15/01/2019

OREILLY"

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

Chapter 1. A Guided Tour

This chapter gives an overview of OCaml by walking through a series of small examples that
cover most of the major features of the language. This should provide a sense of what OCaml can
do, without getting too deep into any one topic.

Throughout the book we're going to use Core, a more full-featured and capable replacement for
OCaml's standard library. We'll also use utop, a shell that lets you type in expressions and
evaluate them interactively. utop is an easier-to-use version of OCaml's standard toplevel (which
you can start by typing ocaml at the command line). These instructions will assume you're using
utop specifically.

Before getting started, make sure you have a working OCaml installation so you can try out the
examples as you read through the chapter.

OCAML AS A CALCULATOR

The first thing you need to do when using Core is to open Core.Std:

open Core.Std;;

OCaml Utop * guided-tour/main.topscript * all code

This makes the definitions in Core available and is required for many of the examples in the tour
and in the remainder of the book.

Now let's try a few simple numerical calculations:

3 + 4;;
- rint = 7
#8 / 3;;
- int = 2
3.5 +. 6.3,
- ! float = 9.5
30 000 000 / 300 _000;;
- : int = 100
sqrt 9.;;
- ! float = 3.

OCaml Utop * guided-tour/main.topscript , continued (part 1) all code

By and large, this is pretty similar to what you'd find in any programming language, but a few
things jump right out at you:

« We needed to type ; ; in order to tell the toplevel that it should evaluate an expression. This is
a peculiarity of the toplevel that is not required in standalone programs (though it is
sometimes helpful to include ; ; to improve OCaml's error reporting, by making it more
explicit where a given top-level declaration was intended to end).

« After evaluating an expression, the toplevel first prints the type of the result, and then prints
the result itself.

« Function arguments are separated by spaces instead of by parentheses and commas, which is

more like the UNIX shell than it is like traditional programming languages such as C or Java.

« OCaml allows you to place underscores in the middle of numeric literals to improve
readability. Note that underscores can be placed anywhere within a number, not just every
three digits.

« OCaml carefully distinguishes between f1loat, the type for floating-point numbers, and int,
the type for integers. The types have different literals (6. instead of 6) and different infix
operators (+. instead of +), and OCaml doesn't automatically cast between these types. This
can be a bit of a nuisance, but it has its benefits, since it prevents some kinds of bugs that
arise in other languages due to unexpected differences between the behavior of int and

float. For example, in many languages, 1 / 3iszero,but1 / 3.0 is athird. OCaml requires

you to be explicit about which operation you're doing.

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

1

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

We can also create a variable to name the value of a given expression, using the 1et keyword.
This is known as a let binding:

let x = 3 + 4;;
val x : int = 7
lety = x + x5
val y : int = 14

OCaml Utop * guided-tour/main.topscript , continued (part 2) * all code

After a new variable is created, the toplevel tells us the name of the variable (x or y), in addition to
its type (int) and value (7 or 14).

Note that there are some constraints on what identifiers can be used for variable names.
Punctuation is excluded, except for and ', and variables must start with a lowercase letter or an
underscore. Thus, these are legal:

let x7 = 3 + 4;;

val x7 : int = 7

let x_plus.y = x + y;;
val x_plus_y : int = 21
let x' = x + 1;;

val x' : int = 8

let x' = x'" + x';;

_x';;

- : int = 16

OCaml Utop * guided-tour/main.topscript , continued (part 3) all code

Note that by default, utop doesn't bother to print out variables starting with an underscore.

The following examples, however, are not legal:

let Seven = 3 + 4;;

Characters 4-9:

Error: Unbound constructor Seven

let 7x = 7;;

Characters 5-10:

Error: This expression should not be a function, the expected type 1is
int

let x-plus-y = x + y;;

Characters 4-5:
Error: Parse error: [fun_binding] expected after [ipatt] (in [let_binding])

OCaml Utop * guided-tour/main.topscript , continued (part 4) * all code

The error messages here are a little confusing, but they'll make more sense as you learn more
about the language.

FUNCTIONS AND TYPE INFERENCE
The 1et syntax can also be used to define a function:
let square x = x * x ;;

val square
square 2;;

s int -> int = <fun>

- :int = 4
square (square 2);;
- int = 16

OCaml Utop * guided-tour/main.topscript , continued (part 5) all code

Functions in OCaml are values like any other, which is why we use the 1et keyword to bind a
function to a variable name, just as we use let to bind a simple value like an integer to a variable
name. When using let to define a function, the first identifier after the 1et is the function name,
and each subsequent identifier is a different argument to the function. Thus, square is a function
with a single argument.

Now that we're creating more interesting values like functions, the types have gotten more
interesting too. int -> int is a function type, in this case indicating a function that takes an int

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

217

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

and returns an int. We can also write functions that take multiple arguments. (Note that the
following example will not work if you haven't opened core.std as was suggested earlier.)

let ratio x y =
Float.of_int x /. Float.of_int y
35
val ratio :
ratio 4 7;;
- : float = 0.571428571429

int -> int -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 6) * all code

The preceding example also happens to be our first use of modules. Here, Float.of int refers
tothe of int function contained in the F1oat module. This is different from what you might
expect from an object-oriented language, where dot-notation is typically used for accessing a
method of an object. Note that module names always start with a capital letter.

The notation for the type-signature of a multiargument function may be a little surprising at first,
but we'll explain where it comes from when we get to function currying in the section called
“Multiargument functions”. For the moment, think of the arrows as separating different
arguments of the function, with the type after the final arrow being the return value. Thus, int -
> int -> float describes a function that takes two int arguments and returns a float.

We can also write functions that take other functions as arguments. Here's an example of a
function that takes three arguments: a test function and two integer arguments. The function
returns the sum of the integers that pass the test:

let sum_if_true test first second =
(if test first then first else ©0)
+ (if test second then second else 0)
35
val sum_if _true : (int -> bool) -> int -> int -> int = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 7) all code
If we look at the inferred type signature in detail, we see that the first argument is a function that
takes an integer and returns a boolean, and that the remaining two arguments are integers. Here's

an example of this function in action:

let even x =

x mod 2 =0 ;;
val even : int -> bool = <fun>
sum_if_true even 3 4;;
- :int = 4
sum_if_true even 2 4;;
- :int = 6

OCaml Utop * guided-tour/main.topscript , continued (part 8) all code

Note that in the definition of even, we used = in two different ways: once as the part of the 1et
binding that separates the thing being defined from its definition; and once as an equality test,
when comparing x mod 2 to 0. These are very different operations despite the fact that they
share some syntax.

Type Inference

As the types we encounter get more complicated, you might ask yourself how OCaml is able to
figure them out, given that we didn't write down any explicit type information.

OCaml determines the type of an expression using a technique called type inference, by which
the type of an expression is inferred from the available type information about the components of
that expression.

As an example, let's walk through the process of inferring the type of sum _if true:

1. OCaml requires that both branches of an i f statement have the same type, so the expression
if test first then first else 0 requiresthat first must be the same type as 0, and
s0 first must be of type int. Similarly, from i f test second then second else 0 we
can infer that second has type int.

2. test is passed first as an argument. Since first has type int, the input type of test must
be int.

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

317

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html#multi-argument-functions
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

3. test first is used as the condition in an i f statement, so the return type of test must be
bool.

4. The fact that + returns int implies that the return value of sum_if true must be int.

Together, that nails down the types of all the variables, which determines the overall type of

sum_if true.

Over time, you'll build a rough intuition for how the OCaml inference engine works, which makes
it easier to reason through your programs. You can make it easier to understand the types of a
given expression by adding explicit type annotations. These annotations don't change the
behavior of an OCaml program, but they can serve as useful documentation, as well as catch
unintended type changes. They can also be helpful in figuring out why a given piece of code fails
to compile.

Here's an annotated version of sum if true:

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =
(if test x then x else 0)
+ (if test y then y else 0)

val sum_if true : (int -> bool) -> int -> int -> int = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 9) * all code

In the above, we've marked every argument to the function with its type, with the final annotation
indicating the type of the return value. Such type annotations can be placed on any expression in
an OCaml program:

Inferring Generic Types

Sometimes, there isn't enough information to fully determine the concrete type of a given value.
Consider this function.

let first_if_true test x y =
if test x then x else y

PRl
'

val first_if true : ('a -> bool) -> 'a -> 'a -> 'a = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 10) * all code

first if true takes asits arguments a function test, and two values, x and y, where x is to be
returned if test x evaluates to true, and y otherwise. So what's the type of first if true?
There are no obvious clues such as arithmetic operators or literals to tell you what the type of x
and y are. That makes it seem like one could use first if true on values of any type.

Indeed, if we look at the type returned by the toplevel, we see that rather than choose a single
concrete type, OCaml has introduced a type variable ' a to express that the type is generic. (You
can tell it's a type variable by the leading single quote mark.) In particular, the type of the test
argumentis ('a -> bool), which means that test is a one-argument function whose return
value is bool and whose argument could be of any type 'a. But, whatever type 'a is, it has to be
the same as the type of the other two arguments, x and vy, and of the return value of

first if true. Thiskind of genericity is called parametric polymorphism because it works by
parameterizing the type in question with a type variable. It is very similar to generics in C# and
Java.

The generic type of first if true allows us to write this:

let long_string s = String.length s > 6;;
val long_string : string -> bool = <fun>

first_if_true long_string "short" "loooooong";;
- : string = "loooooong"

OCaml Utop * guided-tour/main.topscript , continued (part 11) * all code
As well as this:

let big_number x = x > 3;;

val big_number : int -> bool = <fun>
first_if_true big number 4 3;;

- int = 4

OCaml Utop * guided-tour/main.topscript , continued (part 12) * all code

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 4/17

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

. A Guided Tour

. Variables and Functions
. Lists and Patterns

. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

. Files, Modules, and Programs

Chapter 1. A Guided Tour / Real World OCaml

Both long stringand big number are functions, and each is passed to first if true with
two other arguments of the appropriate type (strings in the first example, and integers in the
second). But we can't mix and match two different concrete types for 'a in the same use of

first if true:

first_if_true big_number "short" "loooooong";;
Characters 25-32:

Error: This expression has type string but an expression was expected of type
int

OCaml Utop * guided-tour/main.topscript , continued (part 13) * all code

In this example, big number requires that 'a be instantiated as int, whereas "short" and
"loooooong" require that 'a be instantiated as string, and they can't both be right at the same
time.

Type Errors Versus Exceptions

There's a big difference in OCaml (and really in any compiled language) between
errors that are caught at compile time and those that are caught at runtime. It's
better to catch errors as early as possible in the development process, and
compilation time is best of all.

Working in the toplevel somewhat obscures the difference between runtime and
compile-time errors, but that difference is still there. Generally, type errors like this
one:

let add_potato x =
X + "potato";;
Characters 28-36:
Error: This expression has type string but an expression was expected o]
int

OCaml Utop * guided-tour/main.topscript , continued (part 14) * all code

are compile-time errors (because + requires that both its arguments be of type int),
whereas errors that can't be caught by the type system, like division by zero, lead to
runtime exceptions:

let is_a _multiple x y =
xmody =0 ;;
val is_a_multiple : int -> int -> bool = <fun>
is_a_multiple 8 2;;
- : bool = true
is_a_multiple 8 0;;
Exception: Division_by zero.

OCaml Utop * guided-tour/main.topscript , continued (part 15) * all code

The distinction here is that type errors will stop you whether or not the offending
code is ever actually executed. Merely defining add_potato is an error, whereas
is_a multiple only fails when it's called, and then, only when it's called with an
input that triggers the exception.

TUPLES, LISTS, OPTIONS, AND PATTERN MATCHING
Tuples

So far we've encountered a handful of basic types like int, float, and string, as well as
function types like string -> int.But we haven't yet talked about any data structures. We'll
start by looking at a particularly simple data structure, the tuple. A tuple is an ordered collection
of values that can each be of a different type. You can create a tuple by joining values together
with a comma:

let a_tuple = (3,"three");;

val a_tuple : int * string = (3, "three")

let another_tuple = (3,"four",5.);;

val another_tuple : int * string * float = (3, "four", 5.)

OCaml Utop * guided-tour/main.topscript , continued (part 16) * all code

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

5/17

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

oain with GitHub t© view

2and add commeants

Chapter 1. A Guided Tour / Real World OCaml

(For the mathematically inclined, the * character is used because the set of all pairs of type t * s
corresponds to the Cartesian product of the set of elements of type t and the set of elements of
type s.)

You can extract the components of a tuple using OCaml's pattern-matching syntax, as shown
below:

let (x,y) = a_tuple;;
val x : int = 3
val y : string = "three"”

OCaml Utop * guided-tour/main.topscript , continued (part 17) * all code

Here, the (x, y) on the lefthand side of the 1et binding is the pattern. This pattern lets us mint
the new variables x and y, each bound to different components of the value being matched. These
can now be used in subsequent expressions:

x + String.length y;;
- :int = 8

OCaml Utop * guided-tour/main.topscript , continued (part 18) * all code

Note that the same syntax is used both for constructing and for pattern matching on tuples.

Pattern matching can also show up in function arguments. Here's a function for computing the
distance between two points on the plane, where each point is represented as a pair of floats.
The pattern-matching syntax lets us get at the values we need with a minimum of fuss:

let distance (x1,yl) (x2,y2) =
sgrt ((x1 -. x2) ** 2. +. (yl -. y2) ** 2.)
val distance : float * float -> float * float -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 19) * all code

The ** operator used above is for raising a floating-point number to a power.

This is just a first taste of pattern matching. Pattern matching is a pervasive tool in OCaml, and as
you'll see, it has surprising power.

Lists

Where tuples let you combine a fixed number of items, potentially of different types, lists let you
hold any number of items of the same type. Consider the following example:

let languages = ["OCaml";"Perl";"C"];;
val languages : string list = ["OCaml"; "Perl"; "C"]

OCaml Utop * guided-tour/main.topscript , continued (part 20) * all code
Note that you can't mix elements of different types in the same list, unlike tuples:

let numbers = [3;"four";5];;

Characters 17-23:

Error: This expression has type string but an expression was expected of type
int

OCaml Utop * guided-tour/main.topscript , continued (part 21) * all code

The List module

Core comes with a List module that has a rich collection of functions for working with lists. We
can access values from within a module by using dot notation. For example, this is how we
compute the length of a list:

List.length languages;;
- :1int = 3

OCaml Utop * guided-tour/main.topscript , continued (part 22) * all code

Here's something a little more complicated. We can compute the list of the lengths of each
language as follows:

List.map languages ~f:String.length;;
- :int list = [5; 4; 1]

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

6/17

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(Gl

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Logjim wiith GitiHiub 1o view
zand adid commenis

Chapter 1. A Guided Tour / Real World OCaml

OCaml Utop * guided-tour/main.topscript , continued (part 23) * all code

List.map takes two arguments: a list and a function for transforming the elements of that list. It
returns a new list with the transformed elements and does not modify the original list.

Notably, the function passed to List .map is passed under a labeled argument ~ £. Labeled
arguments are specified by name rather than by position, and thus allow you to change the order
in which arguments are presented to a function without changing its behavior, as you can see
here:

List.map ~f:String.length languages;;
- :int list = [5; 4; 1]

OCaml Utop * guided-tour/main.topscript , continued (part 24) * all code

We'll learn more about labeled arguments and why they're important in Chapter 2, Variables and
Functions.

Constructing lists with ::

In addition to constructing lists using brackets, we can use the operator : : for adding elements to
the front of a list:

"French" "Spanish" :: languages;;
- : string list = ["French”; "Spanish"; "OCaml"; "Perl"; "C"]

OCaml Utop * guided-tour/main.topscript , continued (part 25) * all code

Here, we're creating a new and extended list, not changing the list we started with, as you can see
below:

languages;;
- : string list = ["OCaml"; "Perl"; "C"]

OCaml Utop * guided-tour/main.topscript , continued (part 26) * all code

Semicolons Versus Commas

Unlike many other languages, OCaml uses semicolons to separate list elements in
lists rather than commas. Commas, instead, are used for separating elements in a
tuple. If you try to use commas in a list, you'll see that your code compiles but
doesn't do quite what you might expect:

["0Caml", "Perl”, "C"];;
- : (string * string * string) list = [("OCaml", "Perl", "C")]

OCaml Utop * guided-tour/main.topscript , continued (part 27) * all code

In particular, rather than a list of three strings, what we have is a singleton list
containing a three-tuple of strings.

This example uncovers the fact that commas create a tuple, even if there are no
surrounding parens. So, we can write:

#1,2,3;;
- ¢ int * int * int = (1, 2, 3)

OCaml Utop * guided-tour/main.topscript , continued (part 28) * all code

to allocate a tuple of integers. This is generally considered poor style and should be
avoided.

The bracket notation for lists is really just syntactic sugar for : :. Thus, the following declarations
are all equivalent. Note that [] is used to represent the empty list and that : : is right-associative:

[1; 25 3153

- :int list = [1; 2; 3]
#1 0 (2 0 (32 [D))ss

- :int list = [1; 2; 3]
#1 2 03 0 [1s5

- :int list = [1; 2; 3]

OCaml Utop * guided-tour/main.topscript , continued (part 29) * all code

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

77

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

4

Real World
OCaml

ey

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

The : : operator can only be used for adding one element to the front of the list, with the list
terminating at [], the empty list. There's also a list concatenation operator, ¢, which can
concatenate two lists:

[1;2;3] @ [45556]15;
- :int list = [1; 2; 3; 4; 5; 6]

OCaml Utop * guided-tour/main.topscript , continued (part 30) * all code

It's important to remember that, unlike : :, this is not a constant-time operation. Concatenating
two lists takes time proportional to the length of the first list.

List patterns using match

The elements of a list can be accessed through pattern matching. List patterns are based on the
two list constructors, [] and : :. Here's a simple example:

let my_favorite_language (my_favorite :: the_rest) =
my_favorite

Characters 25-69:

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[Jval my_favorite_language : 'a list -> 'a = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 31) * all code

By pattern matching using : :, we've isolated and named the first element of the list

(my favorite) and the remainder of the list (the_rest). If you know Lisp or Scheme, what we've
done is the equivalent of using the functions car and cdr to isolate the first element of a list and
the remainder of that list.

As you can see, however, the toplevel did not like this definition and spit out a warning indicating
that the pattern is not exhaustive. This means that there are values of the type in question that
won't be captured by the pattern. The warning even gives an example of a value that doesn't
match the provided pattern, in particular, [], the empty list. If we try to run

my favorite language, we'll see that it works on nonempty list and fails on empty ones:

my_favorite_language ["English";"Spanish";"French"];;
- : string = "English”

my_favorite_language [];;

Exception: (Match_failure //toplevel// © 25).

OCaml Utop * guided-tour/main.topscript , continued (part 32) * all code

You can avoid these warnings, and more importantly make sure that your code actually handles
all of the possible cases, by using a match statement instead.

A match statement is a kind of juiced-up version of the switch statement found in C and Java. It
essentially lets you list a sequence of patterns, separated by pipe characters (|). (The one before
the first case is optional.) The compiler then dispatches to the code following the first matching
pattern. As we've already seen, the pattern can mint new variables that correspond to
substructures of the value being matched.

Here's a new version of my favorite language thatusesmatch and doesn't trigger a compiler
warning:

let my_favorite_language languages =
match languages with
| first :: the_rest -> first
| [] -> "oCaml" (* A good default! *)
val my_favorite_language : string Llist -> string = <fun>
my_favorite_language ["English";"Spanish";"French"];;
- : string = "English”
my_favorite_language [];;
- : string = "OCaml"

OCaml Utop * guided-tour/main.topscript , continued (part 33) * all code

The preceding code also includes our first comment. OCaml comments are bounded by (* and *)
and can be nested arbitrarily and cover multiple lines. There's no equivalent of C++-style single-

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

8/17

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

line comments that are prefixed by //.

The first pattern, first :: the rest, covers the case where languages has at least one

element, since every list except for the empty list can be written down with one or more : :'s. The

second pattern, [], matches only the empty list. These cases are exhaustive, since every list is
either empty or has at least one element, a fact that is verified by the compiler.

Recursive list functions

Recursive functions, or functions that call themselves, are an important technique in OCaml and
in any functional language. The typical approach to designing a recursive function is to separate

the logic into a set of base cases that can be solved directly and a set of inductive cases, where the

function breaks the problem down into smaller pieces and then calls itself to solve those smaller
problems.

When writing recursive list functions, this separation between the base cases and the inductive
cases is often done using pattern matching. Here's a simple example of a function that sums the
elements of a list:

let rec sum 1 =
match 1 with
| [1->0 (* base case *)
| hd :: tl -> hd + sum t1 (* inductive case *)
55
val sum : int list -> int = <fun>
sum [1;2;3];;
- :int = 6

OCaml Utop * guided-tour/main.topscript , continued (part 34) * all code

Following the common OCaml idiom, we use hd to refer to the head of the list and t1 to refer to
the tail. Note that we had to use the rec keyword to allow sum to refer to itself. As you might
imagine, the base case and inductive case are different arms of the match.

Logically, you can think of the evaluation of a simple recursive function like sum almost as if it
were a mathematical equation whose meaning you were unfolding step by step:

sum [1;2;3]

=1+ sum [2;3]
=1+ (2 + sum [3])
=1+ (2+ (3 +sumT[]))
=1+ (2+ (3 +0))
=1+ (2 + 3)

=1+5

=6

OCaml * guided-tour/recursion.ml = all code

This suggests a reasonable mental model for what OCaml is actually doing to evaluate a recursive
function.

We can introduce more complicated list patterns as well. Here's a function for removing
sequential duplicates:

let rec destutter list =
match list with
| [1->1]
| hdl :: hd2 :: t1 ->
if hdl = hd2 then destutter (hd2 :: tl)
else hdl :: destutter (hd2 :: tl)

Characters 29-171:

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
_::[]Jval destutter : 'a list -> 'a list = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 35) * all code

Again, the first arm of the match is the base case, and the second is the inductive. Unfortunately,
this code has a problem, as is indicated by the warning message. In particular, we don't handle
one-element lists. We can fix this warning by adding another case to the match:

let rec destutter list =
match list with

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

917

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/recursion.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

. A Guided Tour

. Variables and Functions
. Lists and Patterns

. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

. Files, Modules, and Programs

Chapter 1. A Guided Tour / Real World OCaml

| [1->11]
| [hd] -> [hd]
| hdl :: hd2 :: t1 ->

if hdl = hd2 then destutter (hd2 ::
else hdl :: destutter (hd2 :: tl1)

tl)

55

val destutter : 'a list -> 'a list = <fun>
destutter ["hey";"hey";"hey";"man!"];;

- : string list = ["hey"; "man!"]

OCaml Utop * guided-tour/main.topscript , continued (part 36) * all code

Note that this code used another variant of the list pattern, [hd], to match a list with a single
element. We can do this to match a list with any fixed number of elements; for example, [x;vy; z]
will match any list with exactly three elements and will bind those elements to the variables x, y,
and z.

In the last few examples, our list processing code involved a lot of recursive functions. In
practice, this isn't usually necessary. Most of the time, you'll find yourself happy to use the
iteration functions found in the List module. But it's good to know how to use recursion when
you need to do something new.

Options

Another common data structure in OCaml is the option. An option is used to express that a value
might or might not be present. For example:

let divide x y =
if y = 0 then None else Some (x/y) ;;
val divide : int -> int -> int option = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 37) * all code

The function divide either returns None if the divisor is zero, or Some of the result of the division
otherwise. Some and None are constructors that let you build optional values, just as : : and [] let
you build lists. You can think of an option as a specialized list that can only have zero or one
elements.

To examine the contents of an option, we use pattern matching, as we did with tuples and lists.
Consider the following function for creating a log entry string given an optional time and a
message. If no time is provided (i.e., if the time is None), the current time is computed and used in
its place:

let log_entry maybe_time message =
let time =
match maybe_time with
| Some x -> x
| None -> Time.now ()
in
Time.to_sec_string time ~ " -- " ~ message
35
val log_entry : Time.t option -> string -> string = <fun>
log_entry (Some Time.epoch) "A long long time ago";;
- : string = "1969-12-31 19:00:00 -- A long long time ago"”
log_entry None "Up to the minute";;
- : string = "2013-11-05 08:47:56 -- Up to the minute"”

OCaml Utop * guided-tour/main.topscript , continued (part 38) * all code

This example uses Core's Time module for dealing with time, as well as the ~ operator for
concatenating strings. The concatenation operator is provided as part of the pervasives module,
which is automatically opened in every OCaml program.

Nesting lets with let and in

log entry was our first use of let to define a new variable within the body of a
function. A 1et paired with an in can be used to introduce a new binding within
any local scope, including a function body. The in marks the beginning of the scope
within which the new variable can be used. Thus, we could write:

let x = 7 in
X + X
55

- rint = 14

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

10117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

OCaml Utop * guided-tour/local_let.topscript * all code

Note that the scope of the 1et binding is terminated by the double-semicolon, so
the value of x is no longer available:

X5
Characters -1-1:
Error: Unbound value x

OCaml Utop * guided-tour/local_let.topscript , continued (part 1) * all code

We can also have multiple 1et statements in a row, each one adding a new variable
binding to what came before:

let x = 7 in

let y = x * x in
X +Yy

55

- :1int = 56

OCaml Utop * guided-tour/local_let.topscript , continued (part 2) * all code

This kind of nested 1et binding is a common way of building up a complex
expression, with each 1et naming some component, before combining them in one
final expression.

Options are important because they are the standard way in OCaml to encode a value that might
not be there; there's no such thing as a Nul1PointerException in OCaml. This is different from
most other languages, including Java and C#, where most if not all data types are nullable,
meaning that, whatever their type is, any given value also contains the possibility of being a null
value. In such languages, null is lurking everywhere.

In OCaml, however, missing values are explicit. A value of type string * string always
contains two well-defined values of type string. If you want to allow, say, the first of those to be
absent, then you need to change the type to string option * string.As we'll see in Chapter 7,
Error Handling, this explicitness allows the compiler to provide a great deal of help in making
sure you're correctly handling the possibility of missing data.

RECORDS AND VARIANTS

So far, we've only looked at data structures that were predefined in the language, like lists and
tuples. But OCaml also allows us to define new data types. Here's a toy example of a data type
representing a point in two-dimensional space:

type point2d = { x : float; y : float };;
type point2d = { x : float; y : float; }

OCaml Utop * guided-tour/main.topscript , continued (part 41) * all code

point2d is a record type, which you can think of as a tuple where the individual fields are
named, rather than being defined positionally. Record types are easy enough to construct:

#letp={x=3.;y=-4.};;
val p : point2d = {x = 3.; y = -4.}

OCaml Utop * guided-tour/main.topscript , continued (part 42) all code
And we can get access to the contents of these types using pattern matching:

let magnitude { x = x_pos; y = y_pos } =
sqrt (x_pos ** 2. +. y_pos ** 2.);;
val magnitude : point2d -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 43) * all code

The pattern match here binds the variable x_pos to the value contained in the x field, and the
variable y_pos to the value in the y field.

We can write this more tersely using what's called field punning. In particular, when the name of
the field and the name of the variable it is bound to coincide, we don't have to write them both
down. Using this, our magnitude function can be rewritten as follows:

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml

let magnitude { x; y } = sqrt (x ** 2. +. y ** 2.);;
val magnitude : point2d -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 44) * all code
Alternatively, we can use dot notation for accessing record fields:

let distance vl v2 =
magnitude { x = vl.x -. v2.x; y = vl.y -. v2.y };;
val distance : point2d -> point2d -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 45) * all code

And we can of course include our newly defined types as components in larger types. Here, for
example, are some types for modeling different geometric objects that contain values of type
point2d:

type circle_desc = { center: point2d; radius: float }
type rect_desc = { lower_left: point2d; width: float; height: float }
type segment_desc = { endpointl: point2d; endpoint2: point2d } ;;
type circle_desc = { center : point2d; radius : float; }
type rect_desc = { lower_Lleft : point2d; width : float; height : float; }
type segment_desc = { endpointl : point2d; endpoint2 : point2d; }

OCaml Utop * guided-tour/main.topscript , continued (part 46) * all code

Now, imagine that you want to combine multiple objects of these types together as a description
of a multiobject scene. You need some unified way of representing these objects together in a
single type. One way of doing this is using a variant type:

type scene_element =

| Circle of circle_desc
| Rect of rect_desc
| Segment of segment_desc

55

type scene_element =

Circle of circle_desc

| Rect of rect_desc

| Segment of segment_desc

OCaml Utop * guided-tour/main.topscript , continued (part 47) * all code

The | character separates the different cases of the variant (the first | is optional), and each case
has a capitalized tag, like Circle, Rect or Segment, to distinguish that case from the others.

Here's how we might write a function for testing whether a point is in the interior of some
element of a list of scene elements:

let is_inside_scene_element point scene_element =
match scene_element with
| Circle { center; radius } ->
distance center point < radius
| Rect { lower_left; width; height } ->
point.x > lower_left.x && point.x < lower_left.x +. width
&& point.y > lower_left.y && point.y < lower_left.y +. height
| Segment { endpointl; endpoint2 } -> false
35
val is_inside_scene_element : point2d -> scene_element -> bool = <fun>
let is_inside_scene point scene =
List.exists scene
~f:(fun el -> is_inside_scene_element point el)
55
val is_inside_scene : point2d -> scene_element list -> bool = <fun>
is_inside_scene {x=3.;y=7.}

[Circle {center = {x=4.;y= 4.}; radius = 0.5 } 1;;
- : bool = false
is_inside_scene {x=3.;y=7.}
[Circle {center = {x=4.;y= 4.}; radius = 5.0 } 1;;

- : bool = true

OCaml Utop * guided-tour/main.topscript , continued (part 48) * all code

You might at this point notice that the use of match here is reminiscent of how we used match
with option and 1ist. This is no accident: option and 1ist are really just examples of variant
types that happen to be important enough to be defined in the standard library (and in the case of
lists, to have some special syntax).

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

12117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

y

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

Chapter 1. A Guided Tour / Real World OCaml

We also made our first use of an anonymous function in the call to List . exists. Anonymous
functions are declared using the fun keyword, and don't need to be explicitly named. Such
functions are common in OCaml, particularly when using iteration functions like List .exists.

The purpose of List.exists is to check if there are any elements of the list in question on which
the provided function evaluates to true. In this case, we're using List .exists to check if there
is a scene element within which our point resides.

IMPERATIVE PROGRAMMING

The code we've written so far has been almost entirely pure or functional, which roughly
speaking means that the code in question doesn't modify variables or values as part of its
execution. Indeed, almost all of the data structures we've encountered are immutable, meaning
there's no way in the language to modify them at all. This is a quite different style from imperative
programming, where computations are structured as sequences of instructions that operate by
making modifications to the state of the program.

Functional code is the default in OCaml, with variable bindings and most data structures being
immutable. But OCaml also has excellent support for imperative programming, including
mutable data structures like arrays and hash tables, and control-flow constructs like for and
while loops.

Arrays

Perhaps the simplest mutable data structure in OCaml is the array. Arrays in OCaml are very
similar to arrays in other languages like C: indexing starts at 0, and accessing or modifying an
array element is a constant-time operation. Arrays are more compact in terms of memory
utilization than most other data structures in OCaml, including lists. Here's an example:

let numbers = [| 1; 2; 3; 4 |1;;

val numbers : int array = [[1; 2; 3; 4[]
numbers.(2) <- 4;;

- Dounit = ()
numbers;;

- :int array = [[1; 2; 4; 4]]

OCaml Utop * guided-tour/main.topscript , continued (part 49) * all code

The . (i) syntax is used to refer to an element of an array, and the <- syntax is for modification.
Because the elements of the array are counted starting at zero, element . (2) is the third element.

The unit type that we see in the preceding code is interesting in that it has only one possible
value, written (). This means that a value of type unit doesn't convey any information, and so is
generally used as a placeholder. Thus, we use unit for the return value of an operation like
setting a mutable field that communicates by side effect rather than by returning a value. It's also
used as the argument to functions that don't require an input value. This is similar to the role that
void plays in languages like C and Java.

Mutable Record Fields

The array is an important mutable data structure, but it's not the only one. Records, which are
immutable by default, can have some of their fields explicitly declared as mutable. Here's a small
example of a data structure for storing a running statistical summary of a collection of numbers.

type running_sum =
{ mutable sum: float;
mutable sum_sq: float; (* sum of squares *)
mutable samples: int;
¥
55
type running_sum = {
mutable sum : float;
mutable sum_sq : float;
mutable samples : 1int;

}

OCaml Utop * guided-tour/main.topscript , continued (part 50) * all code

The fields in running_sum are designed to be easy to extend incrementally, and sufficient to
compute means and standard deviations, as shown in the following example. Note that there are
two let bindings in a row without a double semicolon between them. That's because the double
semicolon is required only to tell utop to process the input, not to separate two declarations:

13117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

(4.

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Login with GitiHub to view
zand adid commenis

Chapter 1. A Guided Tour / Real World OCaml

let mean rsum = rsum.sum /. float rsum.samples
let stdev rsum =
sqrt (rsum.sum_sq /. float rsum.samples
-. (rsum.sum /. float rsum.samples) ** 2.) ;;
val mean : running_sum -> float = <fun>
val stdev : running_sum -> float = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 51) * all code

We use the function £1oat above, which is a convenient equivalent of Float.of int provided
by the pervasives library.

We also need functions to create and update running sums:

let create () = { sum = 9.; sum_sq = 0.; samples = 0 }
let update rsum x =
rsum.samples <- rsum.samples + 1;
rsum.sum <- rsum.sum +. X;
rsum.sum_sq <- rsum.sum_sq +. X *. X
55
val create : unit -> running_sum = <fun>
val update : running_sum -> float -> unit = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 52) * all code

create returns a running_sum corresponding to the empty set, and update rsum x changes
rsum to reflect the addition of x to its set of samples by updating the number of samples, the sum,
and the sum of squares.

Note the use of single semicolons to sequence operations. When we were working purely
functionally, this wasn't necessary, but you start needing it when you're writing imperative code.

Here's an example of create and update in action. Note that this code uses List . iter, which
calls the function ~f on each element of the provided list:

let rsum = create ();;
val rsum : running_sum = {sum = @.; sum_sq = 0.; samples = 0}
List.iter [1.;3.;2.;-7.;4.;5.] ~f:(fun x -> update rsum x);;
- Dunit = ()
mean rsum;;
- : float = 1.33333333333
stdev rsum;;
- ! float = 3.94405318873

OCaml Utop * guided-tour/main.topscript , continued (part 53) * all code

It's worth noting that the preceding algorithm is numerically naive and has poor precision in the
presence of cancellation. You can look at this Wikipedia article on algorithms for calculating
variance for more details, paying particular attention to the weighted incremental and parallel
algorithms.

Refs

We can create a single mutable value by using a ref. The ref type comes predefined in the
standard library, but there's nothing really special about it. It's just a record type with a single
mutable field called contents:

let x = { contents = 0 };;
val x : int ref = {contents = @}
x.contents <- x.contents + 1;;
- unit = ()
X33
- : int ref = {contents = 1}

OCaml Utop * guided-tour/main.topscript , continued (part 54) * all code

There are a handful of useful functions and operators defined for refs to make them more
convenient to work with:

let x = ref @ (* create a ref, i.e., { contents =0 } *) ;;

val x : int ref = {contents = 0}

Ix (* get the contents of a ref, i.e., x.contents *) ;;
- :int = 0

#x 1= Ix +1 (* assignment, i.e., x.contents <- ... *) ;;

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

14117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

R

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Login with GitiHub o view
and add comments

Chapter 1. A Guided Tour / Real World OCaml
- runit = ()
Ix ;3
- :1int = 1

OCaml Utop * guided-tour/main.topscript , continued (part 55) * all code

There's nothing magical with these operators either. You can completely reimplement the ref
type and all of these operators in just a few lines of code:

type 'a ref = { mutable contents : 'a }

let ref x = { contents = x }
let (!) r = r.contents

let (:=) r x = r.contents <- x
35

type 'a ref = { mutable contents : 'a; }

val ref : 'a -> 'a ref = <fun>
val (!) : 'aref -> 'a=<fun>
val (:=) : 'a ref -> 'a -> unit = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 56) * all code

The 'a before the ref indicates that the ref type is polymorphic, in the same way that lists are
polymorphic, meaning it can contain values of any type. The parentheses around ! and := are
needed because these are operators, rather than ordinary functions.

Even though a ref is just another record type, it's important because it is the standard way of
simulating the traditional mutable variables you'll find in most languages. For example, we can
sum over the elements of a list imperatively by calling List . iter to call a simple function on
every element of a list, using a re f to accumulate the results:

let sum list =
let sum = ref 0 in
List.iter list ~f:(fun x -> sum := lsum + Xx);
I'sum
55
val sum : int list -> int = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 57) * all code

This isn't the most idiomatic way to sum up a list, but it shows how you can use a ref in place of a
mutable variable.

For and While Loops

OCaml also supports traditional imperative control-flow constructs like for and while loops.
Here, for example, is some code for permuting an array that uses a for loop. We use the Random
module as our source of randomness. Random starts with a default seed, but you can call
Random.self init tochoose a new seed at random:

let permute array =
let length = Array.length array in
for i = 0 to length - 2 do

(* pick a j that is after i and before the end of the array *)
let j =i+ 1 + Random.int (length - i - 1) in

(* Swap 1 and j *)

let tmp = array.(i) in

array. (i) <- array.(3j);
array.(j) <- tmp
done
55
val permute : 'a array -> unit = <fun>

OCaml Utop * guided-tour/main.topscript , continued (part 58) * all code

From a syntactic perspective, you should note the keywords that distinguish a for loop: for, to,
do, and done.

Here's an example run of this code:

let ar = Array.init 20 ~f:(fun i -> i);;
val ar : int array =
[le; 1; 2; 3; 4; 5; 6; 7; 8 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19/]
permute ar;;
- D ounit = ()
ar;;

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html

15117

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Chapter 1. A Guided Tour / Real World OCaml
- :int array =
[]1; 2; 4; 6; 11; 7; 14; 9; 10; @; 13; 16; 19; 12; 17; 5; 3; 18; 8; 15[]

OCaml Utop * guided-tour/main.topscript , continued (part 59) * all code

OCaml also supports while loops, as shown in the following function for finding the position of
the first negative entry in an array. Note that while (like for) is also a keyword:

let find_first_negative_entry array =
let pos = ref 0 in
while !pos < Array.length array && array.(!pos) >= 0 do
pos := lpos + 1
done;
if lpos = Array.length array then None else Some !pos
35
val find_first_negative_entry : int array -> int option = <fun>
find_first_negative_entry [[|1;2;0;3]];;
- : int option = None
find_first_negative_entry [|1;-2;0;3|];;
- : int option = Some 1

OCaml Utop * guided-tour/main.topscript , continued (part 60) * all code

As a side note, the preceding code takes advantage of the fact that &, OCaml's And operator,
short-circuits. In particular, in an expression of the form expri ss expr2, expr2 will only be
evaluated if expr1 evaluated to true. Were it not for that, then the preceding function would result
in an out-of-bounds error. Indeed, we can trigger that out-of-bounds error by rewriting the
function to avoid the short-circuiting:

let find_first_negative_entry array =
let pos = ref 0 in
while
let pos_is_good = !pos < Array.length array in
let element_is_non_negative = array.(!pos) >= 0 in
pos_is_good && element_is_non_negative
do
pos := lpos + 1
done;
if !pos = Array.length array then None else Some !pos
35
val find_first_negative_entry : int array -> int option = <fun>
find_first_negative_entry [|1;2;0;3]|];;
Exception: (Invalid_argument "index out of bounds").

OCaml Utop * guided-tour/main.topscript , continued (part 61) * all code

The Or operator, | |, short-circuits in a similar way to ss.

A COMPLETE PROGRAM

So far, we've played with the basic features of the language via utop. Now we'll show how to
create a simple standalone program. In particular, we'll create a program that sums up a list of
numbers read in from the standard input.

Here's the code, which you can save in a file called sum.m1. Note that we don't terminate
expressions with ; ; here, since it's not required outside the toplevel:

open Core.Std

let rec read_and_accumulate accum =
let line = In_channel.input_line In_channel.stdin in
match line with
| None -> accum
| Some x -> read_and_accumulate (accum +. Float.of_string x)

let () =
printf "Total: %F\n" (read_and_accumulate 9.)

OCaml * guided-tour/sum.ml = all code

This is our first use of OCaml's input and output routines. The function read_and accumulate is
arecursive function that uses In_channel.input line toread inlines one by one from the
standard input, invoking itself at each iteration with its updated accumulated sum. Note that
input line returns an optional value, with None indicating the end of the input stream.

After read and accumulate returns, the total needs to be printed. This is done using the printf
command, which provides support for type-safe format strings, similar to what you'll find in a

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 16/17

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/sum.ml
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

.

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue
I. Language Concepts
. A Guided Tour
. Variables and Functions
. Lists and Patterns
. Files, Modules, and Programs
. Records
. Variants
. Error Handling
. Imperative Programming
. Functors

10. First-Class Modules

11. Objects

12. Classes
I1. Tools and Techniques
III. The Runtime System
Index

O 0O NOUTD WN -

Login with GitHub o view
and add comments

Chapter 1. A Guided Tour / Real World OCaml

variety of languages. The format string is parsed by the compiler and used to determine the
number and type of the remaining arguments that are required. In this case, there is a single
formatting directive, $F, so print f expects one additional argument of type float.

Compiling and Running

We'll compile our program using corebuild, a small wrapper on top of ocamlbuild, a build tool
that ships with the OCaml compiler. The corebuild script is installed along with Core, and its
purpose is to pass in the flags required for building a program with Core.

$ corebuild sum.native

Terminal * guided-tour/build_sum.out * all code

The .native suffix indicates that we're building a native-code executable, which we'll discuss
more in Chapter 4, Files, Modules, and Programs. Once the build completes, we can use the
resulting program like any command-line utility. We can feed input to sum.native by typingin a
sequence of numbers, one per line, hitting ctr1-b when we're done:

$./sum.native
1

2

3

94.5

Total: 100.5

Terminal * guided-tour/sum.out * all code

More work is needed to make a really usable command-line program, including a proper
command-line parsing interface and better error handling, all of which is covered in Chapter 14,
Command-Line Parsing.

WHERE TO GO FROM HERE

That's it for the guided tour! There are plenty of features left and lots of details to explain, but we
hope that you now have a sense of what to expect from OCaml, and that you'll be more
comfortable reading the rest of the book as a result.

< Previous Next >

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 17/17

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/build_sum.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/sum.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html

