

(1.0)

(1.0)

(1.0)

(0.5)

(1.0)

(0.5)

(1.0)

(1.0)

(1.0)

Caderno:

Probabilidades e Estatística E

Exame A

Ano Letivo 2017/18 ne A 3 julho 2018 Duração: 3h00

	Nome complete	o:			
	N.º aluno:	Cı	ırso:		
com	uma <u>cruz</u> no oante a pergu	o quadrado corres	spondente. Uma e 1.0 ou 0.5 valor	resposta incorre es, respetivament	rreta. Determine-a e assinale-a ta desconta 0.2 ou 0.1 valores e. Uma não resposta nada vale rno.
1.0) 1.	duzem moran mirtilos e mor	igos. Também se sa rangos e 200 produz e C). A probabilida	abe que 125 agricul em framboesas e m	ltores produzem mi orangos. Ainda se s	0 produzem framboesas e 400 prortilos e framboesas, 100 produzem abe que 50 produzem os 3 tipos de sa aldeia que não produza nenhum
		A 0.95	B 0.225		D 0.725
2.	é gerido pelo	S_1 , 50% pelo S_2 e o 2% do tráfego de en	restante pelo S_3 .	Sabe-se ainda que 1	vamente. 30% do tráfego de emails % do tráfego de emails gerido pelo a se sabe que 2% dos emails geridos
(0.1	(a) A proba	abilidade de ocorrer	erro no tráfego de u	um email, sabendo o	que é gerido pelo servidor S_3 é:
		A 0.035	B0.97	0.935	D 0.04
1.0)	, ,	que 4% do tráfego o rreu sem erro, ter sic			obabilidade do tráfego de um email
		A 0.9918	B 0.1959	$\boxed{\mathtt{C}}_{0.6}$	D 0.4
3.		programadores de u es para fazer um cur			no. A empresa decide sortear 10
).5)		vel aleatória X que o ribuição:	conta o número de p	orogramadores do se	xo masculino, entre os 10 sorteados
		lacktriangledown B(64, 0.75)	BB(10, 0.75)	CH(64, 48, 10)	\square $H(64, 16, 10)$
(0.1	(b) A proba	abilidade dos progra	madores sorteados s	serem todos do sexo	masculino é:
		lacksquare A 0.05631	B 0.04318		D 0.95682
0.5)	(c) O núme	ero esperado de prog	ramadores do sexo	masculino sorteados	s é:
		A 2.5	B 48	C 10	D 7.5
4.	Considere (X a média amos	$(1, X_2, \dots, X_n)$ uma stral.	amostra aleatória d	e uma população X	$\sim E(3, \delta), \ \delta \in \mathbb{R}^+ \ \mathrm{e} \ \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
1.0)	(a) A variâi	ncia de $1 - \overline{X}$ é:			
	` ,	$lacksquare lacksquare A = rac{\delta^2}{n}$	$lacksquare$ $\frac{\delta^2}{n}$	$leve{ t C}$ δ^2	$\boxed{\mathtt{D}} \ 1 - \delta^2$
(0.1	(b) O estim	ador de momentos p	oara o parâmetro δ	é:	
		$\boxed{\mathtt{A}} \ 3 + \overline{X}$	$oxed{{ t B}} \overline{X}$	$\boxed{\mathtt{C}}\sqrt{\overline{X}}$	$\overline{\mathbb{D}} \ \overline{X} - 3$
1.0)	(c) V F	$\widehat{\delta} = a + \overline{X}$ é um esti	mador centrado pa	ra δ se e só se $a=3$	

(V.S.F.F.)

5.	Pretende-se estudar a espessura dos componentes eletrónicos produzidos numa fábrica.	Para o efeito registou-
	se a espessura (em mm) de 30 componentes, apresentadas na seguinte tabela:	

12	12	11	15	16	13	15	14	14	15	15	16	12	11	15
11	13	14	11	14	15	11	13	14	15	12	14	15	13	14
				30				30						
$\sum x_i = 405$ $\sum (x_i - \overline{x})^2 = 73.5$														
				i=1	•		-	(``` i=1	ι	,				

(a) O intervalo de confiança para a espessura média de todos os componentes produzidos nessa fábrica, (1.0)usando o nível de confiança de 99%, é:

> A [12.2, 14.8] B [12.3, 14.7] C [12.7, 14.3] D [12.8, 14.2]

(b) Se $\sigma=1.6$, a dimensão mínima da amostra que garante um intervalo de confiança a 95%, para a (1.0)espessura média de todos os componentes produzidos, com amplitude inferior a 1mm é:

> B 40 C 27

(c) Pretende-se testar se a proporção de componentes com espessura inferior a 13mm, p, difere de 0.25.

(0.5)i. As hipóteses a testar são:

ii. Para um nível de significância de 5%, a região de rejeição, $R_{0.05}$, é: (0.5)

 $\begin{array}{c|c} \hline \texttt{A} \]-\infty, -1.96 \\ [\cup] 1.96, +\infty [& \hline \texttt{B} \] 1.64, +\infty [& \hline \texttt{C} \]-\infty, -1.64 [& \hline \texttt{D} \] 1.96, +\infty [\\ \hline \text{iii. O valor observado da estatística de teste \'e:} \\ \end{array}$

(0.5)

 \mathbb{C}_0 A 0.3464 B 0.5976

iv. Se para outra amostra de igual dimensão, o valor observado da estatística de teste for -0.65, o (1.0)p-value é:

 $B_{0.258}$ $C_{0.742}$ D 0.758 A 0.516

6. Pretende-se usar um modelo de regressão linear simples para explicar o número de veículos Y (em milhares), que passam na Ponte 25 de Abril, durante a manhã de um domingo de verão, em função da temperatura do ar x (°C) em Lisboa às 8h. Para esse efeito registaram-se os valores do par (x, Y) durante 10 domingos, com $9 \le x \le 27$, onde se obtiveram as seguintes estimativas: $\sum_{i=1}^{10} x_i = 160$, $\sum_{i=1}^{10} Y_i = 206$, $S_{xx} = 350$, $S_{xY} = 280 \text{ e } S_{YY} = 250.$

(0.5)(a) A estimativa da ordenada na origem da reta de regressão é:

B 7.8 C 1.6 D 3.25

(b) V F Tendo em conta o valor do coeficiente de determinação, o modelo de regressão linear simples (0.5)explica estatisticamente a relação entre x e Y.

(c) A estimativa do número esperado de veículos que passam na Ponte 25 de Abril, num domingo em que (0.5)a temperatura do ar às 8h é 12°C é (em milhares):

A 17.4 B 27 C 94.4

(d) A região de rejeição do teste $H_0: \sigma^2 \geq 3.5 \quad vs \quad H_1: \sigma^2 < 3.5$, para $\alpha = 0.01$ é: (1.0) $[A] - \infty, 1.65[$ [B] 0, 1.65[$[C] - \infty, 20.1[$

7. A proporção (em volume) de determinada substância química num produto pode ser considerada uma variável aleatória X com função densidade de probabilidade e função de distribuição dadas, respetivamente por:

$$f(x) = \begin{cases} ax^3 + x, & 0 \le x \le 1, \\ 0, & \text{outros valores de } x \end{cases} \quad \text{e} \quad F(x) = \begin{cases} 0, & x < 0, \\ \frac{x^4 + x^2}{2}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

(a) Determine o valor da constante a. (1.5)

- (1.5)(b) Sempre que a proporção da referida substância é inferior a 0.5 o produto é de qualidade inferior. Qual a probabilidade de num produto que foi considerado de qualidade inferior a proporção daquela substância ser superior a 0.25?
- (c) Seja Y o valor comercial (em euros) de cada unidade de volume de produto, função da proporção da (2.0)substância, definido por Y=2X. Sabendo que $E(X^2)=7/12$, calcule cov(X,Y).

Caderno:

Probabilidades e Estatística E Ano Letivo 2017/18

Exame B 3 julho 2018 Duração: 3h00

cons	uma oante	<u>cruz</u> no q e a pergunt	uadrado corres _l a ou alínea vale	pondente. Uma 1.0 ou 0.5 valor	resposta incorret	reta. Determine-a e assinale-a a desconta 0.2 ou 0.1 valores a. Uma não resposta nada vale no.
(1.0) 1.	duze mirt fruto	m morangos ilos e moran	s. Também se sal gos e 200 produze	oe que 125 agricu m framboesas e m	ltores produzem mir norangos. Ainda se sa	produzem framboesas e 400 protilos e framboesas, 100 produzem de que 50 produzem os 3 tipos de a aldeia que não produza nenhum
			0.725	B 0.05	C 0.225	D 0.95
2.		rido pelo S_1 , em erro e 2% FCT têm er	50% pelo S_2 e o do tráfego de emero.	restante pelo S_3 . nails gerido pelo S_3	Sabe-se ainda que 1% tem erro. Também	ramente. 30% do tráfego de emails % do tráfego de emails gerido pelo se sabe que 2% dos emails geridos
(1.0)	(a)	A probabil		_		ue é gerido pelo servidor S_3 é:
(4.0)	(1.)	A 1		B 0.035		D 0.04
(1.0)	(p)		e 4% do trafego de 1 sem erro, ter side			babilidade do tráfego de um email
		•		B 0.6		D 0.1959
3.			gramadores de ur oara fazer um curs			no. A empresa decide sortear 10
(0.5)	(a)	A variável tem distrib		onta o número de j	programadores do sex	to masculino, entre os 10 sorteados
			lacksquare A B(10, 0.75)	BB(64, 0.75)	CH(64, 16, 10)	DH(64, 48, 10)
(1.0)	(b)	A probabil	idade dos program	nadores sorteados	serem todos do sexo	masculino é:
			A 0.04318	B 0.95682	$\boxed{\text{C}}\ 0.94369$	D 0.05631
(0.5)	(c)	O número	<u> </u>		$\max_{\underline{}}$ masculino sorteados	
			A 2.5	B 7.5	C 10	D 48
4.	Cons a mé	sidere (X_1, X_2)	(X_2, \dots, X_n) uma and.	mostra aleatória d	le uma população X	$\sim E(2, \delta), \ \delta \in \mathbb{R}^+ \ \mathrm{e} \ \overline{X} = \frac{\sum_{i=1}^n X_i}{n}$
(1.0)	(a)	O estimado	or de momentos pa	ara o parâmetro δ	é:	
			$\boxed{\mathtt{A}} \ 2 + \overline{X}$	lacksquare	$\mathbb{C}\sqrt{\overline{X}}$	$\overline{\mathbb{D}} \ \overline{X} - 2$
(1.0) (1.0)			$a+\overline{X}$ é um estina de $1-\overline{X}$ é:	nador centrado pa	ra δ se e só se $a = -$	2.
. ,	()		$lacksquare egin{array}{c} lacksquare lacksquare & \Delta^2 \\ n & \end{array}$	$oxed{\mathbb{B}} rac{\delta^2}{n}$	$lacksquare$ δ^2	$lacksquare$ $lacksquare$ $1-\delta^2$

(V.S.F.F.)

5.	Pretende-se estudar a espessura dos componentes eletrónicos produzidos numa fábrica.	Para o efeito registou-
	se a espessura (em mm) de 30 componentes, apresentadas na seguinte tabela:	

12	12	11	15	16	13	15	14	14	15	15	16	12	11	15
11	13	14	11	14	15	11	13	14	15	12	14	15	13	14
				30				30						
$\sum x_i = 405 \qquad \sum (x_i - \overline{x})^2 = 73.5$														
				i=1	•			i=1		,				

(a) O intervalo de confiança para a espessura média de todos os componentes produzidos nessa fábrica, (1.0)usando o nível de confiança de 99%, é:

> A [12.8, 14.2] B [12.2, 14.8] C [12.7, 14.3] D [12.3, 14.7]

(b) Se $\sigma=1.6$, a dimensão mínima da amostra que garante um intervalo de confiança a 95%, para a (1.0)espessura média de todos os componentes produzidos, com amplitude inferior a 1mm é:

> B 28 C 39

(c) Pretende-se testar se a proporção de componentes com espessura inferior a 13mm, p, difere de 0.25.

i. As hipóteses a testar são: (0.5)

ii. Para um nível de significância de 5%, a região de rejeição, $R_{0.05}$, é: (0.5)

 $\begin{array}{c|c} \hline \texttt{A} \]-\infty, -1.96 \\ [\cup] 1.96, +\infty [& \hline \texttt{B} \] 1.96, +\infty [& \hline \texttt{C} \]-\infty, -1.64 \\ [\ \square] \] 1.64, +\infty [\\ \hline \ \text{iii. O valor observado da estatística de teste \'e:} \\ \end{array}$

(0.5)

 \mathbb{C}_0 A 0.6325 B 0.3464

iv. Se para outra amostra de igual dimensão, o valor observado da estatística de teste for -0.65, o (1.0)p-value é:

B 0.758 $C_{0.742}$ D 0.516 A 0.258

6. Pretende-se usar um modelo de regressão linear simples para explicar o número de veículos Y (em milhares), que passam na Ponte 25 de Abril, durante a manhã de um domingo de verão, em função da temperatura do ar x (°C) em Lisboa às 8h. Para esse efeito registaram-se os valores do par (x, Y) durante 10 domingos, com $9 \le x \le 27$, onde se obtiveram as seguintes estimativas: $\sum_{i=1}^{10} x_i = 160$, $\sum_{i=1}^{10} Y_i = 206$, $S_{xx} = 350$, $S_{xY} = 280 \text{ e } S_{YY} = 250.$

(0.5)(a) A estimativa da ordenada na origem da reta de regressão é:

B 7.8 $[C]_{0.8}$ D 1.6

(b) V F Tendo em conta o valor do coeficiente de determinação, o modelo de regressão linear simples (0.5)explica estatisticamente a relação entre x e Y.

(c) A estimativa do número esperado de veículos que passam na Ponte 25 de Abril, num domingo em que (0.5)a temperatura do ar às 8h é 12°C é (em milhares):

> A 94.4 B 17.4

(d) A região de rejeição do teste $H_0: \sigma^2 \geq 3.5 \quad vs \quad H_1: \sigma^2 < 3.5$, para $\alpha = 0.01$ é: (1.0) $\boxed{\mathbb{B}} \]-\infty, 1.65 [\boxed{\mathbb{C}} \]0, 20.1 [\boxed{\mathbb{D}} \]-\infty, 20.1 [$

7. A proporção (em volume) de determinada substância química num produto pode ser considerada uma variável aleatória X com função densidade de probabilidade e função de distribuição dadas, respetivamente por:

$$f(x) = \begin{cases} ax^3 + x, & 0 \le x \le 1, \\ 0, & \text{outros valores de } x \end{cases} \quad \text{e} \quad F(x) = \begin{cases} 0, & x < 0, \\ \frac{x^4 + x^2}{2}, & 0 \le x < 1, \\ 1, & x \ge 1. \end{cases}$$

(a) Determine o valor da constante a. (1.5)

- (1.5)(b) Sempre que a proporção da referida substância é inferior a 0.5 o produto é de qualidade inferior. Qual a probabilidade de num produto que foi considerado de qualidade inferior a proporção daquela substância ser superior a 0.25?
- (c) Seja Y o valor comercial (em euros) de cada unidade de volume de produto, função da proporção da (2.0)substância, definido por Y=2X. Sabendo que $E(X^2)=7/12$, calcule cov(X,Y).