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Annex  
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DI-FCT-UNL 
Computer and Network Systems Security 
Segurança de Redes e Sistemas de Computadores 

Public Key Cryptohgraphy 



© DI/FCT/UNL 2019/2020 Public-Key Cryptography  - Complem. Opt. Topics - Slide 2 

Outline (Complementary Material) 
•  Asymmetric cryptography 

–  Public-Key cryptography principles 
–  Public-Key algorithms 
–  Public Key Signatures 
–  RSA algorithm 

•  Key-Pair Generation and Encryption/Decryption 
–  Diffie-Hellman key exchange 
–  Key-distribution with asymmetric cryptography 

–  Annex (complementary / optional topics):  
•  RSA 
•  ECC Foundations 
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RSA 
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RSA Use 
•  to encrypt a message M the sender: 

–  obtains public key of recipient PU={e,n}  
–  computes: C = Me mod n, where 0≤M<n 

•  to decrypt the ciphertext C the owner: 
–  uses their private key PR={d,n}  
–  computes: M = Cd mod n  

•  note that the message M must be smaller 
than the modulus n (block if needed) 
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Why RSA Works 
•  because of Euler's Theorem: 

–  aø(n)mod n = 1 where gcd(a,n)=1 
•  in RSA have: 

–  n=p.q 
–  ø(n)=(p-1)(q-1)  
–  carefully chose e & d to be inverses mod ø(n)  
–  hence e.d=1+k.ø(n) for some k 

•  hence : 
 Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k  

    = M1.(1)k = M1 = M mod n  
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Operations with big integers (large numbers) 
•  Optimization strategy 

–  Elementary addition and subtraction 
•  Multiple-precision addition or subtraction of large 

numbers are O(n) 
–  n the number of bits of operands 

–  Modular addition and subtraction is O(n) 
•  (x + y) mod N  

= x + y,  if x + y < N 
= x + y – m , if  x + y >= N 
 

-  Large number multiplication 
-  Pencil and paper method algorithm: O(n2) 
-  Russian Peasant Multiplication Method 

-  Good for binary representations 
-  Multiplication as a series of additions and shifts 
-  Variable complexity: from O(n) to O(n2) 
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Modular multiplication 
–  Requires the computation of x.y mod N 

•  First must compute x.y 
•  Followed by a reduction of the result modulo M 

–  Relates with a division and computation of large 
dimension intermediate products 

–  Possible optimized reductions: 
•  Barret modular reduction 

–  Montgomery’s multiplication 
–  Multiplication by squaring 
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Multiplication by squaring 

a.b mod n = { [ (a+b)2 – a2 – b2  ] /  2 } mod n 
 
a.b mod n = { [ (a+b)2 – (a – b)2  ] /  4 } mod n 
 
Advantage:  
Can also benefit from fast calculations 

performed on a cryptographic coprocessor 
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Exponentiation can be simple 
•  Can use the Square and Multiply Algorithm 
•  A fast, efficient algorithm for exponentiation  
•  Conceptually is based on repeatedly squaring base  

and multiplying in the ones that are needed to 
compute the result  

•  Look at binary representation of exponent  
•  Only takes O(log2 n) multiples for number n  

–  eg. 75 = 74.71 = 3.7 = 10 mod 11 
–  eg. 3129 = 3128.31 = 5.3 = 4 mod 11 
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Exponentiation algorithm 
c = 0; f = 1
for i = k downto 0 
    do c = 2 x c
       f = (f x f) mod n
    if bi == 1 then 
       c = c + 1
               f = (f x a) mod n 
 return f 
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Efficient Encryption 

•  Encryption uses exponentiation to power e 
•  Hence if e small, this will be faster 

–  often choose e=65537 (216-1) 
–  also see choices of e=3 or e=17 

•  But if e too small (eg e=3) can attack 
–  using CRT (Chinese Remainder Theorem) & 3 

messages with different modulii 
•  If e fixed must ensure gcd(e,ø(n))=1 

–  ie reject any p or q not relatively prime to e 
–  Need to generate those two primes with these 

property 
•  First generate primes (randomly + primality test) 
•  Check if gcd (e, ø(n) ) = 1.   
•  If yes, p and q are ok, if not,  generate other pair (p,q)  
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Efficient Decryption 
•  Decryption uses exponentiation to power d 

–  this is likely large, insecure if not 
•  Can use the Chinese Remainder Theorem 

(CRT) to compute mod p & q separately. 
then combine to get desired answer 
–  approx 4 times faster than doing directly 
 

•  The key idea: only owner of private key who 
knows values of p & q can use this 
technique  
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CRT – Chinese Reminder Theorem (1) 
•  Can decrease the processing time involving 

private keys by a factor of ~4. 

•  If the integers n1, n2, n3, … nk are pairwise 
relatively prime, then the system of 
simultaneous congruences 
x      a1 mod n1 
x      a2 mod n2 

… 
x      ak mod nk 

 
     Has an unique solution x, for 0 <= x <= n  
with n =  n1 n2 n3 … nk  
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CRT – Chinese Reminder Theorem (2) 
 
Solution for x is computable in the following 

way: 
 
  

 
     

i=1 

k 

ai  Ni N’i x 

n =  n1 n2 n3 … nk 
  Ni = n/ni N’I = Ni

-1 (mod ni) 

i = 1,2, … k  
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CRT (practical example - 1) 
M=cd mod n 
p=7, q=11,  e=19,  d = e-1 mod(p-1)(q-1) = 19 
Precomputing: 
dP = e-1 mod(p-1) = d mod (p-1) = 19 mod 6 = 1 
dQ= e-1 mod(q-1) = d mod (q-1) = 19 mod 10 = 9 
 
qInv = q-1 mod p = 11-1 mod 7 = 2 
 

Then, storing the quintuple (p. q. dP, dQ, qInv) 
(as a representation of the private key) 
 
Note) we can also try n = p x q x r x t 
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CRT (practical example - 2) 
Then, to compute 

 s=md mod n = md mod (p.q)  
We can conpute (Garner’s Algorithm) 
s1 = mdP mod p = 501 mod 7 = 1 
s2 = mdQ mod q = 509 mod 11 = 2 
h = qInv  (s1-s2) mod p = 2(1-2) mod 7 = 5 
s = s2 + hq = 2+5(11) = 57 
 
Similar to: 
s=md mod pq = 5019 mod 77 = 57 
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RSA Key Generation 
•  Users of RSA must: 

–  determine two primes at random - p, q  
–  Primality test 
–  select either e or d and compute the other 

•  Primes p,q must not be easily derived from 
modulus n=p.q 
–  means must be sufficiently large 
–  Difficult for factorization 
–  typically guess and use probabilistic test 

•  (ex., Probabilistic  Rabin-Miller) 
•  exponents e, d  are inverses, so use 

Inverse algorithm to compute the other 
–  Euclid’s Inverse Algorithm 
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RSA Security 
•  Possible approaches to attacking RSA are: 

–  Brute force key search (infeasible given size of 
numbers) 

–  Mathematical attacks (based on difficulty of 
computing ø(n), by factoring modulus n) 

–  Timing attacks (on running of decryption) 
–  Chosen ciphertext attacks (given properties of 

RSA) 
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Factoring Problem 
•  mathematical approach takes 3 forms: 

–  factor n=p.q, hence compute ø(n) and then d 
–  determine ø(n) directly and compute d 
–  find d directly 

•  currently believe all equivalent to factoring 
–  have seen slow improvements over the years  

•  as of May-05 best is 200 decimal digits (663 bit) with 
LS (LATTICE SIEVE) 

–  biggest improvement comes from improved 
algorithm 

•  cf QS to GNFS to LS 
–  currently assume 1024-2048 bit RSA is secure 

•  ensure p, q of similar size and matching other 
constraints 

•  But observations and studies evolve, considering also 
that computers will continue to get faster 
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Timing Attacks 
•  Developed by Paul Kocher in mid-1990’s 

–  Applicable to any public-key crypto system 
–  Ciphertext only attack 

•  Exploit timing variations in operations 
–  eg. multiplying by small vs large number  
–  or IF's varying which instructions executed 

•  Infer operand size based on “time taken”  
•  RSA exploits time taken in exponentiation 
•  Countermeasures 

–  Use constant exponentiation time 
–  Add random delays 
–  Blind values used in calculations 
–  Secure message padding can also help 
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Chosen Ciphertext Attacks 

•  RSA is vulnerable to a Chosen Ciphertext 
Attack (CCA) 

•  Attackers chooses ciphertexts & gets 
decrypted plaintext back 

•  Choose ciphertext to exploit properties of 
RSA to provide info to help cryptanalysis 

•  Can counter with random pad (important) of 
plaintext or use Optimal Asymmetric 
Encryption Padding (OAEP) 
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DSA (or DSS) 
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DSA Security (see the DSA Alg.) 
•  With DSA, the entropy, secrecy, and 

uniqueness of the random signature value k 
are critical.  

•  Violating any one of those three 
requirements can reveal the entire private 
key to an attacker 

•  Using the same value twice (even while 
keeping k secret), using a predictable value, 
or leaking even a few bits of k in each of 
several signatures, is enough to reveal the 
private key x 

•  Practical issue (ex., RFC 6976): 
K = H(M || Kpriv) 
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DSA Computations 
•  Modular Exponentiations: use of 

exponentiation by squaring 

•  Signature constructions and verifications: 
–  For the involved exponentiations, can use the 

extended Euclidean Alg. or the Fermat Little 
Theorem 
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ECC 
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ECC: Why ? 
Why ECC ? What’s Wrong with RSA ? 
•  RSA is based upon the ‘belief’ that factoring is 
‘difficult’ – never been proven 

•  Prime numbers are getting too large (more and 
more large keys for security …. Slow ?) 

•  Amount of research currently devoted to 
factoring algorithms 

•  … Quantum computing will make RSA obsolete 
overnight ? 
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ECC: Why ? 

•  ECC: Based on Properties of Elliptic Curves and 
Operations on Elliptic Curves 

 
•  The discrete logarithm problem on elliptic curve 

groups is believed to be more difficult than the 
corresponding problem in (the multiplicative group 
of nonzero elements of) the underlying finite 
field.  
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Why use ECC? 
•  How do we analyze Cryptosystems? 

–  How difficult is the underlying problem that it 
is based upon 

•  RSA – Integer Factorization 
•  DH – Discrete Logarithms 
•  ECC - Elliptic Curve Discrete Logarithm problem 

–  How do we measure difficulty? 
•  We examine the algorithms used to solve these 

problems 



© DI/FCT/UNL 2019/2020 Public-Key Cryptography  - Complem. Opt. Topics - Slide 29 

Security of ECC 
•  To protect a 128 bit 

AES key it would 
take a: 
–   RSA Key Size: 3072 

bits 
–  ECC Key Size: 256 

bits 
•  How do we 

strengthen RSA? 
–  Increase the key 

length 
•  Impractical?  
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Applications of ECC 
•  Many devices are small and have limited 

storage and computational power 
•  Where can we apply ECC? 

–  Wireless communication devices 
–  Smart cards 
–  Web servers that need to handle many 

encryption sessions 
–  Any application where security is needed but 

lacks the power, storage and computational 
power that is necessary for our current 
cryptosystems 
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Benefits of ECC 
•  Same benefits of the other cryptosystems: 

confidentiality, integrity, authentication 
and non-repudiation but… 

•  Shorter key lengths 
–  Encryption, Decryption and Signature 

Verification speed up 
–  Storage and bandwidth savings 
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ECC Practical Use 
•  Pseudo-Random Generation 
•  Integer Factorization Algorithms  

•  Key Agreement Protocols 
•  Digital Signatures 
•  Encryption/Decryption 
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Practical use and standardization effort 
•  US NIST 

–  has endorsed elliptic curve cryptography in its 
SUITE B Algorithms Recommendation for the 
following use: 

•  ECDH – Elliptic Curve Diffie Hellman Key Exchanges 
•  ECDSA – Elliptic Curve DSA Signatures 

•  in August 2015, the NSA announced that it 
is planned to replace Suite B with a new 
cipher suite due to concerns about  
quantum computing attacks on ECC 
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What is an Elliptic Curve ? 
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What is an Elliptic Curve ? 
•  Let a ∈ ℝ, b ∈ ℝ, be constants such that  
   4a³ + 27b² ≠ 0.   
 
•  A non-singular elliptic curve  (or a plane 

curve over a finite field)  is the set E of 
solutions (points x,y) ∈ ℝ x ℝ to the equation: 

       y² = x³ + ax + b 
 
   together with a special point O called the 

point at infinity. 
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Singular Elliptic Curve 

•  If 4a³ + 27b² = 0, then we have a singular 
elliptic curve. This could potentially lead to 
having to not having 3 distinct roots 

•  Therefore, we must deal with non-singular 
elliptic curves with the condition 4a³ + 
27b² ≠ 0, in order to assure that we have 3 
distinct roots. 

•  This will allow us to establish the fact that 
the solution set E forms an Abelian group. 
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Discrete Logarithms in Finite Fields (DH) 

Alice Bob 

Pick secret, 
random X from F 

Pick secret, 
random Y from F 

gy mod p 

gx mod p 

Compute k=(gy)x= gxy mod p 
 

Compute k=(gx)y= gxy mod p 
 

The adversary has to compute gxy from gx and gy  

without knowing x and y… 
She/He is faced to the Discrete Logarithm Problem in finite fields  

F={1,2,3,…,p-1} 
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What is a Group and Its Properties ? 
Suppose we have any binary operation, such 
as addition (+), that is defined for every 
element in a set G, which is denoted (G, +) 
 
•  Then G is a group with respect to addition 

if the following conditions hold: 
     1.) G is closed under addition: x ∈ G, y ∈ G,  
         imply x + y ∈ G 
     2.) + is associative. For all x, y, z, ∈ G,  
         x + (y + z) = (x + y) + z 
     3.) G has an identity element e.   

 There is an e in G such that x + e = e + x = x 
 for all x ∈ G. 

     4.) G contains inverses.   
 For each x ∈ G, there exists y ∈ G, such that  
 x + y = y + x = e. 
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What is an Abelian Group ? 

•  An Abelian group contains all the rules of a 
group, but also must meet the following 
criteria: 

 
 5.) + is commutative.  
  For all x ∈ G, y ∈ G, x + y = y + x. 
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Abelian Group Properties 

•  P + Q = Q + P (commutativity)  

•  (P + Q) + R = P + (Q + R) (associativity)  

•  P + O = O + P = P (existence of an identity element)  

•  there exists ( − P) such that − P + P = P + ( − P) 
= O (existence of inverses)  

Given two points P,Q in E(Fp), there is a third point, 
denoted by P+Q on  E(Fp), and the following relations 
hold for all  P,Q,R in E(Fp) 
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Elliptic Curve Representation 

•  Consider elliptic curve 
 E:  y2 = x3 - x + 1

•  If P1 and P2 are on E, we 
can define  

P3 = P1 + P2  
 as shown in picture 

•  Addition is all we need 

P1
P2

P3

x

y
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Solutions: 3 cases to be considered 

•  Suppose P, Q ∈ E, where  
 P = (x1,y1) and Q = (x2,y2)  

 
We must consider three possible cases: 
 1.) x1 ≠ x2 

 2.) x1 = x2 and y1 = - y2   
 3.) x1 = x2 and y1 =  y2 

 
These cases must be considered when 
defining “addition” for a considered solution 
set 
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Defining Addition on E : Case 2 
For the case x1 = x2 and y1 = - y2 , addition is 

defined as follows:  
 

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where  
  
 (x,y) + (x,-y) = O, the point at infinity 
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Defining Addition on E: Case 1 
For the case x1 ≠ x2, addition is defined as 

follows:  
 

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where  
  
   x3 = λ² - x1 - x2  
   y3 = λ(x1 – x3) - y1, and 
    λ = (y2 – y1) / (x2 – x1) 
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Defining Addition on E : Case 3 
For the case x1 = x2 and y1 =  y2, addition is 

defined as follows:  
 

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where  
  
   x3 = λ² - x1 - x2  
   y3 = λ(x1 – x3) - y1, and 
    λ = (3x1

2 + a) / 2y1 
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Defining the Identity 
•  The point at infinity O, is the identity 

element. P + O = O + P = P, for all P ∈ E. 
•  From Case 2, and the Identity Element, we 

now have the existence of inverses 
•  Beyond the scope here to prove that we 

have commutativity and associativity as 
well 

•  Therefore the set of solutions E, forms an 
Abelian group (Importance of this will be 
shown later) 
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Elliptic Curves Modulo P 

Let p > 3 be prime.  
•  The elliptic curve y² = x³ + ax + b over ℤp  

is the set of solutions (x,y) ∈ ℤp x ℤp to the 
congruence: 

y² ≡ x³ + ax + b (mod p) 
 

 where a ∈ ℤp, b ∈ ℤp, are constants such that 
4a³ + 27b² ≢ 0 (mod p), together with a 
special point O called the point at infinity. 

•  Note: the Solutions still form an Abelian 
group 
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… For an example (P =  11) 

•  Let’s examine the following elliptic curve as 
an example: 

           y² = x³ + x + 6 over ℤ11 

X 0 1 2 3 4 5 6 7 8 9 10 
x³ + x + 6 mod 11 
 6 8 5 3 8 4 8 4 9 7 4 

QR? N N Y Y N Y N Y Y N Y 

Y 4,7 5,6 2,9 2,9 3,8 2,9 
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Another Example ( P = 5 )  
y2 = x3 + 2x + 3 (mod 5) 
x = 0 ⇒ y2 = 3 ⇒ no solution (mod 5)
x = 1 ⇒ y2 = 6 = 1 ⇒ y = 1,4 (mod 5)
x = 2 ⇒ y2 = 15 = 0 ⇒ y = 0 (mod 5)
x = 3 ⇒ y2 = 36 = 1 ⇒ y = 1,4 (mod 5)
x = 4 ⇒ y2 = 75 = 0 ⇒ y = 0 (mod 5)

•  Then in this case the points on the 
elliptic curve are 
 (1,1) (1,4) (2,0) (3,1) (3,4) 
(4,0) 
and the point at infinity: ∞ 
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Generating our group 

•  From the previous slide, and including the 
point at infinity O, we have a group with 13 
points. 

•  Since the O(E) is prime, the group is cyclic. 
•  We can generate the group by choosing any 

point other then the point at infinity. 
 

 Let our generator (for ex.,) = α = (2,7) 
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The Group 
•  We can generate this by using the rules of 

addition we defined earlier where 2α = α + α 

α = (2,7) 2α = (5,2) 3α = (8,3)
4α = (10,2) 5α = (3,6) 6α = (7,9)
7α = (7,2) 8α = (3,5) 9α = (10,9)
10α = (8,8) 11α = (5,9) 12α = (2,4)
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So in suymmary 
•  An elliptic curve over a field  K  is a  

nonsingular cubic curve in two variables, f(x,y) 
=0 with a  rational point (which may be a point 
at infinity).  

•  The field  K is usually taken to be the complex 
numbers, reals, rationals, algebraic extensions 
of rationals, p-adic numbers, or a finite field. 

•  Elliptic curves groups for cryptography are 
examined with the underlying fields of Fp 
(where p>3 is a prime) and F2

m (a binary 
representation with 2m elements).  



© DI/FCT/UNL 2019/2020 Public-Key Cryptography  - Complem. Opt. Topics - Slide 53 

Using Elliptic Curves In Cryptography 

•  The central part of any cryptosystem 
involving elliptic curves is the elliptic group. 

•  All public-key cryptosystems have some 
underlying mathematical operation. 
–  RSA has exponentiation (raising the message or 

ciphertext to the public or private values) 
–  ECC has point multiplication (repeated addition of 

two points). 



© DI/FCT/UNL 2019/2020 Public-Key Cryptography  - Complem. Opt. Topics - Slide 54 

Elliptic Curve Picture 

•  Consider elliptic curve 
 E:  y2 = x3 - x + 1

•  If P1 and P2 are on E, we 
can define  

P3 = P1 + P2  
 as shown in picture 

•  Addition is all we need 

P1
P2

P3

x

y
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Generic Procedures of ECC 
•  Both parties agree to some publicly-known data items 

–  The elliptic curve equation  
•  values of a and b  
•  prime, p 

–  The elliptic group computed from the elliptic curve 
equation 

–  A base point, B, taken from the elliptic group 
•  Similar to the generator used in current 

cryptosystems 
•  Each user generates their public/private key pair 

–  Private Key = an integer, x,  
 selected from the interval [1, p-1] 

–  Public Key = product, Q, of private key and base 
point  
 (Q = x*B) 
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Example – ECC Analog to El Gamal 
•  Suppose Alice wants to send to Bob an 

encrypted message. 
–  Both agree on a base point, B. 
–  Alice and Bob create public/private keys. 

•  Alice 
–  Private Key = a 
–  Public Key = PA = a * B 

•  Bob 
–  Private Key = b 
–  Public Key = PB = b * B 

–  Alice takes plaintext message, M, and encodes 
it onto a point, PM, from the elliptic group 
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Example – ECC Analog to El Gamal 
–  Alice chooses another random integer, k from 

the interval [1, p-1] 
–  The ciphertext is a pair of points 

•  PC = [ (kB), (PM
 + kPB) ] 

  
–  To decrypt, Bob computes the product of the 

first point from PC and his private key, b 
•  b * (kB) 

–  Bob then takes this product and subtracts it 
from the second point from PC 

•  (PM + kPB) – [b(kB)] = PM + k(bB) – b(kB) = PM 
–  Bob then decodes PM to get the message, M. 
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Encryption Rules 
•  Suppose we let α = (2,7) and choose the 

private key to be 7  
•  Then β = 7α = (7,2) 

•  Encryption: 
  eK(x,k) = (k(α), x + k(β)) 
  eK(x,k) = (k(2,7), x+k(7,2)) , 

 
 where x ∈ E and 0 ≤ k ≤ 12 
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Decryption Rule 
•  Decryption: 

    dK(y1,y2) = y2 – Kprivy1 

       dK(y1,y2) =  y2 – 7y1 
 
(This is based on the ElGamal scheme of 
elliptic curve encryption) 



© DI/FCT/UNL 2019/2020 Public-Key Cryptography  - Complem. Opt. Topics - Slide 60 

How Alice can use the Scheme 

•  Suppose Alice wants to send a message to Bob. 
•  Plaintext is x = (10,9) which is a point in E 

•  Alice chooses a random value for k, ex: k = 3 

 So now calculate (y1,y2): 

 y1 = 3(2,7) = (8,3) 

 y2 = (10,9) + 3(7,2) = (10,9) + (3,5) = (10,2) 

•  Alice transmits y = ((8,3),(10,2)) 
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How Bob can decrypt  

•  Bob receives y = ((8,3),(10,2)) 
•  Calculates 

        x = (10,2) – 7(8,3)  
                      = (10,2) – (3,5) 

    = (10,2) + (3,6) 
    = (10,9)    

 
Which was the plaintext 
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ECDH Model 
 
Remembering Diffie-Hellman (DH) Key Exchange 
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ECC Diffie-Hellman 

•  Public: Elliptic curve and point B=(x,y) on curve 
•  Secret: Alice’s a and Bob’s b 

Alice, A Bob, B 

a(x,y) 

b(x,y) 

•  Alice computes a(b(x,y))  
•  Bob computes b(a(x,y))
•  These are the same since ab = ba
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Example – Elliptic Curve Diffie-Hellman Exchange 

•  Alice and Bob want to agree on a shared key. 
–  Alice and Bob compute their public and private keys.  

•  Alice 
»  Private Key = a 
»  Public Key = PA = a * B 

•  Bob 
»  Private Key = b 
»  Public Key = PB = b * B 

–  Alice and Bob send each other their public keys. 
–  Both take the product of their private key and the other 

user’s public key. 
•  Alice à KAB = a(bB) 
•  Bob à KAB = b(aB) 
•  Shared Secret Key = KAB = abB 
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Examples for a specific Curve 

•  Curve P-192 (Defined by NSA) 

p = 62771017353866807638578942320766641608390870039024961279 
 
r = 627710173538668076385789423176059013767194773182842284081 
 
a = 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65 
 
b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1 
 
Gx = 188da89e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012 
 
Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811 
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ECCDSA SIGNTAURES 
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Initial Parameters 
 
Alice and Bob must share: 
•  The curve to use: CURVE 
•  G: elliptic curve base point, a generator of 

the elliptic curve with large prime order n  
•  n:  integer order of G, means that n.G = 0 
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ECCDSA Keypair 
•  Alice creates a key pair, consisting of a 

private key integer dA randomly selected in 
the interval [ 1, n-1 ] and a public key curve 
point QA = dA × G (Eliptic Curve Point 
Mutiplication by a Scalar) 
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ECCDSA Signature construction 
•  h = H(M)  // ex., SHA-2 
•  Take the z Ln lefmost bits 
•  Select a crypto secure random K  
•  Calculate the curve point (x1,y1) = K.G 
•  Calculate r = x1 mod n,  if r=0 go back to 

select K again 
•  Calculate  s = k-1 (z + r.dA ) mod n 

–  If s=0, go cack and recompute K 
•  Os s !=0, the signature is  (r,s) 

This is a DSA Based Signature 
The validation folloes a DSA-based validation 
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ECC Concerns 
•  Political concerns: the trustworthiness of NIST - 

produced curves being questioned after 
revelations that the NSA willingly inserts 
backdoors into software, hardware components 
and published standards were made;  
–  well-known respectable cryptographers have expressed 

doubts about how the NIST curves were designed, and 
voluntary tainting has already been proved in the past. 

•  Technical concerns: the difficulty to properly 
implement the standard and the slowness and 
design flaws which reduce security in 
insufficiently precautions implementations on 
random number generations 


