the value millo_(y,vyues A1) + £,. The
path P, is implicitly represented by these edges: if (u, v) is the edge we have
stored for v, then P, is just (recursively) the path Py followed by the single
edge (u,v). In other words, to construct P,, we simply start at v; follow the
edge we have stored for vin the reverse direction to u; then follow the edge we
have stored for u in the reverse direction to its predecessor; and so on until we
reach s. Note that s must be reached, since our backward walk from v visits
nodes that were added to S earlier and earlier.

To get a better sense of what the algorithm is doing, consider the snapshot
of its execution depicted in Figure 4.7. At the point the picture is drawn, two
iterations have been performed: the first added node u, and the second added
node v. In the iteration that is about to be performed, the node x will be added
because it achieves the smallest value of d’(x); thanks to the edge (i, x), we
have d'(x) = d(u) + [, = 2. Note that attempting to add y or z to the set S at
this point would lead to an incorrect value for their shortest-path distances;
ultimately, they will be added because of their edges from x.

/=~ Analyzing the Algorithm
We see in this example that Dijkstra’s Algorithm is doing the right thing and
avoiding recurring pitfalls: growing the set S by the wrong node can lead to an
overestimate of the shortest-path distance to that node. The question becomes:
Is it always true that when Dijkstra’s Algorithm adds a node v, we get the true
shortest-path distance to v?
We now answer this by proving the correctness of the algorithm, showing
that the paths P, really are shortest paths. Dijkstra’s Algorithm is greedy in
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Set S:
.. nodes already
. explored

Figure 4.7 A snapshot of the executi ij
cution of D ! i
be added to the set S is x, due to the path thllj'l;ztgrl'? 2 Algorithm. The next node that will

It)l:lihsirllsseftlﬁat W((Ei a;lways form the shortest new s-v path we can make from a
ollowed by a single edge. We prove its corr i

‘ . . tness using a vari

our first style of analysis: we show it “ ec B colutions

: that it “stays ahead” of all oth i
style of ¢ ‘ er solution

by tl(—is‘tabhshmg, inductively, that each time it selects a path to a node v thai
path is shorter than every other possible path to v. ,

(4.14) Cbnsidef ’thke set S’ at int i ’ -
, any point in the algorithm’s [
u €S, the path Py is a shortest s-u path. ® ' ex?fUth’”- for eact

Note that this fact immediately establishes the correctness of Dijkstra’s

>
g m 2

;’i;(;(éfﬁlWe prove this by induction on the size of S. The case |S] =1 is easy.
en we have S = {s} and d(s) = 0. Suppose the claim holds when [S| = k

for some value of k > 1; we n i
> 1 OW grow S to size k+1Db i
Let (u, v) be the final edge on our s-v path P,. M add‘mg themode

Cons}iérelrnilllcﬁ?gl hypothesis, P, is the shortest s-u path)for each u € S. Now

y other s-v path P; we wish to show that it i .

1 I ; at it is at least as long as P,,.

ﬁr;si)rge(ri to reach v, .thls pgth P must leave the set S somewhere; let ygbe thve
ode on P that is not in S, and let x € S be the node just before y

. v:‘he §imaﬁon is now as depicted in Figure 4.8, and the crux of the proof
ry simple: P canmnot be shorter than P, because it is already at least as
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The alternate s-v path P through
x and y is already too long by

the time it has left the set S.

8 The shortest path P, and an alternate sv path P through the node y.

Figure 4.

long as P, by the time it has left the set S. Indeed, in iteration‘ k t-; 1, glﬁ(ifa j
Algorithm must have considered adding node y Fo the set S v1ah e g g ) ;fh
and rejected this option in favor of adding v. This means that t (?frleJ is ntop_ -
from s to y through x that is shorter than P,. But the subpa‘th 0 j up1en ythé
such a path, and so this subpath is at least as long as P, Slncle edge leng
are nonnegative, the full path P is at least as long as P, as well.

This is a complete proof; one can also spe‘ll‘ out the /argument 1;1 tht;
previous paragraph using the following ineguahtlgs. Let P’ be 'mti stup pfas "
of P from s to x. Since x € S, we know by the induction hypothesis tha bx i A
shortest s-x path (of length d(x)), and so £(P") = £L(Py) = d(x). Thus/ the su dpih "
of P out to node y has length £(P") + £(x, V) z dx) + £(x, y) >d (yi\lan e
full path P is at least as long as this subpath. Finally, since Dijkstra s‘ 'gm;lh w
selected v in this iteration, we know thatd'(y) = d'(v) = £(P,). Combining
inequalities shows that £(P) = 2P+ L(x, ) = LPy). -

Here are two observations about Dijkstra’s Algoritk'lm and its analgsw.
First, the algorithm does not always find shortest paths if some of t};e (IEVI i(les
can have negative lengths. (Do you see where the proof breaks?) e sz
shortest-path applications involve negative ‘edge 1(.engths, anfi a mm;;, com
plex algorithm—due to Bellman and FOI'd——*l‘S required f.or this case. '
see this algorithm when we consider the topic of dynamic programiming.

The second observation is that Dijkstra’s Algori'thm i‘s, in a sens“e, e\t/.en
simpler than we’ve described here. Dijkstra’s Algonthrr.l is really a co.n ma
nous” version of the standard breadth-first se‘arch algc.mth.m fL:JI: travsersmgse
graph, and it can be motivated by the follovvlng'physmal 19t}11t1011. u;pf "
the edges of G formed a system of pipes ﬁlled' with water, ]o‘med toge ; o
the nodes; each edge e has length £, and a fixed cross-sectional afiea. v
suppose an extra droplet of water falls at node s and starts a WaV((ejjn om ﬁere
the wave expands out of node s at a constant speed, the expanding sp
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of wavefront reaches nodes in increasing order of their distance from s. It is
easy to believe (and also true) that the path taken by the wavefront to get to
any node v is a shortest path. Indeed, it is easy to see that this is exactly the
path to v found by Dijkstra’s Algorithm, and that the nodes are discovered by

the expanding water in the same order that they are discovered by Dijkstra’s
Algorithm.

Implementation and Running Time To conclude our discussion of Dijkstra’s
Algorithm, we consider its running time. There are n — 1 iterations of the
While loop for a graph with n nodes, as each iteration adds a new node v
to S. Selecting the correct node v efficiently is a more subtle issue. One’s first
impression is that each iteration would have to consider each node v ¢,
and go through all the edges between S and v to determine the minimum
Mine_(y, yyues A(W) + £, so that we can select the node v for which this
minimum is smallest. For a graph with m edges, computing all these minima

can take O(m) time, so this would lead to an implementation that runs in
O(mn) time.

We can do considerably better if we use the right data structures. First, we
will explicitly maintain the values of the minima d'(v) = mine_, y)ues d(@) +
£, for each node v e V — S, rather than recomputing them in each iteration.
We can further improve the efficiency by keeping the nodes V — S in a priority
queue with d'(v) as their keys. Priority queues were discussed in Chapter 2;
they are data structures designed to maintain a set of n elements, each with a
key. A priority queue can efficiently insert elements, delete elements, change
an element’s key, and extract the element with the minimum key. We will need
the third and fourth of the above operations: ChangeKey and ExtractMin.

How do we implement Dijkstra’s Algorithm using a priority queue? We put
the nodes V in a priority queue with d’(v) as the key for v € V. To select the node
v that should be added to the set S, we need the ExtractMin operation. To see
how to update the keys, consider an iteration in which node vis added to S, and
let w ¢ S be a node that remains in the priority queue. What do we have to do
to update the value of d’'(w)? If (v, w) is not an edge, then we don’t have to do
anything: the set of edges considered in the minimum MiNe_y, wymes A1) + £e
is exactly the same before and after adding v to S. If ¢’ = (v, w) € E, on
the other hand, then the new value for the key is min(d'(w), d(v) + ). If
d'(w) > d(v) + £, then we need to use the ChangeKey operation to decrease
the key of node w appropriately. This ChangeKey operation can occur at most

once per edge, when the tail of the edge e’ is added to S. In summary, we have
the following result.
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(4.15) Using a priority quere, Dijkstra’s Algorithm .can be implem.ented OZ

a :fraph with 1. nodes and m edges to run in O(m) time, plus the time for
D .

ExtractMin and m ChangeKey operations.

Using the heap-based priority queue implementation discussed. in C'Il‘l;p-
ter 2, each priority queue operation can be made to run in O(log n) time. Thus
the overall time for the implementation is O(n log n).

4.5 The Minimum Spanning Tree Problem )
We now apply an exchange argument in the context of a second fundament
problem on graphs: the Minimum Spanning Tree Problem.

= The Problem _—

’Suppose we have a set of locations V = {v1, V3, - - -» v,}, and xlxxéebwa; m(zected__
communication network on top of them. Thg network should be g
there should be a path between every palr of nqdes—-but subjec
requirement, we wish to build it as cheaply as possfF)le. o

For certain pairs (v;, v;), We may build a direct link betweer.lblii ?I;k :jthc;

a certain cost c(v;, vj) > 0. Thus we can represent t‘h‘e set of possi e‘ 1ted o
may be built using a graph G = (V,E), wit.h a positive cost ¢, ailsocslaT gt
each edge e = (v;, V). The problem is to find a subset of the e 'ge : sr}l_au 0
that the graph (V, T) is connected, and the total‘ cost Y et é:e is t;ersze o
possible. (We will assume that the full graph G is connected; o ,
solution is possible.)

Here is a basic observation.

(4.16) Let T be a minimum-cost solution to the network design problem
defined above. Then (V,T) is a tree.

Proof. By definition, (V,T) must be connected; we show thczlatlit alio wﬂ;

'. , i ined a cycle C, and let e be an
tain no cycles. Indeed, suppose It conte.ime ;

Zzgealon C \zfe claim that (V, T — {e}) is still connected, since ;ny path' tgat

i ' ~“the long way” around the remainder
reviously used the edge e can now go ' : '
if the cycle C instead. It follows that (V, T — {e}) is also a valid solution to the
problem, and it is cheaper—a contradiction. =

If we allow some edges to have 0 cost (that is, we assume only that @e
costs ¢, are nonnegative), then a minimum-cost solution to the network des;lgln
: ’ uld optionally
—edges that have 0 cost and co
roblem may have extra edges—e : co .
ge deleted. But even in this case, there is always a minimum-cost isolut;on thag
is a tree. Starting from any optimal solution, we could keep deleting edges o
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cycles until we had a tree; with nonnegative edges, the cost would not increase
during this process.

We will call a subset T C E a spanning tree of G if (V, T) is a tree. Statement
(4.16) says that the goal of our network design problem can be rephrased as
that of finding the cheapest spanning tree of the graph; for this reason, it
is generally called the Minimum Spanning Tree Problem. Unless G is a very
simple graph, it will have exponentially many different spanning trees, whose
structures may look very different from one another. So it is not at all clear
how to efficiently find the cheapest tree from among all these options.

¥ Designing Algorithms

As with the previous problems we’ve seen, it is easy to come up with a number
of natural greedy algorithms for the problem. But curiously, and fortunately,
this is a case where many of the first greedy algorithms one tries turn out to be
correct: they each solve the problem optimally. We will review a few of these
algorithms now and then discover, via a nice pair of exchange arguments, some
of the underlying reasons for this plethora of simple, optimal algorithms.

Here are three greedy algorithms, each of which correctly finds a minimum
spanning tree.

© One simple algorithm starts without any edges at all and builds a span-
ning tree by successively inserting edges from E in order of increasing
cost. As we move through the edges in this order, we insert each edge
e as long as it does not create a cycle when added to the edges we’ve
already inserted. If, on the other hand, inserting e would result in a cycle,

then we simply discard e and continue. This approach is called Kruskal’s
Algorithm.

@ Another simple greedy algorithm can be designed by analogy with Dijk-
stra’s Algorithm for paths, although, in fact, it is even simpler to specify
than Dijkstra’s Algorithm. We start with a root node s and try to greedily
grow a tree from s outward. At each step, we simply add the node that
can be attached as cheaply as possibly to the partial tree we already have.

More concretely, we maintain a set S C V on which a spanning tree
has been constructed so far. Initially, S = {s}. In each iteration, we grow
S by one node, adding the node v that minimizes the “attachment cost”
MiNe_; yyyes G- and including the edge e = (u, v) that achieves this
minimum in the spanning tree. This approach is called Prim’s Algorithm.
Finally, we can design a greedy algorithm by running sort of a “back-
ward” version of Kruskal’s Algorithm. Specifically, we start with the full
graph (V, E) and begin deleting edges in order of decreasing cost. As we
get to each edge e (starting from the most expensive), we delete it as
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ini i ithms of (a) Prim and
i . le run of the Minimum Spanning Tree Algorit : im
?g)ggrrﬁsllisl i?fl}ge same input. The first 4 edges added .to the spanning tree are indicated '
by solid lines; the next edge to be added is a dashed line.

long as doing sorwould not actually disconnect the graph we currently
have. For want of a better name, this approach .1s generally called th(c:e1
Reverse-Delete Algorithm (as far as we can tell, it’s never been name

after a specific person).

For example, Figure 4.9 shows the first four e'dg'es added by Pg\ldms anI;i1
Kruskal’s Algorithms respectively, on a geometric 1nsta'nce of thc.e alﬂmtmlsh "
Spanning Tree Problem in which the cost of each edge is proportional to
geometric distance in the plane. .
The fact that each of these algorithms is guaIante'ed. to produce flIl opti-
mal solution suggests a certain “robustness”™ t0 the Minimum Spanning Treef
Problem—there are many ways to get to the answer. Next we explore'sc')me 0
the underlying reasons why so many different algorithms produce minimum

cost spanning trees.

/¥ Analyzing the Algorithms |
T/All these algorithms work by repeatedly inserting or deleting fadges Cfirom a
partial solution. So, to analyze them, it would be use'ful to hgvle in han so%ne
basic facts saying when it is “safe” to include an ed'ge in the minimum spanmrég
tree, and, correspondingly, when it is safe to ehrmnat'e an edge on the groun sf
that it couldn’t possibly be in the minimum spamg tree. For purposes o
the analysis, we will make the simplifying assmnptlon' that all e@ge co:;;s al-i
distinct from one another (i.e., no two are equal). This assumption makxes 1
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easier to express the arguments that follow, and we will show later in this
section how this assumption can be easily eliminated.

When Is It Safe to Include an Edge in the Minimum Spanning Tree? The
crucial fact about edge insertion is the following statement, which we will
refer to as the Cut Property.

(4.17)  Assumethat all edge costs are distinct. Let S be any subset of nodes that
is neither empty nor equal to all of V, and let edge e = (v, w) be the minimum-
cost edge with one end in S and the other in V —S. Then every minimum
spanning tree contains the edge e.

Proof. Let T be a spanning tree that does not contain e; we need to show that T
does not have the minimum possible cost. We’ll do this using an exchange
argument: we’ll identify an edge e’ in T that is more expensive than e, and
with the property exchanging e for e’ results in another spanning tree. This
resulting spanning tree will then be cheaper than T, as desired.

The crux is therefore to find an edge that can be successfully exchanged
with e. Recall that the ends of e are v and w. T is a spanning tree, so there
must be a path P in T from v to w. Starting at v, suppose we follow the nodes
of P in sequence; there is a first node w’ on P thatis in V — S. Let v’ € S be the
node just before w’ on P, and let ¢’ = (/, w') be the edge joining them. Thus,
€' is an edge of T with one end in S and the other in V — S. See Figure 4.10 for
the situation at this stage in the proof.

If we exchange e for e/, we get a set of edges T"=T — {'} U {e}. We
claim that T” is a spanning tree. Clearly (V, T”) is connected, since Vv, T)
is connected, and any path in (V, T) that used the edge ¢’ = (v, w') can now
be “rerouted” in (V, T") to follow the portion of P from v’ to v, then the edge
e, and then the portion of P from w to w'. To see that (V, T') is also acyclic,
note that the only cycle in (V, T U {¢'}) is the one composed of e and the path
P, and this cycle is not present in (V, T) due to the deletion of ¢'.

We noted above that the edge e’ has one end in S and the other in V — S.
But e is the cheapest edge with this property, and so Co < Cr. (The inequality
is strict since no two edges have the same cost.) Thus the total cost of T is
less than that of T, as desired. =

The proof of (4.17) is a bit more subtle than it may first appear. To
appreciate this subtlety, consider the following shorter but incorrect argument
for (4.17). Let T be a spanning tree that does not contain e. Since T is a
spanning tree, it must contain an edge f with one end in S and the other in
V —S. Since e is the cheapest edge with.this property, we have Ce < 5, and
hence T — {f} U {e} is a spanning tree that is cheaper than T.
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Figure 4.10 Swapping the edge e for the edge ¢’ in the spanning tree T, as described in

the proof of (4.17).

The problem with this argument is not in‘the claim that [ exists, c;fo'ihsé
T — {f} U {e} is cheaper than T. The difficulty is that T — {f} L;‘{e} mzym e
a spanning tree, as shown by the example of me edge f in '1g;I§1 {CI.O Ihe
point is that we can’t prove (4.17) by simply plt?klng an)‘z edgein a
from S to V — S; some care must be taken to find the right one.

The Optimality of Kruskal’s and Prim’s Algorithms 'We can n.ow easi}lly
prove the optimality of both Kruskal’s Algorithm and Pru'n.s ['\lgqr.lthm. Tthe
point is that both algorithms only include an edge when it 1s justified by the

Cut Property (4.17).
(4 18) MKmskal”"s‘Algorithm produces a minimum spanning treeofG &

(v, w) added by Kruskal’s Algorith.m, and let
S be the set of all nodes to which v has a path at the moment just befolre
¢ is added. Clearly v € S, but w ¢ S, since adding e does not c'reate a cycet.l
Moreover, no edge from S to V — S has been encountered yet, since aurll?jr ;l;(‘:] "
edge could have been added without creatir}g a cycle, and hence th ave
been added by Kruskal’s Algorithm. Thus e is th‘e cheapest edge wi c')n'e m
in S and the other in V — S, and so by (4.17) it belongs to every minimu

spanning tree.

Proof. Consider any edge e =

4.5 The Minimum Spanning Tree Problem

So if we can show that the output (V, T) of Kruskal’s Algorithm is in fact
a spanning tree of G, then we will be done. Clearly (V, T) contains no cycles,
since the algorithm is explicitly designed to avoid creating cycles. Further, if
(V, T) were not connected, then there would exist a nonempty subset of nodes
S (not equal to all of V) such that there is no edge from S to V — S. But this
contradicts the behavior of the algorithm: we know that since G is connected,
there is at least one edge between S and V — S, and the algorithm will add the
first of these that it encounters. =

(4.19) Prim’s Algorithm produces a minimum spanning tree of G.

Proof. For Prim’s Algorithm, it is also very easy to show that it only adds
edges belonging to every minimum spanning tree. Indeed, in each iteration of
the algorithm, there is a set S € V on which a partial spanning tree has been
constructed, and a node v and edge e are added that minimize the quantity
MiN,_(, y)ues Ce- BY definition, e is the cheapest edge with one end in S and the
other end in V — S, and so by the Cut Property (4.17) it is in every minimum
spanning tree.

It is also straightforward to show that Prim’s Algorithm produces a span-
ning tree of G, and hence it produces a minimum spanning tree. =

When Can We Guarantee an Edge Is Not in the Minimum Spanning
Tree? The crucial fact about edge deletion is the following statement, which
we will refer to as the Cycle Property.

(4.20) Assume that all edge costs are distinct. Let C be any cycle in G, and
let edge e = (v, w) be the most expensive edge belonging to C. Then e does not
belong to any minimum spanning tree of G.

Proof. Let T be a spanning tree that contains e; we need to show that T does
not have the minimum possible cost. By analogy with the proof of the Cut
Property (4.17), we’ll do this with an exchange argument, swapping e for a
cheaper edge in such a way that we still have a spanning tree.

So again the question is: How do we find a cheaper edge that can be
exchanged in this way with e? Let’s begin by deleting e from T; this partitions
the nodes into two components: S, containing node v; and V — S, containing
node w. Now, the edge we use in place of e should have one end in S and the
other in V — S, so as to stitch the tree back together.

We can find such an edge by following the cycle C. The edges of C other
than e form, by definition, a path P with one end at v and the other at w. If
we follow P from v to w, we begin in S and end up in V — S, so there is some
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(e'fcan be swapped for_eJ

Figure 4.11 Swapping the edge ¢ for the edge e In the spanning tree T, as descnb.ed in

the proof of (4.20).

i illustration of.
edge €' on P that crosses from S to V — S. See Figure 4.11 for an

this. . '

Now consider the set of edges T'=T — {eyu {ei}. Arguing just gs hln th(e;
proof of the Cut Property (4.17), the graph (V, f{"’) is ijnﬂected and has il\l,e
cycles, so T' is a spanning tree of G. Moreover, SINCE € 15 tlh'e most expte;lI:;1 )
edge on the cycle C, and ¢ belongs to C, it must be that e’ is cheaper ,

and hence T’ is cheaper than T, as desired. =

The Optimality of the Reverse-Delete Algorithm Now that we .Iilalve tk;z gzccie;
Property (4.20), it is easy to prove that the Reverse-Delete Algon‘ Izh p uees
a minimum spanning tree. The basic idea is analogous to the optém Z ;gn 0
for the previous two algorithms: Reverse-Delete only adds an edge W

justified by (4.20). o
4 721) The Reﬁefse—Déléte Algorithm produces a minimum spanning tree
of G.

(v, w) removed by Reverse-Delete. At the time
that e is removed, it lies on a cycle C; and since it is the f:ust edge enct(;lunt;rsi
by the algorithm in decreasing order of edge costs, 1t must be m;lim ot
expensive edge on C. Thus by (4.20), e does not belong to any
ing tree. .

Span;; ifg we show that the output (V, T) of Reverse—?elete isa spmg tree
of G, we will be done. Clearly (V, T)is connected, since the algonﬂ};m nevirf
removes an edge when this will disconnect the graph. Now, suppose by way

Proof. Consider any edge e=

R B S A SR T
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contradiction that (V, T) contains a cycle C. Consider the most expensive edge
e on C, which would be the first one encountered by the algorithm. This edge
should have been removed, since its removal would not have disconnected
the graph, and this contradicts the behavior of Reverse-Delete. =

While we will not explore this further here, the combination of the Cut
Property (4.17) and the Cycle Property (4.20) implies that something even
more general is going on. Any algorithm that builds a spanning tree by
repeatedly including edges when justified by the Cut Property and deleting
edges when justified by the Cycle Property—in any order at all—will end up
with a minimum spanning tree. This principle allows one to design natural
greedy algorithms for this problem beyond the three we have considered here,

and it provides an explanation for why so many greedy algorithms produce
optimal solutions for this problem.

Eliminating the Assumption that All Edge Costs Are Distinct Thus far, we
have assumed that all edge costs are distinct, and this assumption has made the
analysis cleaner in a number of places. Now, suppose we are given an instance
of the Minimum Spanning Tree Problem in which certain edges have the same
cost - how can we conclude that the algorithms we have been discussing still
provide optimal solutions?

There turns out to be an easy way to do this: we simply take the instance
and perturb all edge costs by different, extremely small numbers, so that they
all become distinct. Now, any two costs that differed originally will still<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>