
© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 1

Annex
(Complem./Optional Topics)

DI-FCT-UNL
Computer and Network Systems Security
Segurança de Redes e Sistemas de Computadores

Public Key Cryptohgraphy

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 2

Outline (Complementary Material)
•  Asymmetric cryptography

–  Public-Key cryptography principles
–  Public-Key algorithms
–  Public Key Signatures
–  RSA algorithm

•  Key-Pair Generation and Encryption/Decryption
–  Diffie-Hellman key exchange
–  Key-distribution with asymmetric cryptography

–  Annex (complementary / optional topics):
•  RSA
•  ECC Foundations

Ba
se

 M
at

er
ia

l

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 3

RSA

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 4

RSA Use
•  to encrypt a message M the sender:

–  obtains public key of recipient PU={e,n}
–  computes: C = Me mod n, where 0≤M<n

•  to decrypt the ciphertext C the owner:
–  uses their private key PR={d,n}
–  computes: M = Cd mod n

•  note that the message M must be smaller
than the modulus n (block if needed)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 5

Why RSA Works
•  because of Euler's Theorem:

–  aø(n)mod n = 1 where gcd(a,n)=1
•  in RSA have:

–  n=p.q
–  ø(n)=(p-1)(q-1)
–  carefully chose e & d to be inverses mod ø(n)
–  hence e.d=1+k.ø(n) for some k

•  hence :
 Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k

 = M1.(1)k = M1 = M mod n

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 6

Operations with big integers (large numbers)
•  Optimization strategy

–  Elementary addition and subtraction
•  Multiple-precision addition or subtraction of large

numbers are O(n)
–  n the number of bits of operands

–  Modular addition and subtraction is O(n)
•  (x + y) mod N

= x + y, if x + y < N
= x + y – m , if x + y >= N

-  Large number multiplication
-  Pencil and paper method algorithm: O(n2)
-  Russian Peasant Multiplication Method

-  Good for binary representations
-  Multiplication as a series of additions and shifts
-  Variable complexity: from O(n) to O(n2)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 7

Modular multiplication
–  Requires the computation of x.y mod N

•  First must compute x.y
•  Followed by a reduction of the result modulo M

–  Relates with a division and computation of large
dimension intermediate products

–  Possible optimized reductions:
•  Barret modular reduction

–  Montgomery’s multiplication
–  Multiplication by squaring

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 8

Multiplication by squaring

a.b mod n = { [(a+b)2 – a2 – b2] / 2 } mod n

a.b mod n = { [(a+b)2 – (a – b)2] / 4 } mod n

Advantage:
Can also benefit from fast calculations

performed on a cryptographic coprocessor

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 9

Exponentiation can be simple
•  Can use the Square and Multiply Algorithm
•  A fast, efficient algorithm for exponentiation
•  Conceptually is based on repeatedly squaring base

and multiplying in the ones that are needed to
compute the result

•  Look at binary representation of exponent
•  Only takes O(log2 n) multiples for number n

–  eg. 75 = 74.71 = 3.7 = 10 mod 11
–  eg. 3129 = 3128.31 = 5.3 = 4 mod 11

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 10

Exponentiation algorithm
c = 0; f = 1
for i = k downto 0
 do c = 2 x c
 f = (f x f) mod n
 if bi == 1 then
 c = c + 1
 f = (f x a) mod n
 return f

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 11

Efficient Encryption

•  Encryption uses exponentiation to power e
•  Hence if e small, this will be faster

–  often choose e=65537 (216-1)
–  also see choices of e=3 or e=17

•  But if e too small (eg e=3) can attack
–  using CRT (Chinese Remainder Theorem) & 3

messages with different modulii
•  If e fixed must ensure gcd(e,ø(n))=1

–  ie reject any p or q not relatively prime to e
–  Need to generate those two primes with these

property
•  First generate primes (randomly + primality test)
•  Check if gcd (e, ø(n)) = 1.
•  If yes, p and q are ok, if not, generate other pair (p,q)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 12

Efficient Decryption
•  Decryption uses exponentiation to power d

–  this is likely large, insecure if not
•  Can use the Chinese Remainder Theorem

(CRT) to compute mod p & q separately.
then combine to get desired answer
–  approx 4 times faster than doing directly

•  The key idea: only owner of private key who
knows values of p & q can use this
technique

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 13

CRT – Chinese Reminder Theorem (1)
•  Can decrease the processing time involving

private keys by a factor of ~4.

•  If the integers n1, n2, n3, … nk are pairwise
relatively prime, then the system of
simultaneous congruences
x a1 mod n1
x a2 mod n2

…
x ak mod nk

 Has an unique solution x, for 0 <= x <= n
with n = n1 n2 n3 … nk

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 14

CRT – Chinese Reminder Theorem (2)

Solution for x is computable in the following

way:

i=1

k

ai Ni N’i x

n = n1 n2 n3 … nk
 Ni = n/ni N’I = Ni

-1 (mod ni)

i = 1,2, … k

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 15

CRT (practical example - 1)
M=cd mod n
p=7, q=11, e=19, d = e-1 mod(p-1)(q-1) = 19
Precomputing:
dP = e-1 mod(p-1) = d mod (p-1) = 19 mod 6 = 1
dQ= e-1 mod(q-1) = d mod (q-1) = 19 mod 10 = 9

qInv = q-1 mod p = 11-1 mod 7 = 2

Then, storing the quintuple (p. q. dP, dQ, qInv)
(as a representation of the private key)

Note) we can also try n = p x q x r x t

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 16

CRT (practical example - 2)
Then, to compute

 s=md mod n = md mod (p.q)
We can conpute (Garner’s Algorithm)
s1 = mdP mod p = 501 mod 7 = 1
s2 = mdQ mod q = 509 mod 11 = 2
h = qInv (s1-s2) mod p = 2(1-2) mod 7 = 5
s = s2 + hq = 2+5(11) = 57

Similar to:
s=md mod pq = 5019 mod 77 = 57

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 17

RSA Key Generation
•  Users of RSA must:

–  determine two primes at random - p, q
–  Primality test
–  select either e or d and compute the other

•  Primes p,q must not be easily derived from
modulus n=p.q
–  means must be sufficiently large
–  Difficult for factorization
–  typically guess and use probabilistic test

•  (ex., Probabilistic Rabin-Miller)
•  exponents e, d are inverses, so use

Inverse algorithm to compute the other
–  Euclid’s Inverse Algorithm

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 18

RSA Security
•  Possible approaches to attacking RSA are:

–  Brute force key search (infeasible given size of
numbers)

–  Mathematical attacks (based on difficulty of
computing ø(n), by factoring modulus n)

–  Timing attacks (on running of decryption)
–  Chosen ciphertext attacks (given properties of

RSA)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 19

Factoring Problem
•  mathematical approach takes 3 forms:

–  factor n=p.q, hence compute ø(n) and then d
–  determine ø(n) directly and compute d
–  find d directly

•  currently believe all equivalent to factoring
–  have seen slow improvements over the years

•  as of May-05 best is 200 decimal digits (663 bit) with
LS (LATTICE SIEVE)

–  biggest improvement comes from improved
algorithm

•  cf QS to GNFS to LS
–  currently assume 1024-2048 bit RSA is secure

•  ensure p, q of similar size and matching other
constraints

•  But observations and studies evolve, considering also
that computers will continue to get faster

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 20

Timing Attacks
•  Developed by Paul Kocher in mid-1990’s

–  Applicable to any public-key crypto system
–  Ciphertext only attack

•  Exploit timing variations in operations
–  eg. multiplying by small vs large number
–  or IF's varying which instructions executed

•  Infer operand size based on “time taken”
•  RSA exploits time taken in exponentiation
•  Countermeasures

–  Use constant exponentiation time
–  Add random delays
–  Blind values used in calculations
–  Secure message padding can also help

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 21

Chosen Ciphertext Attacks

•  RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

•  Attackers chooses ciphertexts & gets
decrypted plaintext back

•  Choose ciphertext to exploit properties of
RSA to provide info to help cryptanalysis

•  Can counter with random pad (important) of
plaintext or use Optimal Asymmetric
Encryption Padding (OAEP)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 22

DSA (or DSS)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 23

DSA Security (see the DSA Alg.)
•  With DSA, the entropy, secrecy, and

uniqueness of the random signature value k
are critical.

•  Violating any one of those three
requirements can reveal the entire private
key to an attacker

•  Using the same value twice (even while
keeping k secret), using a predictable value,
or leaking even a few bits of k in each of
several signatures, is enough to reveal the
private key x

•  Practical issue (ex., RFC 6976):
K = H(M || Kpriv)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 24

DSA Computations
•  Modular Exponentiations: use of

exponentiation by squaring

•  Signature constructions and verifications:
–  For the involved exponentiations, can use the

extended Euclidean Alg. or the Fermat Little
Theorem

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 25

ECC

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 26

ECC: Why ?
Why ECC ? What’s Wrong with RSA ?
•  RSA is based upon the ‘belief’ that factoring is
‘difficult’ – never been proven

•  Prime numbers are getting too large (more and
more large keys for security …. Slow ?)

•  Amount of research currently devoted to
factoring algorithms

•  … Quantum computing will make RSA obsolete
overnight ?

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 27

ECC: Why ?

•  ECC: Based on Properties of Elliptic Curves and
Operations on Elliptic Curves

•  The discrete logarithm problem on elliptic curve

groups is believed to be more difficult than the
corresponding problem in (the multiplicative group
of nonzero elements of) the underlying finite
field.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 28

Why use ECC?
•  How do we analyze Cryptosystems?

–  How difficult is the underlying problem that it
is based upon

•  RSA – Integer Factorization
•  DH – Discrete Logarithms
•  ECC - Elliptic Curve Discrete Logarithm problem

–  How do we measure difficulty?
•  We examine the algorithms used to solve these

problems

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 29

Security of ECC
•  To protect a 128 bit

AES key it would
take a:
–  RSA Key Size: 3072

bits
–  ECC Key Size: 256

bits
•  How do we

strengthen RSA?
–  Increase the key

length
•  Impractical?

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 30

Applications of ECC
•  Many devices are small and have limited

storage and computational power
•  Where can we apply ECC?

–  Wireless communication devices
–  Smart cards
–  Web servers that need to handle many

encryption sessions
–  Any application where security is needed but

lacks the power, storage and computational
power that is necessary for our current
cryptosystems

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 31

Benefits of ECC
•  Same benefits of the other cryptosystems:

confidentiality, integrity, authentication
and non-repudiation but…

•  Shorter key lengths
–  Encryption, Decryption and Signature

Verification speed up
–  Storage and bandwidth savings

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 32

ECC Practical Use
•  Pseudo-Random Generation
•  Integer Factorization Algorithms

•  Key Agreement Protocols
•  Digital Signatures
•  Encryption/Decryption

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 33

Practical use and standardization effort
•  US NIST

–  has endorsed elliptic curve cryptography in its
SUITE B Algorithms Recommendation for the
following use:

•  ECDH – Elliptic Curve Diffie Hellman Key Exchanges
•  ECDSA – Elliptic Curve DSA Signatures

•  in August 2015, the NSA announced that it
is planned to replace Suite B with a new
cipher suite due to concerns about
quantum computing attacks on ECC

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 34

What is an Elliptic Curve ?

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 35

What is an Elliptic Curve ?
•  Let a ∈ ℝ, b ∈ ℝ, be constants such that
 4a³ + 27b² ≠ 0.

•  A non-singular elliptic curve (or a plane

curve over a finite field) is the set E of
solutions (points x,y) ∈ ℝ x ℝ to the equation:

 y² = x³ + ax + b

 together with a special point O called the

point at infinity.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 36

Singular Elliptic Curve

•  If 4a³ + 27b² = 0, then we have a singular
elliptic curve. This could potentially lead to
having to not having 3 distinct roots

•  Therefore, we must deal with non-singular
elliptic curves with the condition 4a³ +
27b² ≠ 0, in order to assure that we have 3
distinct roots.

•  This will allow us to establish the fact that
the solution set E forms an Abelian group.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 37

Discrete Logarithms in Finite Fields (DH)

Alice Bob

Pick secret,
random X from F

Pick secret,
random Y from F

gy mod p

gx mod p

Compute k=(gy)x= gxy mod p

Compute k=(gx)y= gxy mod p

The adversary has to compute gxy from gx and gy

without knowing x and y…
She/He is faced to the Discrete Logarithm Problem in finite fields

F={1,2,3,…,p-1}

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 38

What is a Group and Its Properties ?
Suppose we have any binary operation, such
as addition (+), that is defined for every
element in a set G, which is denoted (G, +)

•  Then G is a group with respect to addition

if the following conditions hold:
 1.) G is closed under addition: x ∈ G, y ∈ G,
 imply x + y ∈ G
 2.) + is associative. For all x, y, z, ∈ G,
 x + (y + z) = (x + y) + z
 3.) G has an identity element e.

 There is an e in G such that x + e = e + x = x
 for all x ∈ G.

 4.) G contains inverses.
 For each x ∈ G, there exists y ∈ G, such that
 x + y = y + x = e.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 39

What is an Abelian Group ?

•  An Abelian group contains all the rules of a
group, but also must meet the following
criteria:

 5.) + is commutative.
 For all x ∈ G, y ∈ G, x + y = y + x.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 40

Abelian Group Properties

•  P + Q = Q + P (commutativity)

•  (P + Q) + R = P + (Q + R) (associativity)

•  P + O = O + P = P (existence of an identity element)

•  there exists (− P) such that − P + P = P + (− P)
= O (existence of inverses)

Given two points P,Q in E(Fp), there is a third point,
denoted by P+Q on E(Fp), and the following relations
hold for all P,Q,R in E(Fp)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 41

Elliptic Curve Representation

•  Consider elliptic curve
 E: y2 = x3 - x + 1

•  If P1 and P2 are on E, we
can define

P3 = P1 + P2
 as shown in picture

•  Addition is all we need

P1
P2

P3

x

y

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 42

Solutions: 3 cases to be considered

•  Suppose P, Q ∈ E, where
 P = (x1,y1) and Q = (x2,y2)

We must consider three possible cases:
 1.) x1 ≠ x2

 2.) x1 = x2 and y1 = - y2
 3.) x1 = x2 and y1 = y2

These cases must be considered when
defining “addition” for a considered solution
set

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 43

Defining Addition on E : Case 2
For the case x1 = x2 and y1 = - y2 , addition is

defined as follows:

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where

 (x,y) + (x,-y) = O, the point at infinity

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 44

Defining Addition on E: Case 1
For the case x1 ≠ x2, addition is defined as

follows:

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where

 x3 = λ² - x1 - x2
 y3 = λ(x1 – x3) - y1, and
 λ = (y2 – y1) / (x2 – x1)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 45

Defining Addition on E : Case 3
For the case x1 = x2 and y1 = y2, addition is

defined as follows:

 (x1,y1) + (x2,y2) = (x3,y3) ∈ E where

 x3 = λ² - x1 - x2
 y3 = λ(x1 – x3) - y1, and
 λ = (3x1

2 + a) / 2y1

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 46

Defining the Identity
•  The point at infinity O, is the identity

element. P + O = O + P = P, for all P ∈ E.
•  From Case 2, and the Identity Element, we

now have the existence of inverses
•  Beyond the scope here to prove that we

have commutativity and associativity as
well

•  Therefore the set of solutions E, forms an
Abelian group (Importance of this will be
shown later)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 47

Elliptic Curves Modulo P

Let p > 3 be prime.
•  The elliptic curve y² = x³ + ax + b over ℤp

is the set of solutions (x,y) ∈ ℤp x ℤp to the
congruence:

y² ≡ x³ + ax + b (mod p)

 where a ∈ ℤp, b ∈ ℤp, are constants such that
4a³ + 27b² ≢ 0 (mod p), together with a
special point O called the point at infinity.

•  Note: the Solutions still form an Abelian
group

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 48

… For an example (P = 11)

•  Let’s examine the following elliptic curve as
an example:

 y² = x³ + x + 6 over ℤ11

X 0 1 2 3 4 5 6 7 8 9 10
x³ + x + 6 mod 11
 6 8 5 3 8 4 8 4 9 7 4

QR? N N Y Y N Y N Y Y N Y

Y 4,7 5,6 2,9 2,9 3,8 2,9

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 49

Another Example (P = 5)
y2 = x3 + 2x + 3 (mod 5)
x = 0 ⇒ y2 = 3 ⇒ no solution (mod 5)
x = 1 ⇒ y2 = 6 = 1 ⇒ y = 1,4 (mod 5)
x = 2 ⇒ y2 = 15 = 0 ⇒ y = 0 (mod 5)
x = 3 ⇒ y2 = 36 = 1 ⇒ y = 1,4 (mod 5)
x = 4 ⇒ y2 = 75 = 0 ⇒ y = 0 (mod 5)

•  Then in this case the points on the
elliptic curve are
 (1,1) (1,4) (2,0) (3,1) (3,4)
(4,0)
and the point at infinity: ∞

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 50

Generating our group

•  From the previous slide, and including the
point at infinity O, we have a group with 13
points.

•  Since the O(E) is prime, the group is cyclic.
•  We can generate the group by choosing any

point other then the point at infinity.

 Let our generator (for ex.,) = α = (2,7)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 51

The Group
•  We can generate this by using the rules of

addition we defined earlier where 2α = α + α

α = (2,7) 2α = (5,2) 3α = (8,3)
4α = (10,2) 5α = (3,6) 6α = (7,9)
7α = (7,2) 8α = (3,5) 9α = (10,9)
10α = (8,8) 11α = (5,9) 12α = (2,4)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 52

So in suymmary
•  An elliptic curve over a field K is a

nonsingular cubic curve in two variables, f(x,y)
=0 with a rational point (which may be a point
at infinity).

•  The field K is usually taken to be the complex
numbers, reals, rationals, algebraic extensions
of rationals, p-adic numbers, or a finite field.

•  Elliptic curves groups for cryptography are
examined with the underlying fields of Fp
(where p>3 is a prime) and F2

m (a binary
representation with 2m elements).

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 53

Using Elliptic Curves In Cryptography

•  The central part of any cryptosystem
involving elliptic curves is the elliptic group.

•  All public-key cryptosystems have some
underlying mathematical operation.
–  RSA has exponentiation (raising the message or

ciphertext to the public or private values)
–  ECC has point multiplication (repeated addition of

two points).

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 54

Elliptic Curve Picture

•  Consider elliptic curve
 E: y2 = x3 - x + 1

•  If P1 and P2 are on E, we
can define

P3 = P1 + P2
 as shown in picture

•  Addition is all we need

P1
P2

P3

x

y

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 55

Generic Procedures of ECC
•  Both parties agree to some publicly-known data items

–  The elliptic curve equation
•  values of a and b
•  prime, p

–  The elliptic group computed from the elliptic curve
equation

–  A base point, B, taken from the elliptic group
•  Similar to the generator used in current

cryptosystems
•  Each user generates their public/private key pair

–  Private Key = an integer, x,
 selected from the interval [1, p-1]

–  Public Key = product, Q, of private key and base
point
 (Q = x*B)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 56

Example – ECC Analog to El Gamal
•  Suppose Alice wants to send to Bob an

encrypted message.
–  Both agree on a base point, B.
–  Alice and Bob create public/private keys.

•  Alice
–  Private Key = a
–  Public Key = PA = a * B

•  Bob
–  Private Key = b
–  Public Key = PB = b * B

–  Alice takes plaintext message, M, and encodes
it onto a point, PM, from the elliptic group

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 57

Example – ECC Analog to El Gamal
–  Alice chooses another random integer, k from

the interval [1, p-1]
–  The ciphertext is a pair of points

•  PC = [(kB), (PM
 + kPB)]

–  To decrypt, Bob computes the product of the

first point from PC and his private key, b
•  b * (kB)

–  Bob then takes this product and subtracts it
from the second point from PC

•  (PM + kPB) – [b(kB)] = PM + k(bB) – b(kB) = PM
–  Bob then decodes PM to get the message, M.

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 58

Encryption Rules
•  Suppose we let α = (2,7) and choose the

private key to be 7
•  Then β = 7α = (7,2)

•  Encryption:
 eK(x,k) = (k(α), x + k(β))
 eK(x,k) = (k(2,7), x+k(7,2)) ,

 where x ∈ E and 0 ≤ k ≤ 12

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 59

Decryption Rule
•  Decryption:

 dK(y1,y2) = y2 – Kprivy1

 dK(y1,y2) = y2 – 7y1

(This is based on the ElGamal scheme of
elliptic curve encryption)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 60

How Alice can use the Scheme

•  Suppose Alice wants to send a message to Bob.
•  Plaintext is x = (10,9) which is a point in E

•  Alice chooses a random value for k, ex: k = 3

 So now calculate (y1,y2):

 y1 = 3(2,7) = (8,3)

 y2 = (10,9) + 3(7,2) = (10,9) + (3,5) = (10,2)

•  Alice transmits y = ((8,3),(10,2))

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 61

How Bob can decrypt

•  Bob receives y = ((8,3),(10,2))
•  Calculates

 x = (10,2) – 7(8,3)
 = (10,2) – (3,5)

 = (10,2) + (3,6)
 = (10,9)

Which was the plaintext

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 62

ECDH Model

Remembering Diffie-Hellman (DH) Key Exchange

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 63

ECC Diffie-Hellman

•  Public: Elliptic curve and point B=(x,y) on curve
•  Secret: Alice’s a and Bob’s b

Alice, A Bob, B

a(x,y)

b(x,y)

•  Alice computes a(b(x,y))
•  Bob computes b(a(x,y))
•  These are the same since ab = ba

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 64

Example – Elliptic Curve Diffie-Hellman Exchange

•  Alice and Bob want to agree on a shared key.
–  Alice and Bob compute their public and private keys.

•  Alice
»  Private Key = a
»  Public Key = PA = a * B

•  Bob
»  Private Key = b
»  Public Key = PB = b * B

–  Alice and Bob send each other their public keys.
–  Both take the product of their private key and the other

user’s public key.
•  Alice à KAB = a(bB)
•  Bob à KAB = b(aB)
•  Shared Secret Key = KAB = abB

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 65

Examples for a specific Curve

•  Curve P-192 (Defined by NSA)

p = 62771017353866807638578942320766641608390870039024961279

r = 627710173538668076385789423176059013767194773182842284081

a = 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65

b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1

Gx = 188da89e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012

Gy = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 66

ECCDSA SIGNTAURES

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 67

Initial Parameters

Alice and Bob must share:
•  The curve to use: CURVE
•  G: elliptic curve base point, a generator of

the elliptic curve with large prime order n
•  n: integer order of G, means that n.G = 0

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 68

ECCDSA Keypair
•  Alice creates a key pair, consisting of a

private key integer dA randomly selected in
the interval [1, n-1] and a public key curve
point QA = dA × G (Eliptic Curve Point
Mutiplication by a Scalar)

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 69

ECCDSA Signature construction
•  h = H(M) // ex., SHA-2
•  Take the z Ln lefmost bits
•  Select a crypto secure random K
•  Calculate the curve point (x1,y1) = K.G
•  Calculate r = x1 mod n, if r=0 go back to

select K again
•  Calculate s = k-1 (z + r.dA) mod n

–  If s=0, go cack and recompute K
•  Os s !=0, the signature is (r,s)

This is a DSA Based Signature
The validation folloes a DSA-based validation

© DI/FCT/UNL 2019/2020 Public-Key Cryptography - Complem. Opt. Topics - Slide 70

ECC Concerns
•  Political concerns: the trustworthiness of NIST -

produced curves being questioned after
revelations that the NSA willingly inserts
backdoors into software, hardware components
and published standards were made;
–  well-known respectable cryptographers have expressed

doubts about how the NIST curves were designed, and
voluntary tainting has already been proved in the past.

•  Technical concerns: the difficulty to properly
implement the standard and the slowness and
design flaws which reduce security in
insufficiently precautions implementations on
random number generations

