
Chapter 13

Probably Approximately Correct Learning

Empirical Risk Minimization. Decision theory. Probably Approximately Correct Learning.
VC dimension and shattering.

In Chapter 11 we saw how there is a trade-off between the ability of a model to fit the training data and
the ability of the model to generalize from the training sample to the population of examples whose
features we wish to predict. We did this by instantiating the model into different hypotheses, using
different training sets (by Bootstrapping) and then measuring the Bias, which is the error of the mean
prediction for each example, and the Variance, the dispersion of the predictions for each example. We
saw how reducing Bias leads to an eventual increase in Variance due to overfitting. In this chapter we
will look at the Bias-Variance tradeoff in more detail, with a more formal and grounded approach.

13.1 Empirical Risk Minimization
In brief, Empirical Risk Minimization consists in minimizing the training error. Or, more generally,
minimizing a loss function measured on the training set, such as the classification error or the quadratic
error in regression. This is what we have been doing when training regression or classification models
in supervised learning. The name comes from trying to minimize the risk, which is the expected loss,
and this is an empirical risk because we measure it on the training set. This contrasts with the true risk,
or the average loss over all possible data, which we cannot measure directly. Furthermore, if we adjust
the parameters to minimize the empirical risk, then the empirical risk becomes a biased estimate of
the true risk (for example, the true error, if that is our loss function). However, we can use probability
theory to find a probable upper bound on the true error based on the empirical error we minimized.

First, we note that, if A1, A2, ..., Ak are random events, then the probability of at least one of them
occurring cannot be larger than the sum of their probabilities:

P (A1 ∪ A2 ∪ ...Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

This is the union bound, an upper bound on the probability of the union of a set of random events.
Furthermore, if B1, B2, ..., Bm are independent random events following the Bernoulli distribution,
which is the distribution of a random variable that can take the values 0 or 1 with probabilities φ and
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1− φ respectively, with φ̂ defined as:

P (Bi = 1) = φ φ̂ =
1

m

m∑
i=1

Bi

Then, the following Hoeffding’s inequalities hold:

P (φ− φ̂ > γ) ≤ e−2γ
2m

P (φ̂− φ > γ) ≤ e−2γ
2m

In other words, the probability that the mean of a set of random Bernoulli variables with the same
probability P (Bi = 1) = φ deviating from φ by more than γ decreases exponentially with γ and the
number of examples on the sample.We can rewrite this as the Hoeffding’s inequality:

P (|φ− φ̂| > γ) ≤ 2e−2γ
2m

This is useful because, in classification, we can consider the classification error for each example to
be a Bernoulli random variable, with values of 0 or 1, and φ to be the probability of the classifier
committing an error. In this case, φ̂ is the observed error rate on the training set, or the empirical error,
and we train the classifier by finding the set of parameters that minimizes this error. Thus, we are doing
empirical risk minimization(ERM) because the empirical error, which we try to minimize, is the risk
of misclassification for examples in the training set. However, what we would really like would be
to minimize the φ, the true error, which we cannot measure but is related to the empirical error φ̂ by
Hoeffding’s inequality. This gives us a probable upper bound on the true error and is the rationale
behind the notion of Probably Approximately Correct Learning.

13.2 Probably Approximately Correct Learning
Let us consider X be the population of all possible examples and c : X → {0, 1} the target function
to learn, assigning each example to one of two possible classes. H is the hypothesis class the learner
will explore and D is the probability distribution according to which examples are drawn from X , and
according to which the training sample S is obtained. Our learner will draw S from X according to
distribution D and then find an hypothesis ĥ that minimizes the empirical error, Ês, measured on the
sample S:

ĥ = arg min
h∈H

ÊS(h)

This is the empirical error, which is the average error on the sample, while the true error of an hypothesis
h is the probability of error for any example drawn from X according to distribution D. In other words,
the true error corresponds to the set of possible instances for which the learned hypothesis differs from
the target function c:

E(h) = Px∼D (h(x) 6= c(x))

The true error is not accessible to the learner, who can only compute the empirical error.
In general, it is not reasonable to assume that the true error will be zero, since we cannot include all

possible examples in the training set and different hypotheses may seem correct on all the training set
while making mistakes outside it. So we need a more realistic set of requirements for our learner. We
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Figure 13.1: The true error of an hypothesis is the difference between the classifications given by that
hypothesis and the classifications given by the function c providing the true classes of all points.

can demand that the result is approximately correct, in the sense that the true error of the hypothesis
we find be below some threshold ε, instead of zero:

E(ĥ) ≤ ε

Furthermore, since we are training our classifier on a random subset of all possible examples, the
training set may mislead our classifier into finding a hypothesis whose true error is not even bound by
ε. So we require that our learner is Probably Approximately Correct (PAC):

P
(
E(ĥ) ≤ ε

)
≥ 1− δ

with ε < 1/2 and δ < 1/2. That is, there is a probability 1− δ, with a small (below 0.5) δ, that the true
error of the resulting hypothesis is some ε below 0.5. A learner is an Efficient PAC learner if it can
learn hypothesis ĥ in a time that is polynomial on 1/ε and 1/δ.

Let us now suppose that we have a PAC learner, able to learn an hypothesis with a true error of ε or
less with a probability of 1− δ or more, and let us assume that the hypothesis space H is finite and
contains at least one hypothesis with E(h) ≤ ε, which must be true for there to be a chance of finding
such hypotheses. Training and testing examples will all be drawn fromX according to distribution∼ D.
Let us also define the version space as the set of consistent hypotheses, which are those hypotheses for
which the empirical error is zero. This means that any consistent hypothesis (any hypothesis in the
version space) minimizes the empirical error, since the empirical error cannot be less than zero.

We say that the version space is ε-exhausted if all hypotheses in the version space have a true error
of at most ε:

∀h ∈ V E(h) < ε

It is important to note that the learner cannot tell this, since the true error is not measurable by the
learner. Conversely, the version space is not ε-exhausted if at least one hypothesis has a true error
greater than ε.
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What is the probability that no hypothesis in the version space has a true error larger than ε? In
other words, what is the probability that the version space is ε-exhausted? If we suppose h1, h2, ..., hk
are hypotheses with a true error greater than ε, E(hi) > ε, then the probability that hi is consistent with
one example is smaller than 1− ε, since that is the probability of correct classification for a hypothesis
with error ε. Thus, the probability of the hypothesis being consistent with all examples in a set ofm
examples is below (1− ε)m. Using the union bound relation we saw previously:

P (A1 ∪ A2 ∪ ...Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

we know that the probability that any hypothesis hi of the k hypotheses with E(hi) > ε is consistent
with m examples is ≤ k(1 − ε)m, which is the sum of the probabilities of each hypothesis hi being
consistent with the set of examples. Although we do not know the value of k, which is the total number
of such hypotheses, we know that k cannot be larger than the total number of hypotheses, |H|. That is,
k(1− ε)m ≤ |H|(1− ε)m. And since (1− ε) ≤ e−ε for 0 < ε < 1, the probability of an hypothesis
with a true error greater than ε being in the version space (that is, being compatible with the training
set) is bounded by:

P (∃h ∈ V : E(h) ≥ ε) ≤ |H|e−εm

Let us now choose a value δ that is an upper bound on the probability that an hypothesis in the
version space has a true error greater than ε. In this case, for P (E(h ∈ V) > ε) ≤ δ,

|H|e−εm ≤ δ ⇔ m ≥ 1

ε

(
ln
|H|
δ

)
This gives us a lower bound on the number of examples needed to have a probability of at least 1− δ
of learning an hypothesis with a true error of at most ε.We can also compute the lower bound on ε as a
function of the size of the training set,m, and the probability δ that the learner produces an hypothesis
with an error greater than ε:

m ≥ 1

ε

(
ln
|H|
δ

)
⇔ ε ≤ 1

m

(
ln
|H|
δ

)
This assumes that the learner is a consistent learner. That is, a learner that learns hypothesis with

zero empirical error, ÊS(ĥ) = 0. To extend this reasoning for ÊS ≥ 0, we can consider the empirical
(training) error to be the mean of Bernoulli variables corresponding to the classification error of each
training example:

Ê(hi) =
1

m

m∑
i=1

1{h(x(i) 6= c(x(i))} = 1

m

m∑
i=1

Zi

Applying the Hoeffding inequalities we saw before:

P (φ− φ̂ > γ) ≤ e−2γ
2m

P (φ̂− φ > γ) ≤ e−2γ
2m

gives us the following bounds:
P
(
Ê − E > ε

)
≤ e−2mε

2

P
(
E − Ê > ε

)
≤ e−2mε

2
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Thus, the probability of the true error of hypothesis h being more than ε above the empirical error of h
is bounded by:

P
(
E(h) > ÊS(h) + ε

)
≤ e−2mε

2

Extending this for all hypotheses h ∈ H:

P
(
∃h ∈ H : E(h) > ÊS(h) + ε

)
≤ |H|e−2mε2

Calling this probability δ and solving form, we obtain:

m ≥ 1

2ε2
(ln
|H|
δ

)

This gives us the lower bound on the size of the training set to guarantee a maximum probability of
delta that the true error of the hypothesis we find is greater than the sum of the empirical error and
ε. This lower bound increases with the square of 1/ε and with the logarithm of the total number of
hypotheses, |H|.

This result gives us an important insight into a major problem of machine learning, which is
the inductive bias. We mentioned before that it is always necessary to assume something about the
hypothesis space we are learning in order to be able to generalize from the training set to future examples.
This assumption that restricts the hypothesis space is the inductive bias. For example, that the best
regression curve will be a polynomial of some degree or the the best classifier will be a hyperplane
with a specified number of dimensions. Let us now look at what happens with a classifier that has no
inductive bias. For example, suppose that our hypothesis spaceH is the set of all subsets of X . This
means that our classifier can split X into two classes in any combination of examples by finding a
subset of X defining one class and placing in the other class any example not in that subset. If this
is the case, then the size of our hypothesis space is two raised to the number of possible examples,
since each example may or may not belong to each subset: |H| = 2|X |. Let us further assume that each
example is described by a vector of n boolean features, for simplification, which means that X is the
set of all 2n combinations of features and the cardinality of our hypothesis space is:

|H| = 2|X | = 22
n

Using this, we can compute the lower bound on the size of the training set for some value of ε and δ:

m ≥ 1

2ε2
(ln
|H|
δ

)⇔ m ≥ 1

2ε2
(2n ln

2

δ
)

The lower bound ofm grows exponentially in the number of features, n, and since for an approximately
correct learning we want ε to be below 0.5, this means thatm will be greater than |X |, the total number
of all possible examples. In other words, without inductive bias we have no probably approximately
correct learning when trying to extrapolate from the training set to new examples.

Let us now extend this analysis to the hypotheses obtained by empirical risk minimization (ERM).
Recall that an ERM learner selects the hypothesis fromH that minimizes the empirical error:

ĥ = arg min
h∈H

Ê(h)

Let us define the generalization error as the difference between the true error and the empirical error:

E(ĥ)− Ê(ĥ)
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and h∗ be the best hypothesis, in the sense of being the hypothesis with the smallest true error.

h∗ = arg min
h∈H

E(h)

Let 1− δ be the probability that the true error of the ERM hypothesis is not greater than the empirical
error plusε, P (E(ĥ) ≤ Ê(ĥ) + ε) = 1− δ. Furthermore, the empirical error for the ERM hypothesis,
given our training set S, cannot be greater than the empirical error of the best hypothesis, since the
ERM hypothesis was obtained by minimizing the empirical error. Thus, Ê(ĥ) ≤ Ê(h∗). This means
that the true error of the best hypothesis must also be bounded by the sum of the empirical error of the
best hypothesis and ε with a probability of at least 1− δ, because the best hypothesis, by definition, is
the hypothesis with the lowest true error: Ê(h∗) ≤ E(h∗) + ε with P ≥ 1− δ.

Combining all these, we find that, with a probability of at least 1− δ, the true error of the ERM
hypothesis we obtain by minimizing the empirical error cannot be greater than the true error of the best
hypothesis plus two times ε: and P (E(ĥ) ≤ E(h∗) + 2ε) ≥ 1− δ. Using the previous bounds, we can
decompose the true error of the ERM hypothesis into these two terms:

E(ĥ) =

(
arg min
h∈H

E(h)

)
+ 2

√
1

2m
ln
|H|
δ

The first term is the smallest true error of any hypothesis in the hypothesis spaceH, which corresponds
to the Bias of our model, and the larger this term, the less the model is able to fit the data adequately.
Thus, when this term dominates the true error, we say that our model is underfitting. The second term
is a function of the size of the hypothesis space and the size of the training set, and corresponds to
the Variance of our model. In general, the larger the hypothesis space the greater the variance of the
predictions of the hypotheses obtained by training with different training sets. If this term dominates
the true error, the model is overfitting since now the critical problem is not the model’s inability to
adjust to the points but rather its excessive freedom in adapting to the training set.

13.3 Shattering and the V-C Dimension
So far, we have assumed that the hypothesis spaceH is finite, which allowed us to obtain a lower bound
for the size of the training set given the values of ε and δ:

m ≥ 1

2ε2

(
ln
|H|
δ

)
This can be true for some classifiers, such as decision trees with a fixed limited depth, but is not true
in general, as it is often the case that classifiers use continuous parameters and thus have an infinite
number of possible hypotheses. For example, logistic regression, SVM, neural networks and so forth.
In these cases, the previous expression is no longer useful and we need another approach.

We can start by thinking that, for a classifier with continuous parameters, there can be many
hypotheses that result in the same set of labels for a given set of examples. A logistic regression, for
example, can divide the same set of points into the same two subsets with an infinitude of lines, as long
as the lines are placed between the sets to separate, as illustrated in Figure 13.2.

So what is relevant is how a classifier divides the set of examples into different subsets and not how
many different decision frontiers it can express. This leads us to the following definition:

Hypothesis class H shatters set of points S if, for any labelling S of S, there is a h ∈ H that is
consistent with S



13.3. SHATTERING AND THE V-C DIMENSION 121

Figure 13.2: For classifiers with continuous parameters, although the size of the hypothesis space is
infinite, there are also infinite hypothesis resulting in the same classifications for all points.

In other words,H shatters a set of points if it can provide hypotheses that can classify all those points
correctly whatever the class each point belongs to. For example, a linear classifier in two dimensions
can shatter a set of 3 points forming a triangle, as shown in Figure 13.3.

Figure 13.3: A linear classifier in two dimensions can shatter this set of 3 points by correctly classifying
them whatever their labels. Note that two other cases, where all points belong to the same class, were
omitted for being trivial.

Using this notion of shattering, we can define the Vapnik-Chervonenkis dimension of an hypothesis
spaceH, or, for short, the V-C dimension ofH, V C(H), as the size of the largest set of points thatH
can shatter. Note that the points can be placed in the most adequate way to facilitate shattering and
that there may be sets with fewer than V C(H) points thatH cannot shatter. For example, if two points
overlap in the same coordinates no hypothesis can distinguish them. What matters is that some set of
points exists for which the hypothesis space can provide hypotheses for correct classification whatever
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the labels may be. Vapnik et. al. demonstrated that, with a probability of 1− δ:

E(ĥ) ≤ Ê(ĥ) +O

(√
V C(H)
m

ln
m

V C(H)
+

1

m
ln

1

δ

)

That is, the true error of the ERM hypothesis is bounded by the empirical error plus a term that is
approximately proportional to the VC dimension of the hypothesis space (V C(H)) and approximately
inversely proportional to the size of the training set (m). In other words, to keep the true error within
some bounds, the size of the training set must increase as V C(H) increases.

This has implications for the approach of using linear discriminants in higher dimensions to classify
non linearly separable sets. The VC dimension of a linear classifier isD+1, whereD is the dimension
of the feature vectors. As we increase the dimensionD, we increase the VC dimension of the hypothesis
space and thus we require a larger sample for the training set to prevent overfitting and an increase in
the generalization error.

13.4 Summary
The probabilistic and statistical foundation of machine learning provides us with a good intuition about
important aspects, even though, in practice, methods such as validation and testing provide better
estimates of the true error of our models or hypotheses. In this chapter we saw how inductive bias is an
important requirement for machine learning, since without it the hypothesis space becomes too large
for allowing generalization from a data set to all possible points. We also saw how the true error results
from a contribution of the error of the best hypothesis, corresponding to the bias of the model, and
the generalization error due to the size of the hypothesis space, corresponding to the variance of the
model. This is the source of the Bias-Variance tradeoff, since improving the best hypothesis of the
model generally requires increasing the size of the hypothesis space. Most importantly, we saw the
notion of Probably Approximately Correct learning. In machine learning we cannot guarantee that
the prediction error will be zero but we can make it probable that it will be small, as long as we have
enough data.

13.5 Further Reading

1. Alpaydin [2], Sections 2.1 through 2.3

2. Mitchell [18], Chapter 7 up to section 7.4
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