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Outline (Complementary Material)

- Asymmetric cryptography

Base Material

Public-Key cryptography principles
Public-Key algorithms
Public Key Signatures

RSA algorithm
* Key-Pair Generation and Encryption/Decryption
Diffie-Hellman key exchange

Key-distribution with asymmetric cryptography

Annex (complementary / optional topics):
- RSA
- ECC Foundations
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RSA
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RSA Use

* to encrypt a message M the sender:
- obtains public key of recipient PU={e, n}
- computes: C = M® mod n, where 0<M<n
* to decrypt the ciphertext C the owner:
- uses their private key PR={d, n}
- computes: M = C¢ mod n
* note that the message M must be smaller
than the modulus n (block if needed)
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Why RSA Works

because of Euler's Theorem:

- a?®mod n = 1 where gcd(a,n)=1
- in RSA have:

- n=p.q

- o (n)=(p-1) (g-1)
- carefully chose e & d to be inverses mod & (n)

- hence e.d=1+k.z (n) for some k

hence :
Cd — Me.d — Ml+k.®(n) — Ml. (Mg(n))k

= M. (1) = M! = M mod n
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Operations with big integers (large humbers)
+ Optimization strategy

- Elementary addition and subtraction

* Multiple-precision addition or subtraction of large
numbers are O(n)

- n the number of bits of operands

- Modular addition and subtraction is O(n)
* (x+y)mod N
=x+y, if x+y<N
=x+y-m,if x+y>N

- Large number multiplication
- Pencil and paper method algorithm: O(n?)
- Russian Peasant Multiplication Method
- Good for binary representations
- Multiplication as a series of additions and shifts
- Variable complexity: from O(n) to O(n?)
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Modular multiplication

- Requires the computation of x.y mod N
* First must compute x.y

- Followed by a reduction of the result modulo M

- Relates with a division and computation of large
dimension intermediate products

- Possible optimized reductions:
« Barret modular reduction

- Montgomery's multiplication
- Multiplication by squaring
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Multiplication by squaring

abmodn={[(atb)?-a°-b? ]/ 2} modn
abmodn={[(a+tb)?-(a-b)> 1/ 4} modn

Advantage:

Can also benefit from fast calculations
performed on a cryptographic coprocessor
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Exponentiation can be simple

» Can use the Square and Multiply Algorithm
A fast, efficient algorithm for exponentiation

» Conceptually is based on repeatedly squaring base
and multiplying in the ones that are needed to
compute the result

* Look at binary representation of exponent
Only takes O(log, n) multiples for number n
-eqg.7° = 7.7t = 3.7 = 10 mod 11
- eg.312% = 312831 = 5.3 = 4 mod 11
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Exponentiation algorithm

c = 0; £

1

for 1 = k downto 0

return £

© DI/FCT/UNL 2019/2020

2 X C
(f x £f) mod n

== ] then

c + 1
(f x a) mod n
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Efficient Encryption

» Encryption uses exponentiation to power e

- Hence if e small, this will be faster

- often choose e=65537 (216-1)
- also see choices of e=3 or e=17

* But if e too small (eg e=3) can attack
- using CRT (Chinese Remainder Theorem) & 3
messages with different modulii
- If e fixed must ensure gcd (e, o (n) ) =1
- ie reject any p or q not relatively prime to e

- Need to generate those two primes with these
property
- First generate primes (randomly + primality test)
* Check if gcd (e, a(n) ) = 1.
- If yes, pand q are ok, if not, generate other pair (p.q)
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Efficient Decryption

- Decryption uses exponentiation to power d
- this is likely large, insecure if not
* Can use the Chinese Remainder Theorem
(CRT) to compute mod p & q separately.
then combine to get desired answer
- approx 4 times faster than doing directly

+ The key idea: only owner of private key who
knows values of p & q can use this
technique
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CRT - Chinese Reminder Theorem (1)

» Can decrease the processing time involving
private keys by a factor of ~4.

+ If the integers n;, n,, n3, ... n, are pairwise
relatively prime, then the system of
simultaneous congruences

X = a; mod n,
X = a, mod n,

X = qy mod Ny

Has an unique solution x, for O <= x <= n
withn= n;n, n; .. n,
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CRT - Chinese Reminder Theorem (2)

Solution for x is computable in the following
way:

' k
— ’
A= ZaiNiNi
i=1

n= n,n,n;...N
_ > _ NT -1
N.=n/n;, N’ =N." (modn,)

1=1,2,...k
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CRT (practical example - 1)

M=cd mod n

p=7,q=11, e=19, d = e! mod(p-1)(q-1) = 19
Precomputing:

dP = e mod(p-1) = d mod (p-1) = 19 mod 6 =1
dQ=e! mod(q-1) = d mod (g-1) =19 mod 10 =9

gInv=q!imodp=111mod7=2

Then, storing the quintuple (p. q. dP, dQ, gInv)
(as a representation of the private key)

Note) we can also tryn=pxgxrxt
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CRT (practical example - 2)

Then, to compute
s=md mod n = md mod (p.q)
We can conpute (Garner's Algorithm)
sl =m%®mod p=50'mod7=1
s2 = m¥Qmod g = 50° mod 11 =2
h=qgInv (s1l-s2) modp=2(1-2) mod 7 =5
s =s2 + hqg=2+5(11) = 57

Similar to:
s=m9d mod pq = 50!° mod 77 = 57
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RSA Key Generation

+ Users of RSA must:
- determine two primes at random - p, g
- Primality test
- select either e or d and compute the other

* Primes p, g must not be easily derived from
modulus n=p.qg
- means must be sufficiently large
- Difficult for factorization
- typically guess and use probabilistic test
» (ex., Probabilistic Rabin-Miller)
- exponents e, d are inverses, so use
Inverse algorithm to compute the other
- Euclid's Inverse Algorithm
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RSA Security

» Possible approaches to attacking RSA are:

- Brute force key search (infeasible given size of
humbers)

- Mathematical attacks (based on difficulty of
computing e(n), by factoring modulus n)

- Timing attacks (on running of decryption)

- Chosen ciphertext attacks (given properties of
RSA)
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Factoring Problem

 mathematical approach takes 3 forms:
- factor n=p.q, hence compute z (n) and then d
- determine o (n) directly and compuTe d
- find d dlr'ec’rly

+ currently believe all equivalent to factoring

- have seen slow improvements over the years
- as of May-05 best is 200 decimal digits (663 bit) with
LS (LATTICE SIEVE)
- biggest improvement comes from improved
algorithm
- ¢f QS to GNFS to LS

- currently assume 1024-2048 bit RSA is secure

» ensure p, q of similar size and matching other
constraints

- But observations and studies evolve, considering also
that computers will continue to get faster
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Timing Attacks

+ Developed by Paul Kocher in mid-1990's

- Applicable to any public-key crypto system

- Ciphertext only attack

Exploit timing variations in operations

- eg. multiplying by small vs large number

- or IF's varying which instructions executed
Infer operand size based on "time taken”
RSA exploits time taken in exponentiation

Countermeasures

- Use constant exponentiation time

- Add random delays

- Blind values used in calculations

- Secure message padding can also help
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Chosen Ciphertext Attacks

RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

Attackers chooses ciphertexts & gets
decrypted plaintext back

Choose ciphertext to exploit properties of
RSA to provide info to help cryptanalysis

Can counter with random pad (important) of
plaintext or use Optimal Asymmetric
Encryption Padding (OAEP)
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DSA (or DSS)
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DSA Security (see the DSA Alg.)

- With DSA, the entropy, secrecy, and
uniqueness of the random signature value A
are critical.

» Violating any one of those three
requirements can reveal the entire private
key to an attacker

- Using the same value twice (even while
keeping k secret), using a predictable value,
or leaking even a few bits of kin each of
several signatures, is enough to reveal the
private key x

* Practical issue (ex., RFC 6976 ):
K = HM || Kpriv)
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DSA Computations

* Modular Exponentiations: use of
exponentiation by squaring

» Signature constructions and verifications:

- For the involved exponentiations, can use the
extended Euclidean Alg. or the Fermat Little
Theorem
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ECC
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ECC: Why ?
Why ECC ? What's Wrong with RSA ?

+ RSA is based upon the ‘belief’ that factoring is
‘difficult’ - never been proven

* Prime numbers are getting too large (more and
more large keys for security ... Slow ?)

Amount of research currently devoted to
factoring algorithms

.. Quantum computing will make RSA obsolete
overnight ?
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ECC: Why ?

ECC: Based on Properties of Elliptic Curves and
Operations on Elliptic Curves

+ The discrete logarithm problem on elliptic curve
groups is believed to be more difficult than the
corresponding problem in (the multiplicative group
of nonzero elements of) the underlying finite
field.
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Why use ECC?

+ How do we analyze Cryptosystems?

- How difficult is the underlying problem that it
is based upon
- RSA - Integer Factorization
- DH - Discrete Logarithms
- ECC - Elliptic Curve Discrete Logarithm problem

- How do we measure difficulty?

* We examine the algorithms used to solve these
problems
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Security of ECC

+ To protect a 128 bit
AES key it would

take a: [ NIST guidelines for public key sizes for AES
- bR.SA Key Size: 3072 [C((::l:)sm RSA(:;Y”SIZE K::::;‘ AES(:;VS)SIIE
ITs | 163 1024 1:6
- Eiﬁ Key Size: 256 256 3072 1:12 128
|
384 7680 1:20 192
- How do we 512 15 360 1:30 256
strengthen RSA? !

- Increase the key
length

* Impractical?
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Applications of ECC

* Many devices are and have
and

* Where can we apply ECC?
- Wireless communication devices

- Smart cards

- Web servers that need to handle many
encryption sessions

- Any application where security is needed but
lacks the power, storage and computational
power that is necessary for our current
cryptosystems
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Benefits of ECC

+ Same benefits of the other cryptosystems:
confidentiality, integrity, authentication
and non-repudiation but...

» Shorter key lengths

- Encryption, Decryption and Signature
Verification speed up

- Storage and bandwidth savings
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ECC Practical Use

+ Pseudo-Random Generation
+ Integer Factorization Algorithms

+ Key Agreement Protocols

- Digital Signatures
» Encryption/Decryption
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Practical use and standardization effort

- US NIST

- has endorsed elliptic curve cryptography in its
SUITE B Algorithms Recommendation for the

following use:

- ECDH - Elliptic Curve Diffie Hellman Key Exchanges
- ECDSA - Elliptic Curve DSA Signatures

* in August 2015, the NSA announced that it
is planned to replace Suite B with a new
cipher suite due to concerns about
quantum computing attacks on ECC
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What is an Elliptic Curve ?
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What is an Elliptic Curve ?

- LetaeR,b eR, be constants such that
4q3 + 27b% £ 0.

* A non-singular elliptic curve (or a plane
curve over a finite field) is the set E of
solutions (points x,y) € R x R to the equation:

y?=x?+ax+b

together with a special point O called the
point at infinity.
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Singular Elliptic Curve

+ If 4a° + 27b* = 0, then we have a singular
elliptic curve. This could potentially lead to
having to not having 3 distinct roots

+ Therefore, we must deal with non-singular
elliptic curves with the condition 4a° +
27b% * 0, in order to assure that we have 3

distinct roots.

» This will allow us to establish the fact that
the solution set £ forms an Abelian group.
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Discrete Logarithms in Finite Fields (DH)

F={1,2.3,...

P-15 Pick secret,

Pick secret,
random X from F

random Y from F

\/

3

X
J” mod p . C
gy mod p .

Alice

Compute k=(g¥)*x=

g*Y mod p

Compute k=(g*)Y= g*¥ mod p

The adversary has to compute g*¥ from g* and g¥
without knowing x and y...
She/He is faced to the Discrete Logarithm Problem in finite fields
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What is a Group and Its Properties ?

Suppose we have any binary operation, such
as addition (+), that is defined for every
element in a set G, which is denoted (G, +)

+ Then G is a group with respect to addition
if the following conditions hold:

1.) 6 is closed under addition: x € 6,y € 6,
imply x+y e 6

2.) + is associative. For all x,vy, z, € 6,
X+(y+z)=(x+y)+z

3.) 6 has an identity element e.

Thereisan ein Gsuch that x+e-e+ x = x
forall x € G.

4.)) 6 contains inverses.
For each x € 6, there exists y € 6, such that

X+yzy+Xx:=e
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What is an Abelian Group ?

» An Abelian group contains all the rules of a
group, but also must meet the following
criteria:

5.) + is commutative.
Forallxe 6,ye 6, x+y=y+x.
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Abelian Group Properties

Given two points P,Q in E(Fp), there 1s a third point,
denoted by P+Q on E(Fp), and the following relations
hold for all P,Q,R in E(Fp)

« P+ Q = Q + P (commutativity)
. (P + Q) +R=P+ (Q + R) (associativity)
» P+ O= O+ P= P (existence of an identity element)

* there exists (- P) such that - P+ P=P+ (- P)

= O (existence of inverses)
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Elliptic Curve Representation

» Consider elliptic curve

E: y?2 = x> - x + 1
% - If P, and P, are on E, we
P% can define

/K as shown in picture
+ Addition is all we need
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Solutions: 3 cases to be considered

+ Suppose P, Q € E, where
P = (x1y1) and Q = (x;,y>)

We must consider three possible cases:
1.) x; % x,
2.) X1= Xz and y; = -y,
3.)X1=x,andy; =y,

These cases must be considered when

defining “addition” for a considered solution
set
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Defining Addition on E: Case 2

For the case x;= x, and y, = -y, , addition is
defined as follows:

(X1.y1) + (X2.¥2) = (X3,¥3) € E where

(x,y) + (x,-y) = O, the point at infinity
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Defining Addition on E: Case 1

For the case x; * x,, addition is defined as
follows:

(X1.y1) + (X2.¥2) = (X3.y3) € Ewhere
X3= A% - X;- X,

Y3 = A(X; - X3) -y, and
A=(y2-y1) /7 (X2- %)
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Defining Addition on E: Case 3

For the case x,=x, and y, = y,, addition is
defined as fcl)llowzs: yi= e

(X1.y1) + (X2.¥2) = (X3.y3) € Ewhere
X3= A% - X;- X,

Y3 = A(X; - X3) - y4, and
A= (3X12 + (1) / 2Y1
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Defmlng the Identity
* The point at infinity O, is the identity
element.P + O= 0+P P, forall P e E

* From Case 2, and the Identity Element, we
now have the existence of inverses

* Beyond the scope here to prove that we
have commutativity and associativity as
well

+ Therefore the set of solutions &, forms an
Abelian group (Importance of this will be
shown later)
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Elliptic Curves Modulo P

Let p > 3 be prime.

+ The elliptic curve y? = x> + ax + b over Z,
is the set of solutions (x,y) € Z, x Z, to the
congruence:

y? =x° +ax + b (mod p)
whereaeZ,6 b €Z, are constants such that

4a* + 27b® £ 0 (mod p), together with a
special point O called the point at infinity.

- Note: the Solutions still form an Abelian
group
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.. For an example (P = 11)

+ Let’ s examine the following elliptic curve as
an example:

2 _ 3
y2=x*+x+6over 2,

X 0/ 12/ 34/ 5/6/7 8910

X+x+bmodlll o | g 1 5/3/8/4(8/4|9|7]|4

QR? N N/ Y Y N Y N Y| Y | NY

Y 4,7 | 5,6 2,9 29| 38 2,9
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Another Example (P =5)

y> = x> + 2x + 3 (mod 5)

XXX XX

AR

4

3 = no solution (mod 5)

6

15
36
75

1l = vy
0 = vy
1l = vy
0 = vy

1,4 (mod 5)
0 (mod 5)
1,4 (mod 5)
0 (mod 5)

* Then in this case the points on the

elliptic curve are

(1,1) (1,4) (2,0)
(4,0)

and the point at infinity: o
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Genemﬂng our group

* From the previous slide, and including the
point at infinity O, we have a group with 13
points.

- Since the O(E) is prime, the group is cyclic.
- We can generate the group by choosing any
point other then the point at infinity.

Let our generator (for ex.,) = a = (2,7)
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The Group

* We can generate this by using the rules of
addition we defined earlier where 20. = o + a

o=(2,7) 2a = (5,2) 3a = (8,3)
40, = (10,2) S5a =(3,6) 60, = (7,9)
To=(7,2) 8a = (3,5) 9a. = (10,9)
10a = (8,8) 11a = (5,9) 120 = (2,4)
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So in suymmary

» An elliptic curve over a field K isa
nonsingular cubic curve in two variables, f(x,y)
=0 with a rational point (which may be a point
at infinity).

* The field Kis usually taken to be the complex
numbers, reals, rationals, algebraic extensions
of rationals, p-adic humbers, or a finite field.

- Elliptic curves groups for cryptography are
examined with the underlying fields of F,
(where p>3 is a prime) and F,m (a b/nary
representation with 2™ elements).
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Using Elliptic Curves In Cryptography

» The central part of any cryptosystem
involving elliptic curves is the elliptic group.

- All public-key cryptosystems have some
underlying mathematical operation.

- RSA has exponentiation (raising the message or
ciphertext to the public or private values)

- ECC has point multiplication (repeated addition of
two points).

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 53



Elliptic Curve Picture

5 + Consider elliptic curve
E: y2 =x3 - x + 1
i % + If P, and P, are on E, we
% can define
K . P, = P, + P,
/\P\s as shown in picture
- Addition is all we need
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Generic Procedures of ECC

Both parties agree to some publicly-known data items
- The elliptic curve equation
- values of aand b
* prime, p
- The elliptic group computed from the elliptic curve
equation

- A base point, B, faken from the elliptic group

- Similar to the generator used in current
cryptosystems

Each user generates their public/private key pair
- Private Key = an integer, X,
selected from the interval [1, p-1]
- Public Key = product, Q, of private key and base
point
(Q = x*B)
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ExamEIe - ECC Analog to El Gamal

» Suppose Alice wants to send to Bob an
encrypted message.

- Both agree on a base point, B.

- Alice and Bob create public/private keys.
- Alice
- Private Key = a
- Public Key =P, =a>* B
- Bob
- Private Key = b
- Public Key =Pz =b * B
- Alice takes plaintext message, M, and encodes
it onto a point, Py, from the elliptic group
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Examele - ECC Analog to El Gamal

- Alice chooses another random integer, k from
the interval [1, p-1]
- The ciphertext is a pair of points
* Pc = [ (kB), (Py + kPg) ]
- To decrypt, Bob computes the product of the
first point from P, and his private key, b
- b * (kB)
- Bob then takes this product and subtracts it
from the second point from P,
* (Py + kPg) - [b(kB)] = Py, + k(bB) - b(kB) = Py,
- Bob then decodes P,, to get the message, M.
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Encryption Rules

* Suppose we let o = (2,7) and choose the
private key to be 7

» Thenp=7a=(7,2)

- Encryption:
ex(x k) = (k(a), x + k(B))
e(x,k) = (k(2,7), x+k(7,2)) ,

where x e Eand 0 <k <12
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Decryption Rule
- Decryption:

di(y1,¥2) = Y2 - Kyrivy1
de(y1,Y2) = y2 - 7yq

(This is based on the ElGamal scheme of
elliptic curve encryption)
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How Alice can use the Scheme

» Suppose Alice wants to send a message to Bob.
* Plaintext is x = (10,9) which is a point in £

+ Alice chooses a random value for k, ex: k = 3
So now calculate (yq,y2):

y: = 3(2,7)=(8,3)

y> = (10,9) + 3(7,2) = (10,9) + (3,5) = (10,2)

» Alice transmits y = ((8,3),(10,2))
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How Bob can decrypt

* Bob receives y = ((8,3),(10,2))
» Calculates
x =(10,2) - 7(8,3)
= (10,2) - (3,5)
= (10,2) + (3,6)
= (10,9)

Which was the plaintext
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ECDH Model

Remembering Diffie-Hellman (DH) Key Exchange

User A User B
Generate
random X <¢:
Calcula(e.
Y, =X mod g YA Generate
] random Xg < ¢
Calculate
v Y = B mod g
B Calculate
o= X
Calculate re K=(Y,)"Bmod g
K= (Ylg)x“ mod ¢
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ECC Diffie-Hellman

Elliptic curve and point B=(x,y) on curve
Alice’s aand Bob’ s b

a(x,y)

b(X.,y)

« Alice computes a(b(x,y))
« Bob computes b(a(x,y))
» These are the same since ab = ba
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Example - Elliptic Curve Diffie-Hellman Exchange

- Alice and Bob want to agree on a shared key.

- Alice and Bob compute their public and private keys.
- Alice
» Private Key = a
» Public Key=P,=a* B
- Bob
» Private Key = b
» Public Key =P, =b*B
- Alice and Bob send each other their public keys.
- Both take the product of their private key and the other
user’ s public key.
- Alice > K,z = a(bB)
- Bob > K, = b(aB)
- Shared Secret Key = K,z = abB
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Examples for a specific Curve
* Curve P-192 (Defined by NSA)

p=62771017353866807638578942320766641608390870039024961279
r=627710173538668076385789423176059013767194773182842284081
a = 3099d2bb bfcb2538 542dcd5f bO78bbef 5f3d6fe2 c745de65

b = 64210519 e59¢80e7 Ofa7e9ab 72243049 feb8deec c146b9bl

G, = 188da89e b03090f6 7cbf20eb 43a18800 f4ffOafd 82ff1012

6, = 07192b95 ffc8da78 631011led 6b24cdd5 73f977al 1794811
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ECCDSA SIGNTAURES
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Initial Parameters

Alice and Bob must share:
- The curve to use: CURVE

+ G: elliptic curve base point, a generator of
the elliptic curve with large prime order n

* n. integer order of 6, means that n.G =0
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ECCDSA Keypair

+ Alice creates a key pair, consisting of a
private key integer d, randomly selected in
the interval [ 1, n-1 ] and a public key curve
point Q, = d, x G (Eliptic Curve Point
Mutiplication by a Scalar)
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ECCDSA Signature construction
- h=H(M) // ex., SHA-2

+ Take the z Ln lefmost bits
+ Select a crypto secure random K
- Calculate the curve point (x1,y1) = K.G

* Calculate r = x1 mod n, if r=0 go back to
select K again

» Calculate s=k!(z+r.d,) modn
- If s=0, go cack and recompute K

+ Os s =0, the signature is (r,s)

This is a DSA Based Signature
The validation folloes a DSA-based validation
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ECC Concerns

Political concerns. the trustworthiness of NIST -
produced curves being questioned after
revelations that the NSA willingly inserts
backdoors into software, hardware components
and published standards were made;

- well-known respectable cryptographers have expressed
doubts about how the NIST curves were designed, and
voluntary tainting has already been proved in the past.

Technical concerns: the difficulty to properly
implement the standard and the slowness and
design flaws which reduce security in
insufficiently precautions implementations on
random number generations
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