Teoria da Computação Aula Teórica 2: Lógica Proposicional e de Primeira Ordem

António Ravara

Departamento de Informática

11 de Março de 2019

Lógica proposicional

Um sistema formal de raciocínio, constituido por:

- Um alfabeto (conjunto de símbolos).
- Uma linguagem (conjunto de fórmulas).
- Uma semântica (para valoração de símbolos e fórmulas).
- Um cálculo (sistema sintático de prova, para raciocinar).

Objecto

- Estudo do comportamento dos conectivos lógicos negação, disjunção, conjunção, implicação e equivalência)
- Linguagem das asserções ou proposições: afirmações que são ou verdadeiras ou falsas.
- Linguagem construida a partir de símbolos proposicionais (asserções básicas) e conectivos lógicos (ligam asserções).

Descrição informal

Asserções

Exemplos

- Básicas:
 - hoje chove;
 - todo o natural par maior que 2 é a soma de dois primos.
- Compostas:
 - estudo hoje ou amanha;
 - jogo hoje e amanha;
 - se tenho aulas então vou à Faculdade;
 - ightharpoonup n é par se e só se mod(n, 2) = 0.
- Não são asserções:
 - passe-me o sal, se faz favor;
 - quanto mais depressa, mais devagar.

Definição da sintaxe da lógica proposicional

Objectivo

- Obter a linguagem formal das fórmulas proposicionais.
- A partir de um alfabeto (conjunto de símbolos, representando asserções) define-se como construir palavras (sequências finitas de símbolos, ditas fórmulas).

Seja P um conjunto numerável (de símbolos proposicionais). O alfabeto proposicional sobre P, denotado Alf_P , é o conjunto constituido:

- por cada um dos elementos de P (as asserções básicas);
- ▶ pelo símbolo \bot (chamado *falso*, ou *absurdo*);
- ▶ pelos conectivos disjunção, ∨, conjunção, ∧ e implicação, →;
- pelos parênteses esquerdo e direito, (e).

Definição da sintaxe da lógica proposicional

Nem toda a sequência de símbolos do alfabeto é uma palavra da linguagem.

A linguagem proposicional induzida por Alf $_P$, denotada F_P , é o conjunto definido indutivamente pelas seguintes regras:

- ▶ BOT: $\bot \in F_P$
- ▶ PROP: se $p \in P$ então $p \in F_P$
- ▶ DIS: se $\varphi, \psi \in F_P$ então $(\varphi \lor \psi) \in F_P$
- ► CON: se $\varphi, \psi \in F_P$ então $(\varphi \land \psi) \in F_P$
- ▶ *IMP*: se $\varphi, \psi \in F_P$ então $(\varphi \to \psi) \in F_P$

Terminologia

- Os elementos de F_P dizem-se fórmulas.
- ▶ Os elementos de P e o símbolo \bot dizem-se fórmulas *atómicas*.

Que sequências são fórmulas?

Não são necessariamente fórmulas todas as sequências de símbolos do alfabeto.

As sequências seguintes não são fórmulas

- pq ∉ F_P, porque não se podem fazer sequências de símbolos proposicionais;
- (p∨) ∉ F_P, porque a disjunção é um operador binário e a expressão só tem um operando;
- ▶ $(p \rightarrow (\lor q)) \notin F_P$, porque a implicação é um operador binário que deve ter como argumentos/operandos duas fórmulas; no entanto, apesar de p ser uma fórmula, $(\lor q)$ não o é.

Facilmente se vê que não foram seguidas as regras para definir fórmulas.

Que sequências são fórmulas?

Como mostrar que $(p \land ((p \lor q) \rightarrow r)) \in F_P$

Prova de fórmulas

Sejam $p, q, r \in P$.

- 1. Por *PROP*, tem-se que $p \in F_P$.
- 2. Por *PROP*, tem-se que $q \in F_P$.
- 3. Por *PROP*, tem-se que $r \in F_P$.
- 4. Por *DIS*, com 1 e 2, tem-se que $(p \lor q) \in F_P$.
- 5. Por *IMP*, com 4 e 3, tem-se que $((p \lor q) \to r) \in F_P$.
- 6. Por *CON*, com 1 e 5, tem-se que $(p \land ((p \lor q) \rightarrow r)) \in F_P$.

Exemplos de fórmulas da lógica proposicional

Asserções básicas e compostas

Considere as seguintes asserções básicas.

- p: 'estudo hoje'
- q: 'estudo amanhã'
- r: 'tenho exame amanhã'.

Constroiem-se as seguintes asserções compostas:

- ▶ estudo hoje ou estudo amanhã: p ∨ q
- **estudo** hoje e estudo amanhã: $p \wedge q$
- > se tenho exame amanhã então estudo hoje e estudo amanhã:

$$r \rightarrow (p \land q)$$

Abreviaturas

São úteis novos conectivos para abreviar alguns tipos de fórmulas.

- ▶ Negação: $\neg \varphi \stackrel{\mathsf{abv}}{=} \varphi \to \bot$;
- ▶ Verdade: $\top \stackrel{\mathsf{abv}}{=} \neg \bot$;
- ▶ Equivalência: $\varphi \leftrightarrow \psi \stackrel{\mathsf{abv}}{=} (\varphi \to \psi) \land (\psi \to \varphi)$.

Convenções

- Para simplificar a notação omitem-se por vezes os parênteses mais exteriores das fórmulas.
- ► Consideramos que o conectivo ¬ tem precedência.

Exemplos

- $\neg (\neg \varphi \land \psi) \stackrel{\mathsf{abv}}{=} ((\varphi \to \bot) \land \psi) \to \bot$

Tradução da linguagem natural para lógica proposicional

- Os símbolos proposicionais representam asserções básicas (afirmações verdadeiras ou falsas): 'estudo hoje'.
- O conectivo disjunção representa alternativa. Uma frase que comece por "ou" e tenha um número par de ocorrências dessa palavra procura não ser ambígua: 'ou estudo hoje ou amanhã.
- O conectivo conjunção indica que a frase só é verdade se cada uma das partes o for.
 - A fórmula $p \land q$ traduz as frases " $p \in q$ ", "tanto p como q", "p tal como q", etc,...
- O conectivo implicação captura consequência. à esquerda está o antecedente (hipótese) e à direita o consequente (tese). A fórmula p → q traduz as frases "se p então q", "se p, q", "q se p", "p só se q", "caso p então q", "caso p, q", "como p, q", etc....

Tradução da linguagem natural para lógica proposicional

- "gosto de lógica" escreve-se p; "gosto de álgebra" escreve-se q; "gosto de análise" escreve-se r;
- "gosto de lógica e de álgebra" escreve-se $p \wedge q$;
- "gosto de lógica ou de álgebra" escreve-se $p \lor q$;
- "gosto de lógica ou de álgebra e de análise" é ambígua, mas "ou gosto de lógica ou de álgebra e de análise" já não; nas fórmulas, os parênteses desambiguam: p ∨ q ∧ r é ambígua, mas p ∨ (q ∧ r) já não.
- ▶ Há ambiguidades difíceis de resolver: "o Pedro foi ao médico e ficou doente" tanto pode querer dizer $m \land d$ como $m \rightarrow d$.
- Comutatitividade? "o Pedro ficou doente e foi ao médico " deve querer dizer d → m, não d ∧ m.

Necessidade de uma linguagem mais rica

- Apenas compõe asserções com os operadores de negação, disjunção, conjunção e implicação.
- Trata declarações que não envolvam estes operadores como atómicas, por muito elaboradas que sejam.
- Não permite expressar constantes, propriedades, funções.
- Quer-se raciocinar sobre factos como:
 - $ightharpoonup 3 < 9 \text{ ou } 3^2 = 9$
 - $\forall n \in \mathbb{N}_0 \ n \ge 0 \text{ ou } \forall x, y \in \mathbb{N} \ \exists z \in \mathbb{N} \ (x^2 + y^2 = z^2)$
 - ► Todo o homem é mortal ou Nenhum homem é mortal ou Algum homem é mortal ou Algum homem não é mortal
 - Qualquer estudante é mais novo que algum professor
- ► A Lógica Proposicional representa estas asserções como básicas (um símbolo proposicional, p).

Lógica de Primeira Ordem

Ingredientes: os da Lógica Proposicional, mais

Termos

- Constantes: representam elementos concretos de conjuntos (ou universos).
 - Exemplos: 3 (um natural), 1.5 (um racional), Sócrates (um homem)
- Variáveis: representam elementos arbitrários de conjuntos.
 Exemplos: n, m, x, y, x₁
- Funções: compõem constantes e variáveis com operadores para fazer determinado cálculo.

Exemplos:
$$Suc(n)=n+1$$
, $Quad(x)=x^2$

Lógica de Primeira Ordem

Ingredientes: os da Lógica Proposicional, mais termos mais

Novas fórmulas

- Predicados: expressam propriedades (como *relações*). Exemplos: 2 = 1 + 1, 2 > 3, Mortal(Sócrates), Estudante(Pedro), Professor(António), Mais_novo(x,y)
- Fórmulas com quantificadores (universal e existencial): identificam todos ou alguns elementos de um conjunto com dada propriedade.
 - $ightharpoonup \forall m \, Mortal(m) \, ou \, \exists m \, \neg Mortal(m)$
 - $\forall x (Estudante(x) \rightarrow (\exists y (Professor(y) \land Mais novo(x, y))))$
 - $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \ (|x-a| < \delta \ \rightarrow |f(x)-b| < \varepsilon)$

Que símbolos usar?

Definição 15.1: Assinatura

Uma assinatura de primeira ordem é um par de conjuntos $\Sigma = (SF, SP)$ sendo:

- ▶ $SF = \{SF_i\}_{i \in \mathbb{N}_0}$, onde cada SF_i é um conjunto de símbolos de função de aridade i e em SF os conjuntos são disjuntos dois a dois.
- ▶ $SP = \{SP_i\}_{i \in \mathbb{N}_0}$, onde cada SP_i é um conjunto de símbolos de predicado de aridade i e em SP os conjuntos são disjuntos dois a dois.

Os símbolos em SF_0 chamam-se constantes; Os símbolos em SP_0 chamam-se símbolos proposicionais.

Uma assinatura

Exemplo

$$ightharpoonup SF = \{SF_i\}_{i \in \mathbb{N}_0}$$
, com

$$ightharpoonup SF_0 = \{Zero\}$$

$$\triangleright SF_1 = \{Suc\}$$

$$ightharpoonup SF_2 = \{Plus\}$$

$$ightharpoonup SF_i = \emptyset$$
, para todo o $i \ge 3$

$$\triangleright$$
 $SP = \{SP_i\}_{i \in \mathbb{N}_0}$, com

$$\triangleright$$
 $SP_1 = \emptyset$

$$P_2 = \{=, >, <\}$$

►
$$SP_i = \emptyset$$
, para todo o $i = 0$ ou $i \ge 3$

Predicados são relações, mas podem ser vistos como funções para $\{0,1\}.$

Alfabeto de primeira ordem sobre Σ e X

Dada uma assinatura de primeira ordem $\Sigma = (SF, SP)$ e um conjunto numerável X de *variáveis*, o *alfabeto de primeira ordem sobre* Σ *e* X, denotado por Alf_{Σ}^{X} , é constituido por:

- ▶ cada um dos elementos de SF_i , para cada $i \in \mathbb{N}_0$;
- ▶ cada um dos elementos de SP_i , para cada $i \in \mathbb{N}_0$;
- cada um dos elementos de X;
- ▶ o símbolo ⊥ (falso, contradição ou absurdo);
- ▶ os conectivos disjunção, ∨, conjunção, ∧ e implicação, →;
- ▶ os quantificadores universal, ∀, e existencial, ∃;
- o símbolo , e os parênteses esquerdo e direito, (e).

Assume-se que $X \cap SF_i = \emptyset$ e $X \cap SP_i = \emptyset$, para cada $i \in \mathbb{N}_0$

Conjunto de termos induzidos por uma assinatura

O conjunto de termos induzidos por Alf_{Σ}^{X} , denotado por T_{Σ}^{X} , é definido indutivamente pelas seguintes regras.

- ► CONST: $c \in T_{\Sigma}^{X}$, para cada $c \in SF_{0}$;
- ▶ $VAR: x \in T_{\Sigma}^{X}$, para cada $x \in X$;
- ► FUN: se $t_1, ..., t_n \in T_{\Sigma}^X$ então $f(t_1, ..., t_n) \in T_{\Sigma}^X$ para cada $f \in SF_n$, com n > 0.

Exemplos

Considere-se a assinatura do exemplo anterior e assuma-se $x \in X$.

- ▶ Por *CONST*, tem-se que *Zero* $\in T_{\Sigma}^{X}$, pois, *Zero* $\in SF_{0}$.
- ▶ Como $x \in T_{\Sigma}^{X}$ (por VAR), então $Suc(x) \in T_{\Sigma}^{X}$ por FUN, pois $Suc \in SF_{1}$.

Assinatura, alfabeto e termos Linguagem de primeira ordem

$$Suc(Plus(x, Zero)) \in T^X_{\Sigma}$$
?

Como mostrar que a frase Suc(Plus(x, Zero)) é um termo?

Constroi-se uma árvore de derivação.

$$\frac{x \in X}{x \in T_{\Sigma}^{X}} \text{ (VAR)} \qquad \frac{Zero \in SF_{0}}{Zero \in T_{\Sigma}^{X}} \text{ (CONST)} \qquad Plus \in SF_{2}}{Plus(x, Zero) \in T_{\Sigma}^{X}} \qquad \text{(FUN)} \qquad Suc \in SF_{1}$$

$$Suc(Plus(x, Zero)) \in T_{\Sigma}^{X}$$

Conjunto F_{Σ}^{X} das fórmulas de Primeira Ordem

A linguagem das fórmulas de primeira ordem induzida por Alf_{Σ}^{X} , denotada por F_{Σ}^{X} , é definida indutivamente pelas seguintes regras.

- ▶ PROP: $P \in F_{\Sigma}^{X}$, para cada $P \in SP_{0}$;
- ▶ BOT: $\bot \in F_{\Sigma}^{X}$;
- ▶ PRED: se $t_1, ..., t_n \in T_{\Sigma}^X$ então $P(t_1, ..., t_n) \in F_{\Sigma}^X$ para cada $P \in SP_n$, com n > 0;
- ▶ DIS: se $\varphi, \psi \in F_{\Sigma}^{X}$ então $(\varphi \lor \psi) \in F_{\Sigma}^{X}$;
- ► CON: se $\varphi, \psi \in F_{\Sigma}^{X}$ então $(\varphi \wedge \psi) \in F_{\Sigma}^{X}$;
- ► *IMP*: se $\varphi, \psi \in F_{\Sigma}^{X}$ então $(\varphi \to \psi) \in F_{\Sigma}^{X}$;
- ▶ UNIV: se $x \in X$ e $\varphi \in F_{\Sigma}^{X}$ então $(\forall x \, \varphi) \in F_{\Sigma}^{X}$;
- ▶ EXIST: se $x \in X$ e $\varphi \in F_{\Sigma}^{X}$ então $(\exists x \varphi) \in F_{\Sigma}^{X}$.

Exemplos de expressões que não são fórmulas de primeira ordem

Sejam x é uma variável, f uma função, P e Q predicados e ψ uma fórmula.

Funções não são fórmulas:

$$Suc(x) \in (Suc(Zero) \lor Suc(Suc(Zero)))$$

não são fórmulas de primeira ordem.

Argumentos das funções e dos predicados são termos:

$$Q(f(P(x))), P(\psi), e P(Q(x))$$

não são fórmulas de primeira ordem.

Quantificam-se variáveis, não funções, predicados ou fórmulas:

$$\forall x \forall f. P(f(x)), \ \forall x \forall P. P(Q(x)), \ e \ \forall \psi(\psi \lor P(x))$$

O que representam os termos e fórmulas?

- Constantes referem entidades concretas.
- Variáveis referem entidades arbitrárias.
- Funções expressam cálculo.
- Relações expressam predicados (propriedades).
- Quantificador universal expressa uma asserção sobre todas as entidades (de um conjunto) – conjunção generalizada.
 Captura ideias como "todo", "qualquer", "cada um", etc.
- Quantificador existencial expressa uma asserção sobre algumas entidades (de um conjunto) – disjunção generalizada.
 Captura ideias como "algum", "pelo menos um", "existe um", ...

Fórmulas são asserções sobre as entidades representadas pelos termos.

Da linguagem natural para lógica de primeira ordem

Exemplos

- "O João é uma criança" escreve-se C(João);
 "A Ana é mãe do João" escreve-se M(Ana, João);
 "O João é mais novo que a Ana" escreve-se N(João, Ana);
- "Qualquer criança é mais nova que a sua mãe" escreve-se

$$\forall x \, \forall y \, (C(x) \wedge M(y,x)) \rightarrow N(x,y)$$

 "O conjunto tem pelo menos três elementos diferentes" escreve-se

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(x = z) \land \neg(y = z))$$

Funções ou predicados: uma questão de escolha

"Os filhos de meu pai são meus irmãos"

- "Pai" como predicado.
 - Dada uma assinatura $\Sigma = (SF, SP)$, com
 - ightharpoonup $eu \in SF_0$
 - \triangleright $SP_2 = \{F, I, P\}$

obtém-se a formulação $\forall x \forall y ((P(x,eu) \land F(y,x)) \rightarrow I(y,eu))$

- "Pai" como função ("Pai de" é uma relação unívoca). Dada uma assinatura $\Sigma = (SF, SP)$, com
 - ightharpoonup $eu \in SF_0$ $e P \in SF_1$
 - \triangleright $SP_2 = \{I, F\}$

obtém-se a formulação

$$\forall x (F(x, P(eu)) \rightarrow I(x, eu))$$