Stream Processing

Lecture 04

2022/2023

Table of Contents

» Stream processing ecosystem

— Apache Flume
— Apache Kafka
— AWS Stream Processing Ecosystem

Table of Contents

» Stream processing ecosystem

— Apache Flume
— Apache Kafka
— AWS Stream Processing Ecosystem

Apache Flume: Motivation

* In many application scenarios, data comes
from multiple sources and needs to be
conveniently prepared before processing...

— e.g. logging information needs to be ingested into
HDFS, before map reduce jobs can process
them...

* Most processing systems rely on external tools
that perform the necessary adaptation before

data is processed

Flume: What s it?

* Flume is a system for collecting, aggregating,
and moving large amounts of data.

— it has a simple and flexible architecture based on
streaming data flows;

— it is robust and fault tolerant, with tunable
reliability mechanisms and recovery mechanisms.

Flume: Architecture (1)

* Core Concepts

— event - unit of data flow having a byte payload
and an optional set of string attributes.

Flume: Architecture (2)

— flume agent - a (JVM) process that hosts the
components through which events flow from an
external source to the target destination.

Flume: Architecture (3)

— sources - acquire events produced by external
sources like a set of web servers.

Flume: Architecture (4)

— sources - acquire events produced by external
sources like a set of web servers.
* an agent can aggregate the input of multiple sources

Flume: Architecture (5)

— channels - move events around
* the type determines the delivery guarantees

* reliable channels may not respect order

Flume: Architecture (6)

— sinks - output events to external consumers

e an agent can feed multiple external consumers, using
multiple sinks

11

Flume: Architecture (7)

— agents - can have more complex topologies, with
multiple sources, channels and skinks
 agents can also be chained together

12

Flume: Architecture (8)

— agents - can have more complex topologies, with
multiple sources, channels and skinks
* agents can also be chained together

Web
Serv

Web
Serv

Web
Serv

\

gent4

channel

13

Flume: Programming

* A Flume agent is programmed via a
configuration file

— the file describes its topology in terms of sources,
sinks, channels and how they connect together

— for each component (sink, source, channel) the file
also describes its parameters, in particular type

— There’s a library of sources, sinks and channels
that can be used

Example: Sink to Kafka

* Using Flume to ingest a stream from a test
source into Kafka

15

Name the components on this agent
al.sources =rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.kl.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.kl1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels =cl

al.sinks.kl.channel =cl

Name the components on this agent
al.sources =rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.kl.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.kl1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels =cl

al.sinks.kl.channel =cl

Define the name of the
components. e.g. there
will be a source rl.

Name the components on this agent
al.sources=rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.kl.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.kl1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels =cl

al.sinks.kl.channel =cl

Simple source that
generates sequential
events (1,2,3,...)

Name the components on this agent
al.sources =rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.k1.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.k1.kafka.producer.compression.type = snappy

Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels = cl

al.sinks.kl.channel =cl

Sink to send event —
Kafka in this case.

Name the components on this agent
al.sources =rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.kl.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.k1.kafka.producer.compression.type = snappy

Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels =cl
al.sinks.kl.channel =cl1

Simple internal
memory-based
event-queue.

Name the components on this agent
al.sources =rl

al.sinks = k1

al.channels =cl

Describe/configure the source
al.sources.rl.type = seq

Describe/configure the sink

al.sinks.kl.type = org.apache.flume.sink.kafka.KafkaSink
al.sinks.k1.kafka.topic = mytopic
al.sinks.k1.kafka.bootstrap.servers = localhost:9092
al.sinks.kl.kafka.flumeBatchSize = 20
al.sinks.k1.kafka.producer.acks = 1
al.sinks.k1.kafka.producer.lingerms =1
al.sinks.kl1.kafka.producer.compression.type = snappy
Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels =cl
al.sinks.kl.channel = cl

Connects the sources
and sinks to the channel.

pause

Table of Contents

» Stream processing ecosystem

— Apache Flume
— Apache Kafka
— AWS Stream Processing Ecosystem

Publish/subscribe

A form of indirect communication:

- senders (publishers) do not address messages
to specific receivers (subscribers).

- messages are relayed to subscribers (if any)
that have shown interest in particular classes
of messages (topics) or messages with
particular contents (cotent-routing)

Publish/subscribe concepts

Data producers are decoupled from data consumers
— Publishers don’t know who the consumers are and vice versa
— Publishers and subscribers may exist at different times

A queue can provide durable storage of messages for some length
of time

A message can be consumed from the queue [0..n] times

— No requirement that a message is delivered exactly once or at least
once

1:n relationship between publishers and subscribers

— “Fan-out” effect
— Assingle message need not be delivered to all subscribers

Kafka: What is it?

* Apache Kafka is a topic based
publish-subscribe messaging system

— In the context of distributed processing, it is often
used to ingest data streams into a stream
processing system

Kafka: What is it?

* Apache Kafka is a topic based
publish-subscribe messaging system

— Mediates and decouples interactions between
event producers and the consumers
* Producers send events to Brokers (Kafka Servers)
e Consumers receive events via the Brokers

* Don’t need to know each other directly or execute at
the same time

Kafka: Architecture

* Producer API to produce a streams or records
* Consumer API to consume a stream of records

28

Kafka: Architecture

* Broker server: Kafka server that runs in a Kafka Cluster.
Brokers form a cluster. Cluster consists on many Kafka
Brokers on many servers.

e ZooKeeper: Coordinates the brokers/cluster topology:
configuration information and leadership election for Broker

Topic Partition Leaders (optional in recent versions)

29

Kafka: Key Facts

e Kafka is implemented as distributed commit log
— offers event persistency, backed by the filesystem

— fault-tolerance and high-availability due to replication

— high throughput via partitioning

30

Kafka: Usage Scenario

e Kafka can interface directly with many
stream-processing engines, such as Spark

Streaming, Storm and Flink

31

Kafka: records and topics

* Records are immutable and have a key
(optional), value and timestamp

* A topic is a stream of records (“/orders”,
“fuser-signups”), feed name
— Topics stored on disk

— Topics broken up in partitions and segments (parts
of Topic Log)

Kafka record retention

e Kafka cluster retains all published records
— Time based — configurable retention period
— Size based — configurable based on size
— Compaction — keeps latest record given key

e E.g.: retention policy of three days or two
weeks or a month

* An event is available for consumption until
discarded by time, size or compaction

Kafka messaging

— e &

Kafka
Cluster

 Producer ——
 Producer ———— Topic
 Producer ——

Message processing

* Producers write to and Consumers read from
Topic(s)
* Producer(s) append Records at end of Topic log

e Consumers read from Kafka at their own cadence

— Each Consumer (Consumer Group) tracks offset from
where they left off reading
e Partitions can be distributed on different
machines in a cluster

— High performance with horizontal scalability; and
failover with replication

Message processing

* Producers write to and Consumers read from Topic(s)
* Producer(s) append Records at the end of Topic log

append(v3)

append(v4)
/

Message processing

* Producers write to and Consumers read from Topic(s)

* Producer(s) append Records at end of Topic log.
Records are totally ordered (within a given partition).

append(v3)

append(v4)
/

Message processing

e Consumers read from Kafka at their own cadence

— Each Consumer (Consumer Group) tracks the offset from where they
left off reading

e Partitions can be distributed on different machines in a cluster

— High performance with horizontal scalability and failover with
replication

Topic partitions

* Topics are broken up into partitions
— Key of record determines which partition will be used
— Partitions can be replicated to multiple brokers

* Partitions are used to scale Kafka across many
servers

 Partitions are used to facilitate parallel producers

and consumers

— Records are consumed in parallel up to the number of
partitions

Topic partitions

Partition 111
0 Q1123|1456 |7 |89

1
- . Pl \
o o
Partition : | - Writes
|
I

—— v — — b

1

Partition | alalt] /

2 | - TR o

fy —=

—— — — —

Old = Mew

Topic partitions: order

* Order is maintained only in a single partition

— Partition is an ordered, immutable sequence of
records that is continually appended to

e Records in partitions are assighed sequential
id number called the offset

* The offset identifies each record within the
partition

Kafka Producers and Partitions

* Producers send records to topics

* Producer picks which partition to send record
to per topic
— Can be done in a round-robin
— Can be based on priority
— Typically based on key of record

— Kafka default partitioner for Java uses hash of keys
to choose partitions, or a round-robin strategy if
no key

Kafka Consumers

 Consumers are grouped into a Consumer Group
— A consumer group has a unique id
— Each consumer group maintains its own offset
— There might be multiple consumer groups

e A Record is delivered to one Consumer in a
Consumer Group

* Each consumer in consumer groups takes records

and only one consumer in group gets the same
record

— Consumers in Consumer Group load balance record
consumption

Kafka Consumers (cont.)

e Kafka divides partitions over consumers in a Consumer
Group
— Each Consumer is the exclusive consumer of a "fair share"
of partitions
 Consumer management is handled by Kafka, with one
server becoming the group coordinator

— assigns partitions when new members arrive — there is, at
most, one consumer per partition

— or reassign partitions when group members leave or topic
changes
* When Consumer group is created, offset set according
to reset policy of topic

Consumer fault tolerance

e Consumers notify broker when it successfully
processed a record

— Broker advances offset

 |f Consumer fails before sending commit offset to
Kafka broker

— different Consumer can continue from the last
committed offset

— some Kafka records could be reprocessed
* At least once behavior
* Message processing should be idempotent

Log offsets

* "Log end offset" is the offset of the last record
written to log partition and where Producers write

to next
* "High watermark" is the offset of the last record
successfully replicated to all partitions followers

* Consumer only reads up to “high watermark”.
Consumer cannot read un-replicated data

Last Committed Current Position High Watermark Log End Offset

T N

o|1|2|3|a|5|6|7|8]|9|10]|11[12]13[14:

Example

Kafka Cluster

server 1 Server 2
|7P0 Pa_‘ IFH ;2_‘
AN xf\ . .

e S

AN

C1 c2 C3 C4 Cs Cé

~Consumer Group A- Consumer Group B———

Partition replication

* Each partition has one leader server and zero or
more follower servers

* The leader handles all reads and writes of Records
for partition

* Writes to partition are replicated to followers
using a primary backup protocol

* A follower that is in-sync is called an ISR (in-sync
replica)

— If a partition leader fails, one ISR is chosen as new
leader

Kafka ecosystem

Producer Consumer
(-\ =\
Connectors The Log Connectors
« -

& &
OO

Streaming Engine

APls

Flexibility Simplicity
—

POSINGE Kafka Streams KSQL
Producer

: sgﬁgcrlbeo + mapValues() » Select..from...
A Zend() « filter() + Join..where...
« flush() * punctuate() * Group by..

KSQL

e KSQL is a streaming SQL engine for Kafka

e KSQL uses Kafka Streams to run the user
gueries

KSQL data model

e KSQL provide a relational data model with a
schema

* Message values in a topic should conform to
the schema associated with the topic

* The schema has typed columns

— Primitive data types supported include BOOLEAN,
INTEGER, BIGINT, DOUBLE and VARCHAR along
with the complex types of ARRAY, MAP and
STRUCT

KSQL data model (cont.)

* KSQL can map a topic to a stream or table

* Topic as stream
— Consider the messages as independent and unbounded
sequence of structured values, we interpret the topic as a stream
— Messages have no relation with each other and will be processed
independently.

* Topic as table

— Consider the messages as an evolving set of structured values
where a new message either updates the previous structured
values in the set with the same key, or adds a new structured
values when there is no structured values with the same key

— A table is a state-full entity since we need to keep track of the
latest values for each key

Query language
* Create a stream from a topic

CREATE STREAM pageviews (viewtime BIGINT,
userid VARCHAR, pageid VARCHAR) WITH
(KAFKA _TOPIC="pageviews_topic'
VALUE_FORMAT='JSON);

Query language (cont.)

* Create a table from a topic

CREATE TABLE users (
registertime BIGINT,
gender VARCHAR,
regionid VARCHAR,
userid VARCHAR,
address STRUCT<street VARCHAR, zip INTEGER>
) WITH (
KAFKA_TOPIC='user_topic',
VALUE_FORMAT='JSON',
KEY="userid’

);

Query language (cont.)

* Continuous queries expressed as the creation
of new streams or tables

CREATE STREAM enrichedpageviews AS
SELECT * FROM pageviews LEFT JOIN

users ON pageviews.userid = users.userid
WHERE regionid = 'region 10’;

KSQL support for windows

* Records can be grouped in windows.
Currently, KSQL supports three types of
windows:

— Tumbling window which are time-based,
fixed-sized, non-overlapping and gap-less windows

— Hopping window which are time-based,
fixed-sized and overlapping windows

— Session window which are session-based,
dynamically-sized, non-overlapping and
data-driven windows

KSQL Windows

Tumbling
} size |
fresarsasnacsaceasascasnaccaes events
—— R s ;'"""'. """"""""""" Roeenees R AR R i tlmé
window n window n+1 window n+2
Hoppin _
window n 4
saseeresessassmannansannsnenes WINAOW N+1
RLTLRELPEEP LR RELP PP teeeenen WINAOW N+2 events
R —— ; time
a‘dvance duration
by
Session /At > inactivity gap
i i ey GVENTS

https://docs.ksqldb.io/en/latest/img/ksql-window-aggregation.png

Query language (cont.)

* Continuous queries expressed as the creation
of new streams or tables

CREATE TABLE userviewcount AS
SELECT userid, count(*)

FROM pageviews

WINDOW TUMBLING (SIZE 1 HOUR)
GROUP BY userid;

Query processing

* A query is processed and transformed into
code that uses the Kafka Stream API

* This process includes query plan optimization

Parser/ Logical Plan \ Physical Plan [
Analyzef / BullderIOptimuzer Buulder Ophmlzer _ ost /

e

Velasore

Table of Contents

» Stream processing ecosystem

— Apache Flume
— Apache Kafka
— AWS Stream Processing Ecosystem

Streaming Data Scenarios

Scenarios/ Accelerated Ingest- Continuous Metrics Machine Learning and
Verticals Transform-Load Generation Actionable Insights
Digital Ad Publisher, bidder data Advertising metrics like User engagement with
Tech/Marketing aggregation coverage, yield, and ads, optimized bid/buy
conversion engines
loT Sensor, device telemetry Operational metrics and Device operational
data ingestion dashboards intelligence and alerts
Gaming Online data aggregation, Massively multiplayer Leader board generation,
e.g., top 10 players online game (MMOG) live player-skill match
dashboard
Consumer Clickstream analytics Metrics like impressions Recommendation engines,
Online and page views proactive care
Operation DevOps tools, Ingesting Subscribe to Anomaly Detection
Security VPCFlowlLogs CloudwatchlLogs and

analyze logs in Real-Time

Amazon Kinesis goals

Amazon (AWS) cloud-based product for
processing big data in real-time:

* Easy to provision, deploy, and manage
 Elastically scalable

e Real-time latencies

* Pay as you go, no up-front costs

 Right services for your specific use cases

Amazon Kinesis Solutions

Amazon Kinesis
Streams

For Technical
Developers

Build your own custom
applications that process
or analyze streaming
data

Amaz_on Kinesis
Firehose

For all developers, data
scientists

Easily load massive
volumes of streaming
data into S3,Amazon
Redshift and Amazon

Elasticsearch

Amazon Kinesis
Analytics

For all developers, data
scientists

Easily analyze data
streams using standard
SQL queries

s
EyB

"iramazon

Y webservices

Amazon Kinesis Streams

X0 ! :‘
g: (= oo
O— oo

| — pam —
Input

Capture and send data to

Amazon Kinesis Data Streams

Amazon Kinesis Data
Streams

Ingests and stores data
streams for processing

SN Amazon Kinesis
77l Data Analytics

L.{:}—J Amazon EC2

5_1 AWS Lambda

Build custom, real-time
applications using Amazon
Kinesis Data Analytics,
stream processing
frameworks like Apache
Spark, or your code
running Amazon EC2 or
AWS Lambda

A\ |55
S\l

Analyze streaming data
using your favorite
Bl tools

Amazon Kinesis Streams

* Amazon Kinesis Data
Streams (KDS) is @ massively [oawee

scalable and durable
real-time data streaming
service.
e Streams are made of Shards

Producer

— A Partition Key is used to
distribute the PUTs across
Shards

— A unique Sequence # is
returned to the Producer for
each Event

Producer Shard n

Producer

Process with Lambda

 Stateless JavaScript & Java
functions run against an
Event Stream

* Functions automatically
invoked against a Shard

* Access to underlying
filesystem for read/write

e Call other Lambda
Functions

Amazon Kinesis Streams

* Elastic operation

— Scale Kinesis streams by splitting or merging
Shards

Kinesis Stream

Shard 1

Shard 2
Shard 3

1:00-7:00 7:00-13:00 13:00-19:00 19100 - 1:00

Split Merge Split

. -24 hours Neii

Amazon Kinesis Firehose

* Amazon Kinesis Data Firehose is used to
reliably ingest streaming data into data stores
and analytics tools.

* |t can capture, transform, and load streaming
data into Amazon S3, Amazon Redshift,
Amazon Elasticsearch Service, and Splunk,
enabling near real-time analytics with existing
business intelligence tools and dashboards.

Kinesis Streams vs. Kinesis Firehose

 Amazon Kinesis Streams is for use cases that
require custom processing, per incoming record,
with sub-1 second processing latency, and a
choice of stream processing frameworks.

 Amazon Kinesis Firehose is for use cases that
require zero administration, ability to use existing
analytics tools based on Amazon S3, Amazon
Redshift and Amazon Elasticsearch, and a data
latency of 60 seconds or higher.

Amazon Kinesis Analytics

* Apply SQL on streams: Easily connect to a
Kinesis Stream or Firehose Delivery Stream

and apply SQL skills.

* Build real-time applications: Perform continual
processing on streaming big data with
sub-second processing latencies.

* Easy Scalability : Elastically scales to match
data throughput.

Bibliography

* https://flume.apache.org/releases/content/1.9.0/Flu
meUserGuide.html#
— Architecture

* https://kafka.apache.org/documentation/#design

* https://docs.confluent.io/current/ksql/docs/index.ht
ml
— (These references are too detailed for preparing for tests)

https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html
https://kafka.apache.org/documentation/%23design
https://docs.confluent.io/current/ksql/docs/index.html
https://docs.confluent.io/current/ksql/docs/index.html

Acknowledgments

 Some images from:

* Kai Wahner, KSQL — An Open Source Streaming
Engine for Apache Kafka

* Sites of the systems presented.

