
15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 1/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 19. Foreign Function InterfaceChapter 19. Foreign Function Interface
OCaml has several options available to interact with non-OCaml code. The compiler can link with

external system libraries via C code and also can produce standalone native object �les that can

be embedded within other non-OCaml applications.

The mechanism by which code in one programming language can invoke routines in a di�erent

programming language is called a foreign function interface. This chapter will:

Show how to call routines in C libraries directly from your OCaml code

Teach you how to build higher-level abstractions in OCaml from the low-level C bindings

Work through some full examples for binding a terminal interface and UNIX date/time

functions

The simplest foreign function interface in OCaml doesn't even require you to write any C code at

all! The Ctypes library lets you de�ne the C interface in pure OCaml, and the library then takes

care of loading the C symbols and invoking the foreign function call.

Let's dive straight into a realistic example to show you how the library looks. We'll create a

binding to the Ncurses terminal toolkit, as it's widely available on most systems and doesn't have

any complex dependencies.

Installing the Ctypes LibraryInstalling the Ctypes Library

You'll need to install the libffi library as a prerequisite to using Ctypes. It's a fairly

popular library and should be available in your OS package manager.

A special note for Mac users: the version of libffi installed by default in Mac OS X

10.8 is too old for some of the features that Ctypes needs. Use Homebrew to brew

install libffi to get the latest version before installing the OCaml library.

Once that's done, Ctypes is available via OPAM as usual:

$ brew install libffi # for MacOS X users
$ opam install ctypes
$ utop
require "ctypes.foreign" ;;

Terminal ∗ ffi/install.out ∗ all code

You'll also need the Ncurses library for the �rst example. This comes preinstalled

on many operating systems such as Mac OS X, and Debian Linux provides it as the

libncurses5-dev package.

EXAMPLE: A TERMINAL INTERFACEEXAMPLE: A TERMINAL INTERFACE

Ncurses is a library to help build terminal-independent text interfaces in a reasonably e�cient

way. It's used in console mail clients like Mutt and Pine, and console web browsers such as Lynx.

The full C interface is quite large and is explained in the online documentation. We'll just use the

small excerpt, since we just want to demonstrate Ctypes in action:

typedef struct _win_st WINDOW;
typedef unsigned int chtype;

WINDOW *initscr (void);
WINDOW *newwin (int, int, int, int);
void endwin (void);
void refresh (void);
void wrefresh (WINDOW *);
void addstr (const char *);
int mvwaddch (WINDOW *, int, int, const chtype);
void mvwaddstr (WINDOW *, int, int, char *);
void box (WINDOW *, chtype, chtype);
int cbreak (void);

C ∗ ffi/ncurses.h ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://github.com/atgreen/libffi
http://github.com/realworldocaml/examples/blob/master/code/ffi/install.out
http://github.com/realworldocaml/examples/
http://www.gnu.org/software/ncurses/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.h
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 2/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The Ncurses functions either operate on the current pseudoterminal or on a window that has

been created via newwin. The WINDOW structure holds the internal library state and is considered

abstract outside of Ncurses. Ncurses clients just need to store the pointer somewhere and pass it

back to Ncurses library calls, which in turn dereference its contents.

Note that there are over 200 library calls in Ncurses, so we're only binding a select few for this

example. The initscr and newwin create WINDOW pointers for the global and subwindows,

respectively. The mvwaddrstr takes a window, x/y o�sets, and a string and writes to the screen at

that location. The terminal is only updated after refresh or wrefresh are called.

Ctypes provides an OCaml interface that lets you map these C functions to equivalent OCaml

functions. The library takes care of converting OCaml function calls and arguments into the C

calling convention, invoking the foreign call within the C library and �nally returning the result

as an OCaml value.

Let's begin by de�ning the basic values we need, starting with the WINDOW state pointer:

open Ctypes

type window = unit ptr
let window : window typ = ptr void

OCaml ∗ ffi/ncurses.ml ∗ all code

We don't know the internal representation of the window pointer, so we treat it as a C void

pointer. We'll improve on this later on in the chapter, but it's good enough for now. The second

statement de�nes an OCaml value that represents the WINDOW C pointer. This value is used later

in the Ctypes function de�nitions:

open Foreign

let initscr =
 foreign "initscr" (void @-> returning window)

OCaml ∗ ffi/ncurses.ml , continued (part 1) ∗ all code

That's all we need to invoke our �rst function call to initscr to initialize the terminal. The

foreign function accepts two parameters:

The C function call name, which is looked up using the dlsym POSIX function.

A value that de�nes the complete set of C function arguments and its return type. The @->

operator adds an argument to the C parameter list, and returning terminates the parameter

list with the return type.

The remainder of the Ncurses binding simply expands on these de�nitions:

let newwin =
 foreign "newwin"
 (int @-> int @-> int @-> int @-> returning window)

let endwin =
 foreign "endwin" (void @-> returning void)

let refresh =
 foreign "refresh" (void @-> returning void)

let wrefresh =
 foreign "wrefresh" (window @-> returning void)

let addstr =
 foreign "addstr" (string @-> returning void)

let mvwaddch =
 foreign "mvwaddch"
 (window @-> int @-> int @-> char @-> returning void)

let mvwaddstr =
 foreign "mvwaddstr"
 (window @-> int @-> int @-> string @-> returning void)

let box =
 foreign "box" (window @-> char @-> char @-> returning void)

let cbreak =
 foreign "cbreak" (void @-> returning int)

OCaml ∗ ffi/ncurses.ml , continued (part 2) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 3/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

These de�nitions are all straightforward mappings from the C declarations in the Ncurses header

�le. Note that the string and int values here are nothing to do with OCaml type declarations;

instead, they are values that come from opening the Ctypes module at the top of the �le.

Most of the parameters in the Ncurses example represent fairly simple scalar C types, except for

window (a pointer to the library state) and string, which maps from OCaml strings that have a

speci�c length onto C character bu�ers whose length is de�ned by a terminating null character

that immediately follows the string data.

The module signature for ncurses.mli looks much like a normal OCaml signature. You can infer

it directly from the ncurses.ml by running a special build target:

$ corebuild -pkg ctypes.foreign ncurses.inferred.mli
$ cp _build/ncurses.inferred.mli .

Terminal ∗ ffi/infer_ncurses.out ∗ all code

The inferred.mli target instructs the compiler to generate the default signature for a module

�le and places it in the _build directory as a normal output. You should normally copy it out into

your source directory and customize it to improve its safety for external callers by making some

of its internals more abstract.

Here's the customized interface that we can safely use from other libraries:

type window
val window : window Ctypes.typ
val initscr : unit -> window
val endwin : unit -> unit
val refresh : unit -> unit
val wrefresh : window -> unit
val newwin : int -> int -> int -> int -> window
val mvwaddch : window -> int -> int -> char -> unit
val addstr : string -> unit
val mvwaddstr : window -> int -> int -> string -> unit
val box : window -> char -> char -> unit
val cbreak : unit -> int

OCaml ∗ ffi/ncurses.mli ∗ all code

The window type is left abstract in the signature to ensure that window pointers can only be

constructed via the Ncurses.initscr function. This prevents void pointers obtained from other

sources from being mistakenly passed to an Ncurses library call.

Now compile a "hello world" terminal drawing program to tie this all together:

open Ncurses

let () =
 let main_window = initscr () in
 ignore(cbreak ());
 let small_window = newwin 10 10 5 5 in
 mvwaddstr main_window 1 2 "Hello";
 mvwaddstr small_window 2 2 "World";
 box small_window '\000' '\000';
 refresh ();
 Unix.sleep 1;
 wrefresh small_window;
 Unix.sleep 5;
 endwin ()

OCaml ∗ ffi/hello.ml ∗ all code

The hello executable is compiled by linking with the ctypes.foreign OCaml�nd package:

$ corebuild -pkg ctypes.foreign -lflags -cclib,-lncurses hello.native

Terminal ∗ ffi/build_hello.out ∗ all code

Running ./hello.native should now display a Hello World in your terminal!

On Build Directives for CtypesOn Build Directives for Ctypes

The preceding command line includes some important extra link directives. The -

lflags instructs ocamlbuildocamlbuild to pass the next comma-separated set of arguments

through to the ocamlocaml command when linking a binary. OCaml in turn uses -cclib

to pass directives through to the system compiler (normally gccgcc or clangclang). We �rst

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/infer_ncurses.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/ncurses.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/hello.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_hello.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 4/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

need to link to the ncurses C library to make the symbols available to Ctypes, and -

cclib,-lncurses does that.

On some distributions such as Ubuntu 11.10 upwards, you'll also need to add -

cclib,-Xlinker,-cclib, and --no-as-needed to the -lflags directive. -

Xlinker is interpreted by the compiler as a directive for the system linker ldld, to

which it passes --no-as-needed. Several modern OS distributions (such as Ubuntu

11.10 onwards) con�gure the system linker to only link in libraries that directly

contain symbols used by the program. However, when we use Ctypes, those

symbols are not referenced until runtime, which results an exception due to the

library not being available.

The --no-as-needed �ag disables this behavior and ensures all the speci�ed

libraries are linked despite not being directly used. The �ag unfortunately doesn't

work everywhere (notably, Mac OS X should not have this passed to it).

Ctypes wouldn't be very useful if it were limited to only de�ning simple C types, of course. It

provides full support for C pointer arithmetic, pointer conversions, and reading and writing

through pointers, using OCaml functions as function pointers to C code, as well as struct and

union de�nitions.

We'll go over some of these features in more detail for the remainder of the chapter by using

some POSIX date functions as running examples.

BASIC SCALAR C TYPESBASIC SCALAR C TYPES

First, let's look at how to de�ne basic scalar C types. Every C type is represented by an OCaml

equivalent via the single type de�nition:

type 'a typ

OCaml ∗ ctypes/ctypes.mli ∗ all code

Ctypes.typ is the type of values that represents C types to OCaml. There are two types

associated with each instance of typ:

The C type used to store and pass values to the foreign library.

The corresponding OCaml type. The 'a type parameter contains the OCaml type such that a

value of type t typ is used to read and write OCaml values of type t.

There are various other uses of typ values within Ctypes, such as:

Constructing function types for binding native functions

Constructing pointers for reading and writing locations in C-managed storage

Describing component �elds of structures, unions, and arrays

Here are the de�nitions for most of the standard C99 scalar types, including some platform-

dependent ones:

val void : unit typ
val char : char typ
val schar : int typ
val short : int typ
val int : int typ
val long : long typ
val llong : llong typ
val nativeint : nativeint typ

val int8_t : int typ
val int16_t : int typ
val int32_t : int32 typ
val int64_t : int64 typ
val uchar : uchar typ
val uchar : uchar typ
val uint8_t : uint8 typ
val uint16_t : uint16 typ
val uint32_t : uint32 typ
val uint64_t : uint64 typ
val size_t : size_t typ
val ushort : ushort typ
val uint : uint typ
val ulong : ulong typ

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 5/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

val ullong : ullong typ

val float : float typ
val double : float typ

val complex32 : Complex.t typ
val complex64 : Complex.t typ

OCaml ∗ ctypes/ctypes.mli , continued (part 1) ∗ all code

These values are all of type 'a typ, where the value name (e.g., void) tells you the C type and the

'a component (e.g., unit) is the OCaml representation of that C type. Most of the mappings are

straightforward, but some of them need a bit more explanation:

Void values appear in OCaml as the unit type. Using void in an argument or result type

speci�cation produces an OCaml function that accepts or returns unit. Dereferencing a

pointer to void is an error, as in C, and will raise the IncompleteType exception.

The C size_t type is an alias for one of the unsigned integer types. The actual size and

alignment requirements for size_t varies between platforms. Ctypes provides an OCaml

size_t type that is aliased to the appropriate integer type.

OCaml only supports double-precision �oating-point numbers, and so the C float and

double types both map onto the OCaml float type, and the C float complex and double

complex types both map onto the OCaml double-precision Complex.t type.

POINTERS AND ARRAYSPOINTERS AND ARRAYS

Pointers are at the heart of C, so they are necessarily part of Ctypes, which provides support for

pointer arithmetic, pointer conversions, reading and writing through pointers, and passing and

returning pointers to and from functions.

We've already seen a simple use of pointers in the Ncurses example. Let's start a new example by

binding the following POSIX functions:

time_t time(time_t *);
double difftime(time_t, time_t);
char *ctime(const time_t *timep);

C ∗ ffi/posix_headers.h ∗ all code

The time function returns the current calendar time and is a simple start. The �rst step is to open

some of the Ctypes modules:

Ctypes

The Ctypes module provides functions for describing C types in OCaml.

PosixTypes

The PosixTypes module includes some extra POSIX-speci�c types (such as time_t).

Foreign

The Foreign module exposes the foreign function that makes it possible to invoke C functions.

We can now create a binding to time directly from the toplevel.

#require "ctypes.foreign" ;;

#require "ctypes.top" ;;

No such package: ctypes.top

open Ctypes ;;

open PosixTypes ;;

open Foreign ;;

let time = foreign "time" (ptr time_t @-> returning time_t) ;;
val time : time_t ptr -> time_t = <fun>

OCaml Utop ∗ ffi/posix.topscript ∗ all code

The foreign function is the main link between OCaml and C. It takes two arguments: the name

of the C function to bind, and a value describing the type of the bound function. In the time

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix_headers.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 6/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

binding, the function type speci�es one argument of type ptr time_t and a return type of

time_t.

We can now call time immediately in the same toplevel. The argument is actually optional, so

we'll just pass a null pointer that has been coerced into becoming a null pointer to time_t:

let cur_time = time (from_voidp time_t null) ;;
val cur_time : time_t = <abstr>

OCaml Utop ∗ ffi/posix.topscript , continued (part 1) ∗ all code

Since we're going to call time a few times, let's create a wrapper function that passes the null

pointer through:

let time' () = time (from_voidp time_t null) ;;
val time' : unit -> time_t = <fun>

OCaml Utop ∗ ffi/posix.topscript , continued (part 2) ∗ all code

Since time_t is an abstract type, we can't actually do anything useful with it directly. We need to

bind a second function to do anything useful with the return values from time. We'll move on to

difftime; the second C function in our prototype list:

let difftime =
 foreign "difftime" (time_t @-> time_t @-> returning double) ;;
val difftime : time_t -> time_t -> float = <fun>
let t1 =
 time' () in
 Unix.sleep 2;
 let t2 = time' () in
 difftime t2 t1 ;;
- : float = 2.

OCaml Utop ∗ ffi/posix.topscript , continued (part 3) ∗ all code

The binding to difftime above is su�cient to compare two time_t values.

Allocating Typed Memory for PointersAllocating Typed Memory for Pointers

Let's look at a slightly less trivial example where we pass a nonnull pointer to a function.

Continuing with the theme from earlier, we'll bind to the ctime function, which converts a

time_t value to a human-readable string:

let ctime = foreign "ctime" (ptr time_t @-> returning string) ;;
val ctime : time_t ptr -> string = <fun>

OCaml Utop ∗ ffi/posix.topscript , continued (part 4) ∗ all code

The binding is continued in the toplevel to add to our growing collection. However, we can't just

pass the result of time to ctime:

ctime (time' ()) ;;
Characters 7-15:
Error: This expression has type time_t but an expression was expected of type
 time_t ptr

OCaml Utop ∗ ffi/posix.topscript , continued (part 5) ∗ all code

This is because ctime needs a pointer to the time_t rather than passing it by value. We thus

need to allocate some memory for the time_t and obtain its memory address:

let t_ptr = allocate time_t (time' ()) ;;
val t_ptr : time_t ptr = <abstr>

OCaml Utop ∗ ffi/posix.topscript , continued (part 6) ∗ all code

The allocate function takes the type of the memory to be allocated and the initial value and it

returns a suitably typed pointer. We can now call ctime passing the pointer as an argument:

ctime t_ptr ;;
- : string = "Tue Nov 5 08:51:55 2013\n"

OCaml Utop ∗ ffi/posix.topscript , continued (part 7) ∗ all code

Using Views to Map Complex ValuesUsing Views to Map Complex Values

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 7/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

While scalar types typically have a 1:1 representation, other C types require extra work to convert

them into OCaml. Views create new C type descriptions that have special behavior when used to

read or write C values.

We've already used one view in the de�nition of ctime earlier. The string view wraps the C type

char * (written in OCaml as ptr char) and converts between the C and OCaml string

representations each time the value is written or read.

Here is the type signature of the Ctypes.view function:

val view :
 read:('a -> 'b) ->
 write:('b -> 'a) ->
 'a typ -> 'b typ

OCaml ∗ ctypes/ctypes.mli , continued (part 2) ∗ all code

Ctypes has some internal low-level conversion functions that map between an OCaml string

and a C character bu�er by copying the contents into the respective data structure. They have the

following type signature:

val string_of_char_ptr : char ptr -> string
val char_ptr_of_string : string -> char ptr

OCaml ∗ ctypes/ctypes.mli , continued (part 3) ∗ all code

Given these functions, the de�nition of the Ctypes.string value that uses views is quite simple:

let string =
 view (char ptr)
 ~read:string_of_char_ptr
 ~write:char_ptr_of_string

OCaml ∗ ctypes/ctypes_impl.ml ∗ all code

The type of this string function is a normal typ with no external sign of the use of the view

function:

val string : string.typ

OCaml ∗ ctypes/ctypes.mli , continued (part 4) ∗ all code

OCaml Strings Versus C Character Bu�ersOCaml Strings Versus C Character Bu�ers

Although OCaml strings may look like C character bu�ers from an interface

perspective, they're very di�erent in terms of their memory representations.

OCaml strings are stored in the OCaml heap with a header that explicitly de�nes

their length. C bu�ers are also �xed-length, but by convention, a C string is

terminated by a null (a \0 byte) character. The C string functions calculate their

length by scanning the bu�er until the �rst null character is encountered.

This means that you need to be careful that OCaml strings that you pass to C

functions don't contain any null values, since the �rst occurrence of a null

character will be treated as the end of the C string. Ctypes also defaults to a copying

interface for strings, which means that you shouldn't use them when you want the

library to mutate the bu�er in-place. In that situation, use the Ctypes Bigarray

support to pass memory by reference instead.

STRUCTS AND UNIONSSTRUCTS AND UNIONS

The C constructs struct and union make it possible to build new types from existing types.

Ctypes contains counterparts that work similarly.

De�ning a StructureDe�ning a Structure

Let's improve the timer function that we wrote earlier. The POSIX function gettimeofday

retrieves the time with microsecond resolution. The signature of gettimeofday is as follows,

including the structure de�nitions:

struct timeval {
 long tv_sec;
 long tv_usec;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes_impl.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 8/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

};

int gettimeofday(struct timeval *, struct timezone *tv);

C ∗ ffi/timeval_headers.h ∗ all code

Using Ctypes, we can describe this type as follows in our toplevel, continuing on from the

previous de�nitions:

type timeval ;;
type timeval
let timeval : timeval structure typ = structure "timeval" ;;
val timeval : timeval structure typ = <abstr>

OCaml Utop ∗ ffi/posix.topscript , continued (part 8) ∗ all code

The �rst command de�nes a new OCaml type timeval that we'll use to instantiate the OCaml

version of the struct. This is a phantom type that exists only to distinguish the underlying C type

from other pointer types. The particular timeval structure now has a distinct type from other

structures we de�ne elsewhere, which helps to avoid getting them mixed up.

The second command calls structure to create a fresh structure type. At this point, the structure

type is incomplete: we can add �elds but cannot yet use it in foreign calls or use it to create

values.

Adding Fields to StructuresAdding Fields to Structures

The timeval structure de�nition still doesn't have any �elds, so we need to add those next:

let tv_sec = field timeval "tv_sec" long ;;
Characters 14-19:
Error: Unbound value field
let tv_usec = field timeval "tv_usec" long ;;
Characters 14-19:
Error: Unbound value field
seal timeval ;;
Exception: Ctypes_raw.Ffi_internal_error("FFI_BAD_TYPEDEF").

OCaml Utop ∗ ffi/posix.topscript , continued (part 9) ∗ all code

The field function appends a �eld to the structure, as shown with tv_sec and tv_usec.

Structure �elds are typed accessors that are associated with a particular structure, and they

correspond to the labels in C.

Every �eld addition mutates the structure variable and records a new size (the exact value of

which depends on the type of the �eld that was just added). Once we seal the structure, we will

be able to create values using it, but adding �elds to a sealed structure is an error.

Incomplete Structure De�nitionsIncomplete Structure De�nitions

Since gettimeofday needs a struct timezone pointer for its second argument, we also need to

de�ne a second structure type:

type timezone ;;
type timezone
let timezone : timezone structure typ = structure "timezone" ;;
val timezone : timezone structure typ = <abstr>

OCaml Utop ∗ ffi/posix.topscript , continued (part 10) ∗ all code

We don't ever need to create struct timezone values, so we can leave this struct as incomplete

without adding any �elds or sealing it. If you ever try to use it in a situation where its concrete

size needs to be known, the library will raise an IncompleteType exception.

We're �nally ready to bind to gettimeofday now:

let gettimeofday = foreign "gettimeofday"
 (ptr timeval @-> ptr timezone @-> returning_checking_errno int) ;;
val gettimeofday : timeval structure ptr -> timezone structure ptr -> int =
 <fun>

OCaml Utop ∗ ffi/posix.topscript , continued (part 11) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/timeval_headers.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 9/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

There's one other new feature here: the returning_checking_errno function behaves like

returning, except that it checks whether the bound C function modi�es the C error �ag. Changes

to errno are mapped into OCaml exceptions and raise a Unix.Unix_error exception just as the

standard library functions do.

As before, we can create a wrapper to make gettimeofday easier to use. The functions make,

addr, and getf create a structure value, retrieve the address of a structure value, and retrieve the

value of a �eld from a structure:

let gettimeofday' () =
 let tv = make timeval in
 ignore(gettimeofday (addr tv) (from_voidp timezone null));
 let secs = Signed.Long.(to_int (getf tv tv_sec)) in
 let usecs = Signed.Long.(to_int (getf tv tv_usec)) in
 Pervasives.(float secs +. float usecs /. 1000000.0) ;;
Characters 153-159:
Error: Unbound value tv_sec
gettimeofday' () ;;
Characters -1-13:
Error: Unbound value gettimeofday'
Did you mean gettimeofday?

OCaml Utop ∗ ffi/posix.topscript , continued (part 12) ∗ all code

You need to be a little careful not to get all the open modules mixed up here. Both Pervasives

and Ctypes de�ne di�erent float functions. The Ctypes module we opened up earlier overrides

the Pervasives de�nition. As seen previously though, you just need to locally open Pervasives

again to bring the usual float function back in scope.

Recap: A time-printing commandRecap: A time-printing command

We built up a lot of bindings in the previous section, so let's recap them with a complete example

that ties it together with a command-line frontend:

open Core.Std
open Ctypes
open PosixTypes
open Foreign

let time = foreign "time" (ptr time_t @-> returning time_t)
let difftime = foreign "difftime" (time_t @-> time_t @-> returning double)
let ctime = foreign "ctime" (ptr time_t @-> returning string)

type timeval
let timeval : timeval structure typ = structure "timeval"
let tv_sec = timeval *:* long
let tv_usec = timeval *:* long
let () = seal timeval

type timezone
let timezone : timezone structure typ = structure "timezone"

let gettimeofday = foreign "gettimeofday"
 (ptr timeval @-> ptr timezone @-> returning_checking_errno int)

let time' () = time (from_voidp time_t null)

let gettimeofday' () =
 let tv = make timeval in
 ignore(gettimeofday (addr tv) (from_voidp timezone null));
 let secs = Signed.Long.(to_int (getf tv tv_sec)) in
 let usecs = Signed.Long.(to_int (getf tv tv_usec)) in
 Pervasives.(float secs +. float usecs /. 1_000_000.)

let float_time () = printf "%f%!\n" (gettimeofday' ())

let ascii_time () =
 let t_ptr = allocate time_t (time' ()) in
 printf "%s%!" (ctime t_ptr)

let () =
 let open Command in
 basic ~summary:"Display the current time in various formats"
 Spec.(empty +> flag "-a" no_arg ~doc:" Human-readable output format")
 (fun human -> if human then ascii_time else float_time)
 |> Command.run

OCaml ∗ ffi/datetime.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/posix.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/datetime.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 10/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

This can be compiled and run in the usual way:

$ corebuild -pkg ctypes.foreign datetime.native
$./datetime.native
1383603807.642986
$./datetime.native -a
Mon Nov 4 17:23:27 2013

Terminal ∗ ffi/build_datetime.out ∗ all code

Why Do We Need to Use returning?Why Do We Need to Use returning?

The alert reader may be curious about why all these function de�nitions have to be terminated by

returning:

(* correct types *)
val time: ptr time_t @-> returning time_t
val difftime: time_t @-> time_t @-> returning double

OCaml ∗ ffi/return_frag.ml ∗ all code

The returning function may appear super�uous here. Why couldn't we simply give the types as

follows?

(* incorrect types *)
val time: ptr time_t @-> time_t
val difftime: time_t @-> time_t @-> double

OCaml ∗ ffi/return_frag.ml , continued (part 1) ∗ all code

The reason involves higher types and two di�erences between the way that functions are treated

in OCaml and C. Functions are �rst-class values in OCaml, but not in C. For example, in C it is

possible to return a function pointer from a function, but not to return an actual function.

Secondly, OCaml functions are typically de�ned in a curried style. The signature of a two-

argument function is written as follows:

val curried : int -> int -> int

OCaml ∗ ffi/return_frag.ml , continued (part 2) ∗ all code

but this really means:

val curried : int -> (int -> int)

OCaml ∗ ffi/return_frag.ml , continued (part 3) ∗ all code

and the arguments can be supplied one at a time to create a closure. In contrast, C functions

receive their arguments all at once. The equivalent C function type is the following:

int uncurried_C(int, int);

C ∗ ffi/return_c_frag.h ∗ all code

and the arguments must always be supplied together:

uncurried_C(3, 4);

C ∗ ffi/return_c_frag.c ∗ all code

A C function that's written in curried style looks very di�erent:

/* A function that accepts an int, and returns a function
 pointer that accepts a second int and returns an int. */
typedef int (function_t)(int);
function_t *curried_C(int);

/* supply both arguments */
curried_C(3)(4);

/* supply one argument at a time */
function_t *f = curried_C(3); f(4);

C ∗ ffi/return_c_uncurried.c ∗ all code

The OCaml type of uncurried_C when bound by Ctypes is int -> int -> int: a two-argument

function. The OCaml type of curried_C when bound by ctypes is int -> (int -> int): a

one-argument function that returns a one-argument function.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_datetime.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_frag.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_frag.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_frag.c
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/return_c_uncurried.c
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 11/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

In OCaml, of course, these types are absolutely equivalent. Since the OCaml types are the same

but the C semantics are quite di�erent, we need some kind of marker to distinguish the cases.

This is the purpose of returning in function de�nitions.

De�ning ArraysDe�ning Arrays

Arrays in C are contiguous blocks of the same type of value. Any of the basic types de�ned

previously can be allocated as blocks via the Array module:

module Array : sig
 type 'a t = 'a array

 val get : 'a t -> int -> 'a
 val set : 'a t -> int -> 'a -> unit
 val of_list : 'a typ -> 'a list -> 'a t
 val to_list : 'a t -> 'a list
 val length : 'a t -> int
 val start : 'a t -> 'a ptr
 val from_ptr : 'a ptr -> int -> 'a t
 val make : 'a typ -> ?initial:'a -> int -> 'a t
end

OCaml ∗ ctypes/ctypes.mli , continued (part 5) ∗ all code

The array functions are similar to those in the standard library Array module except that they

operate on arrays stored using the �at C representation rather than the OCaml representation

described in Chapter 20, Memory Representation of Values.

As with standard OCaml arrays, the conversion between arrays and lists requires copying the

values, which can be expensive for large data structures. Notice that you can also convert an

array into a ptr pointer to the head of the underlying bu�er, which can be useful if you need to

pass the pointer and size arguments separately to a C function.

Unions in C are named structures that can be mapped onto the same underlying memory. They

are also fully supported in Ctypes, but we won't go into more detail here.

Pointer Operators for Dereferencing and ArithmeticPointer Operators for Dereferencing and Arithmetic

Ctypes de�nes a number of operators that let you manipulate pointers and arrays just as you

would in C. The Ctypes equivalents do have the bene�t of being more strongly typed, of course

(see Table 19.1, “Operators for manipulating pointers and arrays”).

Table 19.1. Operators for manipulating pointers and arraysTable 19.1. Operators for manipulating pointers and arrays

OperatorOperator PurposePurpose
!@ p Dereference the pointer p.
p <-@ v Write the value v to the address p.
p +@ n If p points to an array element, then compute the address of the nth next element.
p -@ n If p points to an array element, then compute the address of the nth previous

element.

There are also other useful nonoperator functions available (see the Ctypes documentation), such

as pointer di�erencing and comparison.

PASSING FUNCTIONS TO CPASSING FUNCTIONS TO C

It's also straightforward to pass OCaml function values to C. The C standard library function

qsort sorts arrays of elements using a comparison function passed in as a function pointer. The

signature for qsort is:

void qsort(void *base, size_t nmemb, size_t size,
 int(*compar)(const void *, const void *));

C ∗ ffi/qsort.h ∗ all code

C programmers often use typedef to make type de�nitions involving function pointers easier to

read. Using a typedef, the type of qsort looks a little more palatable:

typedef int(compare_t)(const void *, const void *);

void qsort(void *base, size_t nmemb, size_t size, compare_t *);

C ∗ ffi/qsort_typedef.h ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ctypes/ctypes.mli
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.h
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort_typedef.h
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 12/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

This also happens to be a close mapping to the corresponding Ctypes de�nition. Since type

descriptions are regular values, we can just use let in place of typedef and end up with working

OCaml bindings to qsort:

#require "ctypes.foreign" ;;

open Ctypes ;;

open PosixTypes ;;

open Foreign ;;

let compare_t = ptr void @-> ptr void @-> returning int ;;
val compare_t : (unit ptr -> unit ptr -> int) fn = <abstr>
let qsort = foreign "qsort"
 (ptr void @-> size_t @-> size_t @->
 funptr compare_t @-> returning void) ;;
val qsort :
 unit ptr -> size_t -> size_t -> (unit ptr -> unit ptr -> int) -> unit =
 <fun>

OCaml Utop ∗ ffi/qsort.topscript ∗ all code

We only use compare_t once (in the qsort de�nition), so you can choose to inline it in the OCaml

code if you prefer. As the type shows, the resulting qsort value is a higher-order function, since

the fourth argument is itself a function. As before, let's de�ne a wrapper function to make qsort

easier to use. The second and third arguments to qsort specify the length (number of elements)

of the array and the element size.

Arrays created using Ctypes have a richer runtime structure than C arrays, so we don't need to

pass size information around. Furthermore, we can use OCaml polymorphism in place of the

unsafe void ptr type.

Example: A Command-Line QuicksortExample: A Command-Line Quicksort

The following is a command-line tool that uses the qsort binding to sort all of the integers

supplied on the standard input:

open Core.Std
open Ctypes
open PosixTypes
open Foreign

let compare_t = ptr void @-> ptr void @-> returning int

let qsort = foreign "qsort"
 (ptr void @-> size_t @-> size_t @-> funptr compare_t @->
 returning void)

let qsort' cmp arr =
 let open Unsigned.Size_t in
 let ty = Array.element_type arr in
 let len = of_int (Array.length arr) in
 let elsize = of_int (sizeof ty) in
 let start = to_voidp (Array.start arr) in
 let compare l r = cmp (!@ (from_voidp ty l)) (!@ (from_voidp ty r)) in
 qsort start len elsize compare;
 arr

let sort_stdin () =
 In_channel.input_lines stdin
 |> List.map ~f:int_of_string
 |> Array.of_list int
 |> qsort' Int.compare
 |> Array.to_list
 |> List.iter ~f:(fun a -> printf "%d\n" a)

let () =
 Command.basic ~summary:"Sort integers on standard input"
 Command.Spec.empty sort_stdin
 |> Command.run

OCaml ∗ ffi/qsort.ml ∗ all code

Compile it in the usual way with corebuild and test it against some input data, and also build the

inferred interface so we can examine it more closely:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 13/14

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

$ corebuild -pkg ctypes.foreign qsort.native
$ cat input.txt
5
3
2
1
4
$./qsort.native < input.txt
1
2
3
4
5
$ corebuild -pkg ctypes.foreign qsort.inferred.mli
$ cp _build/qsort.inferred.mli qsort.mli

Terminal ∗ ffi/build_qsort.out ∗ all code

The inferred interface shows us the types of the raw qsort binding and also the qsort' wrapper

function:

val compare_t : (unit Ctypes.ptr -> unit Ctypes.ptr -> int) Ctypes.fn
val qsort :
 unit Ctypes.ptr ->
 PosixTypes.size_t ->
 PosixTypes.size_t -> (unit Ctypes.ptr -> unit Ctypes.ptr -> int) -> unit
val qsort' : ('a -> 'a -> int) -> 'a Ctypes.array -> 'a Ctypes.array
val sort_stdin : unit -> unit

OCaml ∗ ffi/qsort.mli ∗ all code

The qsort' wrapper function has a much more canonical OCaml interface than the raw binding.

It accepts a comparator function and a Ctypes array, and returns the same Ctypes array. It's not

strictly required that it returns the array, since it modi�es it in-place, but it makes it easier to

chain the function using the |> operator (as sort_stdin does in the example).

Using qsort' to sort arrays is straightforward. Our example code reads the standard input as a

list, converts it to a C array, passes it through qsort, and outputs the result to the standard output.

Again, remember to not confuse the Ctypes.Array module with the Core.Std.Array module:

the former is in scope since we opened Ctypes at the start of the �le.

Lifetime of Allocated CtypesLifetime of Allocated Ctypes

Values allocated via Ctypes (i.e., using allocate, Array.make, and so on) will not be garbage-

collected as long as they are reachable from OCaml values. The system memory they occupy is

freed when they do become unreachable, via a �nalizer function registered with the garbage

collector (GC).

The de�nition of reachability for Ctypes values is a little di�erent from conventional OCaml

values, though. The allocation functions return an OCaml-managed pointer to the value, and as

long as some derivative pointer is still reachable by the GC, the value won't be collected.

"Derivative" means a pointer that's computed from the original pointer via arithmetic, so a

reachable reference to an array element or a structure �eld protects the whole object from

collection.

A corollary of the preceding rule is that pointers written into the C heap don't have any e�ect on

reachability. For example, if you have a C-managed array of pointers to structs, then you'll need

some additional way of keeping the structs themselves around to protect them from collection.

You could achieve this via a global array of values on the OCaml side that would keep them live

until they're no longer needed.

Functions passed to C have similar considerations regarding lifetime. On the OCaml side,

functions created at runtime may be collected when they become unreachable. As we've seen,

OCaml functions passed to C are converted to function pointers, and function pointers written

into the C heap have no e�ect on the reachability of the OCaml functions they reference. With

qsort things are straightforward, since the comparison function is only used during the call to

qsort itself. However, other C libraries may store function pointers in global variables or

elsewhere, in which case you'll need to take care that the OCaml functions you pass to them

aren't prematurely garbage-collected.

LEARNING MORE ABOUT C BINDINGSLEARNING MORE ABOUT C BINDINGS

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/ffi/build_qsort.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/ffi/qsort.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 19. Foreign Function Interface / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html 14/14

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The Ctypes distribution contains a number of larger-scale examples, including:

Bindings to the POSIX fts API, which demonstrates C callbacks more comprehensively

A more complete Ncurses binding than the example we opened the chapter with

A comprehensive test suite that covers the complete library, and can provide useful snippets

for your own bindings

This chapter hasn't really needed you to understand the innards of OCaml at all. Ctypes does its

best to make function bindings easy, but the rest of this part will also �ll you in about interactions

with OCaml memory layout in Chapter 20, Memory Representation of Values and automatic

memory management in Chapter 21, Understanding the Garbage Collector.

Ctypes gives OCaml programs access to the C representation of values, shielding you from the

details of the OCaml value representation, and introduces an abstraction layer that hides the

details of foreign calls. While this covers a wide variety of situations, it's sometimes necessary to

look behind the abstraction to obtain �ner control over the details of the interaction between the

two languages.

You can �nd more information about the C interface in several places:

The standard OCaml foreign function interface allows you to glue OCaml and C together from

the other side of the boundary, by writing C functions that operate on the OCaml

representation of values. You can �nd details of the standard interface in the OCaml manual

and in the book Developing Applications with Objective Caml.

Florent Monnier maintains an excellent online OCaml that provides examples of how to call

OCaml functions from C. This covers a wide variety of OCaml data types and also more

complex callbacks between C and OCaml.

SWIG is a tool that connects programs written in C/C++ to a variety of higher-level

programming languages, including OCaml. The SWIG manual has examples of converting

library speci�cations into OCaml bindings.

Struct Memory LayoutStruct Memory Layout

The C language gives implementations a certain amount of freedom in choosing how to lay out

structs in memory. There may be padding between members and at the end of the struct, in order

to satisfy the memory alignment requirements of the host platform. Ctypes uses platform-

appropriate size and alignment information to replicate the struct layout process. OCaml and C

will have consistent views about the layout of the struct as long as you declare the �elds of a

struct in the same order and with the same types as the C library you're binding to.

However, this approach can lead to di�culties when the �elds of a struct aren't fully speci�ed in

the interface of a library. The interface may list the �elds of a structure without specifying their

order, or make certain �elds available only on certain platforms, or insert undocumented �elds

into struct de�nitions for performance reasons. For example, the struct timeval de�nition

used in this chapter accurately describes the layout of the struct on common platforms, but

implementations on some more unusual architectures include additional padding members that

will lead to strange behavior in the examples.

The Cstubs subpackage of Ctypes addresses this issue. Rather than simply assuming that struct

de�nitions given by the user accurately re�ect the actual de�nitions of structs used in C libraries,

Cstubs generates code that uses the C library headers to discover the layout of the struct. The

good news is that the code that you write doesn't need to change much. Cstubs provides

alternative implementations of the field and seal functions that you've already used to describe

struct timeval; instead of computing member o�sets and sizes appropriate for the platform,

these implementations obtain them directly from C.

The details of using Cstubs are available in the online documentation, along with instructions on

integration with autoconfautoconf platform portability instructions.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fforeign-function-interface.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/ocamllabs/ocaml-ctypes
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual033.html
http://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
http://www.linux-nantes.org/~fmonnier/ocaml/ocaml-wrapping-c.html
http://www.swig.org/
https://ocamllabs.github.io/ocaml-ctypes
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html

