15/01/2019

OREILLY"

Ch

Real World
OCaml

ickey

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

Chapter 19. Foreign Function Interface

OCaml has several options available to interact with non-OCaml code. The compiler can link with
external system libraries via C code and also can produce standalone native object files that can
be embedded within other non-OCaml applications.

The mechanism by which code in one programming language can invoke routines in a different
programming language is called a foreign function interface. This chapter will:

« Show how to call routines in C libraries directly from your OCaml code
« Teach you how to build higher-level abstractions in OCaml from the low-level C bindings

« Work through some full examples for binding a terminal interface and UNIX date/time
functions

The simplest foreign function interface in OCaml doesn't even require you to write any C code at
all! The Ctypes library lets you define the C interface in pure OCaml, and the library then takes
care of loading the C symbols and invoking the foreign function call.

Let's dive straight into a realistic example to show you how the library looks. We'll create a
binding to the Ncurses terminal toolkit, as it's widely available on most systems and doesn't have
any complex dependencies.

Installing the Ctypes Library

You'll need to install the 1ibffi library as a prerequisite to using Ctypes. It's a fairly
popular library and should be available in your OS package manager.

A special note for Mac users: the version of 1ibffi installed by default in Mac OS X
10.8 is too old for some of the features that Ctypes needs. Use Homebrew to brew
install 1libffi to getthe latest version before installing the OCaml library.

Once that's done, Ctypes is available via OPAM as usual:

$ brew install libffi # for MacOS X users
$ opam install ctypes
$ utop

require "ctypes.foreign" ;;

Terminal = ffi/install.out * all code

You'll also need the Ncurses library for the first example. This comes preinstalled
on many operating systems such as Mac OS X, and Debian Linux provides it as the
libncurses5-dev package.

EXAMPLE: A TERMINAL INTERFACE

Ncurses is a library to help build terminal-independent text interfaces in a reasonably efficient
way. It's used in console mail clients like Mutt and Pine, and console web browsers such as Lynx.

The full C interface is quite large and is explained in the online documentation. We'll just use the
small excerpt, since we just want to demonstrate Ctypes in action:

typedef struct _win_st WINDOW;
typedef unsigned int chtype;

WINDOW *initscr (void);
WINDOW *newwin (int, int, int, int);

void endwin (void);

void refresh (void);

void wrefresh (WINDOW *);

void addstr (const char *);

int mvwaddch (WINDOW *, int, int, const chtype);

void mvwaddstr (WINDOW *, int, int, char *);
void box (WINDOW *, chtype, chtype);
int cbreak (void);

C = ffi/ncurses.h * all code

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 114

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://github.com/atgreen/libffi
http://github.com/realworldocaml/examples/blob/master/code/ffi/install.out
http://github.com/realworldocaml/examples/
http://www.gnu.org/software/ncurses/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.h
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

I

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

The Ncurses functions either operate on the current pseudoterminal or on a window that has
been created via newwin. The wINDow structure holds the internal library state and is considered
abstract outside of Ncurses. Ncurses clients just need to store the pointer somewhere and pass it
back to Ncurses library calls, which in turn dereference its contents.

Note that there are over 200 library calls in Ncurses, so we're only binding a select few for this
example. The initscr and newwin create WINDOW pointers for the global and subwindows,
respectively. The mvwaddrstr takes a window, x/y offsets, and a string and writes to the screen at
that location. The terminal is only updated after refresh or wrefresh are called.

Ctypes provides an OCaml interface that lets you map these C functions to equivalent OCaml
functions. The library takes care of converting OCaml function calls and arguments into the C
calling convention, invoking the foreign call within the C library and finally returning the result
as an OCaml value.

Let's begin by defining the basic values we need, starting with the wiNnDpow state pointer:

open Ctypes

type window = unit ptr
let window : window typ = ptr void

OCaml ffi/ncurses.ml * all code

We don't know the internal representation of the window pointer, so we treat it as a C void
pointer. We'll improve on this later on in the chapter, but it's good enough for now. The second
statement defines an OCaml value that represents the winpow C pointer. This value is used later
in the Ctypes function definitions:

open Foreign

let initscr =
foreign "initscr" (void @-> returning window)

OCaml ffi/ncurses.ml , continued (part 1) * all code

That's all we need to invoke our first function call to initscr to initialize the terminal. The
foreign function accepts two parameters:

« The C function call name, which is looked up using the d1sym POSIX function.

« Avalue that defines the complete set of C function arguments and its return type. The ¢ ->
operator adds an argument to the C parameter list, and returning terminates the parameter
list with the return type.

The remainder of the Ncurses binding simply expands on these definitions:

let newwin =
foreign "newwin"
(int @-> int @-> int @-> int @-> returning window)

let endwin =
foreign "endwin" (void @-> returning void)

let refresh =
foreign "refresh" (void @-> returning void)

let wrefresh =
foreign "wrefresh" (window @-> returning void)

let addstr =
foreign "addstr" (string @-> returning void)

let mvwaddch =
foreign "mvwaddch"
(window @-> int @-> int @-> char @-> returning void)

let mvwaddstr =
foreign "mvwaddstr"
(window @-> int @-> int @-> string @-> returning void)

let box =
foreign "box" (window @-> char @-> char @-> returning void)

let cbreak =
foreign "cbreak" (void @-> returning int)

OCaml ffi/ncurses.ml , continued (part 2) * all code

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

2/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

4

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

These definitions are all straightforward mappings from the C declarations in the Ncurses header
file. Note that the string and int values here are nothing to do with OCaml type declarations;
instead, they are values that come from opening the ctypes module at the top of the file.

Most of the parameters in the Ncurses example represent fairly simple scalar C types, except for
window (a pointer to the library state) and string, which maps from OCaml strings that have a
specific length onto C character buffers whose length is defined by a terminating null character
that immediately follows the string data.

The module signature for ncurses.mli looks much like a normal OCaml signature. You can infer
it directly from the ncurses.ml by running a special build target:

$ corebuild -pkg ctypes.foreign ncurses.inferred.mli
$ cp _build/ncurses.inferred.mli .

Terminal = ffi/infer_ncurses.out = all code

The inferred.mli target instructs the compiler to generate the default signature for a module
file and places it in the build directory as a normal output. You should normally copy it out into
your source directory and customize it to improve its safety for external callers by making some
of its internals more abstract.

Here's the customized interface that we can safely use from other libraries:

type window

val window : window Ctypes.typ

val initscr : unit -> window

val endwin : unit -> unit

val refresh : unit -> unit

val wrefresh : window -> unit

val newwin : int -> int -> int -> int -> window
val mvwaddch : window -> int -> int -> char -> unit

val addstr : string -> unit
val mvwaddstr : window -> int -> int -> string -> unit
val box : window -> char -> char -> unit

val cbreak : unit -> int

OCaml * ffi/ncurses.mli * all code

The window type is left abstract in the signature to ensure that window pointers can only be
constructed via the Ncurses. initscr function. This prevents void pointers obtained from other
sources from being mistakenly passed to an Ncurses library call.

Now compile a "hello world" terminal drawing program to tie this all together:

open Ncurses

let () =
let main_window = initscr () in
ignore(cbreak ());
let small_window = newwin 10 10 5 5 in
mvwaddstr main_window 1 2 "Hello";
mvwaddstr small_window 2 2 "World";
box small_window '\0600' '\000';
refresh ();
Unix.sleep 1;
wrefresh small_window;
Unix.sleep 5;
endwin ()

OCaml ffi/hello.ml * all code
The hello executable is compiled by linking with the ctypes. foreign OCamlfind package:

$ corebuild -pkg ctypes.foreign -1flags -cclib,-1lncurses hello.native

Terminal = ffi/build_hello.out * all code

Running . /hello.native should now display a Hello World in your terminal!

On Build Directives for Ctypes

The preceding command line includes some important extra link directives. The -
1flags instructs ocamlbuild to pass the next comma-separated set of arguments

through to the ocaml command when linking a binary. OCaml in turn uses -cclib
to pass directives through to the system compiler (normally gcc or clang). We first

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

3/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/infer_ncurses.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/hello.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_hello.out
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

¢

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

need to link to the ncurses C library to make the symbols available to Ctypes, and -
cclib, -1lncurses does that.

On some distributions such as Ubuntu 11.10 upwards, you'll also need to add -
cclib, -Xlinker,-cclib, and --no-as-needed tothe -1flags directive. -
Xlinker is interpreted by the compiler as a directive for the system linker 1d, to
which it passes --no-as-needed. Several modern OS distributions (such as Ubuntu
11.10 onwards) configure the system linker to only link in libraries that directly
contain symbols used by the program. However, when we use Ctypes, those
symbols are not referenced until runtime, which results an exception due to the
library not being available.

The --no-as-needed flag disables this behavior and ensures all the specified
libraries are linked despite not being directly used. The flag unfortunately doesn't
work everywhere (notably, Mac OS X should nothave this passed to it).

Ctypes wouldn't be very useful if it were limited to only defining simple C types, of course. It
provides full support for C pointer arithmetic, pointer conversions, and reading and writing
through pointers, using OCaml functions as function pointers to C code, as well as struct and
union definitions.

We'll go over some of these features in more detail for the remainder of the chapter by using
some POSIX date functions as running examples.

BASIC SCALAR C TYPES

First, let's look at how to define basic scalar C types. Every C type is represented by an OCaml
equivalent via the single type definition:

type 'a typ

OCaml * ctypes/ctypes.mli all code

Ctypes. typ is the type of values that represents C types to OCaml. There are two types
associated with each instance of typ:

« The C type used to store and pass values to the foreign library.

« The corresponding OCaml type. The 'a type parameter contains the OCaml type such that a
value of type t typ is used to read and write OCaml values of type t.

There are various other uses of typ values within Ctypes, such as:
« Constructing function types for binding native functions
« Constructing pointers for reading and writing locations in C-managed storage
« Describing component fields of structures, unions, and arrays

Here are the definitions for most of the standard C99 scalar types, including some platform-
dependent ones:

val void :unit typ
val char : char typ
val schar ¢ int typ
val short : int typ
val int : int typ
val long : long typ
val 1llong : 1llong typ
val nativeint : nativeint typ
val int8_t ¢ int typ
val intle_t ¢ int typ
val int32_t ¢ int32 typ
val int64_t : int64 typ
val uchar : uchar typ
val uchar : uchar typ
val uint8_t : uint8 typ

val uintl6_t : uintlé typ
val uint32_t : uint32 typ
val uint64_t : uint64 typ

val size_t : size_t typ
val ushort : ushort typ
val uint : uint typ

val ulong : ulong typ

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

414

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

val ullong : ullong typ
val float : float typ
b val double : float typ
) ey val complex32 : Complex.t typ
“‘\ val complex64 : Complex.t typ

Real WOIld OCaml * ctypes/ctypes.mli, continued (part 1) = all code

These values are all of type 'a typ, where the value name (e.g., void) tells you the C type and the
'a component (e.g., unit) is the OCaml representation of that C type. Most of the mappings are
straightforward, but some of them need a bit more explanation:

Buy in print and eBook.

Table of Contents

e —— « Void values appear in OCaml as the unit type. Using void in an argument or result type
specification produces an OCaml function that accepts or returns unit. Dereferencing a
pointer to void is an error, as in C, and will raise the IncompleteType exception.

Prologue
I. Language Concepts
I1. Tools and Techniques

III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of

« The Csize t typeis an alias for one of the unsigned integer types. The actual size and
alignment requirements for size t varies between platforms. Ctypes provides an OCaml

Values size_t type thatis aliased to the appropriate integer type.

21. Understanding the Garbage

Collector « OCaml only supports double-precision floating-point numbers, and so the C f1oat and

22. The Compiler Frontend: double types both map onto the OCaml f1oat type, and the C float complex and double
Parsing and Type Checking complex types both map onto the OCaml double-precision Complex. t type.

23. The Compiler Backend:
Bytecode and Native code

Index

POINTERS AND ARRAYS

p— Pointers are at the heart of C, so they are necessarily part of Ctypes, which provides support for
oain With GitHub 10 View

and add Comments pointer arithmetic, pointer conversions, reading and writing through pointers, and passing and
returning pointers to and from functions.

We've already seen a simple use of pointers in the Ncurses example. Let's start a new example by
binding the following POSIX functions:

time_t time(time_t *);
double difftime(time_t, time_t);
char *ctime(const time_t *timep);

C = ffi/posix_headers.h all code

The time function returns the current calendar time and is a simple start. The first step is to open
some of the Ctypes modules:

Ctypes
The ctypes module provides functions for describing C types in OCaml.

PosixTypes
The PosixTypes module includes some extra POSIX-specific types (such as time t).

Foreign
The Foreign module exposes the foreign function that makes it possible to invoke C functions.

We can now create a binding to time directly from the toplevel.
#require "ctypes.foreign" ;;

#require "ctypes.top" ;;

No such package: ctypes.top
open Ctypes ;;

open PosixTypes ;;

open Foreign ;;

let time = foreign "time" (ptr time_t @-> returning time_t) ;;
val time : time_t ptr -> time_t = <fun>

OCaml Utop ffi/posix.topscript * all code

The foreign function is the main link between OCaml and C. It takes two arguments: the name
of the C function to bind, and a value describing the type of the bound function. In the time

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 5/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix_headers.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

binding, the function type specifies one argument of type ptr time t and areturn type of

time t.
-

We can now call t ime immediately in the same toplevel. The argument is actually optional, so
we'll just pass a null pointer that has been coerced into becoming a null pointer to time t:

i

Reaibrld # let cur_time = time (from_voidp time_t null) ;;
val cur_time : time_t = <abstr>

OCaml Utop = ffi/posix.topscript , continued (part 1) * all code

Buy in print and eBook. . X . .
Since we're going to call t ime a few times, let's create a wrapper function that passes the null
Table of Contents pointer through:
Prologue
1. Language Concepts # let time' () = time (from_voidp time_t null) ;;
I1. Tools and Techniques val time' : unit -> time_t = <fun>
III. The Runtime System OCaml Utop = ffi/posix.topscript , continued (part 2) = all code

19. Foreign Function Interface
20. Memory Representation of
Values

21. Understanding the Garbage

Since time_t is an abstract type, we can't actually do anything useful with it directly. We need to
bind a second function to do anything useful with the return values from t ime. We'll move on to

Collector difftime; the second C function in our prototype list:
22. The Compiler Frontend:
Parsing and Type Checking # let difftime =
23. The Compiler Backend: foreign "difftime" (time_t @-> time_t @-> returning double) ;;
Bytecode and Native code val difftime : time_t -> time_t -> float = <fun>
Index # let t1 =

time' () in
oajin witth GiltHiulb to view Unix.sleep 2;
2nd adid commenis let t2 = time' () in
difftime t2 t1 ;;
- : float = 2.

OCaml Utop = ffi/posix.topscript , continued (part 3) * all code
The binding to di £ftime above is sufficient to compare two time t values.

Allocating Typed Memory for Pointers

Let's look at a slightly less trivial example where we pass a nonnull pointer to a function.
Continuing with the theme from earlier, we'll bind to the ctime function, which converts a
time_t value to a human-readable string:

let ctime = foreign "ctime" (ptr time_t @-> returning string) ;;
val ctime : time_t ptr -> string = <fun>

OCaml Utop = ffi/posix.topscript , continued (part 4) * all code

The binding is continued in the toplevel to add to our growing collection. However, we can't just
pass the result of t ime to ctime:

ctime (time' ()) ;;

Characters 7-15:

Error: This expression has type time_t but an expression was expected of type
time_t ptr

OCaml Utop = ffi/posix.topscript , continued (part 5) * all code

This is because ctime needs a pointer to the time t rather than passing it by value. We thus
need to allocate some memory for the time t and obtain its memory address:

let t_ptr = allocate time_t (time' ()) ;;
val t_ptr : time_t ptr = <abstr>

OCaml Utop = ffi/posix.topscript , continued (part 6) * all code

The allocate function takes the type of the memory to be allocated and the initial value and it
returns a suitably typed pointer. We can now call ct ime passing the pointer as an argument:

ctime t_ptr ;;
- : string = "Tue Nov 5 ©8:51:55 2013\n"

OCaml Utop = ffi/posix.topscript , continued (part 7) * all code

Using Views to Map Complex Values

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 6/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

While scalar types typically have a 1:1 representation, other C types require extra work to convert
them into OCaml. Views create new C type descriptions that have special behavior when used to

.
X read or write C values.

We've already used one view in the definition of ctime earlier. The string view wraps the C type
char * (written in OCaml as ptr char) and converts between the C and OCaml string

4

Real orld representations each time the value is written or read.

Here is the type signature of the ctypes.view function:

ey

Buy in print and eBook. val view :
read:('a -> 'b) ->
Table of Contents write:('b -> 'a) ->
Prologue ‘a typ -> 'b typ
I. Language Concepts OCaml * ctypes/ctypes.mli , continued (part 2) * all code
I1. Tools and Techniques
III. The Runtime System Ctypes has some internal low-level conversion functions that map between an OCaml string
19. Foreign Function Interface and a C character buffer by copying the contents into the respective data structure. They have the
20. Memory Representation of following type signature:
Values
21. Understanding the Garbage
Collector d d val string_of_char_ptr : char ptr -> string
1 ch f i : i -> ch
22. The Compiler Frontend: val char_ptr_of_string string char ptr
Parsing and Type Checking OCaml * ctypes/ctypes.mli, continued (part 3) = all code
23. The Compiler Backend:
Bytecode and Native code Given these functions, the definition of the Ctypes . st ring value that uses views is quite simple:
Index

let string =

SitHiuib 10 View view (char ptr)
AN 20U ComMmMEnts ~read:string_of_char_ptr
~write:char_ptr_of_string

OCaml * ctypes/ctypes_impl.ml * all code

The type of this string function is a normal t yp with no external sign of the use of the view
function:

val string ¢ string.typ

OCaml * ctypes/ctypes.mli, continued (part 4) * all code

OCaml Strings Versus C Character Buffers

Although OCaml strings may look like C character buffers from an interface
perspective, they're very different in terms of their memory representations.

OCaml strings are stored in the OCaml heap with a header that explicitly defines
their length. C buffers are also fixed-length, but by convention, a C string is
terminated by a null (a \ 0 byte) character. The C string functions calculate their
length by scanning the buffer until the first null character is encountered.

This means that you need to be careful that OCaml strings that you pass to C
functions don't contain any null values, since the first occurrence of a null
character will be treated as the end of the C string. Ctypes also defaults to a copying
interface for strings, which means that you shouldn't use them when you want the
library to mutate the buffer in-place. In that situation, use the Ctypes Bigarray
support to pass memory by reference instead.

STRUCTS AND UNIONS

The C constructs st ruct and union make it possible to build new types from existing types.
Ctypes contains counterparts that work similarly.

Defining a Structure

Let's improve the timer function that we wrote earlier. The POSIX function gettimeofday
retrieves the time with microsecond resolution. The signature of gettimeofday is as follows,
including the structure definitions:

struct timeval {
long tv_sec;
long tv_usec;

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 7114

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes_impl.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml
s

int gettimeofday(struct timeval *, struct timezone *tv);

C = ffiltimeval_headers.h « all code

Using Ctypes, we can describe this type as follows in our toplevel, continuing on from the
previous definitions:

type timeval ;;

type timeval

let timeval : timeval structure typ = structure "timeval" ;;
val timeval : timeval structure typ = <abstr>

OCaml Utop = ffi/posix.topscript , continued (part 8) * all code

The first command defines a new OCaml type t imeval that we'll use to instantiate the OCaml
version of the struct. This is a phantom type that exists only to distinguish the underlying C type
from other pointer types. The particular t imeval structure now has a distinct type from other
structures we define elsewhere, which helps to avoid getting them mixed up.

The second command calls st ructure to create a fresh structure type. At this point, the structure
type is incomplete: we can add fields but cannot yet use it in foreign calls or use it to create
values.

Adding Fields to Structures

The timeval structure definition still doesn't have any fields, so we need to add those next:

let tv_sec = field timeval "tv_sec" long ;;

Characters 14-19:
Error: Unbound value field

let tv_usec = field timeval "tv_usec" long ;;
Characters 14-19:
Error: Unbound value field

seal timeval ;;
Exception: Ctypes_raw.Ffi_internal_error("FFI_BAD_TYPEDEF").

OCaml Utop = ffi/posix.topscript , continued (part 9) * all code

The field function appends a field to the structure, as shown with tv_sec and tv_usec.
Structure fields are typed accessors that are associated with a particular structure, and they
correspond to the labels in C.

Every field addition mutates the structure variable and records a new size (the exact value of
which depends on the type of the field that was just added). Once we seal the structure, we will
be able to create values using it, but adding fields to a sealed structure is an error.

Incomplete Structure Definitions

Since gettimeofday needs a struct timezone pointer for its second argument, we also need to
define a second structure type:

type timezone ;;

type timezone

let timezone : timezone structure typ = structure "timezone" ;;
val timezone : timezone structure typ = <abstr>

OCaml Utop = ffi/posix.topscript , continued (part 10) = all code

We don't ever need to create struct timezone values, so we can leave this struct as incomplete
without adding any fields or sealing it. If you ever try to use it in a situation where its concrete
size needs to be known, the library will raise an IncompleteType exception.

We're finally ready to bind to gettimeofday now:

let gettimeofday = foreign "gettimeofday"
(ptr timeval @-> ptr timezone @-> returning_checking_errno int) ;;
val gettimeofday : timeval structure ptr -> timezone structure ptr -> int =
<fun>

OCaml Utop = ffi/posix.topscript , continued (part 11) * all code

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 8/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/timeval_headers.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

R

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Logjin with GitHub 1o view
and add commenis

Chapter 19. Foreign Function Interface / Real World OCaml

There's one other new feature here: the returning checking errno function behaves like
returning, except that it checks whether the bound C function modifies the C error flag. Changes
to errno are mapped into OCaml exceptions and raise a Unix.Unix_error exception just as the
standard library functions do.

As before, we can create a wrapper to make gettimeofday easier to use. The functions make,
addr, and getf create a structure value, retrieve the address of a structure value, and retrieve the
value of a field from a structure:

let gettimeofday' () =
let tv = make timeval in
ignore(gettimeofday (addr tv) (from_voidp timezone null));
let secs = Signed.Long.(to_int (getf tv tv_sec)) in
let usecs = Signed.lLong.(to_int (getf tv tv_usec)) in
Pervasives. (float secs +. float usecs /. 1000000.0) ;;

Characters 153-159:

Error: Unbound value tv_sec

gettimeofday' () ;;

Characters -1-13:

Error: Unbound value gettimeofday'
Did you mean gettimeofday?

OCaml Utop = ffi/posix.topscript , continued (part 12) * all code

You need to be a little careful not to get all the open modules mixed up here. Both Pervasives
and Ctypes define different f1oat functions. The ctypes module we opened up earlier overrides
the Pervasives definition. As seen previously though, you just need to locally open Pervasives
again to bring the usual f1oat function back in scope.

Recap: A time-printing command

We built up a lot of bindings in the previous section, so let's recap them with a complete example
that ties it together with a command-line frontend:

open Core.Std
open Ctypes
open PosixTypes
open Foreign

let time = foreign "time" (ptr time_t @-> returning time_t)
let difftime = foreign "difftime" (time_t @-> time_t @-> returning double)
let ctime = foreign "ctime" (ptr time_t @-> returning string)

type timeval
let timeval : timeval structure typ = structure "timeval"

let tv_sec = timeval *:* long
let tv_usec = timeval *:* long
let () = seal timeval

type timezone
let timezone : timezone structure typ = structure "timezone"

let gettimeofday = foreign "gettimeofday"
(ptr timeval @-> ptr timezone @-> returning_checking_errno int)

let time' () = time (from_voidp time_t null)

let gettimeofday' () =
let tv = make timeval in
ignore(gettimeofday (addr tv) (from_voidp timezone null));
let secs = Signed.Long.(to_int (getf tv tv_sec)) in
let usecs = Signed.Long.(to_int (getf tv tv_usec)) in
Pervasives. (float secs +. float usecs /. 1_000 _000.)

let float_time () = printf "%f%!\n" (gettimeofday' ())

let ascii_time () =
let t_ptr = allocate time_t (time' ()) in
printf "%s%!" (ctime t_ptr)

let () =
let open Command in
basic ~summary:"Display the current time in various formats"
Spec.(empty +> flag "-a" no_arg ~doc:" Human-readable output format")
(fun human -> if human then ascii_time else float_time)
|> Command.run

OCaml * ffi/datetime.ml * all code

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 9/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/datetime.ml
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(Gl

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
I1. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Logim with GiltHub to view
and adid commenits

Chapter 19. Foreign Function Interface / Real World OCaml

This can be compiled and run in the usual way:

$ corebuild -pkg ctypes.foreign datetime.native
$./datetime.native

1383603807.642986

$./datetime.native -a

Mon Nov 4 17:23:27 2013

Terminal = ffi/build_datetime.out * all code

Why Do We Need to Use returning?

The alert reader may be curious about why all these function definitions have to be terminated by

returning:

(* correct types *)
val time: ptr time_t @-> returning time_t
val difftime: time_t @-> time_t @-> returning double

OCaml * ffi/return_frag.ml * all code

The returning function may appear superfluous here. Why couldn't we simply give the types as
follows?

(* incorrect types *)
val time: ptr time_t @-> time_t
val difftime: time_t @-> time_t @-> double

OCaml * ffi/return_frag.ml , continued (part 1) = all code

The reason involves higher types and two differences between the way that functions are treated
in OCaml and C. Functions are first-class values in OCaml, but not in C. For example, in C it is
possible to return a function pointer from a function, but not to return an actual function.

Secondly, OCaml functions are typically defined in a curried style. The signature of a two-
argument function is written as follows:

val curried : int -> int -> int

OCaml * ffi/return_frag.ml , continued (part 2) = all code

but this really means:

val curried : int -> (int -> int)

OCaml * ffi/return_frag.ml , continued (part 3) * all code

and the arguments can be supplied one at a time to create a closure. In contrast, C functions
receive their arguments all at once. The equivalent C function type is the following:

int uncurried_C(int, int);

C = ffilreturn_c_frag.h = all code

and the arguments must always be supplied together:

uncurried_C(3, 4);

C = ffilreturn_c_frag.c * all code

A C function that's written in curried style looks very different:

/* A function that accepts an int, and returns a function
pointer that accepts a second int and returns an int. */

typedef int (function_t)(int);

function_t *curried_C(int);

/* supply both arguments */
curried_C(3)(4);

/* supply one argument at a time */
function_t *f = curried_C(3); f(4);

C = ffilreturn_c_uncurried.c * all code

The OCaml type of uncurried C when bound by Ctypesis int -> int -> int:atwo-argument

function. The OCaml type of curried C whenbound by ctypesisint -> (int -> int):a
one-argument function that returns a one-argument function.

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

10/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_datetime.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_frag.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_frag.c
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_uncurried.c
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

4

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

II. Tools and Techniques

III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Chapter 19. Foreign Function Interface / Real World OCaml

In OCaml, of course, these types are absolutely equivalent. Since the OCaml types are the same
but the C semantics are quite different, we need some kind of marker to distinguish the cases.
This is the purpose of returning in function definitions.

Defining Arrays

Arrays in C are contiguous blocks of the same type of value. Any of the basic types defined
previously can be allocated as blocks via the Array module:

module Array : sig
type 'a t = 'a array
val get : 'a t -> int -> 'a
val set : 'a t -> int -> 'a -> unit
val of_list : 'a typ -> 'a list -> 'a t
val to_list : 'a t -> 'a list
val length : 'a t -> int
val start : 'a t -> 'a ptr

val from_ptr : 'a ptr -> int -> 'a t
val make : 'a typ -> ?initial:'a -> int -> 'a t
end

OCaml * ctypes/ctypes.mli, continued (part 5) all code

The array functions are similar to those in the standard library array module except that they
operate on arrays stored using the flat C representation rather than the OCaml representation
described in Chapter 20, Memory Representation of Values.

As with standard OCaml arrays, the conversion between arrays and lists requires copying the
values, which can be expensive for large data structures. Notice that you can also convert an
array into a ptr pointer to the head of the underlying buffer, which can be useful if you need to
pass the pointer and size arguments separately to a C function.

Unions in C are named structures that can be mapped onto the same underlying memory. They
are also fully supported in Ctypes, but we won't go into more detail here.

Pointer Operators for Dereferencing and Arithmetic

Ctypes defines a number of operators that let you manipulate pointers and arrays just as you
would in C. The Ctypes equivalents do have the benefit of being more strongly typed, of course
(see Table 19.1, “Operators for manipulating pointers and arrays”).

Table 19.1. Operators for manipulating pointers and arrays

Operator Purpose

'@ p Dereference the pointer p.

p <-@ v Write the value v to the address p.

p +@ n If p points to an array element, then compute the address of the nth next element.

p -@ n If p points to an array element, then compute the address of the nth previous
element.

There are also other useful nonoperator functions available (see the Ctypes documentation), such
as pointer differencing and comparison.

PASSING FUNCTIONS TO C

It's also straightforward to pass OCaml function values to C. The C standard library function
gsort sorts arrays of elements using a comparison function passed in as a function pointer. The
signature for gsort is:

void gsort(void *base, size_t nmemb, size_t size,
int(*compar)(const void *, const void *));

C = ffilgsort.h = all code

C programmers often use typedef to make type definitions involving function pointers easier to
read. Using a typedef, the type of gsort looks a little more palatable:

typedef int(compare_t)(const void *, const void *);

void gsort(void *base, size_t nmemb, size_t size, compare_t *);

C = ffilqsort_typedef.h = all code

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

11/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort_typedef.h
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

o@in \Wwith GitHub t© view

20 200 comments

Chapter 19. Foreign Function Interface / Real World OCaml

This also happens to be a close mapping to the corresponding Ctypes definition. Since type
descriptions are regular values, we can just use let in place of t ypede f and end up with working
OCaml bindings to gsort:

#require "ctypes.foreign" ;;
open Ctypes ;;

open PosixTypes ;;

open Foreign ;;

let compare_t = ptr void @-> ptr void @-> returning int ;;
val compare_t : (unit ptr -> unit ptr -> int) fn = <abstr>
let gsort = foreign "gsort"
(ptr void @-> size_t @-> size_t @->
funptr compare_t @-> returning void) ;;
val gsort :
unit ptr -> size t -> size_t -> (unit ptr -> unit ptr -> int) -> unit =
<fun>

OCaml Utop = ffi/gsort.topscript * all code

We only use compare_t once (in the gsort definition), so you can choose to inline it in the OCaml
code if you prefer. As the type shows, the resulting gsort value is a higher-order function, since
the fourth argument is itself a function. As before, let's define a wrapper function to make gsort
easier to use. The second and third arguments to gsort specify the length (number of elements)
of the array and the element size.

Arrays created using Ctypes have a richer runtime structure than C arrays, so we don't need to
pass size information around. Furthermore, we can use OCaml polymorphism in place of the
unsafe void ptr type.

Example: A Command-Line Quicksort

The following is a command-line tool that uses the gsort binding to sort all of the integers
supplied on the standard input:

open Core.Std
open Ctypes
open PosixTypes
open Foreign

let compare_t = ptr void @-> ptr void @-> returning int

let gsort = foreign "gsort”
(ptr void @-> size_t @-> size_t @-> funptr compare_t @->
returning void)

let gsort' cmp arr =
let open Unsigned.Size_t in
let ty = Array.element_type arr in
let len = of_int (Array.length arr) in
let elsize = of_int (sizeof ty) in
let start = to_voidp (Array.start arr) in
let compare 1 r = cmp (!@ (from_voidp ty 1)) (!@ (from_voidp ty r)) in
gsort start len elsize compare;
arr

let sort_stdin () =
In_channel.input_lines stdin
|> List.map ~f:int_of_string
|> Array.of_list int
|> gsort' Int.compare
|> Array.to_list
|> List.iter ~f:(fun a -> printf "%d\n" a)

let () =
Command.basic ~summary:"Sort integers on standard input”
Command.Spec.empty sort_stdin
| > Command.run

OCaml ffilgsort.ml * all code

Compile it in the usual way with corebuild and test it against some input data, and also build the
inferred interface so we can examine it more closely:

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 12/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.ml
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

y

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

$ corebuild -pkg ctypes.foreign gsort.native
$ cat input.txt

N RN WO

had

./qsort.native < input.txt

N AN W N R

$ corebuild -pkg ctypes.foreign gsort.inferred.mli
$ cp _build/gsort.inferred.mli gsort.mli

Terminal = ffi/build_gsort.out * all code

The inferred interface shows us the types of the raw gsort binding and also the gsort ' wrapper
function:

val compare_t :
val gsort :
unit Ctypes.ptr ->
PosixTypes.size_t ->
PosixTypes.size_t -> (unit Ctypes.ptr -> unit Ctypes.ptr -> int) -> unit
val gsort' : ('a -> 'a -> int) -> 'a Ctypes.array -> 'a Ctypes.array
val sort_stdin : unit -> unit

(unit Ctypes.ptr -> unit Ctypes.ptr -> int) Ctypes.fn

OCaml ffilgsort.mli = all code

The gsort' wrapper function has a much more canonical OCaml interface than the raw binding.
It accepts a comparator function and a Ctypes array, and returns the same Ctypes array. It's not
strictly required that it returns the array, since it modifies it in-place, but it makes it easier to
chain the function using the |> operator (as sort_stdin does in the example).

Using gsort' to sort arrays is straightforward. Our example code reads the standard input as a
list, converts it to a C array, passes it through gsort, and outputs the result to the standard output.
Again, remember to not confuse the Ctypes.Array module with the Core.std.Array module:
the former is in scope since we opened Ctypes at the start of the file.

Lifetime of Allocated Ctypes

Values allocated via Ctypes (i.e., using allocate, Array.make, and so on) will not be garbage-
collected as long as they are reachable from OCaml values. The system memory they occupy is
freed when they do become unreachable, via a finalizer function registered with the garbage
collector (GC).

The definition of reachability for Ctypes values is a little different from conventional OCaml
values, though. The allocation functions return an OCaml-managed pointer to the value, and as
long as some derivative pointer is still reachable by the GC, the value won't be collected.

"Derivative" means a pointer that's computed from the original pointer via arithmetic, so a
reachable reference to an array element or a structure field protects the whole object from
collection.

A corollary of the preceding rule is that pointers written into the C heap don't have any effect on
reachability. For example, if you have a C-managed array of pointers to structs, then you'll need
some additional way of keeping the structs themselves around to protect them from collection.
You could achieve this via a global array of values on the OCaml side that would keep them live
until they're no longer needed.

Functions passed to C have similar considerations regarding lifetime. On the OCaml side,
functions created at runtime may be collected when they become unreachable. As we've seen,
OCaml functions passed to C are converted to function pointers, and function pointers written
into the C heap have no effect on the reachability of the OCaml functions they reference. With
gsort things are straightforward, since the comparison function is only used during the call to
gsort itself. However, other C libraries may store function pointers in global variables or
elsewhere, in which case you'll need to take care that the OCaml functions you pass to them
aren't prematurely garbage-collected.

LEARNING MORE ABOUT C BINDINGS

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html

13/14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_qsort.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.mli
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

¢

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System
19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code
Index

Chapter 19. Foreign Function Interface / Real World OCaml

The Ctypes distribution contains a number of larger-scale examples, including:
« Bindings to the POSIX fts API, which demonstrates C callbacks more comprehensively
« A more complete Ncurses binding than the example we opened the chapter with

« A comprehensive test suite that covers the complete library, and can provide useful snippets
for your own bindings

This chapter hasn't really needed you to understand the innards of OCaml at all. Ctypes does its
best to make function bindings easy, but the rest of this part will also fill you in about interactions
with OCaml memory layout in Chapter 20, Memory Representation of Values and automatic
memory management in Chapter 21, Understanding the Garbage Collector.

Ctypes gives OCaml programs access to the C representation of values, shielding you from the
details of the OCaml value representation, and introduces an abstraction layer that hides the
details of foreign calls. While this covers a wide variety of situations, it's sometimes necessary to
look behind the abstraction to obtain finer control over the details of the interaction between the
two languages.

You can find more information about the C interface in several places:

« The standard OCaml foreign function interface allows you to glue OCaml and C together from
the other side of the boundary, by writing C functions that operate on the OCaml
representation of values. You can find details of the standard interface in the OCaml manual
and in the book Developing Applications with Objective Caml.

« Florent Monnier maintains an excellent online OCaml that provides examples of how to call
OCaml functions from C. This covers a wide variety of OCaml data types and also more
complex callbacks between C and OCaml.

« SWIG is a tool that connects programs written in C/C++ to a variety of higher-level
programming languages, including OCaml. The SWIG manual has examples of converting
library specifications into OCaml bindings.

Struct Memory Layout

The C language gives implementations a certain amount of freedom in choosing how to lay out
structs in memory. There may be padding between members and at the end of the struct, in order
to satisfy the memory alignment requirements of the host platform. Ctypes uses platform-
appropriate size and alignment information to replicate the struct layout process. OCaml and C
will have consistent views about the layout of the struct as long as you declare the fields of a
struct in the same order and with the same types as the C library you're binding to.

However, this approach can lead to difficulties when the fields of a struct aren't fully specified in
the interface of a library. The interface may list the fields of a structure without specifying their
order, or make certain fields available only on certain platforms, or insert undocumented fields
into struct definitions for performance reasons. For example, the struct timeval definition
used in this chapter accurately describes the layout of the struct on common platforms, but
implementations on some more unusual architectures include additional padding members that
will lead to strange behavior in the examples.

The Cstubs subpackage of Ctypes addresses this issue. Rather than simply assuming that struct
definitions given by the user accurately reflect the actual definitions of structs used in C libraries,
Cstubs generates code that uses the C library headers to discover the layout of the struct. The
good news is that the code that you write doesn't need to change much. Cstubs provides
alternative implementations of the field and seal functions that you've already used to describe
struct timeval;instead of computing member offsets and sizes appropriate for the platform,
these implementations obtain them directly from C.

The details of using Cstubs are available in the online documentation, along with instructions on
integration with autoconf platform portability instructions.

< Previous Next >

Copyright 2012-20183, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

https://v1.realworldocaml.org/v1/en/htmli/foreign-function-interface.html 14/14

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/ocamllabs/ocaml-ctypes
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual033.html
http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
http://www.linux-nantes.org/~fmonnier/ocaml/ocaml-wrapping-c.html
http://www.swig.org/
https://ocamllabs.github.io/ocaml-ctypes
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html

