
15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 1/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 1. A Guided TourChapter 1. A Guided Tour
This chapter gives an overview of OCaml by walking through a series of small examples that

cover most of the major features of the language. This should provide a sense of what OCaml can

do, without getting too deep into any one topic.

Throughout the book we're going to use Core, a more full-featured and capable replacement for

OCaml's standard library. We'll also use utoputop, a shell that lets you type in expressions and

evaluate them interactively. utoputop is an easier-to-use version of OCaml's standard toplevel (which

you can start by typing ocaml at the command line). These instructions will assume you're using

utoputop speci�cally.

Before getting started, make sure you have a working OCaml installation so you can try out the

examples as you read through the chapter.

OCAML AS A CALCULATOROCAML AS A CALCULATOR

The �rst thing you need to do when using Core is to open Core.Std:

open Core.Std;;

OCaml Utop ∗ guided-tour/main.topscript ∗ all code

This makes the de�nitions in Core available and is required for many of the examples in the tour

and in the remainder of the book.

Now let's try a few simple numerical calculations:

3 + 4;;
- : int = 7
8 / 3;;
- : int = 2
3.5 +. 6.;;
- : float = 9.5
30_000_000 / 300_000;;
- : int = 100
sqrt 9.;;
- : float = 3.

OCaml Utop ∗ guided-tour/main.topscript , continued (part 1) ∗ all code

By and large, this is pretty similar to what you'd �nd in any programming language, but a few

things jump right out at you:

We needed to type ;; in order to tell the toplevel that it should evaluate an expression. This is

a peculiarity of the toplevel that is not required in standalone programs (though it is

sometimes helpful to include ;; to improve OCaml's error reporting, by making it more

explicit where a given top-level declaration was intended to end).

After evaluating an expression, the toplevel �rst prints the type of the result, and then prints

the result itself.

Function arguments are separated by spaces instead of by parentheses and commas, which is

more like the UNIX shell than it is like traditional programming languages such as C or Java.

OCaml allows you to place underscores in the middle of numeric literals to improve

readability. Note that underscores can be placed anywhere within a number, not just every

three digits.

OCaml carefully distinguishes between float, the type for �oating-point numbers, and int,

the type for integers. The types have di�erent literals (6. instead of 6) and di�erent in�x

operators (+. instead of +), and OCaml doesn't automatically cast between these types. This

can be a bit of a nuisance, but it has its bene�ts, since it prevents some kinds of bugs that

arise in other languages due to unexpected di�erences between the behavior of int and

float. For example, in many languages, 1 / 3 is zero, but 1 / 3.0 is a third. OCaml requires

you to be explicit about which operation you're doing.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 2/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

We can also create a variable to name the value of a given expression, using the let keyword.

This is known as a let binding:

let x = 3 + 4;;
val x : int = 7
let y = x + x;;
val y : int = 14

OCaml Utop ∗ guided-tour/main.topscript , continued (part 2) ∗ all code

After a new variable is created, the toplevel tells us the name of the variable (x or y), in addition to

its type (int) and value (7 or 14).

Note that there are some constraints on what identi�ers can be used for variable names.

Punctuation is excluded, except for _ and ', and variables must start with a lowercase letter or an

underscore. Thus, these are legal:

let x7 = 3 + 4;;
val x7 : int = 7
let x_plus_y = x + y;;
val x_plus_y : int = 21
let x' = x + 1;;
val x' : int = 8
let _x' = x' + x';;

_x';;
- : int = 16

OCaml Utop ∗ guided-tour/main.topscript , continued (part 3) ∗ all code

Note that by default, utoputop doesn't bother to print out variables starting with an underscore.

The following examples, however, are not legal:

let Seven = 3 + 4;;
Characters 4-9:
Error: Unbound constructor Seven
let 7x = 7;;
Characters 5-10:
Error: This expression should not be a function, the expected type is
int
let x-plus-y = x + y;;

Characters 4-5:
Error: Parse error: [fun_binding] expected after [ipatt] (in [let_binding])

OCaml Utop ∗ guided-tour/main.topscript , continued (part 4) ∗ all code

The error messages here are a little confusing, but they'll make more sense as you learn more

about the language.

FUNCTIONS AND TYPE INFERENCEFUNCTIONS AND TYPE INFERENCE

The let syntax can also be used to de�ne a function:

let square x = x * x ;;
val square : int -> int = <fun>
square 2;;
- : int = 4
square (square 2);;
- : int = 16

OCaml Utop ∗ guided-tour/main.topscript , continued (part 5) ∗ all code

Functions in OCaml are values like any other, which is why we use the let keyword to bind a

function to a variable name, just as we use let to bind a simple value like an integer to a variable

name. When using let to de�ne a function, the �rst identi�er after the let is the function name,

and each subsequent identi�er is a di�erent argument to the function. Thus, square is a function

with a single argument.

Now that we're creating more interesting values like functions, the types have gotten more

interesting too. int -> int is a function type, in this case indicating a function that takes an int

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 3/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

and returns an int. We can also write functions that take multiple arguments. (Note that the

following example will not work if you haven't opened Core.Std as was suggested earlier.)

let ratio x y =
 Float.of_int x /. Float.of_int y
 ;;
val ratio : int -> int -> float = <fun>
ratio 4 7;;
- : float = 0.571428571429

OCaml Utop ∗ guided-tour/main.topscript , continued (part 6) ∗ all code

The preceding example also happens to be our �rst use of modules. Here, Float.of_int refers

to the of_int function contained in the Float module. This is di�erent from what you might

expect from an object-oriented language, where dot-notation is typically used for accessing a

method of an object. Note that module names always start with a capital letter.

The notation for the type-signature of a multiargument function may be a little surprising at �rst,

but we'll explain where it comes from when we get to function currying in the section called

“Multiargument functions”. For the moment, think of the arrows as separating di�erent

arguments of the function, with the type after the �nal arrow being the return value. Thus, int -

> int -> float describes a function that takes two int arguments and returns a float.

We can also write functions that take other functions as arguments. Here's an example of a

function that takes three arguments: a test function and two integer arguments. The function

returns the sum of the integers that pass the test:

let sum_if_true test first second =
 (if test first then first else 0)
 + (if test second then second else 0)
 ;;
val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 7) ∗ all code

If we look at the inferred type signature in detail, we see that the �rst argument is a function that

takes an integer and returns a boolean, and that the remaining two arguments are integers. Here's

an example of this function in action:

let even x =
 x mod 2 = 0 ;;
val even : int -> bool = <fun>
sum_if_true even 3 4;;
- : int = 4
sum_if_true even 2 4;;
- : int = 6

OCaml Utop ∗ guided-tour/main.topscript , continued (part 8) ∗ all code

Note that in the de�nition of even, we used = in two di�erent ways: once as the part of the let

binding that separates the thing being de�ned from its de�nition; and once as an equality test,

when comparing x mod 2 to 0. These are very di�erent operations despite the fact that they

share some syntax.

Type InferenceType Inference

As the types we encounter get more complicated, you might ask yourself how OCaml is able to

�gure them out, given that we didn't write down any explicit type information.

OCaml determines the type of an expression using a technique called type inference, by which

the type of an expression is inferred from the available type information about the components of

that expression.

As an example, let's walk through the process of inferring the type of sum_if_true:

1. OCaml requires that both branches of an if statement have the same type, so the expression

if test first then first else 0 requires that first must be the same type as 0, and

so first must be of type int. Similarly, from if test second then second else 0 we

can infer that second has type int.

2. test is passed first as an argument. Since first has type int, the input type of test must

be int.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html#multi-argument-functions
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 4/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

3. test first is used as the condition in an if statement, so the return type of test must be

bool.

4. The fact that + returns int implies that the return value of sum_if_true must be int.

Together, that nails down the types of all the variables, which determines the overall type of

sum_if_true.

Over time, you'll build a rough intuition for how the OCaml inference engine works, which makes

it easier to reason through your programs. You can make it easier to understand the types of a

given expression by adding explicit type annotations. These annotations don't change the

behavior of an OCaml program, but they can serve as useful documentation, as well as catch

unintended type changes. They can also be helpful in �guring out why a given piece of code fails

to compile.

Here's an annotated version of sum_if_true:

let sum_if_true (test : int -> bool) (x : int) (y : int) : int =
 (if test x then x else 0)
 + (if test y then y else 0)
 ;;
val sum_if_true : (int -> bool) -> int -> int -> int = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 9) ∗ all code

In the above, we've marked every argument to the function with its type, with the �nal annotation

indicating the type of the return value. Such type annotations can be placed on any expression in

an OCaml program:

Inferring Generic TypesInferring Generic Types

Sometimes, there isn't enough information to fully determine the concrete type of a given value.

Consider this function.

let first_if_true test x y =
 if test x then x else y
 ;;
val first_if_true : ('a -> bool) -> 'a -> 'a -> 'a = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 10) ∗ all code

first_if_true takes as its arguments a function test, and two values, x and y, where x is to be

returned if test x evaluates to true, and y otherwise. So what's the type of first_if_true?

There are no obvious clues such as arithmetic operators or literals to tell you what the type of x

and y are. That makes it seem like one could use first_if_true on values of any type.

Indeed, if we look at the type returned by the toplevel, we see that rather than choose a single

concrete type, OCaml has introduced a type variable 'a to express that the type is generic. (You

can tell it's a type variable by the leading single quote mark.) In particular, the type of the test

argument is ('a -> bool), which means that test is a one-argument function whose return

value is bool and whose argument could be of any type 'a. But, whatever type 'a is, it has to be

the same as the type of the other two arguments, x and y, and of the return value of

first_if_true. This kind of genericity is called parametric polymorphism because it works by

parameterizing the type in question with a type variable. It is very similar to generics in C# and

Java.

The generic type of first_if_true allows us to write this:

let long_string s = String.length s > 6;;
val long_string : string -> bool = <fun>
first_if_true long_string "short" "loooooong";;
- : string = "loooooong"

OCaml Utop ∗ guided-tour/main.topscript , continued (part 11) ∗ all code

As well as this:

let big_number x = x > 3;;
val big_number : int -> bool = <fun>
first_if_true big_number 4 3;;
- : int = 4

OCaml Utop ∗ guided-tour/main.topscript , continued (part 12) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 5/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Both long_string and big_number are functions, and each is passed to first_if_true with

two other arguments of the appropriate type (strings in the �rst example, and integers in the

second). But we can't mix and match two di�erent concrete types for 'a in the same use of

first_if_true:

first_if_true big_number "short" "loooooong";;
Characters 25-32:
Error: This expression has type string but an expression was expected of type
 int

OCaml Utop ∗ guided-tour/main.topscript , continued (part 13) ∗ all code

In this example, big_number requires that 'a be instantiated as int, whereas "short" and

"loooooong" require that 'a be instantiated as string, and they can't both be right at the same

time.

Type Errors Versus ExceptionsType Errors Versus Exceptions

There's a big di�erence in OCaml (and really in any compiled language) between

errors that are caught at compile time and those that are caught at runtime. It's

better to catch errors as early as possible in the development process, and

compilation time is best of all.

Working in the toplevel somewhat obscures the di�erence between runtime and

compile-time errors, but that di�erence is still there. Generally, type errors like this

one:

OCaml Utop ∗ guided-tour/main.topscript , continued (part 14) ∗ all code

are compile-time errors (because + requires that both its arguments be of type int),

whereas errors that can't be caught by the type system, like division by zero, lead to

runtime exceptions:

let is_a_multiple x y =
 x mod y = 0 ;;
val is_a_multiple : int -> int -> bool = <fun>
is_a_multiple 8 2;;
- : bool = true
is_a_multiple 8 0;;
Exception: Division_by_zero.

OCaml Utop ∗ guided-tour/main.topscript , continued (part 15) ∗ all code

The distinction here is that type errors will stop you whether or not the o�ending

code is ever actually executed. Merely de�ning add_potato is an error, whereas

is_a_multiple only fails when it's called, and then, only when it's called with an

input that triggers the exception.

TUPLES, LISTS, OPTIONS, AND PATTERN MATCHINGTUPLES, LISTS, OPTIONS, AND PATTERN MATCHING

TuplesTuples

So far we've encountered a handful of basic types like int, float, and string, as well as

function types like string -> int. But we haven't yet talked about any data structures. We'll

start by looking at a particularly simple data structure, the tuple. A tuple is an ordered collection

of values that can each be of a di�erent type. You can create a tuple by joining values together

with a comma:

let a_tuple = (3,"three");;
val a_tuple : int * string = (3, "three")
let another_tuple = (3,"four",5.);;
val another_tuple : int * string * float = (3, "four", 5.)

OCaml Utop ∗ guided-tour/main.topscript , continued (part 16) ∗ all code

let add_potato x =
 x + "potato";;
Characters 28-36:
Error: This expression has type string but an expression was expected of
 int

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 6/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(For the mathematically inclined, the * character is used because the set of all pairs of type t * s

corresponds to the Cartesian product of the set of elements of type t and the set of elements of

type s.)

You can extract the components of a tuple using OCaml's pattern-matching syntax, as shown

below:

let (x,y) = a_tuple;;
val x : int = 3
val y : string = "three"

OCaml Utop ∗ guided-tour/main.topscript , continued (part 17) ∗ all code

Here, the (x,y) on the lefthand side of the let binding is the pattern. This pattern lets us mint

the new variables x and y, each bound to di�erent components of the value being matched. These

can now be used in subsequent expressions:

x + String.length y;;
- : int = 8

OCaml Utop ∗ guided-tour/main.topscript , continued (part 18) ∗ all code

Note that the same syntax is used both for constructing and for pattern matching on tuples.

Pattern matching can also show up in function arguments. Here's a function for computing the

distance between two points on the plane, where each point is represented as a pair of floats.

The pattern-matching syntax lets us get at the values we need with a minimum of fuss:

let distance (x1,y1) (x2,y2) =
 sqrt ((x1 -. x2) ** 2. +. (y1 -. y2) ** 2.)
 ;;
val distance : float * float -> float * float -> float = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 19) ∗ all code

The ** operator used above is for raising a �oating-point number to a power.

This is just a �rst taste of pattern matching. Pattern matching is a pervasive tool in OCaml, and as

you'll see, it has surprising power.

ListsLists

Where tuples let you combine a �xed number of items, potentially of di�erent types, lists let you

hold any number of items of the same type. Consider the following example:

let languages = ["OCaml";"Perl";"C"];;
val languages : string list = ["OCaml"; "Perl"; "C"]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 20) ∗ all code

Note that you can't mix elements of di�erent types in the same list, unlike tuples:

let numbers = [3;"four";5];;
Characters 17-23:
Error: This expression has type string but an expression was expected of type
 int

OCaml Utop ∗ guided-tour/main.topscript , continued (part 21) ∗ all code

The List moduleThe List module

Core comes with a List module that has a rich collection of functions for working with lists. We

can access values from within a module by using dot notation. For example, this is how we

compute the length of a list:

List.length languages;;
- : int = 3

OCaml Utop ∗ guided-tour/main.topscript , continued (part 22) ∗ all code

Here's something a little more complicated. We can compute the list of the lengths of each

language as follows:

List.map languages ~f:String.length;;
- : int list = [5; 4; 1]

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 7/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ guided-tour/main.topscript , continued (part 23) ∗ all code

List.map takes two arguments: a list and a function for transforming the elements of that list. It

returns a new list with the transformed elements and does not modify the original list.

Notably, the function passed to List.map is passed under a labeled argument ~f. Labeled

arguments are speci�ed by name rather than by position, and thus allow you to change the order

in which arguments are presented to a function without changing its behavior, as you can see

here:

List.map ~f:String.length languages;;
- : int list = [5; 4; 1]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 24) ∗ all code

We'll learn more about labeled arguments and why they're important in Chapter 2, Variables and

Functions.

Constructing lists with ::Constructing lists with ::

In addition to constructing lists using brackets, we can use the operator :: for adding elements to

the front of a list:

"French" :: "Spanish" :: languages;;
- : string list = ["French"; "Spanish"; "OCaml"; "Perl"; "C"]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 25) ∗ all code

Here, we're creating a new and extended list, not changing the list we started with, as you can see

below:

languages;;
- : string list = ["OCaml"; "Perl"; "C"]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 26) ∗ all code

Semicolons Versus CommasSemicolons Versus Commas

Unlike many other languages, OCaml uses semicolons to separate list elements in

lists rather than commas. Commas, instead, are used for separating elements in a

tuple. If you try to use commas in a list, you'll see that your code compiles but

doesn't do quite what you might expect:

["OCaml", "Perl", "C"];;
- : (string * string * string) list = [("OCaml", "Perl", "C")]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 27) ∗ all code

In particular, rather than a list of three strings, what we have is a singleton list

containing a three-tuple of strings.

This example uncovers the fact that commas create a tuple, even if there are no

surrounding parens. So, we can write:

1,2,3;;
- : int * int * int = (1, 2, 3)

OCaml Utop ∗ guided-tour/main.topscript , continued (part 28) ∗ all code

to allocate a tuple of integers. This is generally considered poor style and should be

avoided.

The bracket notation for lists is really just syntactic sugar for ::. Thus, the following declarations

are all equivalent. Note that [] is used to represent the empty list and that :: is right-associative:

[1; 2; 3];;
- : int list = [1; 2; 3]
1 :: (2 :: (3 :: []));;
- : int list = [1; 2; 3]
1 :: 2 :: 3 :: [];;
- : int list = [1; 2; 3]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 29) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 8/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The :: operator can only be used for adding one element to the front of the list, with the list

terminating at [], the empty list. There's also a list concatenation operator, @, which can

concatenate two lists:

[1;2;3] @ [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 30) ∗ all code

It's important to remember that, unlike ::, this is not a constant-time operation. Concatenating

two lists takes time proportional to the length of the �rst list.

List patterns using matchList patterns using match

The elements of a list can be accessed through pattern matching. List patterns are based on the

two list constructors, [] and ::. Here's a simple example:

let my_favorite_language (my_favorite :: the_rest) =
 my_favorite
 ;;

Characters 25-69:
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]val my_favorite_language : 'a list -> 'a = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 31) ∗ all code

By pattern matching using ::, we've isolated and named the �rst element of the list

(my_favorite) and the remainder of the list (the_rest). If you know Lisp or Scheme, what we've

done is the equivalent of using the functions car and cdr to isolate the �rst element of a list and

the remainder of that list.

As you can see, however, the toplevel did not like this de�nition and spit out a warning indicating

that the pattern is not exhaustive. This means that there are values of the type in question that

won't be captured by the pattern. The warning even gives an example of a value that doesn't

match the provided pattern, in particular, [], the empty list. If we try to run

my_favorite_language, we'll see that it works on nonempty list and fails on empty ones:

my_favorite_language ["English";"Spanish";"French"];;
- : string = "English"
my_favorite_language [];;
Exception: (Match_failure //toplevel// 0 25).

OCaml Utop ∗ guided-tour/main.topscript , continued (part 32) ∗ all code

You can avoid these warnings, and more importantly make sure that your code actually handles

all of the possible cases, by using a match statement instead.

A match statement is a kind of juiced-up version of the switch statement found in C and Java. It

essentially lets you list a sequence of patterns, separated by pipe characters (|). (The one before

the �rst case is optional.) The compiler then dispatches to the code following the �rst matching

pattern. As we've already seen, the pattern can mint new variables that correspond to

substructures of the value being matched.

Here's a new version of my_favorite_language that uses match and doesn't trigger a compiler

warning:

let my_favorite_language languages =
 match languages with
 | first :: the_rest -> first
 | [] -> "OCaml" (* A good default! *)
 ;;
val my_favorite_language : string list -> string = <fun>
my_favorite_language ["English";"Spanish";"French"];;
- : string = "English"
my_favorite_language [];;
- : string = "OCaml"

OCaml Utop ∗ guided-tour/main.topscript , continued (part 33) ∗ all code

The preceding code also includes our �rst comment. OCaml comments are bounded by (* and *)

and can be nested arbitrarily and cover multiple lines. There's no equivalent of C++-style single-

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 9/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

line comments that are pre�xed by //.

The �rst pattern, first :: the_rest, covers the case where languages has at least one

element, since every list except for the empty list can be written down with one or more ::'s. The

second pattern, [], matches only the empty list. These cases are exhaustive, since every list is

either empty or has at least one element, a fact that is veri�ed by the compiler.

Recursive list functionsRecursive list functions

Recursive functions, or functions that call themselves, are an important technique in OCaml and

in any functional language. The typical approach to designing a recursive function is to separate

the logic into a set of base cases that can be solved directly and a set of inductive cases, where the

function breaks the problem down into smaller pieces and then calls itself to solve those smaller

problems.

When writing recursive list functions, this separation between the base cases and the inductive

cases is often done using pattern matching. Here's a simple example of a function that sums the

elements of a list:

let rec sum l =
 match l with
 | [] -> 0 (* base case *)
 | hd :: tl -> hd + sum tl (* inductive case *)
 ;;
val sum : int list -> int = <fun>
sum [1;2;3];;
- : int = 6

OCaml Utop ∗ guided-tour/main.topscript , continued (part 34) ∗ all code

Following the common OCaml idiom, we use hd to refer to the head of the list and tl to refer to

the tail. Note that we had to use the rec keyword to allow sum to refer to itself. As you might

imagine, the base case and inductive case are di�erent arms of the match.

Logically, you can think of the evaluation of a simple recursive function like sum almost as if it

were a mathematical equation whose meaning you were unfolding step by step:

sum [1;2;3]
= 1 + sum [2;3]
= 1 + (2 + sum [3])
= 1 + (2 + (3 + sum []))
= 1 + (2 + (3 + 0))
= 1 + (2 + 3)
= 1 + 5
= 6

OCaml ∗ guided-tour/recursion.ml ∗ all code

This suggests a reasonable mental model for what OCaml is actually doing to evaluate a recursive

function.

We can introduce more complicated list patterns as well. Here's a function for removing

sequential duplicates:

let rec destutter list =
 match list with
 | [] -> []
 | hd1 :: hd2 :: tl ->
 if hd1 = hd2 then destutter (hd2 :: tl)
 else hd1 :: destutter (hd2 :: tl)
 ;;

Characters 29-171:
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
_::[]val destutter : 'a list -> 'a list = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 35) ∗ all code

Again, the �rst arm of the match is the base case, and the second is the inductive. Unfortunately,

this code has a problem, as is indicated by the warning message. In particular, we don't handle

one-element lists. We can �x this warning by adding another case to the match:

let rec destutter list =
 match list with

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/recursion.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 10/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 | [] -> []
 | [hd] -> [hd]
 | hd1 :: hd2 :: tl ->
 if hd1 = hd2 then destutter (hd2 :: tl)
 else hd1 :: destutter (hd2 :: tl)
 ;;
val destutter : 'a list -> 'a list = <fun>
destutter ["hey";"hey";"hey";"man!"];;
- : string list = ["hey"; "man!"]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 36) ∗ all code

Note that this code used another variant of the list pattern, [hd], to match a list with a single

element. We can do this to match a list with any �xed number of elements; for example, [x;y;z]

will match any list with exactly three elements and will bind those elements to the variables x, y,

and z.

In the last few examples, our list processing code involved a lot of recursive functions. In

practice, this isn't usually necessary. Most of the time, you'll �nd yourself happy to use the

iteration functions found in the List module. But it's good to know how to use recursion when

you need to do something new.

OptionsOptions

Another common data structure in OCaml is the option. An option is used to express that a value

might or might not be present. For example:

let divide x y =
 if y = 0 then None else Some (x/y) ;;
val divide : int -> int -> int option = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 37) ∗ all code

The function divide either returns None if the divisor is zero, or Some of the result of the division

otherwise. Some and None are constructors that let you build optional values, just as :: and [] let

you build lists. You can think of an option as a specialized list that can only have zero or one

elements.

To examine the contents of an option, we use pattern matching, as we did with tuples and lists.

Consider the following function for creating a log entry string given an optional time and a

message. If no time is provided (i.e., if the time is None), the current time is computed and used in

its place:

let log_entry maybe_time message =
 let time =
 match maybe_time with
 | Some x -> x
 | None -> Time.now ()
 in
 Time.to_sec_string time ^ " -- " ^ message
 ;;
val log_entry : Time.t option -> string -> string = <fun>
log_entry (Some Time.epoch) "A long long time ago";;
- : string = "1969-12-31 19:00:00 -- A long long time ago"
log_entry None "Up to the minute";;
- : string = "2013-11-05 08:47:56 -- Up to the minute"

OCaml Utop ∗ guided-tour/main.topscript , continued (part 38) ∗ all code

This example uses Core's Time module for dealing with time, as well as the ^ operator for

concatenating strings. The concatenation operator is provided as part of the Pervasives module,

which is automatically opened in every OCaml program.

Nesting lets with let and inNesting lets with let and in

log_entry was our �rst use of let to de�ne a new variable within the body of a

function. A let paired with an in can be used to introduce a new binding within

any local scope, including a function body. The in marks the beginning of the scope

within which the new variable can be used. Thus, we could write:

let x = 7 in
 x + x
 ;;
- : int = 14

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 11/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml Utop ∗ guided-tour/local_let.topscript ∗ all code

Note that the scope of the let binding is terminated by the double-semicolon, so

the value of x is no longer available:

x;;
Characters -1-1:
Error: Unbound value x

OCaml Utop ∗ guided-tour/local_let.topscript , continued (part 1) ∗ all code

We can also have multiple let statements in a row, each one adding a new variable

binding to what came before:

let x = 7 in
 let y = x * x in
 x + y
 ;;
- : int = 56

OCaml Utop ∗ guided-tour/local_let.topscript , continued (part 2) ∗ all code

This kind of nested let binding is a common way of building up a complex

expression, with each let naming some component, before combining them in one

�nal expression.

Options are important because they are the standard way in OCaml to encode a value that might

not be there; there's no such thing as a NullPointerException in OCaml. This is di�erent from

most other languages, including Java and C#, where most if not all data types are nullable,

meaning that, whatever their type is, any given value also contains the possibility of being a null

value. In such languages, null is lurking everywhere.

In OCaml, however, missing values are explicit. A value of type string * string always

contains two well-de�ned values of type string. If you want to allow, say, the �rst of those to be

absent, then you need to change the type to string option * string. As we'll see in Chapter 7,

Error Handling, this explicitness allows the compiler to provide a great deal of help in making

sure you're correctly handling the possibility of missing data.

RECORDS AND VARIANTSRECORDS AND VARIANTS

So far, we've only looked at data structures that were prede�ned in the language, like lists and

tuples. But OCaml also allows us to de�ne new data types. Here's a toy example of a data type

representing a point in two-dimensional space:

type point2d = { x : float; y : float };;
type point2d = { x : float; y : float; }

OCaml Utop ∗ guided-tour/main.topscript , continued (part 41) ∗ all code

point2d is a record type, which you can think of as a tuple where the individual �elds are

named, rather than being de�ned positionally. Record types are easy enough to construct:

let p = { x = 3.; y = -4. };;
val p : point2d = {x = 3.; y = -4.}

OCaml Utop ∗ guided-tour/main.topscript , continued (part 42) ∗ all code

And we can get access to the contents of these types using pattern matching:

let magnitude { x = x_pos; y = y_pos } =
 sqrt (x_pos ** 2. +. y_pos ** 2.);;
val magnitude : point2d -> float = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 43) ∗ all code

The pattern match here binds the variable x_pos to the value contained in the x �eld, and the

variable y_pos to the value in the y �eld.

We can write this more tersely using what's called �eld punning. In particular, when the name of

the �eld and the name of the variable it is bound to coincide, we don't have to write them both

down. Using this, our magnitude function can be rewritten as follows:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/local_let.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 12/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let magnitude { x; y } = sqrt (x ** 2. +. y ** 2.);;
val magnitude : point2d -> float = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 44) ∗ all code

Alternatively, we can use dot notation for accessing record �elds:

let distance v1 v2 =
 magnitude { x = v1.x -. v2.x; y = v1.y -. v2.y };;
val distance : point2d -> point2d -> float = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 45) ∗ all code

And we can of course include our newly de�ned types as components in larger types. Here, for

example, are some types for modeling di�erent geometric objects that contain values of type

point2d:

type circle_desc = { center: point2d; radius: float }
 type rect_desc = { lower_left: point2d; width: float; height: float }
 type segment_desc = { endpoint1: point2d; endpoint2: point2d } ;;
type circle_desc = { center : point2d; radius : float; }
type rect_desc = { lower_left : point2d; width : float; height : float; }
type segment_desc = { endpoint1 : point2d; endpoint2 : point2d; }

OCaml Utop ∗ guided-tour/main.topscript , continued (part 46) ∗ all code

Now, imagine that you want to combine multiple objects of these types together as a description

of a multiobject scene. You need some uni�ed way of representing these objects together in a

single type. One way of doing this is using a variant type:

type scene_element =
 | Circle of circle_desc
 | Rect of rect_desc
 | Segment of segment_desc
 ;;
type scene_element =
 Circle of circle_desc
 | Rect of rect_desc
 | Segment of segment_desc

OCaml Utop ∗ guided-tour/main.topscript , continued (part 47) ∗ all code

The | character separates the di�erent cases of the variant (the �rst | is optional), and each case

has a capitalized tag, like Circle, Rect or Segment, to distinguish that case from the others.

Here's how we might write a function for testing whether a point is in the interior of some

element of a list of scene_elements:

let is_inside_scene_element point scene_element =
 match scene_element with
 | Circle { center; radius } ->
 distance center point < radius
 | Rect { lower_left; width; height } ->
 point.x > lower_left.x && point.x < lower_left.x +. width
 && point.y > lower_left.y && point.y < lower_left.y +. height
 | Segment { endpoint1; endpoint2 } -> false
 ;;
val is_inside_scene_element : point2d -> scene_element -> bool = <fun>
let is_inside_scene point scene =
 List.exists scene
 ~f:(fun el -> is_inside_scene_element point el)
 ;;
val is_inside_scene : point2d -> scene_element list -> bool = <fun>
is_inside_scene {x=3.;y=7.}
 [Circle {center = {x=4.;y= 4.}; radius = 0.5 }];;
- : bool = false
is_inside_scene {x=3.;y=7.}
 [Circle {center = {x=4.;y= 4.}; radius = 5.0 }];;
- : bool = true

OCaml Utop ∗ guided-tour/main.topscript , continued (part 48) ∗ all code

You might at this point notice that the use of match here is reminiscent of how we used match

with option and list. This is no accident: option and list are really just examples of variant

types that happen to be important enough to be de�ned in the standard library (and in the case of

lists, to have some special syntax).

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 13/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

We also made our �rst use of an anonymous function in the call to List.exists. Anonymous

functions are declared using the fun keyword, and don't need to be explicitly named. Such

functions are common in OCaml, particularly when using iteration functions like List.exists.

The purpose of List.exists is to check if there are any elements of the list in question on which

the provided function evaluates to true. In this case, we're using List.exists to check if there

is a scene element within which our point resides.

IMPERATIVE PROGRAMMINGIMPERATIVE PROGRAMMING

The code we've written so far has been almost entirely pure or functional, which roughly

speaking means that the code in question doesn't modify variables or values as part of its

execution. Indeed, almost all of the data structures we've encountered are immutable, meaning

there's no way in the language to modify them at all. This is a quite di�erent style from imperative

programming, where computations are structured as sequences of instructions that operate by

making modi�cations to the state of the program.

Functional code is the default in OCaml, with variable bindings and most data structures being

immutable. But OCaml also has excellent support for imperative programming, including

mutable data structures like arrays and hash tables, and control-�ow constructs like for and

while loops.

ArraysArrays

Perhaps the simplest mutable data structure in OCaml is the array. Arrays in OCaml are very

similar to arrays in other languages like C: indexing starts at 0, and accessing or modifying an

array element is a constant-time operation. Arrays are more compact in terms of memory

utilization than most other data structures in OCaml, including lists. Here's an example:

let numbers = [| 1; 2; 3; 4 |];;
val numbers : int array = [|1; 2; 3; 4|]
numbers.(2) <- 4;;
- : unit = ()
numbers;;
- : int array = [|1; 2; 4; 4|]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 49) ∗ all code

The .(i) syntax is used to refer to an element of an array, and the <- syntax is for modi�cation.

Because the elements of the array are counted starting at zero, element .(2) is the third element.

The unit type that we see in the preceding code is interesting in that it has only one possible

value, written (). This means that a value of type unit doesn't convey any information, and so is

generally used as a placeholder. Thus, we use unit for the return value of an operation like

setting a mutable �eld that communicates by side e�ect rather than by returning a value. It's also

used as the argument to functions that don't require an input value. This is similar to the role that

void plays in languages like C and Java.

Mutable Record FieldsMutable Record Fields

The array is an important mutable data structure, but it's not the only one. Records, which are

immutable by default, can have some of their �elds explicitly declared as mutable. Here's a small

example of a data structure for storing a running statistical summary of a collection of numbers.

type running_sum =
 { mutable sum: float;
 mutable sum_sq: float; (* sum of squares *)
 mutable samples: int;
 }
 ;;
type running_sum = {
 mutable sum : float;
 mutable sum_sq : float;
 mutable samples : int;
}

OCaml Utop ∗ guided-tour/main.topscript , continued (part 50) ∗ all code

The �elds in running_sum are designed to be easy to extend incrementally, and su�cient to

compute means and standard deviations, as shown in the following example. Note that there are

two let bindings in a row without a double semicolon between them. That's because the double

semicolon is required only to tell utop to process the input, not to separate two declarations:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 14/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let mean rsum = rsum.sum /. float rsum.samples
 let stdev rsum =
 sqrt (rsum.sum_sq /. float rsum.samples
 -. (rsum.sum /. float rsum.samples) ** 2.) ;;
val mean : running_sum -> float = <fun>
val stdev : running_sum -> float = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 51) ∗ all code

We use the function float above, which is a convenient equivalent of Float.of_int provided

by the Pervasives library.

We also need functions to create and update running_sums:

let create () = { sum = 0.; sum_sq = 0.; samples = 0 }
 let update rsum x =
 rsum.samples <- rsum.samples + 1;
 rsum.sum <- rsum.sum +. x;
 rsum.sum_sq <- rsum.sum_sq +. x *. x
 ;;
val create : unit -> running_sum = <fun>
val update : running_sum -> float -> unit = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 52) ∗ all code

create returns a running_sum corresponding to the empty set, and update rsum x changes

rsum to re�ect the addition of x to its set of samples by updating the number of samples, the sum,

and the sum of squares.

Note the use of single semicolons to sequence operations. When we were working purely

functionally, this wasn't necessary, but you start needing it when you're writing imperative code.

Here's an example of create and update in action. Note that this code uses List.iter, which

calls the function ~f on each element of the provided list:

let rsum = create ();;
val rsum : running_sum = {sum = 0.; sum_sq = 0.; samples = 0}
List.iter [1.;3.;2.;-7.;4.;5.] ~f:(fun x -> update rsum x);;
- : unit = ()
mean rsum;;
- : float = 1.33333333333
stdev rsum;;
- : float = 3.94405318873

OCaml Utop ∗ guided-tour/main.topscript , continued (part 53) ∗ all code

It's worth noting that the preceding algorithm is numerically naive and has poor precision in the

presence of cancellation. You can look at this Wikipedia article on algorithms for calculating

variance for more details, paying particular attention to the weighted incremental and parallel

algorithms.

RefsRefs

We can create a single mutable value by using a ref. The ref type comes prede�ned in the

standard library, but there's nothing really special about it. It's just a record type with a single

mutable �eld called contents:

let x = { contents = 0 };;
val x : int ref = {contents = 0}
x.contents <- x.contents + 1;;
- : unit = ()
x;;
- : int ref = {contents = 1}

OCaml Utop ∗ guided-tour/main.topscript , continued (part 54) ∗ all code

There are a handful of useful functions and operators de�ned for refs to make them more

convenient to work with:

let x = ref 0 (* create a ref, i.e., { contents = 0 } *) ;;
val x : int ref = {contents = 0}
!x (* get the contents of a ref, i.e., x.contents *) ;;
- : int = 0
x := !x + 1 (* assignment, i.e., x.contents <- ... *) ;;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 15/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

- : unit = ()
!x ;;
- : int = 1

OCaml Utop ∗ guided-tour/main.topscript , continued (part 55) ∗ all code

There's nothing magical with these operators either. You can completely reimplement the ref

type and all of these operators in just a few lines of code:

type 'a ref = { mutable contents : 'a }

 let ref x = { contents = x }
 let (!) r = r.contents
 let (:=) r x = r.contents <- x
 ;;
type 'a ref = { mutable contents : 'a; }
val ref : 'a -> 'a ref = <fun>
val (!) : 'a ref -> 'a = <fun>
val (:=) : 'a ref -> 'a -> unit = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 56) ∗ all code

The 'a before the ref indicates that the ref type is polymorphic, in the same way that lists are

polymorphic, meaning it can contain values of any type. The parentheses around ! and := are

needed because these are operators, rather than ordinary functions.

Even though a ref is just another record type, it's important because it is the standard way of

simulating the traditional mutable variables you'll �nd in most languages. For example, we can

sum over the elements of a list imperatively by calling List.iter to call a simple function on

every element of a list, using a ref to accumulate the results:

let sum list =
 let sum = ref 0 in
 List.iter list ~f:(fun x -> sum := !sum + x);
 !sum
 ;;
val sum : int list -> int = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 57) ∗ all code

This isn't the most idiomatic way to sum up a list, but it shows how you can use a ref in place of a

mutable variable.

For and While LoopsFor and While Loops

OCaml also supports traditional imperative control-�ow constructs like for and while loops.

Here, for example, is some code for permuting an array that uses a for loop. We use the Random

module as our source of randomness. Random starts with a default seed, but you can call

Random.self_init to choose a new seed at random:

let permute array =
 let length = Array.length array in
 for i = 0 to length - 2 do
 (* pick a j that is after i and before the end of the array *)
 let j = i + 1 + Random.int (length - i - 1) in
 (* Swap i and j *)
 let tmp = array.(i) in
 array.(i) <- array.(j);
 array.(j) <- tmp
 done
 ;;
val permute : 'a array -> unit = <fun>

OCaml Utop ∗ guided-tour/main.topscript , continued (part 58) ∗ all code

From a syntactic perspective, you should note the keywords that distinguish a for loop: for, to,

do, and done.

Here's an example run of this code:

let ar = Array.init 20 ~f:(fun i -> i);;
val ar : int array =
 [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19|]
permute ar;;
- : unit = ()
ar;;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 16/17

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

- : int array =
[|1; 2; 4; 6; 11; 7; 14; 9; 10; 0; 13; 16; 19; 12; 17; 5; 3; 18; 8; 15|]

OCaml Utop ∗ guided-tour/main.topscript , continued (part 59) ∗ all code

OCaml also supports while loops, as shown in the following function for �nding the position of

the �rst negative entry in an array. Note that while (like for) is also a keyword:

let find_first_negative_entry array =
 let pos = ref 0 in
 while !pos < Array.length array && array.(!pos) >= 0 do
 pos := !pos + 1
 done;
 if !pos = Array.length array then None else Some !pos
 ;;
val find_first_negative_entry : int array -> int option = <fun>
find_first_negative_entry [|1;2;0;3|];;
- : int option = None
find_first_negative_entry [|1;-2;0;3|];;
- : int option = Some 1

OCaml Utop ∗ guided-tour/main.topscript , continued (part 60) ∗ all code

As a side note, the preceding code takes advantage of the fact that &&, OCaml's And operator,

short-circuits. In particular, in an expression of the form expr1 && expr2, expr2 will only be

evaluated if expr1 evaluated to true. Were it not for that, then the preceding function would result

in an out-of-bounds error. Indeed, we can trigger that out-of-bounds error by rewriting the

function to avoid the short-circuiting:

let find_first_negative_entry array =
 let pos = ref 0 in
 while
 let pos_is_good = !pos < Array.length array in
 let element_is_non_negative = array.(!pos) >= 0 in
 pos_is_good && element_is_non_negative
 do
 pos := !pos + 1
 done;
 if !pos = Array.length array then None else Some !pos
 ;;
val find_first_negative_entry : int array -> int option = <fun>
find_first_negative_entry [|1;2;0;3|];;
Exception: (Invalid_argument "index out of bounds").

OCaml Utop ∗ guided-tour/main.topscript , continued (part 61) ∗ all code

The Or operator, ||, short-circuits in a similar way to &&.

A COMPLETE PROGRAMA COMPLETE PROGRAM

So far, we've played with the basic features of the language via utoputop. Now we'll show how to

create a simple standalone program. In particular, we'll create a program that sums up a list of

numbers read in from the standard input.

Here's the code, which you can save in a �le called sum.ml. Note that we don't terminate

expressions with ;; here, since it's not required outside the toplevel:

open Core.Std

let rec read_and_accumulate accum =
 let line = In_channel.input_line In_channel.stdin in
 match line with
 | None -> accum
 | Some x -> read_and_accumulate (accum +. Float.of_string x)

let () =
 printf "Total: %F\n" (read_and_accumulate 0.)

OCaml ∗ guided-tour/sum.ml ∗ all code

This is our �rst use of OCaml's input and output routines. The function read_and_accumulate is

a recursive function that uses In_channel.input_line to read in lines one by one from the

standard input, invoking itself at each iteration with its updated accumulated sum. Note that

input_line returns an optional value, with None indicating the end of the input stream.

After read_and_accumulate returns, the total needs to be printed. This is done using the printf

command, which provides support for type-safe format strings, similar to what you'll �nd in a

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/sum.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 1. A Guided Tour / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html 17/17

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

variety of languages. The format string is parsed by the compiler and used to determine the

number and type of the remaining arguments that are required. In this case, there is a single

formatting directive, %F, so printf expects one additional argument of type float.

Compiling and RunningCompiling and Running

We'll compile our program using corebuildcorebuild, a small wrapper on top of ocamlbuildocamlbuild, a build tool

that ships with the OCaml compiler. The corebuildcorebuild script is installed along with Core, and its

purpose is to pass in the �ags required for building a program with Core.

$ corebuild sum.native

Terminal ∗ guided-tour/build_sum.out ∗ all code

The .native su�x indicates that we're building a native-code executable, which we'll discuss

more in Chapter 4, Files, Modules, and Programs. Once the build completes, we can use the

resulting program like any command-line utility. We can feed input to sum.native by typing in a

sequence of numbers, one per line, hitting Ctrl-D when we're done:

$./sum.native
1
2
3
94.5
Total: 100.5

Terminal ∗ guided-tour/sum.out ∗ all code

More work is needed to make a really usable command-line program, including a proper

command-line parsing interface and better error handling, all of which is covered in Chapter 14,

Command-Line Parsing.

WHERE TO GO FROM HEREWHERE TO GO FROM HERE

That's it for the guided tour! There are plenty of features left and lots of details to explain, but we

hope that you now have a sense of what to expect from OCaml, and that you'll be more

comfortable reading the rest of the book as a result.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fa-guided-tour.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/build_sum.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/guided-tour/sum.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html

