ALGORITMOS E ESTRUTURAS DE DADOS
2018/2019
DICIONARIO ORDENADO

Armanda Rodrigues
30 de Outubro 2018

Autores, Escritores

- Existem pesquisas que sao habitualmente feitas nas bibliotecas e que
nao estao diretamente relacionadas com a chave de um documento

- Procurar um documento cujo Titulo contém uma determinada String
- Procurar todos os documentos de um determinado Autor
- Procurar os documentos que estéo associados a um determinado assunto

- Pode também ser necessario ordenar todos 0s objetos de um
determinado tipo, utilizando a ordem dada por um dos atributos, para
criar listagens formatadas

- Listar todos os Leitores com documentos em atraso, por ordem alfabética
- Listar todos os documentos de um determinado autor, por ordem alfabética

- Quando uma operacao tem subjacente uma ordenacao de objetos, a
informacéo associada devera ser armazenada através de uma
implementacdo de um Dicionario Ordenado

Interface Biblioteca

- Vamos adicionar ao TAD Biblioteca o seguinte
metodo:

- Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException;

- O método deve possibilitar a pesquisa no conjunto J§= =2
completo de autores da Biblioteca, de um autor, por J
nome do mesmo e

- A pesquisa do nome do autor devera
devolver a lista, ordenada
alfabeticamente, de todos os livros,
escritos pelo mesmo autor

. S
Classe LibraryClass

- Aimplementacao deste método vai implicar:

- Adicionar uma nova estrutura de dados a LibraryClass, para conter todos 0s
autores de livros da biblioteca

- Alterar a implementacao de outros métodos da classe, dada a necessidade da
atualizagéo da nova estrutura de dados

- Requisitos:
- Chave da Pesquisa: Nome do Autor (este devera ser unico)
- Muitos autores

- Associado a cada autor, todos os livros por ele escritos, ordenados
alfabeticamente

- Possibilidade de insercao e remocéo de livros, que se vai refletir na nova
estrutura

- Depois da remocao de todos os livros de um autor, este devera também ser
removido

TAD Dicionario Ordenado

Interface Dicionario Ordenado (K,V)

package dataStructures;

public interface OrderedDictionary<K extends Comparable<K>, V>
extends Dictionary<K,V>{

// Returns the entry with the smallest key in the dictionary.
Entry<K,V> minEntry() throws EmptyDictionaryException;

// Returns the entry with the largest key in the dictionary.
Entry<K,V> maxEntry() throws EmptyDictionaryException;

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
// Iterator<Entry<K,V>> iterator();

Classe de Excecdes do Dicionario Ordenado

package dataStructures;

public class EmptyDictionaryException extends RuntimeException{

¥

Arvore Binaria de Pesquisa (ou ordenada)

- Numa arvore binaria de pesquisa,
todo 0 n6 X verifica as seguintes @
propriedades:

- Qualquer nd da sub-arvore

esquerda de X é menor que X: e @ @
- Qualquer n6 da sub-arvore direita

de X é maior que X.

Classe N6 de Arvore Binaria de Pesquisa (1)

package dataStructures;
import java.io.Serializable;

class BSTNode<K,V> implements Serializable{

// Entry stored in the node.
private EntryClass<K,V> entry;

// (Pointer to) the left child.
private BSTNode<K,V> leftChild;

// (Pointer to) the right child.
private BSTNode<K,V> rightChild;

Classe N6 de Arvore Binaria de Pesquisa (2)

public BSTNode(K key, V value, BSTNode<K,V> left,
BSTNode<K,V> right){

entry = new EntryClass<K,V>(key, value);
leftChild = left;
rightChild = right;

}

public BSTNode(K key, V value){
this(key, value, null, null);

}

Classe N6 de Arvore Binaria de Pesquisa (3)

public EntryClass<K,V> getEntry(){
return entry;

}

public K getKey(){
return entry.getKey();

}

public V getValue(){
return entry.getValue();

}

Classe N6 de Arvore Binaria de Pesquisa (4)

public BSTNode<K,V> getLeft(){
return leftChild;

}

public BSTNode<K,V> getRight(){
return rightChild;

}

public void setEntry(EntryClass<K,V> newEntry){
entry = newEntry;
}

Classe N6 de Arvore Binaria de Pesquisa (5)

public void setEntry(K newKey, V newValue){
entry.setKey(newKey);
entry.setValue(newValue);

}

public void setKey(K newKey){
entry.setKey(newKey);

}

public void setValue(V newValue){
entry.setValue(newValue);

}

Classe N6 de Arvore Binaria de Pesquisa (6)

public void setlLeft(BSTNode<K,V> newLeft){
leftChild = newlLeft;

}

public void setRight(BSTNode<K,V> newRight){
rightChild = newRight;
}

// Returns true iff the node is a leaf.
public boolean islLeaf(){
return leftChild == null && rightChild == null;

}
} // End of BSTNode.

Classe Arvore Binaria de Pesquisa (1)

package dataStructures;

public class BinarySearchTree<K extends Comparable<K>, V>
implements OrderedDictionary<K,V>{

// The root of the tree.
protected BSTNode<K,V> root;

// Number of entries in the tree.
protected int currentSize;

A
Classe Arvore Binaria de Pesquisa (2)

public BinarySearchTree(){
root = null;
currentSize = 0;

}

public boolean isEmpty(){
return root == null;

}

public int size(){
return currentSize;

Pesquisa Recursiva (1)

// If there is an entry in the dictionary whose key is the
// specified key, returns its value; otherwise, returns null.
public V find(K key){
BSTNode<K,V> node = this.findNode(root, key);
if (node == null)
return null;
else
return node.getValue();

Pesquisa Recursiva (2)

protected BSTNode<K,V> findNode(BSTNode<K,V> node, K key){
if (node == null)
return null;
else {
int compResult = key.compareTo(node.getKey());
if (compResult == 0)
return node;
else if (compResult < 0)
return this.findNode(node.getLeft(), key);
else
return this.findNode(node.getRight(), key);

Complexidade da Pesquisa Recursiva

- Pior Caso:

- A entrada que se procura esta numa
folha

- Aentrada que se procura (menor que
/) ndo ocorre na arvore.

- Numero de chamadas recursivas
do algoritmo

- Se a arvore for “uma lista”:

- Se a arvore for vazia; zero chamadas
recursivas

- Senao, o algoritmo desce para 0
unico filho e chama o método de
pesquisa, recursivamente

Complexidade da Pesquisa Recursiva

- Pior Caso:
- Aentrada que se procura esta numa folha

- Aentrada que se procura nao ocorre na arvore.

0, n=20

numCR(n) = {numCR(n -D+1Ln=1

Aplica-se a Recorréncia 1

T} = 3 N ou o(n) e
VBT (n— ke e n>2 T(n)

O(b") b>1

com a>0 b>1 c¢c>1 -constantes

? ?

Complexidade da Pesquisa Recursiva

- Pior Caso:

- Aentrada que se procura esta numa
folha

- Aentrada que se procura ndo ocorre
na arvore.

- Numero de chamadas recursivas do
algoritmo

- Se a arvore “estiver equilibrada’;

- Se a arvore for vazia; zero chamadas
recursivas @ @ @ @

- Sendo, o algoritmo desce para o filho
adequado e chama o método de
pesquisa, recursivamente

- Neste caso, a zona de pesquisa da
arvore é reduzida a metade

Complexidade da Pesquisa Recursiva
- Pior Caso: @

- Aentrada que se procura esta numa folha

- Aentrada que se procura nao ocorre na arvore. @ @
0, n=20

numCR(g)+1 n=1 @@ @@

Aplica-se a Recorréncia 2 (a)

numCR(n) =

(2 =0 n=4i

BT +l] w21 n>?2

com a>0 b=12 constantes

Minimo Recursivo

// Returns the entry with the smallest key in the dictionary.
public Entry<K,V> minEntry() throws EmptyDictionaryException{
if (this.isEmpty())
throw new EmptyDictionaryException();
return this.minNode(root).getEntry();

}

// Requires: node != null.
protected BSTNode<K,V> minNode(BSTNode<K,V> node){
if (node.getLeft() == null)
return node;
else
return this.minNode(node.getLeft());

Maximo Recursivo

// Returns the entry with the largest key in the dictionary.
public Entry<K,V> maxEntry() throws EmptyDictionaryException{
if (this.isEmpty())
throw new EmptyDictionaryException();
return this.maxNode(root).getEntry();

}

// Requires: node != null.
protected BSTNode<K,V> maxNode(BSTNode<K,V> node){
if (node.getRight() == null)
return node;
else
return this.maxNode(node.getRight());

Inser¢ao

Inserir 54 E l

Inser¢ao

Inserir 54 l
@ 46 < 54

Inser¢ao

Inserir 54

" 4
OGO

Inser¢ao

Inserir 54

D e

Inser¢ao

Inserir 54

() ﬂ
OlIONMOIO

Inser¢ao

Inserir 54

Inser¢ao

Inserir 54

e 57 sera o pai do novo no
« Como 57 € maior que 54, 0 novo no sera filho
esquerdo do 57

Classe Auxiliar Passo do Caminho Percorrido

* O objeto ira referir-se a um no.
 parent sera o paido no,
 isLeftChild sera a direcdo

// The parent of the node. tomada (filho esquerdo ou
public BSTNode<K,V> parent; direito) a partir de parent.

protected static class PathStep<K,V>{

[/ The node is the left or the right child of parent.
public boolean isLeftChild;

public PathStep(BSTNode<K,V> theParent, boolean toTheLeft){
parent = theParent; islLeftChild = toThelLeft;

¥

public void set(BSTNode<K,V> newParent, boolean toTheLeft){
parent = newParent; islLeftChild = toThelLeft;

}

Pesquisa Iterativa que Guarda o Ultimo Passo

protected BSTNode<K,V> findNode(K key, PathStep<K,V> lastStep){
BSTNode<K,V> node = root;
while (node != null){
int compResult = key.compareTo(node.getKey());
if (compResult == 0)
return node;
else if (compResult < 0)
{ lastStep.set(node, true); node = node.getLeft(); }
else
{ lastStep.set(node, false); node = node.getRight();}
}

return null;

Pesquisa que guarda o ultimo passo

Procurar 54

Pesquisa que guarda o ultimo passo

Procurar 54

Pesquisa que guarda o ultimo passo

Procurar 54

Pesquisa que guarda o ultimo passo

Procurar 54 lastStep
@ (57,true)

Em caso de insergao, o

no 54 sera inserido
como filho de 57, para
a esquerda

node

Insercao

public V insert(K key, V value){
PathStep<K,V> lastStep = new PathStep<K,V>(null, false);
BSTNode<K,V> node = this.findNode(key, lastStep);
if (node == null){

BSTNode<K,V> newlLeaf = new BSTNode<K,V>(key, value);

this.linkSubtree(newLeaf, lastStep);

currentSize++;
return null;
} Método que insere newLeaf
else{ como descendente do
V oldValue = node.getValue(); antecessor guardado em
node.setValue(value); lastStep com a diregéo
return oldvalue; (esquerda ou direita) guardada

Ligar uma Subérvore a Arvore

// Links a new subtree, rooted at the specified node, to the tree.
// The parent of the old subtree is stored in lastStep.
protected void linkSubtree(BSTNode<K,V> node,
PathStep<K,V> lastStep){
if (lastStep.parent == null)
// Change the root of the tree.
root = node;
else
// Change a child of parent.
if (lastStep.islLeftChild)
lastStep.parent.setLeft(node);
else
lastStep.parent.setRight(node);

Remocgao de no

- Existem varias possibilidades que devem ser consideradas
- Remocéo da raiz, quando esta n&o tem filho esquerdo

- Remocao de n6 (sendo o mesmo um filho esquerdo de um outro n6), quando este
n&o tem filho esquerdo

- Remocao de n6 (sendo o mesmo um filho direito de outro nd), quando este ndo
tem filho esquerdo

- Remocao da raiz, quando esta ndo tem filho direito

- Remocao de n6 (sendo 0 mesmo um filho esquerdo de um outro n6), quando este
nao tem filho direito

- Remocao de n6 (sendo o mesmo um filho direito de outro nd), quando este nédo
tem filho direito

- Remocéo da raiz, quando esta tem dois filhos
- Remocao de um né (sem ser a raiz), quando este tem dois filhos

Remocgao de no

. . Y
- Remocao da raiz, quando esta

nao tem filho esquerdo

- Remocao de no6 (sendo 0 mesmo
um filho esquerdo de um outro
no), quando este nao tem filho

esquerdo —

- Remocgao de nd (sendo 0 mesmo
um filho direito de outro no),
quando este nao tem filho
esquerdo

Solucdo: Pai (ou raiz) herda
filho direito

Remover raiz sem filho esquerdo

Remover 46 (raiz) Raiz herda filho direito

raiz

N

raiz

Remover N6 FE sem filho esquerdo

Remover 23 (filho esquerdo de 46) Pai herda filho direito

Remover N6 FD sem filho esquerdo

Remover 82 (filho direito de 46) Pai herda filho direito

1z ralz

Remocgao de no

. . Y
- Remocao da raiz, quando esta

nao tem filho direito

- Remocao de no6 (sendo 0 mesmo
um filho esquerdo de um outro
no), quando este nao tem filho

direito —

- Remocgao de nd (sendo 0 mesmo
um filho direito de outro no),
quando este ndo tem filho direito

Solucdo: Pai (ou raiz) herda
filho esquerdo

Remover raiz sem filho direito

Remover 46 (raiz) Raiz herda filho esquerdo

raiz

@ raiz

Remover N6 FE sem filho direito

Remover 23 (filho esquerdo de 46) Pai herda filho esquerdo

1z ralz

Remover N6 FD sem filho direito

Remover 82 (filho direito de 46) Pai herda filho esquerdo

1z ralz

Remocao de no

—_—

- Remocao da raiz, quando esta

tem dois filhos - Solucdo: Substituir pelo
- Remoc&o de um no (sem ser a minimo da subarvore direita,
raiz), quando este tem dois filhos removendo-o.

_/

Remover N6 com dois filhos — Caso 1

Substituir pelo minimo da subarvore
direita, removendo-o

iz
raiz

Remover 46 (raiz)

Remover N6 com dois filhos — Caso 2

Substituir pelo minimo da subarvore
direita, removendo-o

1z
ralz

Remover 82

Minimo Iterativo que Guarda o Ultimo Passo

// Returns the node with the smallest key
// in the tree rooted at the specified node.
// Moreover, stores the last step of the path in lastStep.
// Requires: theRoot != null.
protected BSTNode<K,V> minNode(BSTNode<K,V> theRoot,
PathStep<K,V> lastStep){
BSTNode<K,V> node = theRoot;
while (node.getlLeft() != null){
lastStep.set(node, true);
node = node.getlLeft();
}

return node;

Remocao (1)

// If there is an entry in the dictionary whose key is the
// specified key, removes it from the dictionary and returns
// its value; otherwise, returns null.

public V remove(K key){

PathStep<K,V> lastStep = new PathStep<K,V>(null, false);
BSTNode<K,V> node = this.findNode(key, lastStep);
if (node == null)
return null;
else {

V_oldValue = node.getValue();

// Remover a entrada de node. Slide Seguinte
currentSize--;

return oldValue;

%
Remocao (2)

if (node.getLeft() == null) B
// The left subtree is empty. Liga-se o pai com o
this.linkSubtree(node.getRight(), lastStep);r filho direito do né a

else
if (node.getRight() == null)
// The right subtree is empty.
this.linkSubtree(node.getLeft(), lastStep);
else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);

remover

—

&
Remocao (2)

if (node.getLeft() == null)
// The left subtree is empty.
this.linkSubtree(node.getRight(), lastStep);

else
if (node.getRight() == null) B
// The right subtree is empty. Liga-se o pai com o
this.linkSubtree(node.getLeft(), lastStep);r filho esquerdodonda
else remover
{ -

// Node has 2 children. Replace the node's entry with

// the 'minEntry' of the right subtree.

lastStep.set(node, false);

BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());

// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);

RemogéO (2) node passa a ser o né

pai, 0 seu conteudo
sera alterado

else

{
// Node has 2 children. Replac
// the 'minEntry' of the rig
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
this.linkSubtree(minNode.getRight(), lastStep);

the node's entry with
subtree.

RemogéO (2) Procura-se o minimo da

subarvore direita do no

L a remover, guardando o

else pai
{

// Node has 2 children. Replace the node's entry with

// the 'minEntry' of the right subtree.

lastStep.set(node, false);

BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);

node.setEntry(minNode.getEntry());

// Remove the 'minEntry' of the right subtree.

this.linkSubtree(minNode.getRight(), lastStep);

&
Remocao (2)

else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.

lastStep.set(node, false);

BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);

node.setEntry(minNode.getEntry());

this.linkSubtree(minNode.getRight(), lastSte

O conteudo de node é
alterado com a entrada
do minimo encontrado
(na subarvore direita)

N S
Remocao (2)

else
{
// Node has 2 children. Replace the node's entry with
// the 'minEntry' of the right subtree.
lastStep.set(node, false);
BSTNode<K,V> minNode = this.minNode(node.getRight(), lastStep);
node.setEntry(minNode.getEntry());
// Remove the 'minEntry' of the right subtree.
Jthis.linkSubtree(minNode.getRight(), lastStep);

o~

Remove-se 0 minimo da subarvore direita ligando a sub-
arvore direita do mesmo a sua nova localizagao

O minimo da sub-arvore direita, tem sub-arvore esquerda ?

Percurso Ordenado (Infixo)

15 = raiz

18 Infixo da subarvore esquerda @
23

46 @
47 ©

52

57 Infixo da

82 L subarvore @ @ @
92 direita

105

0 Qe

Percurso Ordenado

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
public Iterator<Entry<K,V>> iterator(){

return new BSTKeyOrderIterator<K,V>(root);

}

Complexidades de Arvore Binaria de Pesquisa
(com 7 nOs)

| MelhorCaso Caso Esperado

Pesquisa O(1)

Insercao O(l) O(h) O(h)
Remocao O(l) O(h) O(h)
Minimo O(l) O(h) O(h)
Maximo O(l) O(h) O(h)
Percurso Om) Om) O(n)
Ordenade ot ot ot

Interface Biblioteca

- Vamos adicionar ao TAD Biblioteca o seguinte
metodo:

- Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException;

- O metodo deve possibilitar a pesquisa no conjunto FF= 2
completo de autores da Biblioteca, de um autor, por |
nome

- A pesquisa do nome do autor devera
devolver a lista, ordenada
alfabeticamente, de todos os livros,
escritos pelo mesmo autor

&
Classe LibraryClass

- Aimplementacao deste método vai implicar:

- Adicionar uma nova estrutura de dados a LibraryClass, para conter todos 0s
autores de livros da biblioteca

- Alterar a implementacao de outros métodos da classe, dada a necessidade da
atualizagéo da nova estrutura de dados

- Requisitos:
- Chave da Pesquisa: Nome do Autor
- Muitos autores

- Associado a cada autor, todos os livros por ele escritos, ordenados
alfabeticamente

- Possibilidade de insercao e remocéo de livros, que se vai refletir na nova
estrutura

- Depois da remocao de todos os livros de um autor, este devera também ser
removido

Classe LibraryClass — Que Entry <K,V> ?

alEI=IH

~{ s]] Dictionary<String,Document> documents
e]

adEI=IEE=E
1]

NN bk WN SO

-y
(=]

Se 0 autor ndo tiver dados pessoais associados

Dictionary <String,
L] OrderedDictionary<String, Document>>authors

]
gill=1l=]

im Se existir o TAD Author

Dictionary <String, Author> authors

:

e NN 2O

-
(=]

LibraryClass — incompleta (1)

public class LibraryClass implements Library {

private Dictionary<String,Document> documents;

private CopyReturn returns;

private Dictionary<String, OrderedDictionary<String, Document>>
authors;

public LibraryClass(int docCapacity, int authorCapacity){
documents=

new ChainedHashTable<String,Document>(docCapacity);
authors =
new ChainedHashTable<String,
OrderedDictionary<String,Document>>(authorCapacity);
returns=new CopyReturnClass(); Novo!

LibraryClass — incompleta (2)

public void addNewBook(String title, String subject,
String documentCode, String publisher, String author,
long ISBN) throws ExistingDocException{

Document doc;
if (documents.find(documentCode) != null)
throw new ExistingDocException();
else {
doc = new BookClass(title, subject, documentCode,
publisher, author, ISBN);
documents.insert(documentCode, doc);
OrderedDictionary<String,Document> authorBST
= authors.find(author);
if (authorBST == null){
authorBST= new BinarySearchTree<String,Document>();
authors.insert(author, authorBST);

}
authorBST.insert(title, doc);

}

LibraryClass — incompleta (3)

public Document removeDocument(String documentCode)
throws NonExistingDocException{

Document doc = documents.remove(documentCode);
if (doc == null)
throw new NonExistingDocException();
else {
if (doc instanceof Book){
Book b = (Book)doc;
OrderedDictionary<String,Document> authorBST
= authors.find(b.getAuthor());
authorBST.remove(b.getTitle());
if (authorBST.isEmpty())
authors.remove(b.getAuthor());

¥

return doc;

}

LibraryClass — incompleta (4)

public Iterator<Book> listBooksByAuthor(String author)
throws NonExistingAuthorException {

OrderedDictionary<String,Document> authorBST
= authors.find(author);
if (authorBST == null)
throw new NonExistingAuthorException();
else return |new BookIterator(authorBST.iterator());

Interface Iterador de Elementos do Tipo E

package dataStructures;
public interface Iterator<E>{

// Returns true iff the iteration has more elements.

// In other words, returns true if a call to next()

// would return an element instead of throwing an exception.
boolean hasNext();

// Returns the next element in the iteration.
E next() throws NoSuchElementException;

// Restarts the iteration.

// After rewind, if the iteration is not empty,

// next() will return the first element in the iteration.
void rewind();

Interface Dicionario Ordenado (K,V)

package dataStructures;

public interface OrderedDictionary<K extends Comparable<K>, V>
extends Dictionary<K,V>{

// Returns the entry with the smallest key in the dictionary.
Entry<K,V> minEntry() throws EmptyDictionaryException;

// Returns the entry with the largest key in the dictionary.
Entry<K,V> maxEntry() throws EmptyDictionaryException;

// Returns an iterator of the entries in the dictionary
// which preserves the key order relation.
// Iterator<Entry<K,V>> iterator();

Booklterator (1)

package library;

import dataStructures.*;

public class BookIterator implements Iterator<Book> {
Iterator<Entry<String,Document>> 1itBST;

public BookIterator(Iterator<Entry<String,Document>> it){
itBST = it;
rewind();

}

public void rewind() {
itBST.rewind();

¥

Booklterator (2)

public boolean hasNext() {
return itBST.hasNext();

}

public Book next() throws NoSuchElementException {
Entry<String, Document> ent = itBST.next();
return (Book)ent.getValue();

