
ALGORITMOS E ESTRUTURAS DE DADOS

2018/2019

DICIONÁRIO ORDENADO

Armanda Rodrigues

30 de Outubro 2018

Autores, Escritores

• Existem pesquisas que são habitualmente feitas nas bibliotecas e que

não estão diretamente relacionadas com a chave de um documento

• Procurar um documento cujo Título contém uma determinada String

• Procurar todos os documentos de um determinado Autor

• Procurar os documentos que estão associados a um determinado assunto

• Pode também ser necessário ordenar todos os objetos de um

determinado tipo, utilizando a ordem dada por um dos atributos, para

criar listagens formatadas

• Listar todos os Leitores com documentos em atraso, por ordem alfabética

• Listar todos os documentos de um determinado autor, por ordem alfabética

• Quando uma operação tem subjacente uma ordenação de objetos, a

informação associada deverá ser armazenada através de uma

implementação de um Dicionário Ordenado

2

Interface Biblioteca

• Vamos adicionar ao TAD Biblioteca o seguinte

método:
• Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException;

• O método deve possibilitar a pesquisa no conjunto

completo de autores da Biblioteca, de um autor, por

nome do mesmo

3

• A pesquisa do nome do autor deverá

devolver a lista, ordenada

alfabeticamente, de todos os livros,

escritos pelo mesmo autor

Classe LibraryClass

• A implementação deste método vai implicar:

• Adicionar uma nova estrutura de dados à LibraryClass, para conter todos os
autores de livros da biblioteca

• Alterar a implementação de outros métodos da classe, dada a necessidade da
atualização da nova estrutura de dados

• Requisitos:

• Chave da Pesquisa: Nome do Autor (este deverá ser único)

• Muitos autores

• Associado a cada autor, todos os livros por ele escritos, ordenados
alfabeticamente

• Possibilidade de inserção e remoção de livros, que se vai refletir na nova
estrutura

• Depois da remoção de todos os livros de um autor, este deverá também ser
removido

4

TAD Dicionário Ordenado

5

Interface Dicionário Ordenado (K,V)

6

package dataStructures;

public interface OrderedDictionary<K extends Comparable<K>, V>
extends Dictionary<K,V>{

// Returns the entry with the smallest key in the dictionary.
Entry<K,V> minEntry() throws EmptyDictionaryException;

// Returns the entry with the largest key in the dictionary.
Entry<K,V> maxEntry() throws EmptyDictionaryException;

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
// Iterator<Entry<K,V>> iterator();

}

Classe de Exceções do Dicionário Ordenado

7

package dataStructures;

public class EmptyDictionaryException extends RuntimeException{
}

Árvore Binária de Pesquisa (ou ordenada)

• Numa árvore binária de pesquisa,

todo o nó X verifica as seguintes

propriedades:

• Qualquer nó da sub-árvore

esquerda de X é menor que X; e

• Qualquer nó da sub-árvore direita

de X é maior que X.

8

46

23 82

15 30 105

Classe Nó de Árvore Binária de Pesquisa (1)

9

package dataStructures;
import java.io.Serializable;

class BSTNode<K,V> implements Serializable{

// Entry stored in the node.
private EntryClass<K,V> entry;

// (Pointer to) the left child.
private BSTNode<K,V> leftChild;

// (Pointer to) the right child.
private BSTNode<K,V> rightChild;

Classe Nó de Árvore Binária de Pesquisa (2)

10

public BSTNode(K key, V value, BSTNode<K,V> left,
BSTNode<K,V> right){

entry = new EntryClass<K,V>(key, value);
leftChild = left;
rightChild = right;

}

public BSTNode(K key, V value){
this(key, value, null, null);

}

Classe Nó de Árvore Binária de Pesquisa (3)

11

public EntryClass<K,V> getEntry(){
return entry;

}

public K getKey(){
return entry.getKey();

}

public V getValue(){
return entry.getValue();

}

Classe Nó de Árvore Binária de Pesquisa (4)

12

public BSTNode<K,V> getLeft(){
return leftChild;

}

public BSTNode<K,V> getRight(){
return rightChild;

}

public void setEntry(EntryClass<K,V> newEntry){
entry = newEntry;

}

Classe Nó de Árvore Binária de Pesquisa (5)

13

public void setEntry(K newKey, V newValue){
entry.setKey(newKey);
entry.setValue(newValue);

}

public void setKey(K newKey){
entry.setKey(newKey);

}

public void setValue(V newValue){
entry.setValue(newValue);

}

Classe Nó de Árvore Binária de Pesquisa (6)

14

public void setLeft(BSTNode<K,V> newLeft){
leftChild = newLeft;

}

public void setRight(BSTNode<K,V> newRight){
rightChild = newRight;

}

// Returns true iff the node is a leaf.
public boolean isLeaf(){

return leftChild == null && rightChild == null;
}

} // End of BSTNode.

Classe Árvore Binária de Pesquisa (1)

15

package dataStructures;

public class BinarySearchTree<K extends Comparable<K>, V>
implements OrderedDictionary<K,V>{

// The root of the tree.
protected BSTNode<K,V> root;

// Number of entries in the tree.
protected int currentSize;

Classe Árvore Binária de Pesquisa (2)

16

public BinarySearchTree(){
root = null;
currentSize = 0;

}

public boolean isEmpty(){
return root == null;

}

public int size(){
return currentSize;

}
................................

}

Pesquisa Recursiva (1)

17

// If there is an entry in the dictionary whose key is the
// specified key, returns its value; otherwise, returns null.
public V find(K key){

BSTNode<K,V> node = this.findNode(root, key);
if (node == null)

return null;
else

return node.getValue();
}

Pesquisa Recursiva (2)

18

protected BSTNode<K,V> findNode(BSTNode<K,V> node, K key){
if (node == null)

return null;
else {

int compResult = key.compareTo(node.getKey());
if (compResult == 0)

return node;
else if (compResult < 0)

return this.findNode(node.getLeft(), key);
else

return this.findNode(node.getRight(), key);
}

}

Complexidade da Pesquisa Recursiva

• Pior Caso:

• A entrada que se procura está numa
folha

• A entrada que se procura (menor que
7) não ocorre na árvore.

• Número de chamadas recursivas
do algoritmo

• Se a árvore for “uma lista”:

• Se a árvore for vazia: zero chamadas
recursivas

• Senão, o algoritmo desce para o
único filho e chama o método de
pesquisa, recursivamente

19

46

23

15

7

Complexidade da Pesquisa Recursiva
• Pior Caso:

• A entrada que se procura está numa folha

• A entrada que se procura não ocorre na árvore.

20

46

23

15

7

Aplica-se a Recorrência 1

Complexidade da Pesquisa Recursiva

• Pior Caso:

• A entrada que se procura está numa
folha

• A entrada que se procura não ocorre
na árvore.

• Número de chamadas recursivas do
algoritmo

• Se a árvore “estiver equilibrada”:

• Se a árvore for vazia: zero chamadas
recursivas

• Senão, o algoritmo desce para o filho
adequado e chama o método de
pesquisa, recursivamente

• Neste caso, a zona de pesquisa da
árvore é reduzida a metade

22

46

23 82

15 30 10557

Complexidade da Pesquisa Recursiva
• Pior Caso:

• A entrada que se procura está numa folha

• A entrada que se procura não ocorre na árvore.

23

Aplica-se a Recorrência 2 (a)

46

23 82

15 30 10557

Mínimo Recursivo

24

// Returns the entry with the smallest key in the dictionary.
public Entry<K,V> minEntry() throws EmptyDictionaryException{

if (this.isEmpty())
throw new EmptyDictionaryException();

return this.minNode(root).getEntry();
}

// Requires: node != null.
protected BSTNode<K,V> minNode(BSTNode<K,V> node){

if (node.getLeft() == null)
return node;

else
return this.minNode(node.getLeft());

}

Máximo Recursivo

25

// Returns the entry with the largest key in the dictionary.
public Entry<K,V> maxEntry() throws EmptyDictionaryException{

if (this.isEmpty())
throw new EmptyDictionaryException();

return this.maxNode(root).getEntry();
}

// Requires: node != null.
protected BSTNode<K,V> maxNode(BSTNode<K,V> node){

if (node.getRight() == null)
return node;

else
return this.maxNode(node.getRight());

}

Inserção

26

46

23 82

15 30 10557

Inserir 54

Inserção

27

46

23 82

15 30 10557

Inserir 54
46 < 54

Inserção

28

46

23 82

15 30 10557

Inserir 54

Inserção

29

46

23 82

15 30 10557

Inserir 54

82 > 54

Inserção

30

46

23 82

15 30 10557

Inserir 54

Inserção

31

46

23 82

15 30 10557

Inserir 54

57 > 54

Inserção

32

46

23 82

15 30 10557

Inserir 54

57 > 54

• 57 será o pai do novo nó

• Como 57 é maior que 54, o novo nó será filho

esquerdo do 57

Classe Auxiliar Passo do Caminho Percorrido

33

protected static class PathStep<K,V>{

// The parent of the node.
public BSTNode<K,V> parent;

// The node is the left or the right child of parent.
public boolean isLeftChild;

public PathStep(BSTNode<K,V> theParent, boolean toTheLeft){
parent = theParent; isLeftChild = toTheLeft;

}

public void set(BSTNode<K,V> newParent, boolean toTheLeft){
parent = newParent; isLeftChild = toTheLeft;

}
}

• O objeto irá referir-se a um nó.

• parent será o pai do nó,

• isLeftChild será a direção

tomada (filho esquerdo ou

direito) a partir de parent.

Pesquisa Iterativa que Guarda o Último Passo

38

protected BSTNode<K,V> findNode(K key, PathStep<K,V> lastStep){
BSTNode<K,V> node = root;
while (node != null){

int compResult = key.compareTo(node.getKey());
if (compResult == 0)

return node;
else if (compResult < 0)

{ lastStep.set(node, true); node = node.getLeft(); }
else

{ lastStep.set(node, false); node = node.getRight();}
}
return null;

}

Pesquisa que guarda o último passo

39

46

23 82

15 30 10557

Procurar 54
node

lastStep
(null,false)

Pesquisa que guarda o último passo

40

46

23 82

15 30 10557

Procurar 54

node

lastStep
(46,false)

Pesquisa que guarda o último passo

41

46

23 82

15 30 10557

Procurar 54

node

lastStep
(82,true)

Pesquisa que guarda o último passo

42

46

23 82

15 30 10557

Procurar 54

node

lastStep
(57,true)

Em caso de inserção, o

nó 54 será inserido

como filho de 57, para

a esquerda

Inserção

43

public V insert(K key, V value){
PathStep<K,V> lastStep = new PathStep<K,V>(null, false);
BSTNode<K,V> node = this.findNode(key, lastStep);
if (node == null){

BSTNode<K,V> newLeaf = new BSTNode<K,V>(key, value);
this.linkSubtree(newLeaf, lastStep);
currentSize++;
return null;

}
else{

V oldValue = node.getValue();
node.setValue(value);
return oldValue;

}
}

Método que insere newLeaf

como descendente do

antecessor guardado em

lastStep com a direção

(esquerda ou direita) guardada

Ligar uma Subárvore a Árvore

44

// Links a new subtree, rooted at the specified node, to the tree.
// The parent of the old subtree is stored in lastStep.
protected void linkSubtree(BSTNode<K,V> node,

PathStep<K,V> lastStep){
if (lastStep.parent == null)

// Change the root of the tree.
root = node;

else
// Change a child of parent.
if (lastStep.isLeftChild)

lastStep.parent.setLeft(node);
else

lastStep.parent.setRight(node);
}

Remoção de nó

• Existem várias possibilidades que devem ser consideradas

• Remoção da raiz, quando esta não tem filho esquerdo

• Remoção de nó (sendo o mesmo um filho esquerdo de um outro nó), quando este

não tem filho esquerdo

• Remoção de nó (sendo o mesmo um filho direito de outro nó), quando este não

tem filho esquerdo

• Remoção da raiz, quando esta não tem filho direito

• Remoção de nó (sendo o mesmo um filho esquerdo de um outro nó), quando este

não tem filho direito

• Remoção de nó (sendo o mesmo um filho direito de outro nó), quando este não

tem filho direito

• Remoção da raiz, quando esta tem dois filhos

• Remoção de um nó (sem ser a raiz), quando este tem dois filhos

45

Remoção de nó

• Remoção da raiz, quando esta

não tem filho esquerdo

• Remoção de nó (sendo o mesmo

um filho esquerdo de um outro

nó), quando este não tem filho

esquerdo

• Remoção de nó (sendo o mesmo

um filho direito de outro nó),

quando este não tem filho

esquerdo

46

Solução: Pai (ou raiz) herda

filho direito

Remover raiz sem filho esquerdo

47

46

82

10557

Remover 46 (raiz)

raiz

82

10557

raiz

Raiz herda filho direito

Remover Nó FE sem filho esquerdo

48

Remover 23 (filho esquerdo de 46) Pai herda filho direito

46

23 82

30 10557

raiz

46

30 82

10557

raiz

Remover Nó FD sem filho esquerdo

49

Remover 82 (filho direito de 46) Pai herda filho direito

raiz

46

23 82

15 30 105

raiz

46

23

15 30

105

Remoção de nó

• Remoção da raiz, quando esta

não tem filho direito

• Remoção de nó (sendo o mesmo

um filho esquerdo de um outro

nó), quando este não tem filho

direito

• Remoção de nó (sendo o mesmo

um filho direito de outro nó),

quando este não tem filho direito

50

Solução: Pai (ou raiz) herda

filho esquerdo

Remover raiz sem filho direito

51

Remover 46 (raiz)

raiz

Raiz herda filho esquerdo

46

23

15 30

raiz

23

15 30

Remover Nó FE sem filho direito

52

Remover 23 (filho esquerdo de 46) Pai herda filho esquerdo

raiz

46

15 82

10557

raiz

46

23 82

15 10557

Remover Nó FD sem filho direito

53

Remover 82 (filho direito de 46) Pai herda filho esquerdo

raiz

46

23 82

15 30 51

raiz

46

23

15 30

51

Remoção de nó

• Remoção da raiz, quando esta

tem dois filhos

• Remoção de um nó (sem ser a

raiz), quando este tem dois filhos

54

Solução: Substituir pelo

mínimo da subárvore direita,

removendo-o.

Remover Nó com dois filhos – Caso 1

55

Remover 46 (raiz)
Substituir pelo mínimo da subárvore

direita, removendo-o
raiz

46

23 82

15 30 10557

57

23 82

15 30 105

raiz

Remover Nó com dois filhos – Caso 2

56

Remover 82
Substituir pelo mínimo da subárvore

direita, removendo-o
raiz

46

23 82

15 30 10557

46

23 105

15 30 57

raiz

Mínimo Iterativo que Guarda o Último Passo

57

// Returns the node with the smallest key
// in the tree rooted at the specified node.
// Moreover, stores the last step of the path in lastStep.
// Requires: theRoot != null.
protected BSTNode<K,V> minNode(BSTNode<K,V> theRoot,

PathStep<K,V> lastStep){
BSTNode<K,V> node = theRoot;
while (node.getLeft() != null){

lastStep.set(node, true);
node = node.getLeft();

}
return node;

}

Remoção (1)

58

// If there is an entry in the dictionary whose key is the
// specified key, removes it from the dictionary and returns
// its value; otherwise, returns null.
public V remove(K key){

PathStep<K,V> lastStep = new PathStep<K,V>(null, false);
BSTNode<K,V> node = this.findNode(key, lastStep);
if (node == null)

return null;
else {

V oldValue = node.getValue();
// Remover a entrada de node.
currentSize--;
return oldValue;

}
}

Slide Seguinte

Remoção (2)

59

if (node.getLeft() == null)
// The left subtree is empty.
this.linkSubtree(node.getRight(), lastStep);

else
if (node.getRight() == null)

// The right subtree is empty.
this.linkSubtree(node.getLeft(), lastStep);

else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

Liga-se o pai com o

filho direito do nó a

remover

Remoção (2)

60

if (node.getLeft() == null)
// The left subtree is empty.
this.linkSubtree(node.getRight(), lastStep);

else
if (node.getRight() == null)

// The right subtree is empty.
this.linkSubtree(node.getLeft(), lastStep);

else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

Liga-se o pai com o

filho esquerdo do nó a

remover

Remoção (2)

61

...
else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

node passa a ser o nó

pai, o seu conteúdo

será alterado

Remoção (2)

62

...
else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

Procura-se o mínimo da

subárvore direita do nó

a remover, guardando o

pai

Remoção (2)

63

...
else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

O conteúdo de node é

alterado com a entrada

do mínimo encontrado

(na subárvore direita)

Remoção (2)

64

...
else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);
}

Remove-se o mínimo da subárvore direita ligando a sub-

árvore direita do mesmo à sua nova localização

O mínimo da sub-árvore direita, tem sub-árvore esquerda ?

Percurso Ordenado

65

15
raiz

46

23 82

15

18

10557

1189247

18

23

46

47

57
82

92

105

118

(Infixo)

Infixo da subárvore esquerda

Infixo da

subárvore

direita

52

52

Percurso Ordenado

66

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
public Iterator<Entry<K,V>> iterator(){

return new BSTKeyOrderIterator<K,V>(root);
}

Complexidades de Árvore Binária de Pesquisa

(com n nós)

67

Melhor Caso Pior Caso Caso Esperado

Pesquisa O(1) O(h) O(h)

Inserção O(1) O(h) O(h)

Remoção O(1) O(h) O(h)

Mínimo O(1) O(h) O(h)

Máximo O(1) O(h) O(h)

Percurso O(n) O(n) O(n)

Percurso

Ordenado
O(n) O(n) O(n)

h (altura) O(log n) O(n) O(log n)

Interface Biblioteca

• Vamos adicionar ao TAD Biblioteca o seguinte

método:
• Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException;

• O método deve possibilitar a pesquisa no conjunto

completo de autores da Biblioteca, de um autor, por

nome

68

• A pesquisa do nome do autor deverá

devolver a lista, ordenada

alfabeticamente, de todos os livros,

escritos pelo mesmo autor

Classe LibraryClass

• A implementação deste método vai implicar:

• Adicionar uma nova estrutura de dados à LibraryClass, para conter todos os
autores de livros da biblioteca

• Alterar a implementação de outros métodos da classe, dada a necessidade da
atualização da nova estrutura de dados

• Requisitos:

• Chave da Pesquisa: Nome do Autor

• Muitos autores

• Associado a cada autor, todos os livros por ele escritos, ordenados
alfabeticamente

• Possibilidade de inserção e remoção de livros, que se vai refletir na nova
estrutura

• Depois da remoção de todos os livros de um autor, este deverá também ser
removido

69

Classe LibraryClass – Que Entry <K,V> ?

70

Dictionary<String,Document> documents

Dictionary <String,
OrderedDictionary<String, Document>>authors

Se o autor não tiver dados pessoais associados

Dictionary <String, Author> authors

Se existir o TAD Author

LibraryClass – incompleta (1)

72

public class LibraryClass implements Library {

private Dictionary<String,Document> documents;
private CopyReturn returns;
private Dictionary<String, OrderedDictionary<String, Document>>

authors;

public LibraryClass(int docCapacity, int authorCapacity){
documents=

new ChainedHashTable<String,Document>(docCapacity);
authors =

new ChainedHashTable<String,
OrderedDictionary<String,Document>>(authorCapacity);

returns=new CopyReturnClass();
}

Novo!

LibraryClass – incompleta (2)

73

public void addNewBook(String title, String subject,
String documentCode, String publisher, String author,
long ISBN) throws ExistingDocException{

Document doc;
if (documents.find(documentCode) != null)

throw new ExistingDocException();
else {

doc = new BookClass(title, subject, documentCode,
publisher, author, ISBN);

documents.insert(documentCode, doc);
OrderedDictionary<String,Document> authorBST

= authors.find(author);
if (authorBST == null){

authorBST= new BinarySearchTree<String,Document>();
authors.insert(author, authorBST);

}
authorBST.insert(title, doc);
}

}

LibraryClass – incompleta (3)

74

public Document removeDocument(String documentCode)
throws NonExistingDocException{

Document doc = documents.remove(documentCode);
if (doc == null)

throw new NonExistingDocException();
else {

if (doc instanceof Book){
Book b = (Book)doc;
OrderedDictionary<String,Document> authorBST

= authors.find(b.getAuthor());
authorBST.remove(b.getTitle());
if (authorBST.isEmpty())

authors.remove(b.getAuthor());
}

return doc;
}

}

LibraryClass – incompleta (4)

75

public Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException {

OrderedDictionary<String,Document> authorBST
= authors.find(author);

if (authorBST == null)
throw new NonExistingAuthorException();

else return new BookIterator(authorBST.iterator());
}

Interface Iterador de Elementos do Tipo E

76

package dataStructures;
public interface Iterator<E>{

// Returns true iff the iteration has more elements.
// In other words, returns true if a call to next()
// would return an element instead of throwing an exception.
boolean hasNext();

// Returns the next element in the iteration.
E next() throws NoSuchElementException;

// Restarts the iteration.
// After rewind, if the iteration is not empty,
// next() will return the first element in the iteration.
void rewind();

}

Interface Dicionário Ordenado (K,V)

77

package dataStructures;

public interface OrderedDictionary<K extends Comparable<K>, V>
extends Dictionary<K,V>{

// Returns the entry with the smallest key in the dictionary.
Entry<K,V> minEntry() throws EmptyDictionaryException;

// Returns the entry with the largest key in the dictionary.
Entry<K,V> maxEntry() throws EmptyDictionaryException;

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
// Iterator<Entry<K,V>> iterator();

}

BookIterator (1)

78

package library;

import dataStructures.*;

public class BookIterator implements Iterator<Book> {

Iterator<Entry<String,Document>> itBST;

public BookIterator(Iterator<Entry<String,Document>> it){
itBST = it;
rewind();

}

public void rewind() {
itBST.rewind();

}

BookIterator (2)

79

public boolean hasNext() {
return itBST.hasNext();

}

public Book next() throws NoSuchElementException {
Entry<String, Document> ent = itBST.next();
return (Book)ent.getValue();

}
}

