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Prologue

One of the most interesting features of machine learning is that it lies on
the boundary of several different academic disciplines, principally computer
science, statistics, mathematics, and engineering. This has been a problem as
well as an asset, since these groups have traditionally not talked to each other
very much. To make it even worse, the areas where machine learning methods
can be applied vary even more widely, from finance to biology and medicine
to physics and chemistry and beyond. Over the past ten years this inherent
multi-disciplinarity has been embraced and understood, with many benefits for
researchers in the field. This makes writing a textbook on machine learning
rather tricky, since it is potentially of interest to people from a variety of
different academic backgrounds.

In universities, machine learning is usually studied as part of artificial in-
telligence, which puts it firmly into computer science and—given the focus on
algorithms—it certainly fits there. However, understanding why these algo-
rithms work requires a certain amount of statistical and mathematical sophis-
tication that is often missing from computer science undergraduates. When
I started to look for a textbook that was suitable for classes of undergradu-
ate computer science and engineering students, I discovered that the level of
mathematical knowledge required was (unfortunately) rather in excess of that
of the majority of the students. It seemed that there was a rather crucial gap,
and it resulted in me writing the first draft of the student notes that have be-
come this book. The emphasis is on the algorithms that make up the machine
learning methods, and on understanding how and why these algorithms work.
It is intended to be a practical book, with lots of programming examples and
is supported by a website that makes available all of the code that was used
to make the figures and examples in the book. The website for the book is:
http://seat.massey.ac.nz/personal/s.r.marsland/MLbook.html.

For this kind of practical approach, examples in a real programming lan-
guage are preferred over some kind of pseudocode, since it enables the reader
to run the programs and experiment with data without having to work out
irrelevant implementation details that are specific to their chosen language.
Any computer language can be used for writing machine learning code, and
there are very good resources available in many different languages, but the
code examples in this book are written in Python. I have chosen Python for
several reasons, primarily that it is freely available, multi-platform, relatively
nice to use and is becoming a default for scientific computing. If you already
know how to write code in any other programming language, then you should
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not have many problems learning Python. If you don’t know how to code
at all, then it is an ideal first language as well. Chapter 16 provides a basic
primer on using Python for numerical computing.

Machine learning is a rich area. There are lots of very good books on ma-
chine learning for those with the mathematical sophistication to follow them,
and it is hoped that this book could provide an entry point to students looking
to study the subject further as well as those studying it as part of a degree.
In addition to books, there are many resources for machine learning available
via the Internet, with more being created all the time. The Machine Learn-
ing Open Source Software website at http://mloss.org/software/ provides
links to a host of software in different languages.

There is a very useful resource for machine learning in the UCI Machine
Learning Repository (http://archive.ics.uci.edu/ml/). This website holds
lots of datasets that can be downloaded and used for experimenting with
different machine learning algorithms and seeing how well they work. The
repository is going to be the principal source of data for this book. By using
these test datasets for experimenting with the algorithms, we do not have to
worry about getting hold of suitable data and preprocessing it into a suitable
form for learning. This is typically a large part of any real problem, but it
gets in the way of learning about the algorithms.

I am very grateful to a lot of people who have read sections of the book
and provided suggestions, spotted errors, and given encouragement when re-
quired. In particular, thanks to Zbygniew Nowicki, Joseph Marsland, Bob
Hodgson, Patrick Rynhart, Gary Allen, Linda Chua, Mark Bebbington, JP
Lewis, Tom Duckett, and Monika Nowicki. Thanks also to Jonathan Shapiro,
who helped me discover machine learning and who may recognise some of his
own examples.

Stephen Marsland
Ashhurst, New Zealand



Chapter 1

Introduction

Suppose that you have a website selling software that you've written. You
want to make the website more personalised to the user, so you start to
collect data about visitors, such as their computer type/operating system,
web browser, the country that they live in, and the time of day they visited
the website. You can get this data for any visitor, and for people who actually
buy something, you know what they bought, and how they paid for it (say
PayPal or a credit card). So, for each person who buys something from your
website, you have a list of data that looks like (computer type, web browser,
country, time, software bought, how paid). For instance, the first three pieces
of data you collect could be:

e Macintosh OS X, Safari, UK, morning, SuperGamel, credit card
¢ Windows XP, Internet Explorer, USA, afternoon, SuperGamel, PayPal

¢ Windows Vista, Firefox, NZ, evening, SuperGame2, PayPal

Based on this data, you would like to be able to populate a ‘“Things You
Might Be Interested In’ box within the webpage, so that it shows software
that might be relevant to each visitor, based on the data that you can access
while the webpage loads, i.e., computer and OS, country, and the time of day.
Your hope is that as more people visit your website and you store more data,
you will be able to identify trends, such as that Macintosh users from New
Zealand (NZ) love your first game, while Firefox users, who are often more
knowledgeable about computers, want your automatic download application,
etc.

Once you have collected a large set of such data, you start to examine it and
work out what you can do with it. The problem you have is one of prediction:
given the data you have, predict what the next person will buy, and the reason
that you think that it might work is that people who seem to be similar often
act similarly. So how can you actually go about solving the problem? This
is one of the fundamental problems that this book tries to solve. It is an
example of what is called supervised learning, because we know what the right
answers are for some examples (the software that was actually bought) so we
can give the learner some examples where we know the right answer. We will
talk about supervised learning more in Section 1.3,



2 Machine Learning: An Algorthmic Perspective

1.1 If Data Had Mass, the Earth Would Be a Black Hole

Around the world, computers capture and store terabytes of data every day.
Even leaving aside your collection of MP3s and holiday photographs, there
are computers belonging to shops, banks, hospitals, scientific laboratories,
and many more that are storing data incessently. For example, banks are
building up pictures of how people spend their money, hospitals are recording
what treatments patients are on for which ailments (and how they respond
to them), and engine monitoring systems in cars are recording information
about the engine in order to detect when it might fail. The challenge is to
do something useful with this data: if the bank’s computers can learn about
spending patterns, can they detect credit card fraud quickly? If hospitals share
data, then can treatments that don’t work as well as expected be identified
quickly? Can an intelligent car give you early warning of problems so that
you don’t end up stranded in the worst part of town? These are some of the
questions that machine learning methods can be used to answer.

Science has also taken advantage of the ability of computers to store massive
amounts of data. Biology has led the way, with the ability to measure gene ex-
pression in DNA microarrays producing immense datasets, along with protein
transcription data and phylogenetic trees relating species to each other. How-
ever, other sciences have not been slow to follow. Astronomy now uses digital
telescopes, so that each night the world’s observatories are storing incredibly
high-resolution images of the night sky; around a terabyte per night. Equally,
medical science stores the outcomes of medical tests from measurements as
diverse as Magnetic Resonance Imaging (MRI) scans and simple blood tests.
The explosion in stored data is well known; the challenge is to do something
useful with that data.

The size and complexity of these datasets means that humans are unable
to extract useful information from them. Even the way that the data is
stored works against us. Given a file full of numbers, our minds generally
turn away from looking at them for long. Take some of the same data and
plot it in a graph and we can do something. Compare the table and graph
shown in Figure 1.1: the graph is rather easier to look at and deal with.
Unfortunately, our three-dimensional world doesn’t let us do much with data
in higher dimensions, and even the simple webpage data that we collected
above has four different features, so if we plotted it with one dimension for
each feature we’d need four dimensions! There are two things that we can do
with this: reduce the number of dimensions (until our simple brains can deal
with the problem) or use computers, which don’t know that high-dimensional
problems are difficult, and don’t get bored with looking at massive data files
of numbers. The two pictures in Figure 1.2 demonstrate one problem with
reducing the number of dimensions (more technically, projecting it into fewer
dimensions), which is that it can hide useful information and make things
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FIGURE 1.1: A set of datapoints as numerical values and as points plotted
on a graph. It is easier for us to visualise data than to see it in a table, but if the
data has more than three dimensions, we can't view it all at once.

look rather strange. This is one reason why machine learning is becoming so
popular — the problems of our human limitations go away if we can make
computers do the dirty work for us. There is one other thing that can help if
the number of dimensions is not too much larger than three, which is to use
glyphs that use other representations, such as size or colour of the datapoints
to represent information about some other dimension, but this does not help
if the dataset has 100 dimensions in it.

In fact, you have probably interacted with machine learning algorithms at
some time. They are used in many of the software programs that we use,
such as Microsoft’s infamous paperclip in Office (maybe not the most positive
example), spam filters, voice recognition software, and lots of computer games.
They are also part of automatic number-plate recognition systems for petrol
station security cameras and toll roads, are used in some anti-skid braking
and vehicle stability systems, and they are even part of the set of algorithms
that decide whether a bank will give you a loan.

The attention-grabbing title to this section would only be true if data was
very heavy. It is very hard to work out how much data there actually is in
all of the world’s computers, but it was estimated that in 2006 about 160
exabytes (160 x 1018 bytes) of data were created and stored, and that this will
increase to almost a zettabyte (10%! bytes) by 2010. However, to make a black
hole the size of the earth would take a mass of about 40 x 10%% grams. So
data would have to be so heavy that you couldn’t possibly lift a data pen, let
alone a computer before the section title were true!
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FIGURE 1.2: Two views of the same two wind turbines (Te Apiti wind
farm, Ashhurst, New Zealand) taken at an angle of about 30° to each other.
The two-dimensional projections of three-dimensional objects hides information.

1.2 Learning

Before we delve too much further into the topic, let’s step back and think
about what learning actually is. The key concept that we will need to think
about for our machines is learning from data, since data is what we have; ter-
abytes of it, in some cases. However, it isn’t too large a step to put that into
human behavioural terms, and talk about learning from experience. Hopefully,
we all agree that humans and other animals can display behaviours that we
label as intelligent by learning from experience. Learning is what gives us flex-
ibility in our life; the fact that we can adjust and adapt to new circumstances,
and learn new tricks, no matter how old a dog we are! The important parts
of animal learning for this book are remembering, adapting, and generalising:
recognising that last time we were in this situation (saw this data) we tried
out some particular action {gave this output) and it worked (was correct),
so we’ll try it again, or it didn’t work, so we’ll try something different. The
last word, generalising, is about recognising similarity between different situ-
ations, so that things that applied in one place can be used in another. This
is what makes learning useful, because we can use our knowledge in lots of

different places.
Of course, there are plenty of other bits to intelligence, such as reason-
ing, and logical deduction, but we won’t worry too much about those. We
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are interested in the most fundamental parts of intelligence—learning and
adapting—and how we can model them in a computer. There has also been
a lot of interest in making computers reason and deduce facts. This was
the basis of most early Artificial Intelligence, and is sometimes known as sym-
bolic processing because the computer manipulates symbols that reflect the
environment. In contrast, machine learning methods are sometimes called
subsymbolic because no symbols or symbolic manipulation are involved.

1.2.1 Machine Learning

Machine learning, then, is about making computers modify or adapt their
actions (whether these actions are making predictions, or controlling a robot)
so that these actions get more accurate, where accuracy is measured by how
well the chosen actions reflect the correct ones. Imagine that you are playing
Scrabble (or some other game) against a computer. You might beat it every
time in the beginning, but after lots of games it starts beating you, until finally
you never win. Either you are getting worse, or the computer is learning how
to win at Scrabble. Having learnt to beat you, it can go on and use the same
strategies against other players, so that it doesn’t start from scratch with each
new player; this is a form of generalisation.

It is only over the past decade or so that the inherent multi-disciplinarity of
machine learning has been recognised. It merges ideas from neuroscience and
biology, statistics, mathematics, and physics, to make computers learn. There
is a fantastic existence proof that learning is possible, which is the bag of water
and electricity (together with a few trace chemicals) sitting between your ears.
In Section 1.5 we will have a brief peek inside and see if there is anything we
can borrow/steal in order to make machine learning algorithms. It turns out
that there is, and neural networks have grown from exactly this, although even
their own father wouldn’t recognise them now, after the developments that
have seen them reinterpreted as statistical learners. Another thing that has
driven the change in direction of machine learning research is data mining,
which looks at the extraction of useful information from massive datasets (by
men with computers and pocket protectors rather than pickaxes and hard
hats), and which requires efficient algorithms, putting more of the emphasis
back onto computer science.

The computational complexity of the machine learning methods will also be
of interest to us since what we are producing is algorithms. It is particularly
important because we might want to use some of the methods on very large
datasets, so algorithms that have high-degree polynomial complexity in the
size of the dataset (or worse) will be a problem. The complexity is often broken
into two parts: the complexity of training, and the complexity of applying the
trained algorithm. Training does not happen very often, and is not usually
time critical, so it can take longer. However, we often want a decision about
a test point quickly, and there are potentially lots of test points when an
algorithm is in use, so this needs to have low computational cost.
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1.3 Types of Machine Learning

In the example that started the chapter, your webpage, the aim was to
predict what software a visitor to the website might buy based on information
that you can collect. There are a couple of interesting things in there. The
first is the data. It might be useful to know what software visitors have
bought before, and how old they are. However, it is not possible to get
that information from their web browser (even cookies can’t tell you how old
somebody is), so you can’t use that information. Picking the variables that
you want to use (which are called features in the jargon) is a very important
part of finding good solutions to problems, and something that we will talk
about in several places in the book. Equally, choosing how to process the
data can be important. This can be seen in the example in the time of access.
Your computer can store this down to the nearest millisecond, but that isn’t
very useful, since you would like to spot similar patterns between users. For
this reason, in the example above I chose to quantise it down to one of the
set morning, afternoon, evening, night; obviously I need to ensure that
these times are correct for their time zones, too.

We are going to loosely define learning as meaning getting better at some
task through practice. This leads to a couple of vital questions: how does the
computer know whether it is getting better or not, and how does it know how
to improve? There are several different possible answers to these questions,
and they produce different types of machine learning. For now we will consider
the quesion of knowing whether or not the machine is learning. We can tell
the algorithm the correct answer for a problem so that it gets it right next
time (which is what would happen in the webpage example, since we know
what software the person bought). We hope that we only have to tell it a
few right answers and then it can ‘work out’ how to get the correct answers
for other problems (generalise). Alternatively, we can tell it whether or not
the answer was correct, but not how to find the correct answer, so that it has
to search for the right answer. A variant of this is that we give a score for
the answer, according to how correct it is, rather than just a ‘right or wrong’
response. Finally, we might not have any correct answers, we just want the
algorithm to find inputs that have something in common.

These different answers to the question provide a useful way to classify the
different algorithms that we will be talking about:

Supervised learning A training set of examples with the correct responses
(targets) are provided and, based on this training set, the algorithm
generalises to respond correctly to all possible inputs. This is also called
learning from exemplars.

Unsupervised learning Correct responses are not provided, instead the al-
gorithm tries to identify similarities between the inputs so that inputs
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that have something in common are categorised together. The statistical
approach to unsupervised learning is known as density estimation.

Reinforcement learning This is somewhere between supervised and unsu-
pervised learning. The algorithm gets told when the answer is wrong,
but does not get told how to correct it. It has to explore and try out
different possibilities until it works out how to get the answer right. Re-
inforcement learning is sometime called learning with a critic because of
this monitor that scores the answer, but does not suggest improvements.

Evolutionary learning Biological evolution can be seen as a learning pro-
cess: biological organisms adapt to improve their survival rates and
chance of having offspring in their environment. We’ll look at how we
can model this in a computer, using an idea of fitness, which corresponds
to a score for how good the current solution is.

The most common type of learning is supervised learning, and it is going
to be the focus of the next few chapters. So, before we get started, we’ll have
a look at what it is, and the kinds of problems that can be solved using it.

1.4 Supervised Learning

As has already been suggested, the webpage example is a typical problem for
supervised learning. There is a set of data (the training data) that consists of a
set of input data that has target data, which is the answer that the algorithm
should produce, attached. This is usually written as a set of data (x,ti),
where the inputs are x;, the targets are t; and the 7 index suggests that we
have lots of pieces of data, indexed by i running from 1 to some upper limit
N. Note that the inputs and targets are written in boldface font to signify
vectors, since each piece of data has values for several different features; the
notation used in the book is described in more detail in Section 2.1. If we
had examples of every possible piece of input data, then we could put them
together into a big look-up table, and there would be no need for machine
learning at all. The thing that makes machine learning better than that
is generalisation: the algorithm should produce sensible outputs for inputs
that weren’t encountered during learning. This also has the result that the
algorithm can deal with noise, which is small inaccuracies in the data that are
inherent in measuring any real world process. It is hard to specify rigorously
what generalisation means, but let’s see if an example helps.
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1.4.1 Regression

Suppose that I gave you the following datapoints and asked you to tell me
the value of the output (which we will call y since it is not a target datapoint)
when z = 0.44 (here, z, ¢, and y are not written in boldface font since they
are scalars, as opposed to vectors).

T t

0 0
0.5236 1.5
1.0472 | -2.5981
1.5708 3.0
2.0944 | -2.5981
2.6180 1.5
3.1416 0

Since the value z = 0.44 isn’t in the examples given, you need to find some
way to predict what value it has. You assume that the values come from some
sort of function, and try to find out what the function is. Then you’ll be
able to give the output value y for any given value of z. This is known as
a regression problem in statistics: fit a mathematical function describing a
curve, so that the curve passes as close as possible to all of the data points. It
is generally a problem of function approximation or interpolation, working out
the value between values that we know.

The problem is how to work out what function to choose. Have a look at
Figure 1.3. The top-left plot shows a plot of the 7 values of z and y in the
table, while the other plots show different attempts to fit a curve through the
data points. The bottom-left plot shows two possible answers found by using
straight lines to connect up the points, and also what happens if we try to use
a cubic function (something that can be written as az® + bz? + cx +d = 0).
The top-right plot shows what happens when we try to match the function
using a different polynomial, this time of the form az'®+bz°+...+jz+k =0,
and finally the bottom-right plot shows the function y = 3sin(5z). Which of
these functions would you choose?

The straight-line approximation probably isn’t what we want, since it doesn’t
tell us much about the data. However, the cubic plot on the same set of axes
is terrible: it doesn’t get anywhere near the data points. What about the
plot on the top-right? It looks like it goes through all of the data points ex-
actly, but it is very wiggly (look at the value on the y-axis, which goes up to
100 instead of around three, as in the other figures). In fact, the data were
made with the sine function plotted on the bottom-right, so that is the correct
answer in this case, but the algorithm doesn’t know that, and to it the two
solutions on the right both look equally good. The only way we can tell which
solution is better is to test how well they generalise. We pick a value that is
between our data points, use our curves to predict its value, and see which is
better. This will tell us that the bottom-right curve is better in the example.

\
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FIGURE 1.3: Top left: A few data points from a sample problem. Bottom
left: Two possible ways to predict the values between the known datapoints:
connecting the points with straight lines, or using a cubic approximation (which
in this case misses all of the points). Top and bottom right: Two more complex
approximators (see the text for details) that pass through the points, although
the lower one is rather better than the top.

So one thing that our machine learning algorithms can do is interpolate
between data points. This might not seem to be intelligent behaviour, or even
very difficult in two dimensions, but it is rather harder in higher dimensional
spaces. The same thing is true of the other thing that our algorithms will
do, which is classification—grouping examples into different classes—which is
discussed next. However, the algorithms are learning by our definition if they
adapt so that their performance improves, and it is surprising how often real
problems that we want to solve can be reduced to classification or regression
problems.

1.4.2 Classification

The classification problem consists of taking input vectors and deciding
which of N classes they belong to, based on training from exemplars of each
class. The most important point about the classification problem is that it
is discrete — each example belongs to precisely one class, and the set of
classes covers the whole possible output space. These two constraints are
not necessarily realistic; sometimes examples might belong partially to two
different classes. There are fuzzy classifiers that try to solve this problem, but
we won’t be talking about them in this book. In addition, there are many
places where we might not be able to categorise every possible input. For
example, consider a vending machine, where we use a neural network to learn
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FIGURE 1.4: The New Zealand coins.

to recognise all the different coins. We train the classifier to recognise all New
Zealand coins, but what if a British coin is put into the machine? In that
case, the classifier will identify it as the New Zealand coin that is closest to
it in appearance, but this is not really what is wanted: rather, the classifier
should identify that it is not one of the coins it was trained on. This is called
novelty detection. For now we’ll assume that we will not receive inputs that
we cannot classify accurately.

Let’s consider how to set up a coin classifier. When the coin is pushed into
the slot, the machine takes a few measurements of it. These could include
the diameter, the weight, and possibly the shape, and are the features that
will generate our input vector. In this case, our input vector will have three
elements, each of which will be a number showing the measurement of that
feature (choosing a number to represent the shape would involve an encoding,
for example that 1=circle, 2=hexagon, etc.). Of course, there are many other
features that we could measure. If our vending machine included an atomic
absorption spectroscope, then we could estimate the density of the material
and its composition, or if it had a camera, we could take a photograph of the
coin and feed that image into the classifier. The question of which features
to choose is not always an easy one. We don’t want to use too many inputs,
because that will make the training of the classifier take longer (and also, as
the number of input dimensions grows, the number of datapoints required
increases faster; this is known as the curse of dimensionality and will be dis-
cussed in Section 4.3), but we need to make sure that we can reliably separate
the classes based on those features. For example, if we tried to separate coins
based only on colour, we wouldn’t get very far, because the 20¢ and 50¢
coins are both silver and the $1 and $2 coins both bronze. However, if we use
colour and diameter, we can do a pretty good job of the coin classification
problem for NZ coins. There are some features that are entirely useless. For
example, knowing that the coin is circular doesn’t tell us anything about NZ
coins, which are all circular (see Figure 1.4). In other countries, though, it
could be very useful.

The methods of performing classification that we will see during this book
are very different in the ways that they learn about the solution; in essence
they aim to do the same thing: find decision boundaries that can be used to
separate out the different classes. Given the features that are used as inputs
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FIGURE 1.5: Left: A set of straight line decision boundaries for a
classification problem. Right: An alternative set of decision boundaries that
separate the plusses from the lightening strikes better, but requires a line that
isn't straight.

to the classifier, we need to identify some values of those features that will
enable us to decide which class the current input is in. Figure 1.5 shows a
set of 2D inputs with three different classes shown, and two different decision
boundaries; on the left they are straight lines, and are therefore simple, but
don’t categorise as well as the non-linear curve on the right.

Now that we have seen these two types of problem, it is time to return to
our demonstration that learning is possible, which is the squishy thing that
your skull protects.

1.5 The Brain and the Neuron

In animals, learning occurs within the brain. If we can understand how the
brain works, then there might be things in there for us to copy and use for our
machine learning systerms. While the brain is an impressively powerful and
complicated system, the basic building blocks that it is made up of are fairly
simple and easy to understand. We’ll look at them shortly, but it’s worth
noting that in computational terms the brain does exactly what we want. It
deals with noisy and even inconsistent data, and produces answers that are
usually correct from very high dimensional data (such as images) very quickly.
All amazing for something that weighs about 1.5 kg and is losing parts of itself
all the time (neurons die as you age at impressive/depressing rates), but its
performance does not degrade appreciably (in the jargon, this means it is
robust).

So how does it actually work? We aren’t actually that sure on most levels,
but in this book we are only going to worry about the most basic level, which
is the processing units of the brain. These are nerve cells called neurons. There
are lots of them (100 billion = 10! is the figure that is often given) and they
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come in lots of different types, depending upon their particular task. However,
their general operation is similar in all cases: transmitter chemicals within the
fluid of the brain raise or lower the electrical potential inside the body of the
neuron. If this membrane potential reaches some threshold, the neuron spikes
or fires, and a pulse of fixed strength and duration is sent down the axon. The
axons divide (arborise) into connections to many other neurons, connecting
to each of these neurons in a synapse. Each neuron is typically connected to
thousands of other neurons, so that it is estimated that there are about 100
trillion (= 10'%) synapses within the brain. After firing, the neuron must wait
for some time to recover its energy (the refractory period) before it can fire
again.

Each neuron can be viewed as a separate processor, performing a very
simple computation: deciding whether or not to fire. This makes the brain a
massively parallel computer made up of 10'! processing elements. If that is
all there is to the brain, then we should be able to model it inside a computer
and end up with animal or human intelligence inside a computer. This is the
view of strong Al. We aren’t aiming at anything that grand in this book, but
we do want to make programs that learn. So how does learning occur in the
brain? The principal concept is plasticity: modifying the strength of synaptic
connections between neurons, and creating new connections. We don’t know
all of the mechanisms by which the strength of these synapses gets adapted,
but one method that does seem to be used was first postulated by Donald
Hebb in 1949, and that is what is discussed now.

1.5.1 Hebb’s Rule

Hebb’s rule says that the changes in the strength of synaptic connections are
proportional to the correlation in the firing of the two connecting neurons. So
if two neurons consistently fire simultaneously, then any connection between
them will change in strength, becoming stronger. However, if the two neurons
never fire simultaneously, the connection between them will die away. The
idea is that if two neurons both respond to something, then they should
be connected. Let’s see a trivial example: suppose that you have a neuron
somewhere that recognises your grandmother (this will probably get input
from lots of visual processing neurons, but don’t worry about that). Now if
your grandmother always gives you a chocolate bar when she comes to visit,
then some neurons, which are happy because you like the taste of chocolate,
will also be stimulated. Since these neurons fire at the same time, they will
be connected together, and the connection will get stronger over time. So
eventually, the sight of your grandmother, even in a photo, will be enough to
make you think of chocolate. Sound familiar? Pavlov used this idea, called
classical conditioning, to train his dogs so that when food was shown to the
dogs and the bell was rung at the same time, the neurons for salivating over
the food and hearing the bell fired simultaneously, and so became strongly
connected. Over time, the strength of the synapse between the neurons that
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responded to hearing the bell and those that caused the salivation reflex was
enough that just hearing the bell caused the salivation neurons to fire in
sympathy.

There are other names for this idea that synaptic connections between ney-
rons and assemblies of neurons can be formed when they fire together and
can become stronger. It is also known as long-term potentiation and neural
plasticity, and it does appear to have correlates in real brains.

1.5.2 McCulloch and Pitts Neurons

Studying neurons isn’t actually that easy. You need to be able to extract
the neuron from the brain, and then keep it alive so that you can see how
it reacts in controlled circumstances. Doing this takes a lot of care. One of
the problems is that neurons are generally quite small (they must be if you've
got 10! of them in your head!) so getting electrodes into the synapses is
difficult. It has been done, though, using neurons from the giant squid, which
has some neurons that are large enough to see. Hodgkin and Huxley did
this in 1952, measuring and writing down differential equations that compute
the membrane potential based on various chemical concentrations, something
that earned them a Nobel prize. We aren’t going to worry about that, instead,
we're going to look at a mathematical model of a neuron that was introduced
in 1943. The purpose of a mathematical model is that it extracts only the bare
essentials required to accurately represent the entity being studied, removing
all of the extraneous details. McCulloch and Pitts produced a perfect example
of this when they modelled a neuron as:

(1) a set of weighted inputs w; that correspond to the synapses

(2) an adder that sums the input signals (equivalent to the membrane of
the cell that collects electrical charge)

(3) an activation function (initially a threshold function) that decides
whether the neuron fires (‘spikes’) for the current inputs

A picture of their model is given in Figure 1.6, and we’ll use the picture to
write down a mathematical description. On the left of the picture are a set of
input nodes (labelled z1,z2, . ..Z,). These are given some values, and as an
example we’ll assume that there are three inputs, with 1 = 1,22 = 0,23 =
0.5. In real neurons those inputs come from the outputs of other neurons. So
the 0 means that a neuron didn’t fire, the 1 means it did, and the 0.5 has no
biological meaning, but never mind. (Actually, this isn’t quite fair, but it’s a
long story and not very relevant.) Each of these other neuronal firings flowed
along a synapse to arrive at our neuron, and those synapses have strengths,
called weights. The strength of the synapse affects the strength of the signal,
so we multiply the input by the weight of the synapse (so we get x1 x wy and
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FIGURE 1.6: A picture of McCulloch and Pitt's mathematical model of a

neuron. The inputs x; are multiplied by the weights w;, and the neurons sum

their values. If this sum is greater than the threshold 8 then the neuron fires,
otherwise it does not.

Tg X wa, etc.). Now when all of these signals arrive into our neuron, it adds
them up to see if there is enough strength to make it fire. We’'ll write that as

h= iwixi, A (11)
i=1

which just means sum (add up) all the inputs multiplied by their synaptic
weights. I’'ve assumed that there are m of them, where m = 3 in the example.
If the synaptic weights are w; = 1,wy; = —0.5,w3 = —1, then the inputs to
our model neuron are h=1x1+0x —05+05x -1 =1+0+ —0.5=0.5.
Now the neuron needs to decide if it is going to fire. For a real neuron, this
is a question of whether the membrane potential is above some threshold.
We'll pick a threshold value (labelled 6), say 8 = 0 as an example. Now, does
our neuron fire? Well, h = 0.5 in the example, and 0.5 > 0, so the neuron
does fire, and produces output 1. If the neuron did not fire, it would produce
output 0.

The McCulloch and Pitts neuron is a binary threshold device. It sums
up the inputs (multiplied by the synaptic strengths or weights) and either
fires (produces output 1) or does not fire (produces output 0) depending on
whether the input is above some threshold. We can write the second half of
the work of the neuron, the decision about whether or not to fire (which is
known as an activation function), as:

1 ifh>46
°=9(h)={0 ith <0 (1.2)

This is a very simple model, but we are going to use these neurons, or very
simple variations on them using slightly different activation functions (that
is, we’ll replace the threshold function with something else) for most of our
study of neural networks. In fact, these neurons might look simple, but as

-
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we shall see, a network of such neurons can perform any computation that g
normal computer can, provided that the weights w; are chosen correctly. So
one of the main things we are going to talk about for the next few chapters
is methods of setting these weights.

1.5.3 Limitations of the McCulloch and Pitt Neuronal Model

One question that is worth considering is how realistic is this model of a
neuron? The answer is: not very. Real neurons are much more complicated.
The inputs to a real neuron are not necessarily summed linearly: there may
be non-linear summations. However, the most noticeable difference is that
real neurons do not output a single output response, but a spike train, that
is, a sequence of pulses, and it is this spike train that encodes information.
This means that neurons don’t actually respond as threshold devices, but
produce a graded output in a continuous way. They do still have the tran-
sition between firing and not firing, though, but the threshold at which they
fire changes over time. Because neurons are biochemical devices, the amount
of neurotransmitter (which affects how much charge they required to spike,
amongst other things) can vary according to the current state of the organ-
ism. Furthermore, the neurons are not updated sequentially according to a
computer clock, but update themselves randomly (asynchronously), whereas
in many of our models we will update the neurons according to the clock.
There are neural network models that are asynchronous, but for our purposes
we will stick to algorithms that are updated by the clock.

Note that the weights w; can be positive or negative. This corresponds to
excitatory and inhibitory connections that make neurons more likely to fire and
less likely to fire, respectively. Both of these types of synapses do exist within
the brain, but with the McCulloch and Pitts neurons, the weights can change
from positive to negative or vice versa, which has not been seen biologically—
synaptic connections are either excitatory or inhibitory, and never change
from one to the other. Additionally, real neurons can have synapses that
link back to themselves in a feedback loop, but we do not usually allow that
possibility when we make networks of neurons. Again, there are exceptions,
but we won’t get into them.

It is possible to improve the model to include many of these features, but
the picture is complicated enough already, and McCulloch and Pitts neurons
already provide a great deal of interesting behaviour that resembles the action
of the brain, such as the fact that networks of McCulloch and Pitts neurons
can memorise pictures and learn to represent functions and classify data, as
we shall see in the next couple of chapters.
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Further Reading

If you are interested in real brains and want to know more-about them, then
there are plenty of popular science books that should interest you, including:

e Susan Greenfield. The Human Brain: A Guided Tour. Orion, London,
UK, 2001.

e S. Aamodt and S. Wang. Welcome to Your Brain: Why You Lose Your
Car Keys but Never Forget How to Drive and Other Puzzles of Everyday
Life. Bloomsbury, London, UK, 2008.

If you are looking for something a bit more formal, then the following is a
good place to start (particularly the ‘Roadmaps’ at the beginning):

e Michael A. Arbib, editor. The Handbook of Brain Theory and Neural
Networks. MIT Press, Cambridge, MA, USA, 2nd edition, 2002.

The original paper by McCulloch and Pitts is:

e W.S. McCulloch and W. Pitts. A logical calculus of ideas imminent in
nervous activity. Bulletin of Mathematics Biophysics, 5:115-133, 1943.

There is a very nice motivation for neural network-based learning in:

e V. Braitenberg. Vehicles: Ezperiments in synthetic psychology. MIT
Press, Cambridge, MA, USA, 1984.

For a different (more statistical and example-based) take on machine learn-
ing, look at:

e Chapter 1 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer, Berlin, Germany, 2001.

Other texts that provide alternative views of similar material include:

e Chapter 1 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classifi-
cation. Wiley-Interscience, New York, USA, 2nd edition, 2001.

e Chapter 1 of S. Haykin. Neural Networks: A Comprehensive Founda-
tion. Prentice-Hall, New Jersey, USA, 2nd edition, 1999.



Chapter 2

Linear Discriminants

In the last chapter we saw a simple model of a neuron that simulated what
seems to be the most important function of a neuron—deciding whether or not
to fire—and ignored the nasty biological things like chemical concentrations,
refractory periods, etc. Having this model is only useful if we can use it to
understand what is happening when we learn, or use the model in order to
solve some kind of problem. We are going to try to do both in this chapter,
although the learning that we try to understand will be machine learning rather
than animal learning.

One thing that is probably fairly obvious is that one neuron isn’t that
interesting. It doesn’t do very much, except fire or not fire when we give it
inputs. In fact, it doesn’t even learn. If we feed in the same set of inputs over
and over again, the output of the neuron never varies—it either fires or does
not. So to make the neuron a little more interesting we need to work out how
to make it learn, and then we need to put sets of neurons together into neural
networks so that they can do something useful.

The question we need to think about first is how our neurons can learn.
We are going to look at supervised learning for the next few chapters, which
means that the algorithms will learn by example: the dataset that we learn
from has the correct output values associated with each datapoint. At first
sight this might seem pointless, since if you already know the correct answer,
why bother learning at all? The key is in the concept of generalisation that
we saw in Section 1.2. Assuming that there is some pattern in the data, then
by showing the neural network a few examples we hope that it will find the
pattern and predict the other examples correctly. This is sometimes known
as pattern recognition.

Before we worry too much about this, let’s think about what learning is.
In the previous chapter it was suggested that you learn if you get better at
doing something. So if you can’t program in the first semester and you can in
the second, you have learnt to program. Something has changed (adapted),
presumably in your brain, so that you can do a task that you were not able
to do previously. Have a look again at the McCulloch and Pitts neuron (e.g.,
in Figure 1.6) and try to work out what can change in that model. The
only things that make up the neuron are the inputs, the weights, and the
threshold (and there is only one threshold for each neuron, but lots of inputs).
The inputs can’t change, since they are external, so we can only change the
weights and the threshold, which is interesting since it tells us that most of

17
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the learning is in the weights, which aren’t part of the neuron at all; they
are the model of the synapse! Getting excited about neurons turns out to be
missing something important, which is that the learning happens between the
neurons, in the way that they are connected together. So in order to make
a neuron learn, the question that we need to ask is:

How should we change the weights and thresholds of the neurons so that the
network gets the right answer more often?

Now that we know the right question to ask we’ll have a look at our very
first neural network, the space-age sounding Perceptron, and see how we can
use it to solve the problem (it really was space-age, too: created in 1958).
Once we've worked out the algorithm and how it works, we’ll look at what
it can and cannot do, and then see how statistics can give us insights into
learning as well.

2.1 Preliminaries

Now is probably a good time to set up some terminology that we will use
throughout the book. We’ve already seen a bit of it in the previous chapter.
We will talk about inputs and input vectors for our learning algorithms. Like-
wise, we will talk about the outputs of the algorithm. The inputs are the data
that is fed into the algorithm. In general, machine learning algorithms all
work by taking a set of input values, producing an output (answer) for that
input vector, and then moving on to the next input. The input vector will
typically be several real numbers, which is why it is described as a vector: it
is written down as a series of numbers, e.g., (0.2,0.45,0.75, —0.3). The size of
this vector, i.e., the number of elements in the vector, is called the dimension-
ality of the input. This is because if we were to plot the vector as a point, we
would need one dimension of space for each of the different elements of the
vector, so that the example above has 4 dimensions. We will talk about this
much more in Section 4.1.1.

We will often write equations in vector and matrix notation, with lower-
case boldface letters being used for vectors and uppercase boldface letters for
matrices. A vector x has elements (z1,Z2,...,Zm). We will use the following
notation in the book:

Inputs An input vector is the data given as one input to the network. Written
as X, with elements x;, where ¢ runs from 1 to the number of input
dimensions, m.

Weights w;;, which is the weighted connection between nodes i and j. These
weights are equivalent to the synapses in the brain. They are arranged
into a matrix W.
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Outputs The output vector is y, with elements y;, where j runs from 1 to
the number of output dimensions, n. We can write y(x, W) to remind
ourselves that the output depends on the inputs to the algorithm and
the current set of weights of the network.

Targets The target vector t, with elements t;, where j runs from 1 to the
number of output dimensions, n, are the extra data that we need for
supervised learning, since they provide the ‘correct’ answers that the
algorithm is learning about.

Activation Function ¢(-) is a mathematical function that describes the fir-
ing of the neuron as a response to the weighted inputs, such as the
threshold function described in Section 1.5.2.

Error E, afunction that computes the inaccuracies of the network as a func-
tion of the outputs y and targets t.

2.2 The Perceptron

The Perceptron is nothing more than a collection of McCulloch and Pitts
neurons together with a set of inputs and some weights to fasten the inputs
to the neurons. The network is shown in Figure 2.1. On the left of the figure,
shaded in light grey, are the input nodes. These are not neurons, they are
just a nice schematic way of showing how values are fed into the network, and
how many of these input values there are (which is the dimension (number of
elements) in the input vector). They are almost always drawn as circles, just
like neurons, which is rather confusing, so I've shaded them a different colour.
The neurons are shown on the right, and you can see both the additive part
(shown as a circle) and the thresholder. In practice nobody bothers to draw
the thresholder separately, you just need to remember that it is part of the
neuron.

Notice that the neurons in the Perceptron are completely independent of
each other: it doesn’t matter to any neuron what the others are doing, it works
out whether or not to fire by multiplying together its own weights and the
input, adding them together, and comparing the result to its own threshold,
regardless of what the other neurons are doing. Even the weights that go into
each neuron are separate for each one, so the only thing they share is the
inputs, since every neuron sees all of the inputs to the network.

In Figure 2.1 the number of inputs is the same as the number of neurons,
but this does not have to be the case — in general there will be m inputs and
n neurons. The number of inputs is determined for us by the data, and so
is the number of outputs, since we are doing supervised learning, so we want
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Inputs

Outputs

FIGURE 2.1: The Perceptron network, consisting of a set of input nodes
(left) connected to McCulloch and Pitts neurons using weighted connections.

the Perceptron to learn to reproduce a particular target, that is, a pattern of
firing and non-firing neurons for the given input.

When we looked at the McCulloch and Pitts neuron, the weights were
labelled as w;, with the ¢ index running over the number of inputs. Here, we
also need to work out which neuron the weight feeds into, so we label them as
w;;, where the j index runs over the number of neurons. So wss is the weight
that connects input node 3 to neuron 2. When we make an implementation of
the neural network, we can use a two-dimensional array to hold these weights.

Now, working out whether or not a neuron should fire is easy: we set the
values of the input nodes to match the elements of an input vector and then
use Equations (1.1) and (1.2) for each neuron. We can do this for all of the
neurons, and the result is a pattern of firing and non-firing neurons, which
looks like a vector of 0s and 1s, so if there are 5 neurons, as in Figure 2.1, then
a typical output pattern could be (0,1,0,0,1), which means that the second
and fifth neurons fired and the others did not. We compare that pattern to
the target, which is our known correct answer for this input, to identify which
neurons got the answer right, and which did not.

For a neuron that is correct, we are happy, but any neuron that fired when
it shouldn’t have done, or failed to fire when it should, needs to have its
weights changed. The trouble is that we don’t know what the weights should
be—that’s the point of the neural network, after all, so we want to change
the weights so that the neuron gets it right next time. We are going to talk
about this in a lot more detail in Chapter 3, but for now we're going to do
something fairly simple to see that it is possible to find a solution.

Suppose that we present an input vector to the network and one of the
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neurons gets the wrong answer (its output does not match the target). There
are m weights that are connected to that neuron, one for each of the input
nodes. If we label the neuron that is wrong as k, then the weights that we are
interested in are w;y, where ¢ runs from 1 to m. So we know which weights
to change, but we still need to work out how to change the values of those
weights. The first thing we need to know is whether each weight is too big or
too small. This seems obvious at first: some of the weights will be too big if
the neuron fired when it shouldn’t have, and too small if it didn’t fire when
it should. So we compute ¢ — yx (the difference between the target for that
neuron tx, which is what the neuron should have done, and the output y,
which is what the neuron did. This is a possible error function). If it is positive
then the neuron should have fired and didn’t, so we make the weights bigger,
and vice versa if it is negative. Hold on, though. That element of the input
could be negative, which would switch the values over; so if we wanted the
neuron to fire we’d need to make the value of the weight negative as well. To
get around this we’ll multiply those two things together to see how we should
change the weight: Aw;, = (85 — yx) X z;, and the new value of the weight is
the old value plus this value.

Note that we haven’t said anything about changing the threshold value of
the neuron. To see how important this is, suppose that a particular input is 0.
In that case, even if a neuron is wrong, changing the relevant weight doesn’t
do anything (since anything times 0 is 0): we need to change the threshold.
We will deal with this in an elegant way in Section 2.2.2. However, before
we get to that, the learning rule needs to be finished—we need to decide how
much to change the weight by. This is done by multiplying the value above
by a parameter called the learning rate, usually labelled as 7. The value of the
learning rate decides how fast the network learns. It’s quite important, so it
gets a little subsection of its own (next), but first let’s write down the final
rule for updating a weight w;;:

Wiz — wij +0(t; — y;) - i (2.1)

The other thing that we need to realise now is that the network needs to
be shown every training example several times. The first time the network
might get some of the answers correct and some wrong, the next time it
will hopefully improve, and eventually its performance will stop improving.
Working out how long to train the network for is not easy (we will see more
methods in Section 3.3.6), but for now we will predefine the maximum number
of iterations, T'.

2.2,1 The Learning Rate 7

Equation (2.1) above tells us how to change the weights, with the parameter
7 controlling how much to change the weights by. We could miss it out, which
would be the same as setting it to 1. If we do that, then the weights change
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Outputs

Inputs

FIGURE 2.2: The Perceptron network again, showing the bias input.

a lot whenever there is a wrong answer, which tends to make the network
unstable, so that it never settles down. The cost of having a small learning
rate is that the weights need to see the inputs more often before they change
significantly, so that the network takes longer to learn. However, it will be
more stable and resistant to noise (errors) and inaccuracies in the data. We
therefore use a moderate learning rate, typically 0.1 < 1 < 0.4, depending
upon how much error we expect in the inputs.

2.2.2 The Bias Input

When we discussed the McCulloch and Pitts neuron, we gave each neuron
a firing threshold 0 that determined what value it needed before it should
fire. This threshold should be adjustable, so that we can change the value
that the neuron fires at. Suppose that all of the inputs to a neuron are zero.
Now it doesn’t matter what the weights are (since zero times anything equals
zero), the only way that we can control whether the neuron fires or not is
through the threshold. If it wasn’t adjustable and we wanted one neuron to
fire when all the inputs to the network were zero, and another not to fire, then
we would have a problem. No matter what values of the weights were set, the
two neurons would do the same thing since they had the same threshold and
the inputs were all zero.

The trouble is that changing the threshold requires an extra parameter that
we need to write code for, and it isn’t clear how we can do that in terms of
the weight update that we worked out earlier. Fortunately, there is a neat
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way around this problem. Suppose that we fix the value of the threshold for
the neuron at zero. Now, we add an extra input weight to the neuron, with
the value of the input to that weight always being fixed (usually the value of
-1 is chosen). We include that weight in our update algorithm (like all the
other weights), so we don’t need to think of anything new. And the value
of the weight will change to make the neuron fire—or not fire, whichever is
correct—when an input of all zeros is given, since the input on that weight is
always -1, even when all the other inputs are zero. This input is often called
a bias node, and its weights are usually given a 0 subscript, so that the weight
connecting it to the jth neuron is wp;.

2.2.3 The Perceptron Learning Algorithm

We are now ready to write our first learning algorithm. It might be useful
to keep Figure 2.2 in mind as you read the algorithm, and we’ll work through
an example of using it afterwards. The algorithm is separated into two parts:
a training phase, and a recall phase. The recall phase is used after training,
and it is the one that should be fast to use, since it will be used far more often
than the training phase. You can see that the training phase uses the recall
equation, since it has to work out the activations of the neurons before the
error can be calculated and the weights trained.

The Perceptron Algorithm

¢ Initialisation

— set all of the weights w;; to small (positive and negative) random
numbers

e Training

— for T iterations:

* for each input vector:
- compute the activation of each neuron j using activation
function g:

= _ 1if Wi Tq > 0
yj =9 (Z wijwi) - {0 lf wijwi S 0 (22)
i=0
- update each of the weights individually using:

Wij — Wi5 + ’I’](tj — yj) 7 (23)
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FIGURE 2.3: Data for the OR logic function and a plot of the four datapoints.

e Recall

— compute the activation of each neuron j using:

- 1if wijz; >0
Y=g (;wz‘jm) = {O if woym; < 0 (2.4)

Computing the computational complexity of this algorithm is very easy.
The recall phase loops over the neurons, and within that loops over the inputs,
so its complexity is O(mn). The training part does this same thing, but does
it for T iterations, so costs O(T'mn).

It might be the first time that you have seen an algorithm written out like
this, and it could be hard to see how it can be turned into code. Equally, it
might be difficult to believe that something as simple as this algorithm can
learn something. The only way to fix these things is to work through the
algorithm by hand on an example or two, and to try to write the code and
then see if it does what is expected. We will do both of those things next,
first working through a simple example by hand.

2.2.4 An Example of Perceptron Learning

The example we are going to use is something very simple that you already
know about, the logical OR. This obviously isn’t something that you actually
need a neural network to learn about, but it does make a nice simple example.
So what will our neural network look like? There are two input nodes (plus
the bias input) and there will be one output. The inputs and the target are
given in the table on the left of Figure 2.3; the right of the figure shows a plot
of the function with the circles as the true outputs, and a cross as the false
one. The corresponding neural network is shown in Figure 2.4.

As you can see from Figure 2.4, there are three weights. The algorithm
tells us to initialise the weights to small random numbers, so we'll pick wg =
—0.05, w7 = —0.02,wy = 0.02. Now we feed in the first input, where both
inputs are 0: (0,0). Remember that the input to the bias weight is always —1,
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-1

FIGURE 2.4: The Perceptron network for the example in Section 2.2.4.

so the value that reaches the neuron is —0.05x —1+—0.02x0+—-0.02x0 = 0.05.
This value is above 0, so the neuron fires and the output is 1, which is incorrect
according to the target. The update rule tells us that we need to apply
Equation (2.1) to each of the weights separately (we’ll pick a value of 5 = 0.25
for the example):

wo : —0.05+0.25 x (0 — 1) x —1 = 0.2, (2.5)
wy + —0.02+0.25 x (0— 1) x 0 = —0.02, (2.6)
wy : 0.02+0.25 x (0— 1) x 0 = 0.02. (2.7)

Now we feed in the next input (0,1) and compute the output (check that
you agree that the neuron does not fire, but that it should) and then apply
the learning rule again:

wo : 0.2+ 0.25 x (1 —0) x —1 = —0.05, (2.8)
wy : —0.02 4 0.25 x (1 —0) x 0 = —0.02, (2.9)
wy 1 0.02+0.25 x (1 —0) x 1 = 0.27. (2.10)

For the (1,0) input the answer is already correct (you should check that
you agree with this), so we don’t have to update the weights at all, and the
same is true for the (1,1) input. So now we've been through all of the inputs
once. Unfortunately, that doesn’t mean we've finished—not all the answers
are correct yet. We now need to start going through the inputs again, until
the weights settle down and stop changing, which is what tells us that the
algorithm has finished. For real world applications the weights may never
stop changing, which is why you run the algorithm for some pre-set number
of iterations, 7'

So now we carry on running the algorithm, which you should check for
yourself either by hand or using computer code (which we’ll discuss next),
eventually getting to weight values that settle and stop changing. At this
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point the weights stop changing, and the Perceptron has correctly learnt all
of the examples. Note that there are lots of different values that we can assign
to the weights that will give the correct outputs; the ones that the algorithm
finds depend on the learning rate, the inputs, and the initial starting values.
We are interested in finding a set that works; we don’t necessarily care what
the actual values are, providing that the network generalises to other inputs.

2.2.5 Implementation

Turning the algorithm into code is fairly simple: we need to design some
data structures to hold the variables, then write and test the program. Data
structures are usually very basic for machine learning algorithms; here we
need an array to hold the inputs, another to hold the weights, and then two
more for the outputs and the targets. When we talked about the presentation
of data to the neural network we used the term input vectors. The vector is
a list of values that are presented to the Perceptron, with one value for each
of the nodes in the network. When we turn this’into computer code it makes
sense to put these values into an array. However, the neural network isn’t
very exciting if we only show it one datapoint: we will need to show it lots
of them. Therefore it is normal to arrange the data into a two-dimensional
array, with each row of the array being a datapoint. In a language like C or
Java, you then write a loop that runs over each row of the array to present the
input, and a loop within it that runs over the number of input nodes (which
does the computation on the current input vector).

Written this way in Python syntax (Chapter 16 provides a brief introduction
to Python), the recall code that is used after training for a set of nData
datapoints arranged in the array inputs looks like:
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However, Python’s numerical library NumPy provides an alternative method,
because it can easily multiply arrays and matrices together (MATLAB and
R have the same facility). This means that we can write the code with fewer
loops, making it rather easier to read, and also means that we write less code.
It can be a little confusing at first, though. To understand it, we need 3 little
bit more mathematics, which is the concept of a matrix. In computer terms,
matrices are just two-dimensional arrays. We can write the set of weights
for the network in a matrix by making an array that has m + 1 rows (the
number of input nodes + 1 for the bias) and n columns (the number of neu-
rons). Now, the element of the matrix at location (7, j) contains the weight
connecting input ¢ to neuron j, which is what we had in the code above.

The benefit that we get from thinking about it in this way is that multiply-
ing matrices and vectors together is well defined. You’ve probably seen this
in high school or somewhere but, just in case, to be able to multiply matrices
together we need the inner dimensions to be the same. This just means that
if we have matrices A and B where A is size m x n, then the size of B needs
to be n x p, where p can be any number. The n is called the inner dimension
since when we write out the size of the matrices in the multiplication we get
(m x n) x (n x p).

Now we can compute AB (but not necessarily BA, since for that we’d need
m = p, since the computation above would then be (n x p) x (m x n)). The
computation of the multiplication proceeds by picking up the first column of B,
rotating it by 90° anti-clockwise so that it is a row not a column, multiplying
each element of it by the matching element in the first row of A and then
adding them together. This is the first element of the answer matrix. The
second element in the first row is made by picking up the second column of
B, rotating it to match the direction, and multiplying it by the first row of
A, and so on. As an example:

13
(2gi>x 24 (2.11)
35
_[(3x1+4x2+5x3 3x3+4x44+5x%x5 (2.12)
C\2%x143x2+4x3 2x3+3x4+4x%x5 '

— (gg gg) (2.13)

NumPy can do this multiplication for us, using the dot() function (which
is a rather strange name mathematically, but never mind). So to reproduce
the calculation above, we use:
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The array() function makes the NumPy array, which is actually a matrix
here, made up of an array of arrays: each row is a separate array, as you
can see from the square brackets within square brackets. Note that we can
enter the 2D array in one line of code by using commas between the different
rows, but when it prints them out, NumPy puts each row of the matrix on a
different line, which makes things easier to see.

This probably seems like a very long way from the Perceptron, but we are
getting there, I promise! We can put the input vectors into a two-dimensional
array of size N x m, where N is the number of input vectors we have and
m is the number of inputs. The weights array is of size m x n, and so we
can multiply them together. If we do, then the output will be an N x n
matrix that holds the values of the sum that each neuron computes for each
of the N input vectors. Now we just need to compute the activations based
on these sums. NumPy has another useful function for us here, which is
where(condition,x,y), (condition is a logical condition and x and y are
values) that returns a matrix that has value x where condition is true and
value y everywhere else. So using the matrix a that was used above,

@
&
@

The upshot of this is that the entire section of code for the recall function
of the Perceptron can be rewritten in two lines as:

The training section isn’t that much harder really. You should notice that
the first part of the training algorithm is the same as the recall computation,
so we can put them into a function (I've called it pcnfwd in the code because it
consists of running forwards through the network to get the outputs). Then we
just need to compute the weight updates. The weights are in an m x n matrix,
the activations are in an N X n matrix (as are the targets) and the inputs
are in an N X m matrix. So to do the multiplication dot(inputs,targets
- activations) we need to turn the inputs matrix around so that it is
m x N. This is done using the transpose() function, which swaps the rows
and columns over (so using matrix a above again) we get:
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Once we have that, the weight update for the entire network can be done
in one line (where eta is the learning rate, 7):

Assuming that you make sure in advance that all your input matrices are the
correct size (the shape () function, which tells you the number of elements in
each dimension of the array, is helpful here), the only things that are needed
are to add those extra —1’s onto the input vectors for the bias node, and
to decide what values we should put into the weights to start with. The
first of these can be done using the concatenate () function, making an one-
dimensional array that contains -1 as all of its elements, and adding it on to
the inputs array. Note that nData in the code is equivalent to N in the text.

The last thing we need to do is to give initial values to the weights. It
is possible to set them all to be zero, and the algorithm will get to the right
answer. However, instead we will assign small random numbers to the weights,
for reasons that will be discussed in Section 3.2.2. Again, NumPy has a
nice way to do this, using the built-in random number generator (with nin
corresponding to m and nout to n):

B FEEG G
e ¥ P E R4y g

At this point we have seen all the snippets of code that are required, and
putting them together should not be a problem. The entire program is avail-
able from the book website as pcn.py. What is interesting is to see the code
working, and that is what we will do next, starting with the OR example that
was used in the hand-worked demonstration.

Making the OR data is easy, and then running the code requires importing
it using its filename (pcn) and then calling the pcntrain function. The print-
out below shows the instructions to set up the arrays and call the function, and
the output of the weights for 5 iterations of a particular run of the program,
starting from random initial points (note that the weights stop changing after
the 1st iteration in this case, and that different runs will produce different
values).
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FIGURE 2.5: The decision boundary computed by a Perceptron for the OR
function.

the decision boundary, which shows when the decision about which class to
categorise the input as changes from crosses to circles. We will see why this
is a straight line in Section 2.3.

2.2.6 Testing the Network

Before returning the weights, the Perceptron algorithm above prints out the
outputs for the trained inputs. You can also use the network to predict the
outputs for other values by using the pcnfwd function. However, you need to
manually add the —1s on in this case, using:

This brings us to an interesting question, which is how do you decide
whether or not the network has learnt well? The first thing that we can
do is look at the error on the training set. We asked the Perceptron to learn
about the OR data, and it got the predictions 100% correct. However, we
want a neural network to generalise to examples that it has not seen in the
training set, and we can’t test this by using the training set. So we need some
different data, a test set to test it on as well. This isn’t very easy for this
example, but for real datasets, you separate the data into a training set and
a separate test set. This will be covered in more detail in Section 3.3.5.

Regardless of what data we use to test the network, we still need to work
out whether or not the result is good. We will look here at a method that
is suitable for classification problems that is known as the confusion matrix.
It is a nice simple idea, which is to make a square matrix that contains all
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the possible classes in both the horizontal and vertical directions. We list the
classes along the top of a table as the outputs, and then down the left-hand
side as the targets. So for example, the element of the matrix at (¢, j) tells us
how many input patterns were put into class ¢ in the targets, but class j by
the network. Anything on the leading diagonal is a correct answer. Suppose
that we have three classes: C1,C3, and C3. Now we count the number of
times that the output was class C; when the target was C;, then when the
target was Cs, and so on until we’ve filled in the table:

Outputs
C, Cy Cj
cCi 5 1 0
C, 1 4 1
C3; 2 0 4

This table tells us that, for the three classes, most examples were classified
correctly, but two examples of class C3 were misclassified as C7, and so on.
Writing the code to compute this is not too difficult, and for a small number
of classes, it is a nice way to look at the outputs. If you just want one number,
then it is possible to divide the sum of the elements on the leading diagonal
by the sum of all of the elements in the matrix, which gives the fraction of
correct responses.

We've now reached the stage that neural networks were up to in 1969.
Then, two researchers, Minsky and Papert, published a book called “Percep-
trons.” The purpose of the book was to stimulate neural network research
by discussing the learning capabilities of the Perceptron, and showing what
the network could and could not learn. Unfortunately, the book had another
effect: it effectively killed neural network research for about 20 years. To see
why, we need to think about how the Perceptron learns in a different way.

2.3 Linear Separability

What does the Perceptron actually compute? For our one output neuron
example of the OR data it tries to separate out the cases where the neuron
should fire from those where it shouldn’t. Looking at the graph on the right
side of Figure 2.3, you should be able to draw a straight line that separates
out the crosses from the circles without difficulty (it is done in Figure 2.5).
In fact, that is exactly what the Perceptron does: it tries to find a straight
line (in 2D, a plane in 3D, and a hyperplane in higher dimensions) where the
neuron fires on one side of the line, and doesn’t on the other. This line is
called the decision boundary or discriminant function, and an example of one is
given in Figure 2.6.
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FIGURE 2.6: A decision boundary separating two classes of data.

To see this, think about the matrix notation we used in the implementation,
but consider just one input vector x. The neuron fires if x-w’ > 0 (where w is
the row of W that connects the inputs to one particular neuron; they are the
same for the OR example, since there is only one neuron, and w? denotes the
transpose of w and is used to make both of the vectors into column vectors).
The a-b notation describes the inner or scalar product between two yectors. It
is computed by multiplying each element of the first vector by the matching
element of the second and adding them all together. As you might remember
from high school, a - b = ||a||||b|| cos@, where 8 is the angle between a and
b and |a|| is the length of the vector a. So the inner product computes a
function of the angle between the two vectors, scaled by their lengths. It can
be computed in NumPy using the inner () function.

Getting back to the Perceptron, the boundary case is where we find an input
vector X; that has x;-w? = 0. Now suppose that we find another input vector
X2 that satisfies x5 - w7 = 0. Putting these two equations together we get:

x; - wl =xy-w? (2.14)

= (x3 —x3)-wl =0. (2.15)

What does this last equation mean? In order for the inner product to be
0, either ||a|| or ||b]| or cos@ needs to be zero. There is no reason to believe
that |la|| or ||b] should be 0, so cos# = 0. This means that § = 7/2 (or
—~m/2), which means that the two vectors are at right angles to each other.
Now x; — xg is a straight line between two points that lie on the decision
boundary, and the weight vector w7 must be perpendicular to that, as in
Figure 2.6.

So given some data, and the associated target outputs, the Perceptron
simply tries to find a straight line that divides the examples where each neuron
fires from those where it does not. This is great if that straight line exists,
but is a bit of a problem otherwise. The cases where there is a straight
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FIGURE 2.7: Different decision boundaries computed by a Perceptron with
four neurons.
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FIGURE 2.8: Data for the XOR logic function and a plot of the four data-
points.

line are called linearly separable cases. What happens if the classes that we
want to learn about are not linearly separable? It turns out that making
such a function is very easy: there is even one that matches a logic function.
Before we have a look at it, it is worth thinking about what happens when we
have more than one output neuron. The weights for each neuron separately
describe a straight line, so by putting together several neurons we get several
straight lines that each try to separate different parts of the space. Figure 2.7
shows an example of decision boundaries computed by a Perceptron with four
neurons; by putting them together we can get good separation of the classes.

2.3.1 The Exclusive Or (XOR) Function

The XOR has the same four input points as the OR function, but looking
at Figure 2.8, you should be able to convince yourself that you can’t draw a
straight line on the graph that separates true from false (crosses from circles).
In our new language, the XOR function is not linearly separable. If the anal-
ysis above is correct, then the Perceptron will fail to get the correct answer,
and using the Perceptron code above we find:
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You can see that the algorithm does not converge, but keeps on cycling
through two different wrong solutions. Running it for longer does not change
this behaviour. So even for a simple logical function, the Perceptron can
fail to learn the correct answer. This is what was demonstrated by Minsky
and Papert in “Perceptrons,” and the discovery that the Perceptron was not
capable of solving even these problems, let alone more interesting ones, is what
halted neural network development for so long. There is an obvious solution
to the problem, which is to make the network more complicated—add in more
neurons, with more complicated connections between them, and see if that
helps. The trouble is that this makes the problem of training the network
much more difficult. In fact, working out how to do that is the topic of the

next chapter.
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FIGURE 2.9: A decision boundary (the shaded plane) solving the XOR prob-
lem in 3D with the crosses below the surface and the circles above it.

2.3.2 A Useful Insight

From the discussion in Section 2.3.1 you might think that the XOR function
is impossible to solve using a linear function. In fact, this is not true. If we
rewrite the problem in three dimensions instead of two, then it is perfectly
possible to find a plane (the 2D analogue of a straight line) that can separate
the two classes. There is a picture of this in Figure 2.9. Writing the problem
in 3D means including a third input dimension that does not change the data
when it is looked at in the (z,y) plane, but moves the point at (0,0) along a
third dimension. So the truth table for the function is the one shown on the
left side of Figure 2.9 (where ‘Ins’ has been added, and only affects the point

at (0,0)).
To demonstrate this, the following listing uses the same Perceptron code:
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In fact, it is always possible to separate out two classes with a linear func-
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FIGURE 2.10: Left: Non-separable 2D dataset. Right: The same dataset
with third coordinate x; X x4, which makes it separable.

tion, provided that you project the data into the correct set of dimensions.
There are a whole class of methods for doing this reasonably efficiently, called
kernel classifiers, which are the basis of support vector machines, which are the
subject of Chapter 5. For now, it is sufficient to point out that if you want
to make your linear Perceptron do non-linear things, then there is nothing to
stop you making non-linear variables. For example, Figure 2.10 shows two
versions of the same dataset. On the left side, the coordinates are x; and z3,
while on the right side the coordinates are z1,zs and z; X x3. It is now easy
to fit a plane (the 2D equivalent of a straight line) that separates the data.

Statistics has been dealing with problems of classification and regression for
a long time, before we had computers in order to do difficult arithmetic for us,
and so straight line methods have been around in statistics for many years.
They provide a different (and useful) way to understand what is happening
in learning, and by using both statistical and computer science methods we
can get a good understanding of the whole area. We will see the statistical
method of linear regression in Section 2.4, but first we will work through
another example of using the Perceptron. This is meant to be a tutorial
example, so I will give some of the relevant code and results, but leave places
for you to fill in the gaps.

2.3.3 Another Example: The Pima Indian Dataset

The UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/)
holds lots of datasets that are used to demonstrate and test machine learning
algorithms. For the purposes of testing out the Perceptron and Linear Re-
gressor, we are going to use one that is very well known. It provides eight
measurements of a group of American Pima Indians living in Arizona in the
USA, and the classification is whether or not each person had diabetes. The
dataset is available from the UCI repository (called Pima) and there is a file
inside the folder giving details of what the different variables mean.

Once you have downloaded it, import the relevant modules (NumPy to use
the array methods, PyLab to plot the data, and the Perceptron from the book
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website) and then load the data into Python. This requires something like
the following:
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where the path in the os. chdir line will obviously need to be changed to wher-
ever you have saved the dataset. In the loadtxt () command the delimiter
specifies which character is used to separate out the datapoints. Note that
PyLab is imported before NumPy. This should not matter, in general, but
there are some commands in PyLab that overwrite some in NumPy, and we
want to use the NumPy ones, so you need to import them in that order. The
shape () method tells that there are 768 datapoints, arranged as rows of the
file, with each row containing nine numbers. These are the eight dimensions
of data, with the class being the ninth element of each line (indexed as 8 since
Python is zero-indexed). This arrangement, with each line of a file (or row of
an array) being a datapoint is the one that will be used throughout the book.
You should have a look at the dataset. Obviously, you can’t plot the whole
thing at once, since that would require being able to visualise eight dimensions.
But you can plot any two-dimensional subset of the data. Have a look at a
few of them. In order to see the two different classes in the data in your
plot, you will have to work out how to use the where command. Once you
have worked that out, you will be able to plot them with different shapes and
colours. The plot command is in Matplotlib, so you’ll need to import that (as
pylab) beforehand. Assuming that you have worked out some way to store
the indices of one class in indices0 and the other in indices1 you can use:

T

e

@‘
P

! £T:
4

B!

to plot the first two dimensions as green circles and red crosses, which (up to
colour, of course) should look like Figure 2.11. The ion() command ensures
that the data is actually plotted, while the show() command is only required
if you are using Eclipse, and ensures that the graph does not vanish when
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FIGURE 2.11: Plot of the first two dimensions of the Pima Indians dataset
showing the two classes as ‘x’ and ‘o’.

the program terminates. Clearly, there is no way that you can find a linear
separation between these two classes with these features. However, you should
have a look at some of the other combinations of features and see if you can
find any that are better.

The next thing to do is to try using the Perceptron on the full dataset.
You will need to try out different values for the learning rate and the num-
ber of iterations for the Perceptron, but you should find that you can get
around 50-70% correct (use the confusion matrix method confmat() to get
the results). This isn’t too bad, but it isn’t that good, either. The results
are quite unstable, too; sometimes the results have only 30% accuracy—worse
than chance—which is rather depressing.

This is, of course, unfair testing, since we are testing the network on the
same data we were training it on. We will talk about this more in Section 3.3.5,
but we will do something quick now, which is to use even-numbered datapoints
for training, and odd-numbered datapoints for testing. This is very easy using
the : operator, where we specify the start point, the end point, and the step
size. NumPy will fill in any that we leave blank with the beginning or end of
the array as appropriate.




40 Machine Learning: An Algorithmic Perspective

For now, rather than worrying about training and testing data, we are more
interested in working out how to improve the results. And we can do better.
The first thing to do is to have a proper look at some of the data. For example,
column 0 is the number of times that the person has been pregnant (did I
mention that all the subjects were female?) and column 7 is the age of the
person. Taking the pregnancy variable first, there are relatively few subjects
that were pregnant 8 or more times, so rather than having the number there,
maybe they should be replaced by an 8 for any of these values. Equally, the
age would be better quantised into a set of ranges such as 21-30, 3140, etc.
(the minimum age is 21 in the dataset). This can be done using the where
function again, as in this code snippet. If you make these changes and similar
ones for the other values, then you should be able to get massively better

results.

There is another thing that can improve the results markedly, which is to
normalise the data, sometimes also known as standardisation. We will look at
this more in Section 3.3.1, but the basic idea is to ensure that the values in the
data are not too large, because then the weights will have to be very small.
The most common method of normalisation is to subtract off the mean of
each variable (so that they each have zero mean) and divide by the variance.
This is very easy in NumPy once you have worked out which axis is which:
axis=0 sums down the columns and axis=1 sums across the rows. Note that
only the input variables are normalised here. This is not always true, but here
the target variable already has values 0 and 1, which are the possible outputs
for the Perceptron, and we don’t want to change that.

# ek o g
n{akis=0
& € my

& e S e
W HY B

e

There is one thing to be careful of here, which is that if you normalise
the training and testing sets separately in this way then a datapoint that is
in both sets will end up being different in the two, if since the mean and
variance are probably different in the two sets. For this reason it is a good
idea to normalise the dataset before splitting it into training and testing.
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The last thing that we can do for now is to perform a basic form of feature
selection and to try training the classifier with a subset of the inputs by missing
out different features one at a time and seeing if they make the results better.
If missing out one feature does improve the results, then leave it out completely
and try missing out others as well. This is a simplistic way of testing for
correlation between the output and each of the features. We will see better
methods when we look at covariance in Section 8.2.2.

Now that we have seen how to use the Perceptron on a better example than
the logic functions, we will look at another linear method, but coming from
statistics, rather than neural networks.

2.4 Linear Regression

As is common in statistics, we need to separate out regression problems,
where we fit a line to data, from classification problems, where we find a line
that separates out the classes, so that they can be distinguished. However, it
is common to turn classification problems into regression problems. This can
be done in two ways, first by introducing an indicator variable, which simply
says which class each datapoint belongs to. The problem is now to use the
data to predict the indicator variable, which is a regression problem. The
second approach is to do repeated regression, once for each class, with the
indicator value being 1 for examples in the class and 0 for all of the others.
Since classification can be replaced by regression using these methods, we’ll
think about regression here.

The only real difference between the Perceptron and more statistical ap-
proaches is in the way that the problem is set up. For regression we are
making a prediction about an unknown value y (such as the indicator vari-
able for classes or a future value of some data) by computing some function
of known values z;. We are thinking about straight lines, so the output y is
going to be a sum of the x; values, each multiplied by a constant parame-
ter: y = Eiﬂio Bix;. The B; define a straight line (plane in 3D, hyperplane
in higher dimensions) that goes through (or at least near) the datapoints.
Figure 2.12 shows this in two and three dimensions.

The question is how we define the line (plane or hyperplane in higher di-
mensions) that best fits the data. The most common solution is to try to
minimise the distance between each datapoint and the line that we fit. We
can measure the distance between a point and a line by defining another line
that goes through the point and hits the line. School geometry tells us that
this second line will be shortest when it hits the line at right angles, and then
we can use Pythagorus’ theorem to know the distance. Now, we can try to
minimise an error function that measures the sum of all these distances. If we
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FIGURE 2.12: Linear regression in two and three dimensions.

ignore the square roots, and just minimise the sum-of-squares of the errors,
then we get the most common minimisation, which is known as least-squares
optimisation. What we are doing is choosing the parameters in order to min-
imise the squared difference between the prediction and the actual data value,
summed over all of the datapoints. That is, we have:

N M 2
> (tj - Zﬂi%‘j) : (2.16)

j=0 i=0

This can be written in matrix form as:

(t—XB)(t—XB)7, (2.17)

where t is the targets and X is the matrix of input values (even including the
bias inputs), just as for the Perceptron. Computing the smallest value of this
means differentiating it with respect to the parameter vector 8 and setting
the derivative to 0, which means that X7 (t —X3) = 0, which has the solution
B = (XTX) !XTy (assuming that the matrix X7X can be inverted). Now,
for a given input vector z, the prediction is z@3. The inverse of a matrix X is
the matrix that satisfies XX ! = I, where I is the identity matrix, the matrix
that has 1s on the leading diagonal and 0s everywhere else. The inverse of a
matrix only exists if the matrix is square (has the same number of rows as
columns) and its determinant is non-zero.

Computing this is very simple in Python, using the 1linalg.inv() function
that is available in NumPy. In fact, the entire function can be written as:
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2.4.1 Linear Regression Examples

Using the linear regressor on the logical OR function seems a rather strange
thing to do, since we are performing classification using a method designed
explicitly for regression. However, we can do it, and it gives the following
outputs:

It might not be clear what this means, but if we threshold the outputs by
setting every value less than 0.5 to 0 and every value above 0.5 to 1, then we
get the correct answer. Using it on the XOR function shows that this is still
a linear method:

A better test of linear regression is to find a real regression dataset. The UCI
database is useful here, as well. We will look at the auto-mpg dataset. This
consists of a collection of number of datapoints about certain cars (weight,
horsepower, etc.), with the aim being to predict the fuel efficiency in miles per
gallon (mpg). This dataset has one problem. There are missing values in it
(labelled with question marks ‘?*). The loadtxt () method doesn’t like these,
and we don’t know what to do with them, anyway, so after downloading the
dataset, manually edit the file and delete all lines where there is a 7 in that
line. The linear regressor can’t do much with the names of the cars either, but
since they appear in quotes () we will tell loadtxt that they are comments,
using:
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You should now separate the data into training and testing sets, and then
use the training set to recover the 3 vector. Then you use that to get the
predicted values on the test set. However, the confusion matrix isn’t much use
now, since there are no classes to enable us to analyse the results. Instead, we
will use the sum-of-squares error, which consists of computing the difference
between the prediction and the true value, squaring them so that they are
all positive, and then adding them up, as is used in the definition of the
linear regressor. Obviously, small values of this measure are good. It can be

computed using:

m B & ﬁ‘%&mu

“ eayah%s&!

Now you can test out whether normalising the data helps, and perform
feature selection as we did for the Perceptron. There are other more advanced
linear statistical methods. One of them, Linear Discriminant Analysis, will be
considered in Section 10.1 once we have built up the understanding we need.

Further Reading

If you are interested in the historical aspects of the field, then the original
paper on the Perceptron and the book that showed the requirement of linear
separability (and that some people blame for putting the field back 20 years)
still make interesting reads. Another paper that might be of interest is the
review article written by Widrow and Lehr, which summarises some of the
seminal work:

e . Rosenblatt. The Perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):
386-408, 1958.

e M.L. Minsky and S.A. Papert. Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge MA, 1969.



Linear Discriminants 45

¢ B. Widrow and M.A. Lehr. 30 years of adaptive neural networks: Per-
ceptron, madaline, and backpropagation. Proceedings of the IEEFE, 78
(9):1415-1442, 1990.

Textbooks that cover the same material, although from different viewpoints,
include:

e Chapter 5 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classifi-
cation. Wiley-Interscience, New York, USA, 2nd edition, 2001.

e Sections 3.1-3.3 of T. Hastie, R. Tibshirani, and J. Friedman. The
FElements of Statistical Learning. Springer, Berlin, Germany, 2001.

Practice Questions

Problem 2.1 Consider a neuron with 2 inputs, 1 output, and a threshold
activation function. If the two weights are w; = 1 and wg = 1, and the
bias is b = —1.5, then what is the output for input (0,0)? What about
for inputs (1,0), (0,1), and (1,1)?

Draw the discriminant function for this function, and write down its
equation. Does it correspond to any particular logic gate?

Problem 2.2 Work out the Perceptrons that construct logical NOT, NAND,
and NOR of their inputs.

Problem 2.3 The parity problem returns 1 if the number of inputs that are
1 is even, and 0 otherwise. Can a Perceptron learn this problem for 3
inputs? Design the network and try it.

Problem 2.4 Test out both the Perceptron and linear regressor code from
the website on the parity problem.

Problem 2.5 Try to think of some interesting image processing tasks that
cannot be performed by a Perceptron. (Hint: You need to think of tasks
where looking at individual pixels isn’t enough to allow classification.)

Problem 2.6 The decision boundary hyperplane found by the Perceptron
has equation y(x) = w7x + b = 0. For a point x’, minimise ||x — x'||?
to show that the shortest distance from the point to the hyperplane is

ly()/ llwll.

Problem 2.7 There is a link to a very large dataset of handwritten figures
on the book website (the MNIST dataset). Download it and use a
Perceptron to learn about the dataset.



46 Machine Learning: An Algorithmic Perspective

Problem 2.8 For the prostate data available via the website, use both the
Perceptron and logistic regressor and compare the results.



Chapter 3

The Multi-Layer Perceptron

In the last chapter we saw that while linear models are easy to understand
and use, they come with the inherent cost that is implied by the word ‘linear’,
that is they can only identify straight lines, planes, or hyperplanes. And this
is not usually enough, because the majority of interesting problems are not
linearly separable. In Section 2.3 we saw that problems can be made linearly
separable if we can work out how to transform the features suitably. We
will come back to this idea in Chapter 5, but in this chapter we will instead
consider making more complicated networks.

We have pretty much decided that the learning in the neural network hap-
pens in the weights. So, to perform more computation it seems sensible to
add more weights. There are two things that we can do: add some back-
ward connections, so that the output neurons connect to the inputs again, or
add more neurons. The first approach leads into recurrent networks. These
have been studied, but are not that commonly used. We will instead consider
the second approach. We can add neurons between the input nodes and the
outputs, and this will make more complex neural networks, such as the one
shown in Figure 3.1.

We will think about why adding extra layers of nodes makes a neural network
more powerful in Section 3.3.3, but for now, to persuade ourselves that it is
true, we can check that a prepared network can solve the two-dimensional
XOR problem, something that we have seen is not possible for a linear model
like the Perceptron. A suitable network is shown in Figure 3.2. To check
that it gives the correct answers, all that is required is to put in each input
and work through the network, treating it as two different Perceptrons, first
computing the activations of the neurons in the middle layer (labelled as C
and D in Figure 3.2) and then using those activations as the inputs to the
single neuron at the output. As an example, I'll work out what happens when
you put in (1,0) as an input; the job of checking the rest is up to you.

Input (1,0) corresponds to node A being 1 and B being 0. The input to
neuron C is therefore —1 x0.5+1x1+40x 1= —0.54+1 = 0.5. This is above
the threshold of 0, and so neuron C fires, giving output 1. For neuron D the
inputis ~-1 x14+1x14+0x1=—-1+1=0, and so it does not fire, giving
output 0. Therefore the input to neuron E is —1 x 0.5+1x1+4+0x —1 = 0.5,
so neuron E fires. Checking the result of the inputs should persuade you that
neuron E fires when inputs A and B are different to each other, but does not
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Hidden Layer Output Layer

Input Layer

FIGURE 3.1: The Multi-Layer Perceptron network, consisting of multiple
layers of connected neurons.

fire when they are the same, which is exactly the XOR function (it doesn’t
matter that the fire and not fire have been reversed).

So far, so good. Since this network can solve a problem that the Perceptron
cannot, it seems worth looking into further. However, now we’ve got a much
more interesting problem to solve, namely how can we train this network so
that the weights are adapted to generate the correct (target) answers? If we
try the method that we used for the Perceptron we need to compute the error
at the output. That’s fine, since we know the targets there, so we can compute
the difference between the targets and the outputs. But now we don’t know
which weights were wrong: those in the first layer, or the second? Worse, we
don’t know what the correct activations are for the neurons in the middle of
the network. This fact gives the neurons in the middle of the network their
name, they are called the hidden layer (or layers), because it isn’t possible to
examine and correct their values directly.

It took a long time for people who studied neural networks to work out
how to solve this problem. In fact, it wasn’t until 1986 that Rumelhart,
Hinton, and McClelland managed it. However, a solution to the problem was
already known by statisticians and engineers—they just didn’t know that it
was a problem in neural networks! In this chapter we are going to look at the
neural network solution proposed by Rumelhart, Hinton, and McClelland, the
Multi-Layer Perceptron (MLP), which is still one of the most commonly used
machine learning methods around. Getting to the stage where we understand
how it works and what we can do with it is going to take us into lots of
different areas of statistics, mathematics and computer science, so we’d better
get started.
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FIGURE 3.2: A Multi-Layer Perceptron network showing a set of weights
that solve the XOR problem.

3.1 Going Forwards

Just like in the Perceptron, training the MLP consists of two parts: working
out what the outputs are for the given inputs and the current weights, and
then updating the weights according to the error, which is a function of the
difference between the outputs and the targets. These are generally known as
going forwards and backwards through the network. We've already seen how
to go forwards for the MLP when we saw the XOR example above, which
was effectively the recall phase of the algorithm. It is pretty much just the
same as the Perceptron, except that we have to do it twice, once for each
set of neurons, and we need to do it layer by layer, because otherwise the
input values to the second layer don’t exist. In fact, having made an MLP
with two layers of nodes, there is no reason why we can’t make one with 3,
or 4, or 20 layers of nodes (we’ll discuss whether or not you might want to in
Section 3.3.3). This won’t even change our recall (forward) algorithm much,
since we just work forwards through the network computing the activations
of one layer of neurons and using those as the inputs for the next layer.

So looking at Figure 3.1, we start at the left by filling in the values for the
inputs. We then use these inputs and the first level of weights to calculate
the activations of the hidden layer, and then we use those activations and the
next set of weights to calculate the activations of the output layer. Now that
we’ve got the outputs of the network, we can compare them to the targets
and compute the error.
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3.1.1 Biases

Just like in the Perceptron case, we need to include a bias input to each
neuron. We do this in the same way, by having an extra input, that is per-
manently set to -1, and adjusting the weights to each neuron as part of the
training. Thus, each neuron in the network (whether it is a hidden layer or
the output) has 1 extra input, with fixed value.

3.2 Going Backwards: Back-Propagation of Error

It is in the backwards part of the algorithm that things get tricky. Comput-
ing the errors at the output is no more difficult than it was for the Perceptron,
but working out what to do with those errors is more difficult. The method
that we are going to look at is called back-propagation of error, which makes
it clear that the errors are sent backwards through the network. It is a form
of gradient descent (which is described briefly below, and also given its own
section in Chapter 11).

The best way to describe back-propagation properly is mathematically, but
this can be intimidating and difficult to get a handle on at first. I've therefore
tried to compromise by using words and pictures in the main text, but putting
all of the mathematical details into Section 3.6. While you should look at
that section and try to understand it, it can be skipped if you really don’t
have the background. Although it looks complicated, there are actually three
things that you need to know, all of which are from differential calculus: the
derivative of 322, the fact that if you differentiate a function of z with respect
to some other variable ¢, then the answer is 0, and the chain rule, which tells
you how to differentiate composite functions.

When we talked about the Perceptron, we changed the weights so that the
neurons fired when the targets said they should, and didn’t fire when the
targets said they shouldn’t. Although we didn’t say it like this then, what we
did was to choose an error function F = t — y, and tried to make it as small
as possible. Since there was only one set of weights in the network, this was
sufficient to train the network.

We still want to do the same thing—minimise the error, so that neurons fire
only when they should—but, with the addition of extra layers of weights, this
is harder to arrange. The problem is that when we try to adapt the weights
of the Multi-Layer Perceptron, we have to work out which weights caused the
error. This could be the weights connecting the inputs to the hidden layer, or
the weights connecting the hidden layer to the output layer (for more complex
networks, there could be extra weights between nodes in hidden layers. This
isn’t a problem—the same method works—but it is more confusing to tal%
about, so I'm only going to worry about one hidden layer here). j
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Error
Y

FIGURE 3.3: The weights of the network are trained so that the error goes
downbhill until it reaches a local minimum, just like a ball rolling under gravity.

The error function that we used for the Perceptron was E = t—y. However,
suppose that we make two errors. In the first, the target is bigger than the
output, while in the second the output is bigger than the target. If these two
errors are the same size, then if we add them up we could get 0, which means
that the algorithm thinks that no error was made. To get around this we need
to make all errors have the same sign. We can do this in a few different ways,
but the one that will turn out to be best is the sum-of-squares error function,
which calculates the difference between ¢ and y for each node, squares them,
and adds them all together:

n
B(t,y) = 5 (0 — u0)” (31)
k=1

You might have noticed the 3 at the front of that equation. It doesn’t
matter that much, but it makes it easier when we differentiate the function,
and that is the name of the game here: if we differentiate a function, then
it tells us the gradient of that function, which is the direction along which it
increases and decreases the most. So if we differentiate an error function, we
get the gradient of the error. Since the purpose of learning is to minimise the
error, following the error function downhill (in other words, in the direction of
the negative gradient) will give us what we want. Imagine a ball rolling around
on a surface that looks like the line in Figure 3.3. Gravity will make the ball
roll downhill (follow the downhill gradient) until it ends up in the bottom
of one of the hollows. These are places where the error is small, so that is
exactly what we want. This is why the algorithm is called gradient descent.
So what should we differentiate with respect to? There are only three things
in the network that change: the inputs, the activation function that decides
whether or not the node fires, and the weights. The first and second are out
of our control when the algorithm is running, so only the weights matter, and

therefore they are what we differentiate with respect to.
Having mentioned the activation function, this is a good time to point
out a little problem with the threshold function that we have been using for
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FIGURE 3.4: The FIGURE 3.5: The sigmoid
threshold function that we used function, which looks qualitively

for the Perceptron. Note the fairly similar, but varies

discontinuity where the value smoothly and differentiably.
changes from 0 to 1.

our neurons so far, which is that it is discontinuous (see Figure 3.4; it has
a sudden jump in the middle) and so differentiating it at that point isn’t
possible. The problem is that we need that jump between firing and not
firing to make it act like a neuron. We can solve the problem if we can find an
activation function that looks like a threshold function, but is differentiable so
that we can compute the gradient. If you squint at a graph of the threshold
function (for example, Figure 3.4) then it looks kind of S-shaped. There
is a mathematical form of S-shaped functions, called sigmoid functions (see
Figure 3.5). They have another nice property, which is that their derivative
also has a nice form, as is shown in Section 3.6.3 for those who know some
mathematics. The most commonly used form of this function (where § is
some positive parameter) is:

1
" T+ exp(—Bh)’

In some texts you will see the activation function given a different form, as:

a=g(h) (3.2)

exp(h) — exp(—h)
exp(h) +exp( —h)’

which is the hyperbolic tangent function. This is a different but similar func-
tion; it is still a sigmoid function, but it saturates (reaches its constant values)
at £1 instead of 0 and 1, which is sometimes useful. It also has a relatively
simple derivative: & tanhz = (1 — tanh?(z)). We can convert between the
two easily, because if the saturation points are (+1), then we can convert to
(0,1) by using 0.5 x (z +1).

So now we’ve got a new form of error computation and a new activation
function that decides whether or not a neuron should fire. We can differentiate
it, so that when we change the weights, we do it in the direction that is

downhill for the error, which means that we know we are improving the error

a = g(h) = tanh(h) = (3.3)



The Multi-Layer Perceptron 53

function of the network. As far as an algorithm goes, we’ve fed our inputs
forward through the network and worked out which nodes are firing. Now, at
the output, we’ve computed the errors as the sum-squared difference between
the targets and the outputs (Equation (3.1) above). What we want to do next
is to compute the gradient of these errors and use them to decide how much
to update each weight in the network. We will do that first for the nodes
connected to the output layer, and after we have updated those, we will work
backwards through the network until we get back to the inputs again. There
are just two problems:

¢ for the output neurons, we don’t know the inputs.

e for the hidden neurons, we don’t know the targets; for extra hidden
layers, we know neither the inputs nor the targets, but even this won’t
matter for the algorithm we derive.

So we can compute the error at the output, but since we don’t know what
the inputs were that caused it, we can’t update those second layer weights
the way we did for the Perceptron. If we use the chain rule of differentiation
that you all (possibly) remember from high school then we can get around
this problem. Here, the chain rule tells us that if we want to know how
the error changes as we vary the weights, we can think about how the error
changes as we vary the inputs to the weights, and multiply this by how those
input values change as we vary the weights. This is useful because it lets us
calculate all of the derivatives that we want to: we can write the activations
of the output nodes in terms of the activations of the hidden nodes and the
output weights, and then we can send the error calculations back through the
network to the hidden layer to decide what the target outputs were for those
neurons. Note that we can do exactly the same computations if the network
has extra hidden layers between the inputs and the outputs. It gets harder to
keep track of which functions we should be differentiating, but there are no
new tricks needed.

All of the relevant equations are derived in Section 3.6, and you should read
that section carefully, since it is quite difficult to describe exactly what is going
on here in words. The important thing to understand is that we compute the
gradients of the errors with respect to the weights, so that we change the
weights so that we go downhill, which makes the errors get smaller. We do
this by differentiating the error function with respect to the weights, but we
can’t do this directly, so we have to apply the chain rule and differentiate with
respect to things that we know. This leads to two different update functions,
one for each of the sets of weights, and we just apply these backwards through
the network, starting at the outputs and ending up back at the inputs.
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FIGURE 3.6: The forward direction in a Multi-Layer Perceptron.

3.2.1 The Multi-Layer Perceptron Algorithm

We'll get into the details of the basic algorithm here, and then, in the next
section, have a look at some practical issues, such as how much training data is
needed, how much training time is needed, and how to choose the correct size
of network. The MLP is one of the most common neural networks in use. It is
often treated as a ‘black box,’ in that people use it without understanding how
it works, which often results in fairly poor results. Here is a quick summary
of how the algorithm works, and then the full MLP training algorithm using
back-propagation of error is described.

1. an input vector is put into the input nodes
2. the inputs are fed forward through the network (Figure 3.6)

e the inputs and the first-layer weights (here labelled as v) are used
to decided whether the hidden nodes fire or not. The activation
function g¢(-) is the sigmoid function given in Equation (3.2) above

e the outputs of these neurons and the second-layer weights (labelled
as w) are used to decide if the output neurons fire or not

3. the erroris computed as the sum-of-squares difference between the net-
work outputs and the targets

4. this error is fed backwards through the network in order to

e first update the second-layer weights by using the d, errors
¢ and then afterwards, the first-layer weights by using the &5, errors

The Multi-Layer Perceptron Algorithm

e Initialisation

— initialise all weights to small (positive and negative) random values
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e Training
— repeat:

* for each input vector:
Forwards phase:

- compute the activation of each neuron j in the hidden
layer(s) using:

hj = invij (34)
1
1 + exp(—ph;)

- work through the network until you get to the output lay-
ers, which have activations:

hk B Zajwjk (36)

J

aj = g(h;) = (3.5)

1

=g(hy) = ————F——— 3.7
A 1)
Backwards phase:

- compute the error at the output using:

ok = (tk — uk) Yk (1 — ys) (3.8)
- compute the error in the hidden layer(s) using:
5hj = aj(l - aj) Z’w]‘kéok (39)
k

- update the output layer weights using:
Wik < Wik + n5oka§-ﬁdden (3.10)

- update the hidden layer weights using:
Vij < Vij + T](Sh]wi (3.11)

* randomise the order of the input vectors so that you don’t train
in exactly the same order each iteration
— until learning stops (see Section 3.3.6)

e Recall
— use the Forwards phase in the training section above

This provides a description of the basic algorithm. There are a couple of
things that weren’t mentioned beforehand, including the randomisation of
the order of the input vectors. It turns out that this can significantly improve
the speed with which the algorithm learns. NumPy has a useful function
that assists with this, random. shuffle(), which takes a list of numbers and
reorders them. It can be used like this:
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As with the Perceptron, a NumPy implementation can take advantage of
various matrix multiplications, which makes things easy to read and faster

to compute. The implementation on the website is a batch version of the

algorithm, so that weight updates are made after all of the input vectors have
been presented (as is described in Section 3.2.4). The central weight update

computations for the algorithm can be implemented as:

There are a few improvements that can be made to the algorithm, and there

are some important things that need to be considered

training datapoints are needed,

such as how many

’

and

)

how many hidden nodes should be used

We will look at the improvements first,

how much training the network needs.

and then move on to practical considerations in Section 3.3. There are lots of

details that are given in this section because it is one of the early examples

in the book; later on things will be skipped over more quickly.

The first thing that we can do is check that this MLP can indeed learn the
logic functions, especially the XOR. We can do that with this code (which is

function logic on the website):
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There are a few things to notice about this. One is that it does work,
producing the correct answers, but the other is that even for the AND we need
significantly more iterations than we did for the Perceptron. So the benefits
of a more complex network come at a cost, because it takes substantially
more computational time to fit those weights to solve the problem, even for
linear examples. Sometimes, even 5000 iterations are not enough for the XOR
function, and more have to be added.

3.2.2 Initialising the Weights

The MLP algorithm suggests that the weights are initialised to small ran-
dom numbers, both positive and negative. The question is how small is small,
and does it matter? One way to get a feeling for this would be to experiment
with the code, setting all of the weights to 0, and seeing how well the network
learns, then setting them all to large numbers and comparing the results.
However, to understand why they should be small we can look at the shape
of the sigmoid. If the initial weight values are close to 1 or -1 (which is what
we mean by large here) then the inputs to the sigmoid are also likely to be
close to 1 and so the output of the neuron is either 0 or 1 (the sigmoid has
saturated, reached its maximum or minimum value). If the weights are very
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small (close to zero) then the input is still close to 0 and so the output of the
neuron is just linear, so we get a linear model. Both of these things can be
useful for the final network, but if we start off with values that are inbetween
it can decide for itself.

Choosing the size of the initial values needs a little more thought, then.
Each neuron is getting input from n different places (either input nodes if
the neuron is in the hidden layer, or hidden neurons if it is in the output
layer). If we view the values of these inputs as having uniform variance, then
the typical input to the neuron will be w+/n, where w is the initialisation
value of the weights. So a common trick is to set the weights in the range
-1/y/n < w < 1/y/n, where n is the number of nodes in the input layer to
those weights. This makes the total input to a neuron have a maximum size
of about 1. We use random values in this range so that the learning starts
off from different places for each run, and we keep them all about the same
size because we want all of the weights to reach their final values at about
the same time. This is known as uniform learning and it is important because
otherwise the network will do better on some inputs than others.

3.2.3 Different Output Activation Functions

In the algorithm described above, we used sigmoid neurons in the hidden
layer and the output layer. This is fine for classification problems, since there
we can make the classes be 0 and 1. However, we might also want to perform
regression problems, where the output needs to be from a continuous range,
not just 0 or 1. The sigmoid neurons at the output are not very useful in
that case. We can replace the output neurons with linear nodes that just sum
the inputs and give that as their activation (so g(h) = h in the notation of
Equation (3.2)). This does not mean that we change the hidden layer neurons,
they stay exactly the same. These output nodes are not models of neurons
anymore, since they don’t have the characteristic fire/don’t fire pattern. Even
so, they can be useful, for example for regression problems, where we want a
real number out, not just a 0/1 decision.

There is a third type of output neuron that is also used, which is the soft-max
activation function. This is most commonly used for classification problems
where the 1-of-N output encoding is used, as is described in Section 3.4.2. The
soft-max function rescales the outputs by calculating the exponential of the
inputs to that neuron, and dividing by the total sum of the inputs to all of
the neurons, so that the activations sum to 1 and all lie between 0 and 1. As
an activation function it can be written as:

_ _ exp(hg)
v =9 = ()

Of course, if we change the activation function, then the derivative of the
activation function will also change, and so the learning rule will be different.

(3.12)
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The changes that need to be made to the algorithm are in Equations (3.7
and (3.8). For the linear activation function the first is replaced by:

Yk = g(hk) = hi, (3.13)
while the second is replaced by:
ok = (tk — Yk) - (3.14)

For the soft-max activation, the update equation that replaces (3.8) is
(3.14), just as for the linear output. Computing these update equations re-
quires computing the error function that is being optimised, and then differ-
entiating it. These additions can be added into the code by allowing the user
to specify the type of output activation, which has to be done twice, once in
the mlpfwd function, and once in the mlptrain function. In the former, the
new piece of code can be written as:

4]
i

4

B g o g

[ N
g

3.2.4 Sequential and Batch Training

The MLP is designed to be a batch algorithm. All of the training examples
are presented to the neural network, the average sum-of-squares error is then
computed, and this is used to update the weights. Thus there is only one set
of weight updates for each epoch (pass through all the training examples).
This means that we only update the weights once for each iteration of the
algorithm, which means that the weights are moved in the direction that most
of the inputs want them to move, rather than being pulled around by each
input individually. The batch method performs a more accurate estimate of
the error gradient, and will thus converge to the local minimum more quickly.

The algorithm that was described earlier was the sequential version, where
the errors are computed and the weights updated after each input. This is
not guaranteed to be as efficient in learning, but it is simpler to program
when using loops, and it is therefore much more common. Since it does not
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converge as well, it can also sometimes avoid local minima, thus potentially
reaching better solutions. While the description of the algorithm is sequential,
the NumPy implementation on the book website is a batch version, because
the matrix manipulation methods of NumPy make that easy. It is, however,
relatively simple to modify it to use sequential update.

3.2.5 Local Minima

The driving force behind the learning rule is the minimisation of the network
error by gradient descent (using the derivative of the error function to make
the error smaller). This means that we are performing an optimisation: we are
adapting the values of the weights in order to minimise the error function. As
should be clear by now, the way that we are doing this is by approximating
the gradient of the error and following it downhill so that we end up at the
bottom of the slope. However, following the slope downhill only guarantees
that we end up at a local minimum, a point that is lower than those close to
it. If we imagine a ball rolling down a hill, it will settle at the bottom of a
dip. However, there is no guarantee that it will have stopped at the lowest
point—only the lowest point locally. There may be a much lower point over
the next hill, but the ball can’t see that, and it doesn’t have enough energy
to climb over the hill and find the global minimum (have another look at
Figure 3.3 to see a picture of this).

Gradient descent works in the same way in two or more dimensions, and has
similar (and worse) problems. The problem is that efficient downhill directions
in two dimensions and higher are harder to compute locally. Standard contour
maps provide beautiful images of gradients in our three-dimensional world,
and if you imagine that you are walking in a hilly area aiming to get to the
bottom of the nearest valley then you can get some idea of what is going
on. Now suppose that you close your eyes, so that you can only feel which
direction to go by moving one step and checking if you are higher up or lower
down than you were. There will be places where going downwards as steeply
as possible at the current point will not take you much closer to the valley
bottom. There can be two reasons for this. The first is that you find a nearby
local minimum, while the second is that sometimes the steepest direction is
effectively across the valley, not towards the global minimum. This is shown
in Figure 3.7.

All of these things are true for most of our optimisation problems, including
the MLP. We don’t know where the global minimum is because we don’t know
what the error landscape looks like; we can only compute local features of it
for the place we are in at the moment. Which minimum we end up in depends
on where we start. If we begin near the global minimum, then we are very
likely to end up in it, but if we start near a local minimum we will probably
end up there. In addition, how long it will take to get to the minimum that
we do find depends upon the exact appearance of the landscape at the current
point.
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FIGURE 3.7: In 2D, downhill means at right angles to the lines of constant
contour. Imagine walking down a hill with your eyes closed. If you find a
direction that stays flat, then at right angles to that there may well be uphill or
downhill. However, this is not the direction that takes you directly towards the

local minimum.
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FIGURE 3.8: Adding momentum can help to avoid local minima, and also
makes the dynamics of the optimisation more stable, improving convergence.

We can make it more likely that we find the global minimum by trying out
several different starting points by training several different networks, and
this is commonly done. However, we can also try to make it less likely that
the algorithm will get stuck in local minima. There is a moderately effective
way of doing this, which is discussed next.

3.2.6 Picking Up Momentum

Let’s go back to the analogy of the ball rolling down the hill. The reason
that the ball stops rolling is because it runs out of energy at the bottom of
the dip. If we give the ball some weight, then it will generate momentum
as it rolls, and so it is more likely to overcome a small hill on the other side
of the local minimum, and so more likely to find the global minimum. We
can implement this idea in our neural network learning by adding in some
contribution from the previous weight change that we made to the current
one. In two dimensions it will mean that the ball rolls more directly towards
the valley bottom, since on average that will be the correct direction, rather
than being controlled by the local changes. This is shown in Figure 3.8.

There is another benefit to momentum. It makes it possible to use a smaller
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learning rate, which means that the learning is more stable. The only change
that we need to make to the MLP algorithm is in Equations (3.10) and (3.11),
where we need to add a second term to the weight updates so that they have
the form:

w; wfj_l + néoa?ldden + aAwf;l, (3.15)
where ¢ is used to indicate the current update and ¢ — 1 is the previous
one. Awﬁj_l is the previous update that we made to the weights (so Awﬁj =

+n60a§1idden+aAw§j_1) and 0 < o < 1 is the momentum constant. Typically
a value of a = 0.9 is used. This is a very easy addition to the code, and can
improve the speed of learning a lot.

Another thing that can be added is known as weight decay. This reduces
the size of the weights as the number of iterations increases. The argument
goes that small weights are better since they lead to a network that is closer to
linear (since they are close to zero, they are in the region where the sigmoid is
increasing linearly), and only those weights that are essential to the non-linear
learning should be large. After each learning iteration through all of the input
patterns, every weight is multiplied by some constant 0 < € < 1. This changes
the learning quite a lot, but since it makes the network simpler it can often
produce improved results. Unfortunately, it isn’t fail-safe: occasionally it can
make the learning significantly worse, so it should be used with care. Setting
the value is typically done experimentally.

3.2.7 Other Improvements

There are a few other things that can be done to improve the convergence
and behaviour of the back-propagation algorithm. One is to reduce the learn-
ing rate as the algorithm progresses. The reasoning behind this is that the
network should only be making large-scale changes to the weights at the begin-
ning, when the weights are random. If it is still making large weight changes
later on, then something is wrong.

Something that results in much larger performance gains is to include infor-
mation about the second derivatives of the error with respect to the weights.
In the back-propagation algorithm we use the first derivatives to drive the
learning. However, if we have knowledge of the second derivatives as well,
we can use them as well to improve the network. Unfortunately, calculat-
ing the second derivatives is often computationally costly. These things are
considered in more detail in Chapter 11.
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3.3 The Multi-Layer Perceptron in Practice

The previous section looked at the design and implementation of the MLP
network itself. In this section, we are going to look more at choices that can
be made about the network in order to use it for solving real problems. We
will then apply these ideas to using the MLP to find solutions to four different
types of problem: regression, classification, time-series prediction, and data
compression.

3.3.1 Data Preparation

The MLP, and indeed, pretty much every machine learning algorithm, tends
to learn much more effectively if some preprocessing of the inputs and targets
is performed before the network is trained. We saw some of these methods
before, in Section 2.3.3, where we saw an example of using the Perceptron.
For the targets it is fairly obvious that if using sigmoidal activation functions
for the output, then the only possible target values should be 0 and 1. In fact,
it is normal to scale the targets to lie between 0 and 1 no matter what kind
of activation function is used for the output layer neurons. This helps to stop
the weights from getting too large unnecessarily. Scaling the inputs also helps
to avoid this problem. The most common approach to scaling the data for
the MLP is to treat each data dimension independently, and then to either
make each dimension have zero mean and unit variance in each dimension, or
simply to scale them so that maximum value is 1 and the minimum -1. Both
of these scalings have similar effects, but the first is a little bit better as it does
not allow outliers to dominate as much. These scalings are commonly referred
to as data normalisation, or sometimes standardisation. In fact, normalisation
is not essential for the MLP, although it is usually beneficial. For some of the
other networks that we will see, the normalisation will be essential.

In NumPy it is very easy to perform the normalisation by using the built-in
mean() and var() functions; the only place where care is needed is along
which axis the mean and variance are computed. For a dataset in the variable
data, with each row being a datapoint, and targets targets:
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3.3.2 Amount of Training Data

For the MLP with one hidden layer there are (m+1) x n+ (n+1) X p
weights, where m,n,p are the number of nodes in the input, hidden, and
output layers, respectively. The extra +1s come from the bias nodes, which
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also have adjustable weights. This is a potentially huge number of adjustable
parameters that we need to set during the training phase. Setting the values
of these weights is the job of the back-propagation algorithm, which is driven
by the errors coming from the training data. Clearly, the more training data
there is, the better for learning, although the time that the algorithm takes
to learn increases. Unfortunately, there is no way to compute what the mini-
mum amount of data required is, since it depends on the problem. A rule of
thumb that has been around for almost as long as the MLP itself is that you
should use a number of training examples that is at least 10 times the number
of weights. This is probably going to be a very large number of examples,
so neural network training is a fairly computationally expensive operation,
because we need to show the network all of these inputs lots of times.

3.3.3 Number of Hidden Layers

There are two other considerations concerning the number of weights that
are inherent in the calculation above, which is the choice of the number of
hidden nodes, and the number of hidden layers. Making these choices is
obviously fundamental to the successful application of the algorithm. For
reasons that we will see shortly, two hidden layers is the most that you ever
need for normal MLP learning, but the bad news for choosing the number
of hidden nodes is that there is no theory to guide it. You just have to
experiment by training networks with different numbers of hidden nodes and
then choosing the one that gives the best results, as we will see in Section 3.4.

We can use the back-propagation algorithm for a network with as many
layers as we like, although it gets progressively harder to keep track of which
weights are being updated at any given time. Fortunately, as was mentioned
above, we will never normally need more than three layers (that is, two hidden
layers and the output layer). This is because we can approximate any smooth
functional mapping using a linear combination of localised sigmoidal func-
tions. There is a sketchy demonstration of this using pictures in Figure 3.9.
The basic idea is that by combining sigmoid functions we can generate ridge-
like functions, and by combining ridge-like functions we can generate functions
with a unique maximum. By combining these and transforming them using
another layer of neurons, we obtain a localised response (a ‘bump’ function),
and any functional mapping can be approximated to arbitrary accuracy using
a linear combination of such bumps. The way that the MLP does this is shown
in Figure 3.10. We will use this idea again when we look at approximating
functions, for example using radial basis functions in Chapter 4.

Two hidden layers are sufficient to compute these bump functions for dif-
ferent inputs, and so if the function that we want to learn (approximate) is
continuous, the network can compute it. It can therefore approximate any
decision boundary, not just the linear one that the Perceptron computed.
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FIGURE 3.9: The learning of the MLP can be shown as (a) the output of a
single sigmoidal neuron can be added to others (b}, including reversed ones, to

get a hill shape. Adding another hill at 90° produces (c) a bump, which can be
sharpened (d) to any extent we want, with the bumps added together in the
output layer. Thus the MLP learns a local representation of individual inputs.

FIGURE 3.10: Schematic of the effective learning shape at each stage of
the MLP.
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FIGURE 3.11: The effect of overfitting is that rather than finding the

generating function (as shown on the left), the neural network matches the

inputs perfectly, including the noise in them (on the right). This reduces the
generalisation capabilities of the network.

3.3.4 Generalisation and Overfitting

The whole purpose of using a neural network is to generalise from the
training examples to all possible inputs. We need to make sure that we do
enough training that the network generalises well. However, there is at least as
much danger in over-training the network as there is in under-training it. The
number of degrees of variability in a neural network is huge — as discussed
above, every weight can be varied. This is undoubtedly more variation than
there is in the function we are learning, so we need to be careful: if we train
for too long, then we will overfit the data, which means that we have learnt
about the noise and inaccuracies in the data as well as the actual function.
Therefore, the model that we have learnt will be much too complicated, and
won’t be able to generalise. Figure 3.11 shows this. Two different networks
have learnt about the same data, but the one shown on the right has overfitted
so that the curve goes through all of the datapoints, matching the noise as
well as the underlying curve, which has been found in the graph on the left.

The solution to this problem is in two parts. The first is stopping the
training before overfitting occurs (but not too early, so that the network has
actually learnt something), while the second is working out when to do this,
which requires thinking about something that is very important for the whole
of machine learning: testing.

3.3.5 Training, Testing, and Validation

Whenever we train an MLP we are obviously going to test how well it
works. We can compute the error of the trained network by computing the
sum-of-squares error between the output and the target, just like we use to
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Training Testing Validation

FIGURE 3.12: The dataset is split into different sets, some for training,
some for validation, and some for testing.

drive the learning. What data should we test the network on? Clearly, it is
not sensible to test using the same data that we trained on, since it would not
tell us anything at all about how well the network generalises, nor anything
about whether or not overfitting had occurred. We therefore need to keep a
test set of (input, target) pairs in reserve that we don’t use for training. The
only problem with this is that it reduces the amount of data that we have
available for testing, but that is something that we will just have to live with.

Things get more complicated when we consider checking how well the net-
work is learning during training, so that we can decide when to stop. We can’t
use the training data for this, because we wouldn’t detect overfitting, but we
can’t use the testing data either, because we’re saving that for the final tests.
We therefore keep a third set of data back, called the validation set because
we're using it to validate the learning so far. This is known as cross-validation
in statistics. The exact proportion of training to testing to validation data is
up to you, but it is typical to do something like 50:25:25 if you have plenty
of data, and 60:20:20 if you don’t. How you do the splitting can also matter.
Many datasets are presented with the first set of datapoints being in class
1, the next in class 2, and so on. If you pick the first few points to be the
training set, the next the test set, etc. then the results are going to be pretty
bad, since the training did not see all the classes. This can be dealt with by
randomly reordering the data first, or by assigning each datapoint randomly
to one of the sets, as is shown in Figure 3.12.

If you are really short of training data, so that if you have a separate
validation set there is a worry that the network won’t be sufficiently trained,
then it is possible to perform leave-some-out, multi-fold cross-validation. The
idea is shown in Figure 3.13. The dataset is randomly partitioned into K
subsets, and one subset is used as a validation set, while the neural network
is trained on all of the others. A different subset is then left out and a new
network is trained on that subset, repeating the same process for all of the
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FIGURE 3.13: Leave-some-out, multi-fold cross-validation gets around the
problem of data shortage by training many networks. It works by splitting the
data into sets, training a network on most sets and holding one out for
validation (and another for testing). Different networks are trained with
different sets being held out.

different subsets. Finally, the network that produced the lowest validation
error is tested and used. We've traded off data for computation time, since
we've had to train K different networks instead of just one. In the most
extreme case of this there is leave-one-out cross-validation, where the network
is validated on just one piece of data, training on all of the rest.

3.3.6 When to Stop Learning

The training of the MLP requires that the algorithm runs over the entire
dataset many times, with the weights changing as the network makes errors
in each iteration. The question is how to decide when to stop learning, and
this is a question that we are now ready to answer. It is unfortunate that the
most obvious options are not sufficient: setting some predefined number N of
iterations, and running until that is reached runs the risk that the network
has overfitted by then, or not learnt sufficiently, and only stopping when
some predefined minimum error is reached might mean the algorithm never
terminates, or that it overfits. Using both of these options together can help,
as can terminating the learning once the error stops decreasing.

However, the validation set we just created gives us something rather more
useful, since we can use it to monitor the generalisation ability of the network
at its current stage of learning. If we plot the sum-of-squares error during
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Number of epochs

FIGURE 3.14: The effect of overfitting on the training and validation error
curves, with the point at which early stopping will stop the learning marked.

training, it typically reduces fairly quickly during the first few training itera~
tions, and then the reduction slows down as the learning algorithm performs
small changes to find the exact local minimum. We don’t want to stop training
until the local minimum has been found, but, as we’ve just discussed, keeping
on training too long leads to overfitting of the network. This is where the
validation set comes in useful. We train the network for some predetermined
amount of time, and then use the validation set to estimate how well the net-
work is generalising. We then carry on training for a few more iterations, and
repeat the whole process. At some stage the error on the validation set will
start increasing again, because the network has stopped learning about the
function that generated the data, and started to learn about the noise that is
in the data itself (shown in Figure 3.14). At this stage we stop the training.
This technique is called early stopping.

3.3.7 Computing and Evaluating the Results

We’ve now talked about everything that we need to run the algorithm and
make it learn, but we haven’t really considered how to report and analyse
the results. This involves using the test set which has been held separate so
far and running the network forward on this data. The error can then be
evaluated by comparing the prediction with the target outputs. The question
of what to do then depends upon the type of problem that we are solving. For
a classification problem it is possible to compute the number of cases that the
network predicted correctly for each class (in fact, we saw this in Section 2.2.6
with the confusion matrix), while for regression problems the only thing that is
generally useful is the sum-of-squares error that we used to drive the training.
We will see these methods being used as we look at examples.
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In addition to the confusion matrix there is another way that we can eval-
uate the results of a classifier, which is known as an ROC curve, which stands
for Receiver Operating Characteristic. This is a plot of the percentage of true
positives (things corretly put into class 1) on the y axis against false positives
(things incorrectly put into class 1) on the z axis. The true positive rate is
sometimes known as the specificity and the false negative rate (things that
were incorrectly put into class 2) is the sensitivity, so the false positive rate is
1-sensitivity. A single run of a classifier produces a single point on the ROC
plot, and the closer to the top-left-hand corner it is, the better. If you were
to use a fair coin to pick the class, then you would end up with a line on the
diagonal from bottom-left to top-right.

The key to getting a curve rather than a point on the ROC curve is to use
cross-validation. If you use 10-fold cross-validation, then you have 10 classi-
fiers, with 10 different test sets, and you also have the true labels. The true
labels can be used to produce a ranked list of the different cross-validation-
trained results, which can be used to specify a curve through the 10 datapoints
on the ROC curve that correspond to the results of this classifier. By produc-
ing an ROC curve for each classifier it is possible to compare their results.

3.4 Examples of Using the MLP

This section is intended to be practical, so you should follow the examples
at a computer, and add to them as you wish. The MLP is rather too com-
plicated to enable us to work through the weight changes as we did with the
Perceptron. Instead, we shall look at some demonstrations of how to make
the network learn about some data. As was mentioned above, we shall look at
the four types of problems that are generally solved using an MLP: regression,
classification, time-series prediction, and data compression/data denoising.

3.4.1 A Regression Problem

The regression problem we will look at is a very simple one. We will take a
set of samples generated by a simple mathematical function, and try to learn
the generating function (that describes how the data was made) so that we
can find the values of any inputs, not just the ones we have training data for.

The function that we will use is a very simple one, just a bit of a sine wave.
We'll make the data in the following way (the reason why the x computation
requires the ones() call is because of some idiosyncracies in the way that
NumPy produces arrays). Make sure that you have NumPy imported first:
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You can plot this data to see what it looks like (the results of which are
shown in Figure 3.15) using:
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We can now train an MLP on the data. There is one input value, x and
one output value t, so the neural network will have one input and one output.
Also, because we want the output to be the value of the function, rather than
0 or 1, we will use linear neurons at the output. We don’t know how many
hidden neurons we will need yet, so we’ll have to experiment to see what
works.

Before getting started, we need to normalise the data using the method
shown in Section 3.3.1, and then separate the data into training, testing, and
validation sets. For this example there are only 40 datapoints, and we’ll use
half of them as the training set, although that isn’t very many and might not
be enough for the algorithm to learn effectively. We can split the data in the
ratio 50:25:25 by using the odd-numbered elements as training data, the even
numbered ones that do not divide by 4 for testing, and the rest for validation:
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With that done, it is just a case of making and training the MLP. To start
with, we will construct a network with three nodes in the hidden layer, and
run it for 101 iterations with a learning rate of 0.25, just to see that it works:
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The output from this will look something like:

O
P

P
R S
P
s geded BEE
o e b b B
o e e
snwsw ¥ & W8 w

&

&
B
B
%
#
i

&

#
o
o

so we can see that the network is learning, since the error is decreasing. We
now need to do two things: work out how many hidden nodes we need, and
decide how long to train the network for. To solve the first problem, we need
to test out different networks and see which get lower errors, but to do that
properly we need to know when to stop training. So we’ll solve the second
problem first, which is to implement early stopping.

We train the network for a few iterations (let’s make it 10 for now), then
evaluate the validation set error by running the network forward (i.e., the
recall phase). Learning should stop when the validation set error starts to
increase. We’ll write a Python program that does all the work for us. The
important point is that we keep track of the validation error and stop when
it starts to increase. The following code is a function within the MLP on
the book website. It keeps track of the last two changes in validation error
to ensure that small fluctuations in the learning don’t change it from early
stopping to premature stopping:
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Figure 3.16 gives an example of the output of running the function. It plots
the training and validation errors. The point at which early-stopping makes
the learning finish is the point where there is a missing validation datapoint. I
ran it on after that so you could see that the validation error did not improve
after that, and so early-stopping found the correct point.

We can now return to the problem of finding the right size of network.
There is one important thing to remember, which is that the weights are
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FIGURE 3.15: The data
that we will learn using an

MLP, consisting of some

Gaussian noise added.
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MLP learns (top line is total error on training
set, bottom line is on validation set; the reason
samples from a sine wave with why it is larger on the training set is that there
are more datapoints in this set). Early-stopping
halts the learning at the point where there is no

line, where the crosses become triangles. The

learning was continued to show that the error
got slightly worse afterwards.

initialised randomly, and so the fact that a particular size of network gets a
good solution once does not mean it is the right size, it could have been a
lucky starting point. So each network size is run 10 times, and the average is
monitored. The following table shows the results of doing this, reporting the
sum-of-squares validation error, for a few different sizes of network:

No. of hidden nodes 1 2 3 5 10 25 50

Mean error 221 0.52 0.52 052 055 1.35 2.56
Standard deviation | 0.17 0.00 0.00 0.02 0.00 1.20 1.27
Max error 2.31 0.53 0.54 0.54 0.60 3.230 3.66
Min error 2.10 0.51 050 0.50 0.47 042 0.52

Based on these numbers, we would select a network with a small number
of hidden nodes, certainly between 2 and 10 (and the smaller the better, in
general), since their maximum error is much smaller than a network with just
1 hidden node. Note also that the error increases once too many hidden nodes
are used, since the network has too much variation for the problem. You can
also do the same kind of experimentation with more hidden layers.
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3.4.2 Classification with the MLP

Using the MLP for classification problems is not radically different once
the output encoding has been worked out. The inputs are easy: they are just
the values of the feature measurements (suitably normalised). There are a
couple of choices for the outputs. The first is to use a single linear node for
the output, y, and put some thresholds on the activation value of that node.
For example, for a four-class problem, we could use:

Coif —05<y<0
C3if 0 <y <05
Cyify>0.5

Class is: (3.16)

However, this gets impractical as the number of classes gets large, and
the boundaries are artificial; what about an example that is very close to a
boundary, say y = 0.57 We arbitrarily guess that it belongs to class Cs, but
the neural network doesn’t give us any information about how close it was to
the boundary in the output, so we don’t know that this was a difficult example
to classify. A more suitable output encoding is called 1-of-N encoding. A
separate node is used to represent each possible class, and the target vectors
consist of zeros everywhere except for in the one element that corresponds to
the correct class, e.g., (0,0,0,1,0,0) means that the correct result is the 4th
class out of 6. We are therefore using binary output values (we want each
output to be either 0 or 1).

Once the network has been trained, performing the classification is easy:
simply choose the element y;, of the output vector that is the largest element
of y (in mathematical notation, pick the y; for which yx > y;Vj # k; V means
for all, so this statement says pick the y; that is bigger than all other possible
values y;). This generates an unambiguous decision, since it is very unlikely
that two output neurons will have identical largest output values. This is
known as the hard-max activation function (since the neuron with the highest
activation is chosen to fire and the rest are ignored). An alternative is the
soft-max function, which we saw in Section 3.2.3, and which has the effect of
scaling the output of each neuron according to how large it is in comparison
to the others, and making the total output sum to 1. So if there is one clear
winner, it will have a value near 1, while if there are several values that are
close to each other, they will each have a value of about %, where p is the
number of output neurons that have similar values.

There is one other thing that we need to be aware of when performing
classification, which is true for all classifiers. Suppose that we are doing two
class classification, and 90% of our data belongs to class 1. (This can happen:
for example in medical data, most tests are negative in general.) In that
case, the algorithm can learn to always return the negative class, since it will
be right 90% of the time, but still a completely useless classifier! So you
should generally make sure that you have approximately the same number
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of each class in your training set. This can mean discarding a lot of dats,
from the over-represented class, which may seem rather wasteful. There is an
alternative solution, known as novelty detection, which is to train the data on
the data in the negative class only, and to assume that anything that looks
different to that is a positive example. There is a reference about novelty
detection in the readings at the end of the chapter.

3.4.3 A Classification Example

As an example we are going to look at another example from the UCI
Machine Learning repository. This one is concerned with classifying examples
of three types of iris (flower) by the length and width of the sepals and petals
and is called iris. It was originally worked on by R.A. Fisher, a famous
statistician and biologist, who analysed it in the 1930s.

Unfortunately we can’t currently load this into NumPy using loadtxt ()
because the class (which is the last column) is text rather than a number, and
the txt in the function name doesn’t mean that it reads text, only numbers
in plaintext format. There are two alternatives. One is to edit the data in
a text editor using search and replace, and the other is to use some Python
code, such as this function:
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You can then load it from the new file using loadtxt(). In the dataset,
the last column is the class ID, and the others are the four measurements.
We'll start by normalising the inputs, which we’ll do in the same way as in

Section 3.3.1, but using the maximum rather than the variance, and leaving
the class IDs alone for now:
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We now need to convert the targets into 1-of-N encoding, from their current
encoding as class 1, 2, or 3. This is pretty easy if we make a new matrix that
is initially all zero, and simply set one of the entries to be 1:
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We now need to separate the data into training, testing, and validation sets.
There are 150 examples in the dataset, and they are split evenly amongst the
three classes, so the three classes are the same size and we don’t need to worry
about discarding any datapoints. We’ll split them into half training, and one
quarter each testing and validation. If you look at the file, you will notice
that the first 50 are class 1, the second 50 class 2, etc. We therefore need to

randomise the order before we split them into sets, to ensure that there are
not too many of one class in one of the sets:
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We're now finally ready to set up and train the network. The commands
should all be familiar from earlier:

This tells us that the algorithm got nearly all of the test data correct,
misclassifying just two examples of class 2 and one of class 3.

3.4.4 Time-Series Prediction

There is a common data analysis task known as time-series prediction, where
we have a set of data that show how something varies over time, and we want
to predict how the data will vary in the future. It is quite a difficult task,
but a fairly important one. It is useful in any field where there is data that
appears over time, which is to say almost any field. Most notable (if often
unsuccessful) uses have been in trying to predict stock markets and disease
patterns. The problem is that even if there is some regularity in the time-
series, it can appear over many different scales. For example, there is often
seasonal variation—if we plotted average temperature over several years, we
would notice that it got hotter in the summer and colder in the winter, but
we might not notice if there was a overall upward or downward trend to the
summer temperatures, because the summer peaks are spread too far apart in
the data.
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FIGURE 3.17: Part of a time-series plot, showing the datapoints and the
meanings of 7 and k.

The other problems with the data are practical. How many datapoints
should we look at to make the prediction (i.e., how many inputs should there
be to the neural network) and how far apart in time should we space those
inputs (i.e., should we use every second datapoint, every 10th, or all of them)?
We can write this as an equation, where we are predicting ¥ using a neural
network that is written as a function f(-):

y=z(t+71) = flz@®t),z(t —7),...,z(t — k1)), (3.17)

where the two questions about how many datapoints and how far apart they
should be come down to choices about 7 and &.

The target data for training the neural network is simple, because it comes
from further up the time-series, and so training is easy. Suppose that 7 = 2
and k = 3. Then the first input data are elements 1,3, 5 of the dataset, and
the target is element 7. The next input vector is elements 2, 4,6, with target
8, and then 3,5,7 with target 9. You train the network by passing through
the time-series (remembering to save some data for testing), and then press
on into the future making predictions. Figure 3.17 shows an example of a
time-series with 7 = 3 and k = 4, with a set of datapoints that make up an
input vector marked as white circles, and the target coloured black.

The dataset I am going to use is available on the book website. It provides
the daily measurement of the thickness of the ozone layer above Palmerston
North in New Zealand (where I live) between 1996 and 2004. Ozone thickness
is measured in Dobson Units, which are 0.01 mm thickness at 0 degrees Celcius
and 1 atmosphere of pressure. I'm sure that I don’t need to tell you that the
reduction in stratospheric ozone is partly responsible for global warming and
the increased incidence of skin cancer, and that in New Zealand we are fairly
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FIGURE 3.18: Plot of the ozone layer thickness above Palmerston North in
New Zealand between 1996 and 2004.

close to the large hole over Antarctica. What you might not know is that the
thickness of the ozone layer varies naturally over the year. This should be
obvious in the plot shown in Figure 3.18. A typical time-series problem is to
predict the ozone levels into the future and see if you can detect an overall
drop in the mean ozone level.

You can load the data using PNoz = loadtxt(’PNOz.dat’) (once you've
downloaded it from the website), which will load the data and stick it into
an array called PNoz. There are 4 elements to each vector: the year, the day
of the year, and the ozone level and sulphur dioxide level, and there are 2855
readings. To just plot the ozone data so that you can see what it looks like,
use plot (arange (shape (PNoz) [0]),PNoz[:,2],’.").

The difficult bit is assembling the input vector from the time-series data.
The first thing is to choose values of 7 and k. Then it is just a question of
picking k values out of the array with spacing 7, which is a good use for the
slice operator, as in this code:

You then need to assemble training, testing, and validation sets. However,
some care is needed here since you need to ensure that they are not picked
systematically into each group, (for example, if the inputs are the even-indexed
datapoints, but some feature is only seen at odd datapoint times, then it will
be completely missed). This can be averted by randomising the order of the
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FIGURE 3.19: Plot of 400 predicted and actual output values of the ozone
data using the MLP as a time-series predictor with £ =3 and 7 = 2.

datapoints first. However, it is also common to use the datapoints near the
end as part of the test set; some possible results from using the MLP in this
way are shown in Figure 3.19.

From here you can treat time-series as regression problems: the output
nodes need to have linear activations, and you aim to minimise the sum-of-
squares error, since there are no classes the confusion matrix is not useful. The
only extra work is that in addition to testing MLPs with different numbers of
input nodes and hidden nodes, you also need to consider different values of 7
and k.

3.4.5 Data Compression: The Auto-Associative Network

We are now going to consider an interesting variation of the MLP. Suppose
that we train the network to reproduce the inputs at the output layer (called
auto-associative learning; sometimes the network is known as an autoencoder).
The network is trained so that whatever you show it at the input is reproduced
at the output, which doesn’t seem very useful at first, but suppose that we use
a hidden layer that has fewer neurons than the input layer (see Figure 3.20).
This bottleneck hidden layer has to represent all of the information in the
input, so that it can be reproduced at the output. It therefore performs some
compression of the data, representing it using fewer dimensions than were used
in the input. This gives us some idea of what the hidden layers of the MLP are
doing: they are finding a different (often lower dimensional) representation of
the input data that extracts important components of the data, and ignores
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Bottleneck

FIGURE 3.20: The auto-associative network. The network is trained to
reproduce the inputs at the outputs, passing them through the bottleneck
hidden layer that compresses the data.

the noise.

This auto-associative network can be used to compress images and other
data. A schematic of this is shown in Figure 3.21: the 2D image is turned
into a 1D vector of inputs by cutting the image into strips and sticking the
strips into a long line. The values of this vector are the intensity (colour)
values of the image, and these are the input values. The network learns to
reproduce the same image at the output, and the activations of the hidden
nodes are recorded for each image. After training, we can throw away the
input nodes and first set of weights of the network. If we insert some values
in the hidden nodes (their activations for a particular image; see Figure 3.22),
then by feeding these activations forward through the second set of weights,
the correct image will be reproduced on the output. So all we need to store
are the set of second-layer weights and the activations of the hidden nodes for
each image, which is the compressed version.

Auto-associative networks can also be used to denoise images, since after
training the network will reproduce the trained image that best matches the
current (noisy) input. We don’t throw away the first set of weights this time,
but if we feed in a noisy version of the image into the inputs, then the network
will produce the image that is closest to the noisy version at the outputs, which
will be the version it learnt on, which is uncorrupted by noise.

You might be wondering what this representation in the hidden nodes looks
like. In fact, what the network learns to compute are the Principal Components
of the input data. Principal Component Analysis (PCA) is a useful dimensionality
reduction technique, and is described in Section 10.2.
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.

FIGURE 3.21: Schematic showing how images are fed into the
auto-associative network for compression.

-V

FIGURE 3.22: Schematic showing how the hidden nodes and second layer
of weights can be used to regain the compressed images after the network has
been trained.
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3.5 Overview

We have covered a lot in this chapter, so I'm going to give you a ‘recipe’
for how to use the Multi-Layer Perceptron in practice. This is, by necessity,
a simplification of the problem, but it should serve to remind you of many of
the important features.

Select inputs and outputs for your problem Before anything else, you
need to think about the problem you are trying to solve, and make
sure that you have data for the problem, both input vectors and target
outputs. At this stage you need to choose what features are suitable for
the problem (something we’ll talk about more in other chapters) and
decide on the output encoding that you will use — standard neurons,
or linear nodes. These things are often decided for you by the input
features and targets that you have available to solve the problem. Later
on in the learning it can also be useful to re-evaluate the choice by
training networks with some input feature missing to see if it improves
the results at all.

Normalise inputs Rescale the data by subtracting the mean value from
each element of the input vector, and divide by the variance (or al-
ternatively, either the maximum or minus the minimum, whichever is
greater).

Split the data into training, testing, and validation sets You cannot
test the learning ability of the network on the same data that you trained
it on, since it will generally fit that data very well (often too well, over-
fitting and modelling the noise in the data as well as the generating
function). We generally split the data into three sets, one for training,
one for testing, and then a third set for validation, which is testing how
well the network is learning during training. The ratio between the sizes
of the three groups depends on how much data you have, but is often
around 50:25:25.

Where there is not enough data for three sets, a technique called cross-
validation can be useful. In its most extreme form, leave-one-out cross-
validation, this consists of training the network on all but one piece of the
training data and then validating it on the final piece. You then train
another network on the training data again, but leaving out a different
piece of data. You select one of the networks that gets the final piece
correct. You still need a separate test set.

Select a network architecture You already know how many input nodes
there will be, and how many output neurons. You need to consider
whether you will need a hidden layer at all, and if so how many neurons
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it should have in it. You might want to consider more than one hidden
layer. The more complex the network, the more data it will need to be
trained on, and the longer it will take. It might also be more subject to
overfitting. The usual method of selecting a network architecture is to
try several with different numbers of hidden nodes and ‘see which works
best.

Train a network The training of the neural network consists of applying the
multi-layer Perceptron algorithm to the training data. This is usually
run in conjunction with early-stopping, where after a few iterations of
the algorithm through all of the training data, the generalisation ability
of the network is tested by using the validation set. The neural network
is very likely to have far too many degrees of freedom for the problem,
and so after some amount of learning it will stop modelling the gener-
ating function of the data, and start to fit the noise and inaccuracies
inherent in the training data. At this stage the error on the validation
set will start to increase, and learning should be stopped.

Test the network Once you have a trained network that you are happy
with, it is time to use the test data for the first (and only) time. This
will enable you to see how well the network performs on some data that
it has not seen before, and will tell you whether this network is likely to
be usable for other data, for which you do not have targets.

3.6 Deriving Back-Propagation

This section derives the back-propagation algorithm. This is important to
understand how and why the algorithm works. There isn’t actually that much
mathematics involved except some slightly messy algebra. In fact, there are
only three things that you really need to know. One is the derivative (with
respect to z) of %:02, which is z, and another is the chain rule, which says that
3—2 = %%j—;. The third thing is very simple: % = 0 if y is not a function of z.
With those three things clear in your mind, just follow through the algebra,
and you'll be fine. We’ll work in simple steps.

3.6.1 The Network Output and the Error

The output of the neural network (the end of the forward phase of the
algorithm) is a function of three things:

e the current input (x)

e the activation function g(:) of the nodes of the network
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o the weights of the network (v for the first layer and w for the second)

We can’t change the inputs, since they are what we are learning about,
nor can we change the activation function as the algorithm learns. So the
weights are the only things that we can vary to improve the performance
of the network, i.e., to make it learn. However, we do need to think about
the activation function, since the threshold function that we used for the
Perceptron is not differentiable (it has a discontinuity at 0). We’ll think
about a better one in Section 3.6.3, but first we’ll think about the error of
the network. Remember that we have run the algorithm forwards, so that we
have fed the inputs (x) into the algorithm, used the first set of weights (v) to
compute the activations of the hidden neurons, then those activations and the
second set of weights (w) to compute the activations of the output neurons,
which are the outputs of the network (y). Note that I'm going to use i to be
an index over the input nodes, j to be an index over the hidden layer neurons,
and k to be an index over the output neurons.

3.6.2 The Error of the Network

When we discussed the Perceptron learning rule in th?vprevious chapter we
motivated it by minimising the error function £ = 3 ;" t; — y;. We then
invented a learning rule that made this error smaller. We are going to do
much better this time, because everything is computed from the principles of
gradient descent.

To begin with, let’s think about the error of the network. This is obviously
going to have something to do with the difference between the targets t and
the outputs y, but I'm going to write it as E(v,w) to remind us that the
only things that we can change are the weights v and w, and that changing
the weights changes the output, which in turn changes the error. For the
Perceptron we computed the error as E = vazl t; — y;, but there are some
problems with this: if t; > y;, the sign of the error is different to if y; > t;, so
if we have lots of output nodes that are all wrong, but some have positive sign
and some have negative sign, then they might cancel out. Instead, we’ll choose
the sum-of-squares error function, which calculates the difference between t;
and y; for each node, squares them, and adds them together (I've missed out
the v in F(w) because we don’t use them here):

Bew) = 13 (00 — gn)? (3.18)
(W)—§kz=1(k—yk) :
2
= %; tk - g zj:wjkaj (319)

The second line adds in the input from the hidden layer neurons and the
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second-layer weights to decide on the activations of the output neurons. For
now we're going to think about the Perceptron, so Equation (3.19) will be
replaced by:

2
1 .
5 Z t, — g Z WikT 4 (320)
k Jj

Now we can’t differentiate the threshold function, which is what the Per-
ceptron used for g(-), because it has a discontinuity (sudden jump) at the
threshold value. So I'm going to miss it out completely for the moment. Also,
for the Perceptron there are no hidden neurons, and so the activation of an
output neuron is just yx = Y, w;xx; where z; is the value of an input node.

We are going to use a gradient descent algorithm that adjusts each weight w,
in the direction of the gradient of E(w). In what follows, the notation 8 means
the partial derivative, and is used because there are lots of different functions
that we can differentiate E with respect to all of the different weights. If
you don’t know what a partial derivative is, think of it as being the same
as a normal derivative, but taking care that you differentiate in the correct
direction. The gradient that we want to know is how the error function
changes with respect to the different weights:

OF a (1
T = o (5 Z(tk — yk)z) (3.21)
k

1 d
=3 Zk: Aty — yk)m te — ZJ: Wk, (3.22)

. . Ot
tr is not a function of w;k, so =0,
8wz~k

and the only part of Z w;kT; that is a function of w;y is when
J
i = j, that is, w; itself. Hence:

OF _ ™ (b )z, (3.23)

8wik

Now the idea of the weight update rule is that we follow the gradient down-
hill, that is, in the direction ——827. So the weight update rule (when we
include the learning rate 7) is:

wik — wik + Ntk — Y&)Ti, (3.24)

which hopefully looks familiar (see Equation (2.1)). It isn’t actually identical,
because we are computing y, differently, and for the Perceptron, we used the
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threshold activation threshold function, whereas in the work above we ignored
the thresholder. This isn't very useful if we want units that act like neurons,
because neurons either fire or do not fire, rather than varying continuously.
However, if we want to be able to differentiate the output in order to use
gradient descent, then we need a differentiable activation function, so that’s
what we’ll talk about now.

3.6.3 A Suitable Activation Function

We want an activation function that has the following properties:

e it must be differentiable so that we can compute the gradient

e it should saturate (become constant) at both ends of the range, so that
the neuron either fires or does not fire

e it should change between the saturation values fairly quickly in the
middle

There is a family of functions called sigmoid functions because they are S-
shaped (see Figure 3.5) that satisfy all those criteria perfectly. The form in
which it is generally used is:

1
a=9(h)= 1_+—exp(——,8h—)’

where (3 is some positive parameter. One happy feature of this function is
that its derivative has an especially nice form:

(3.25)

g'(h) = g% = 3%(1 A (3.26)
—Bh
=-1(1+ e“””)’z——dedhﬁ (3.27)
= —1(1 + e™PM) "2 (= Be=Ph) (3.28)
_ Bt (3.29)
(1+ e~Bhy2
= B(h)(L - g(h)) (3.30)
= fa(l - a) (3.31)

We'll be using this derivative later, except that we can ignore the factor
of 3, since this is just a scaling. So we’'ve now got an error function and an
activation function that we can compute derivatives of. The next things to do
is work out how to use them in order to adjust the weights of the network.
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3.6.4 Back-Propagation of Error

It is now that we’ll need the chain rule that I reminded you of earlier. In
the form that we want, it looks like this:

OF _ OE ohy
Owjr,  Ohy Owji,’

where hy, = 3, wixa; is the input to output-layer neuron k, that is, the sum of
the activations of the hidden-layer neurons multiplied by the relevant (second-
layer) weights. So what does Equation (3.32) say? It tells us that if we want
to know how the error at the output changes as we vary the second-layer
weights, we can think about how the error changes as we vary the input to
the output neurons, and also about how those input values change as we vary
the weights.

Let’s think about the second term first (in the third line we use the fact
that gﬁ—;]’z = 0 for all values of [ except [ = j):

(3.32)

Ohy 0>, wikay

b= o (3.33)
Owkay

= —_— 3.34

S (3.3

Now we can worry about the 2£ 6h term. This term is important enough to
get its own term, which is the error or delta term:

OF
o~ {1 -

Ohy
Let’s start off by trying to compute this error for the output. We can’t
actually compute it directly, since we don’t know much about the inputs to a

neuron, we just know about its output. That’s fine, because we can use the
chain rule again:

(3.36)

oFE OF 8yk

- 3.37
°" Ohy 8yk Bhy’ (3:37)

Now the output of output layer neuron k is
e = g = g | D upabidden ) 339)

J

where g(-) is the activation function. We’ve chosen to use the sigmoid function
given in Equation (3.25), but for now I'm going to leave it as a function to
make it a little bit more general. I’ve also started labelling whether A refers
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to an output or hidden layer neuron, just to avoid any possible confusion. We
don’t need to worry about this for the activations, because we use y for the ac-
tivations of output neurons and a for hidden neurons. In Equation (3.41) I've
substituted in the expression for the error at the output, which we computed
in Equation (3.19):

5E g ( hgutput)
g ( hgutput) 9 hgutput

ey (hz’iput) o (1) (3.40)

= gg_@%@j [% Xk: (g(houtput) _ tk)2] g (hzutput) (3'41)

= (") — 1) o (24P (3.42)

= (yx — ti)g' (hSUPUY), (3.43)

bo = (3.39)

where g'(ht) denotes the derivative of g with respect to hy. We know exactly
what that is for the sigmoid functions that we are using: we computed it in
Equation (3.31). So we can put everything together to compute the precise

update rule for the second-layer weights, w;r «— wj, — 7 a?;fk (we are using

the minus sign because we want to go downhill), where:

OF
8wjk

= 0ya; (3.44)

= (yr — te)yr(l — yr)a;. (3.45)

Having got through all this, we don’t actually need to do too much more
work to get to the first layer of v, weights, which connect the inputs to the
hidden nodes. We need the chain rule (Equation (3.32)) one more time to
get to these weights, remembering that we are working backwards through the
network:

OE  onoUtPut
= ; T ppbidden (3.46)
ah(’zutput
= ; 6,7%. (347)

In the first line, k runs over the output nodes, and we obtain the second line
by using Equation (3.40). We now need a nicer expression for that derivative.
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The important thing that we need to remember is that inputs to the output
layer neurons come from the activations of the hidden layer neurons multiplied
by the second layer weights:

poutput _ o (Z wlkhlhidden> , ‘ (3.48)

1
which means that:

8h2UtPUt dg (Zl wlkh%ﬁdden)

e = : : 3.49)
hidd hidd (
8h]l en 8h] adaen

We can now use a fact that we’ve used before, which is that g#hj = 0 unless
l=7j. So:

ahoutput )
W = w;rg (a;) (3.50)
J
= wjra;(1 - a;) (3.51)
which allows us to compute:
h=a;(1—a;) ) Sowjs (3.52)
k

and so get to the update rule for v;; « vy; — na—E, by computing:
J 7 61)“ )

B
% = aj(l — aj) (Z (Sowjk> Z;. (3.53)
ij .

Note that we can do exactly the same computations if the network has
extra hidden layers between the inputs and the outputs. It gets harder to
keep track of which functions we should be differentiating, but there are no
new tricks needed.

Further Reading

The original papers describing the back-propagation algorithm are listed
here, along with a well-known introduction to neural networks:

e D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal
representations by back-propagating errors. Nature, 323(99):533-536,
1986a.
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e D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, ed-
itors.  Parallel Distributed Processing. MIT Press, Cambridge, MA,
1986b.

¢ R. Lippmann. An introduction to computing with neural nets. IEEE
ASSP Magazine, pages 4-22, 1987.

If you are interested in novelty detection, then a review article is:

e S. Marsland. Novelty detection in learning systems. Neural Computing
Surveys, 3:157-195, 2003.

The topics in this chapter are covered in any book on machine learning and
neural networks. Different treatments are given by:

o Sections 5.1-5.3 of C.M. Bishop. Pattern Recognition and Machine
Learning. Springer, Berlin, Germany, 2006.

o Section 5.4 of J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the
Theory of Neural Computation. Addison-Wesley, Redwood City, CA,
USA, 1991.

o Sections 4.4-4.7 of T. Mitchell. Machine Learning. McGraw-Hill, New
York, USA, 1997.

Practice Questions

Problem 3.1 Work through the MLP shown in Figure 3.2 to ensure that it
does solve the XOR problem.

Problem 3.2 Suppose that the local power company wants to predict elec-
tricity demand for the next 5 days. They have the data about daily
demand for the last 5 years. Typically, the demand will be a number
between 80 and 400.

1. Describe how you could use an MLP to make the prediction. What
parameters would you have to choose, and what do you think would
be sensible values for them?

2. If the weather forecast for the next day, being the estimate temper-
atures for daytime and nighttime, was available. How would you
add that into your system?

3. Do you think that this system would work well for predicting power
consumption? Are there demands that it would not be able to
predict?
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Problem 3.3 Design an MLP that would learn to hyphenate words correctly.
You would have a dictionary that shows correct hyphenation examples
for lots of words, and you need to choose methods of encoding the inputs
and outputs that say whether a hyphen is allowed between each pair of
letters. You should also describe how you would perform training and
testing.

Problem 3.4 Would the previous system be better than just using the dic-
tionary?

Problem 3.5 Modify the code on the book website to work sequentially
rather than in batch mode. Compare the results on the iris dataset.

Problem 3.6 Modify the code to allow another hidden layer to be used.
You will have to work out the gradient as well in order to compute the
weight updates for the extra layer of weights. Test this new network on
the Pima Indian dataset that was described in Section 2.3.3.

Problem 3.7 A Hospital Manager wants to predict how many beds will‘ be
needed in the geriatric ward. He asks you to design a neural network
method for making this prediction. He has data for the last 5 years that
cover:

e The number of people in the geriatric ward each week.
o The weather (average day and night temperatures).
o The season of the year (spring, summer, autumn, winter).

e Whether or not there was an epidemic on (use a binary variable:
yes or 1no).

Design a suitable MLP for this problem, considering how you would
choose the number of hidden neurons, the inputs (and whether there
are any other inputs you need) and the preprocessing, and whether or
not you would expect the system to work.

Problem 3.8 The book website contains a set of datafiles that are very basic
(ASCII-style) 16 x 16 images of numbers (in the file numbers.dat. Mod-
ify the MLP code in order to turn it into an auto-associative network
and then train it on these hnumber images. You can then store the values
in the hidden nodes (the compressed version) and use it to recreate the
number images themselves. There are also some corrupted versions of
the images (in badnumbers.dat). Experiment to see how well they can
be cleaned up. Then move on to the MNIST dataset that is available
via the book website. How much does the extra dimensions of these
images affect the results?

Problem 3.9 A recurrent network has some of its outputs connected to its
own inputs, so that the outputs at time ¢ are fed back into the network
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at time £ + 1. This can be a different way to deal with time-series data.
Modify the MLP code so that it acts as a recurrent network, and test it
out on the Palmerston North ozone data on the book website.

Problem 3.10 The alternative activation function that can be used in tanh(h)
Show that tanh(h) = 2g(2h) — 1, where g is given by Equation (3.2).
Use this to show that there is an exactly equivalent MLP using the tanh
activation function. Modify the code to implement it.






Chapter 4

Radial Basis Functions and Splines

In the Multi-Layer Perceptron, the activations of the hidden nodes were de-
cided by whether the inputs times the weights were above a threshold that
made the neuron fire. While we had to sacrifice some of this ideal to the
requirement for differentiability, it was still the case that the product of the
inputs and the weights was summed, and if it was well above the thresh-
old then the neuron fired, if it was well below the threshold it did not, and
between those values it acted linearly. For any input vector several of the
neurons could fire, and the outputs of these neurons times their weights were
then summed in the second layer to decide which neurons should fire there.
This has the result that the activity in the hidden layer is distributed over the
neurons there, and it is this pattern of activation that was used as the inputs
to the next layer.

In this chapter we are going to consider a different approach, which is to use
local neurons, where each neuron only responds to inputs in one particular
part of the input space. The argument is that if inputs are similar, then
the responses to those inputs should also be similar, and so the same neuron
should respond. Extending this a little, if an input is between two others,
then the neurons that respond to each of the inputs should both fire to some
extent. We can justify this by thinking about a typical classification task,
since if two input vectors are similar then they should presumably belong to
the same class. In order to understand this better we are going to need two
concepts, one from machine learning, weight space, and one from neuroscience,
receptive fields.

4.1 Concepts
4.1.1 Weight Space

When working with data it is often useful to be able to plot it and look
at it. If our data has only two or three input dimensions then this is pretty
easy: we use the z-axis for feature 1, the y-axis for feature 2, and the z-axis
for feature 3. We then plot the positions of the input vectors on these axes.
The same thing can be extended to as many dimensions as we like provided
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FIGURE 4.1: The position of two neurons in weight space. The labels on
the network refer to the dimension in which that weight is plotted, not its value.
Note that there is no bias node.

that we don’t actually want to look at it in our 3D world. Even if we have
200 input dimensions (that is, 200 elements in each of our input vectors)
then we can try to imagine it plotted by using 200 axes that are all mutually
orthogonal (that is, at right angles to each other). One of the great things
about computers is that they aren’t constrained in the same way we are—ask
a computer to hold a 200-dimensional array and it does it. Provided that you
get the algorithm right (always the difficult bit!) then the computer doesn’t
know that 200 dimensions is harder than 2 for us humans.

We can look at projections of the data into our 3D world by plotting just
three of the features against each other, but this is usually rather confusing:
things can look very close together in your chosen three axes, but can be a
very long way apart in the full set. You’ve experienced this in your 2D view
of the 3D world; Figure 1.2 shows two different views of some wind turbines.
The two turbines appear to be very close together from one angle, but are
obviously separate from another.

As well as plotting datapoints, we can also plot anything else that we feel
like. In particular, we can plot the position of a neuron in weight space. If we
think about the weights that connect into a particular neuron, we can plot
the strengths of the weights by using one axis for each weight that comes into
the neuron, and plotting the position of the neuron as the location, using the
value of w; as the position on the 1st axis, the value of wy on the 2nd axis,
etc. There is a schematic of this in Figure 4.1.

Now we have a space in which we can talk about how close together neurons
and inputs are, since we can imagine positioning neurons and inputs in the
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same space by plotting the positions of neuron as the location where its weights
say it should be. The two spaces will have the same dimension (providing
that we don’t use a bias node, otherwise the weight space will have one extra,
dimension) so we can plot the position of neurons in the input space. This
gives us a different way of learning, since by changing the weights we are
changing the location of the neurons in this weight space. We can measure
distances between inputs and neurons by computing the Euclidean distance,
which in two dimensions can be written as:

d=+/(z1 —72)% + (11 — )2 (4.1)

So we can use the idea of neurons and inputs being ‘close together’ in order
to decide when a neuron should fire and when it shouldn’t. If the neuron is
close to the input in this sense then it should fire, and if it is not close then it
shouldn’t. To see why this might be a good idea, we need to look at the idea
of receptive fields.

4.1.2 Receptive Fields

Suppose that we have a set of ‘nodes’ (since they are no longer models of
neurons in any sense, the terminology changes to call the components of the
network ‘nodes’). As in Section 4.1.1, these nodes are imagined to be sitting
in weight space, and we can change their locations by adjusting the weights.
We want to decide how strongly a node matches the current input, so just like
in Section 4.1.1 we pretend that input space and weight space are the same,
and measure the distance between the input vector position and the position
of each node. The activation of these nodes can then be computed according
to their distance to the current input, in ways that we’ll get to later.

To put this idea of nodes firing when they are ‘close’ to the input into some
sort of context, we are going to have a quick digression into the idea of receptive
fields. Imagine the back of your eye. Light comes through the pupil and hits
the retina, which has light-sensitive cells (rods and cones) spread across it.
Now suppose that you look at the night sky with one bright star in it. How
will you see the star, or to put it another way, which rods on your retina will
detect the light of the star? The obvious answer is that there will be one
localised area of your retina that picks up the light, and a few rods that are
close together will detect it, while the rest don’t see anything except the dark
night sky. However, if you looked at the sky again a few hours later, when the
position of the star in the sky had changed, then different rods would detect it
(assuming that your head is in the same position, of course). So even though
the appearance of the star is the same, because the position of the star has
changed, so the rods that you use to detect it have changed. The receptive
field of a particular rod within your eye is the area on your retina that it

/ responds to light from. We can extend this to particular sensory neurons as
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well, so that the response of particular neurons may depend on the location
of the stimulus.

We might want to know what shape these receptive fields are, and how
the response of the rod (or neuron) changes as the stimulus moves away from
the area that matches the rod. If we were equipped with a neuroscience lab
with electrodes and measurement devices (and animals, and ethics approval)
then we could measure exactly this. We could show pictures of light blobs on
dark backgrounds to animals and measure the amount of neuronal activity in
particular neurons as the position of the blob moved. And people have done
exactly this.

For now, let’s just try a thought experiment: it’s simpler and cheaper, and
nothing gets hurt. If we are looking at our star again then we have already
worked out that there are a set of rods that are detecting the light, and plenty
of others that aren’t. What about a rod that is just at the boundary where the
light from the star stops being visible? Let’s pick one where its receptive field
stops just to the left of this boundary, so that the neuron is not firing. Now
move your head slightly to the right, so that it is just inside. What happens?
For a real neuron it would start to spike. Assuming that the number of times
the neuron spikes says how bright the light that it detects is (which probably
isn’t exactly true) then it wouldn’t spike very often. As you move your head to
the right again so that the light on that particular neuron gets brighter and
brighter, so that neuron will spike more and more often, until once you’ve
moved your head past the light and the spiking slows down, and eventually
stops. The left-hand graph of Figure 4.2 shows this, with the points plotted
and a smooth curve that goes through them.

Now suppose that you repeat the experiment, but this time you start with
the star below your vision and move your head down until you can see it, and
then keep on moving your head further down. The exact same thing happens.
The graph in the middle of Figure 4.2 shows this. So for this example, it
doesn’t matter where the point of light is with regard to the neuron, just how
far away it is. In other words, if we were to put the star on a wire circle
centred on one particular rod within our eye (a bit painful, but that’s the
good thing about thought experiments), then as we moved the light along the
wire the activation of the rod would not change. Only the radius of the circle
matters, which is why functions that model this are known as radial functions.
Mathematically, we say that they only depend on the two-norm ||x; —x||2, that
is the Euclidean distance between the point and the centre of the circle.

The main thing that we have not decided yet is how the drop-off should
occur from response to maximum brightness to nothing. For real neurons
the drop-off has to change between integer values, but for our mathematical
model it doesn’t: we can make it decrease smoothly, so that we can use well-
behaved (that is, differentiable) mathematical functions. Then we can pick
any function that we can differentiate, that decreases symmetrically (in all
directions, or radially) from a maximum to zero. There are obviously lots of
possible functions with this property that we can pick, but for now we’ll go
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FIGURE 4.2: Left: Count of the number of spikes per second as the
distance of a rod from the light varies horizontally. Note that it does not go to
zero, but to the spontaneous firing rate of the neuron, which is how often it fires

without input. Centre: The same thing for vertical motion. Right: The
combination of the two makes a set of circles.

with by far the most common one in statistics, the Gaussian, something that
is important enough to get its own section later on (Section 8.2.3). It doesn’t
really go to 0, but if we truncate it a little, then the output value becomes
0 fairly quickly as we move away from the centre. We do not typically use a
real Gaussian function for the activation function, ignoring the normalisation
to get an approximation to it written as:

2
g(x,w,0) = exp (L);(—j—zzv—“—) . (4.2)

The choice of ¢ in this equation is quite important, since it controls the
width of the Gaussian. If we make it infinitely large, then the neuron responds
to every input. Suppose instead that we make o smaller and smaller, so that
the Gaussian gets thinner and thinner. This means that the receptive field gets
narrower and narrower. Eventually, this neuron will respond to exactly one
stimulus, and even then, if the input is corrupted by noise, it won’t recognise
it. This function is sometimes known as an indicator or delta function. Picking
the value of ¢ for each individual node needs to be part of the algorithm.

So, we can use Gaussians to model these receptive fields for neurons so that
nodes will fire strongly if the input is close to them, less strongly if the input
is further away, and not at all if it is even further away. We are going to see
several neural networks in different chapters that use these ideas, mostly for
unsupervised learning, but first we will see a supervised one, the radial basis
function (RBF) network. Figure 4.3 shows a set of nodes that represent radial
bases in weight space. They are often known as centres because they each
form the centre of their own circle or ellipse.
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FIGURE 4.3: The effect of radial basis functions in weight space. The

points show the position of the RBF in weight space, while the circle around

each point shows the receptive field of the node. In higher dimensions these
circles become hyperspheres.

4.2 The Radial Basis Function (RBF) Network

The argument that started this chapter was that inputs that are close to-
gether should generate the same output, whereas inputs that are far apart
should not. We have seen that using Gaussian activations, where the output
of a neuron is proportional to the distance between the input and the weight,
gives us receptive fields. The Gaussian activations mean that normalising the
input vectors is very important for the RBF network; Section 9.1.3 will make
the reason for this clearer. For any input that we present to a set of these
neurons, some of them will fire strongly, some weakly, and some will not fire
at all, depending upon the distance between the weights and the particular
input in weight space. We can treat these nodes as a hidden layer, just as we
did for the MLP, and connect up some output nodes in a second layer. This
simply requires adding weights from each hidden (RBF) neuron to a set of
output nodes. This is known as an RBF network, and a schematic is shown
in Figure 4.4. In the figure, the nodes in both the hidden and output layer
are drawn the same, but we haven’t decided what kind of nodes to use in the
output layer—they don’t need to have Gaussian activations. The simplest
solution is to use McCulloch and Pitts neurons, in which case this second
part of the network is simply a Perceptron network. Note that there is a bias
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RBF Layer Output Layer

Input Layer

FIGURE 4.4: The Radial Basis Function network consists of input nodes
connected by weights to a set of RBF neurons, which fire proportionally to the
distance between the input and the neuron in weight space. The activations of

these nodes are used as inputs to the second layer, which consists of linear

nodes. The schematic looks very similar to the MLP except for the lack of a

bias in the hidden layer.

input for the output layer, which deals with the situation when none of the
RBF neurons fire. Since we already know exactly how to train the Perceptron,
training this second part of the network is easy. The questions that we need
to ask are whether or not it is any better than using a Perceptron, and how
to train the first layer weights that position the RBF neurons.

A little thought should persuade you that this network is better than just
a Perceptron, since the inputs that are given to the Perceptron are non-linear
functions of the inputs. In fact, the RBF network is a universal approximator,
just like the MLP. To see this, imagine that we fill the entire space with
RBF nodes equally spaced in all directions, so that their receptive fields just
overlap, as in Figure 4.5. Now, no matter what the input, there is an RBF
node that recognises it and can respond appropriately to it. If we need to
make the outputs more finely grained, then we just add more RBFs in at the
relevant positions and reduce the radius of the receptive fields; and if we don’t
care, we can just make the receptive fields of each node bigger and use fewer
of them.

RBF networks never have more than one layer of non-linear neurons, in
contrast to the MLP. However, there are many similarities between the two
networks: they are both supervised learning algorithms that form universal
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FIGURE 4.5: We can space out RBF nodes to cover the whole of space by
continuing this pattern everywhere, so that the network acts as a universal
approximator, since there is an output for every possible input.

approximators. In fact, it turns out that you can turn one into the other
because the two types of neuron firing rules (RBFs based on distance and
MLPs on inner product) are related. This fact will turn up in another form
in Section 9.1.3. The most important difference between them is the fact
that the MLP uses the hidden nodes to separate the space using hyperplanes,
which are global, while the RBF uses them to match functions locally.

In an RBF network, when we see an input several of the nodes will activate
to some degree or other, according to how close they are to the input, and
the combination of these activations will enable the network to decide how
to respond. Using the analogy we had earlier of looking at a star, suppose
that the star is replaced by a torch, and somebody is signalling directions to
us. If the torch is high (at 12 o’clock) we go forwards, low (6 o’clock) we go
backwards, and left and right (9 and 3 o’clock, respectively) mean that we
turn. The RBF network would work in such a way that if the torch was at 2
o’clock or thereabouts, then we would do some of the 12 o’clock action and a
bit more of the 3 o’clock action, but none of the 6 or 9 o’clock actions. So we
would move forwards and to the right. This adding up of the contributions
from the different basis functions according to how active they are means that
our responses are local.
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4.2.1 Training the RBF Network

In the MLP we used back-propagation of error to adjust first the output
layer weights, and then the hidden layer weights. We can do exactly the same
thing with the RBF network, by differentiating the relevant activation func-
tions. However, there are simpler and better alternatives for RBF networks.
They do not need to compute gradients for the hidden nodes and so they
are significantly faster. The important thing to notice is that the two types
of node provide different functions, and so they do not need to be trained
together. The purpose of the RBF nodes in the hidden layer is to find a non-
linear representation of the inputs, while the purpose of the output layer is to
find a linear combination of those hidden nodes that does the classification.
So we can split the training into two parts: position the RBF nodes, and then
use the activations of those nodes to train the linear outputs.

This makes things much simpler. For the linear outputs we can use an
algorithm that we already know: the Perceptron (Section 2.2). However, we
need to work out something different for the first layer weights, which control
the positions of the RBF nodes. One thing that we can do is to avoid the
problem of training completely by randomly picking some of the datapoints
to act as basis locations. Provided that our training data are representative
of the full dataset, this often turns out to be a good solution. The other thing
that we can do is to try to position the nodes so that they are representative
of typical inputs. This is precisely the problem solved by several unsupervised
learning methods, and we are going to see several algorithms for doing this
in Chapter 9. For the RBF network, the most common one is the k-means
algorithm that is described in Section 9.1. Thus, training an RBF network can
be reduced to using two other algorithms that are commonly used in machine
learning, one after the other. This is known as a hybrid algorithm, since it
combines supervised and unsupervised learning.

The Radial Basic Function Algorithm

e position the RBF centres by either:

— using the k-means algorithm to initialise the positions of the RBF
centres OR

— setting the RBF centres to be randomly chosen datapoints
e calculate the actions of the RBF nodes using Equation (4.2)
¢ train the output weights by either:

— using the Perceptron OR

— computing the pseudo-inverse of the activations of the RBF centres
(this will be described shortly)
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To implement this in Python we can simply import the other algorithms,
and use them directly (if they are in different directories, then you need to

add them to the PYTHONPATH variable; in Eclipse this is done by selecting the

, accessing i

oo o i 38w e

ts properties, and adding the relevant source folder into
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ion of all the hidden nodes, and assemble them into a
The outputs of the network can then be computed as

GW for set of weights W. Except that we don’t know what the weights
are—that is what we set out to compute—and we want to choose them using

the target outputs t.

matrix G. So each element of G

node j for input i.

y

If we were able to get all of the outputs correct, then we could write t
GW. Now we just need to calculate the matrix inverse of G, to get W =

G~ 't. Unfortunately, there is a little problem here. The matr
only defined if a matrix is square, and this one probably isn’t—there is no
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reason why the number of hidden nodes should be the same as the number of
training inputs. In fact, we hope it isn’t, since that would probably be serious
overfitting. Fortunately, there is a well-defined pseudo-inverse G of a matrix,
which is GT = (GTG)~!G?. Since the point of the inverse G=! to a matrix
G is that G™1G = I, where I is the identity matrix, the pseudo-inverse is the
matrix that satisfies GTG = L. If G is a square, non-singular (i.e., with non-
zero determinant) matrix then G = G~!. In NumPy the pseudo-inverse is
linalg.pinv(). This gives us an alternative to the Perceptron network that
is even faster, since the training only needs one iteration:

There is one thing that we haven’t considered yet, and that is the size of the
receptive fields o for the nodes. We can avoid the problem by giving all of the
nodes the same size, and testing lots of different sizes out using a validation set
to select one that works. Alternatively, we can select it in advance by arguing
that the important thing is that the whole space is covered by the receptive
fields of the entire set of basis functions, and so the width of the Gaussians
should be set according to the maximum distance between the locations of
the hidden nodes (d) and the number of hidden nodes. The most common
choice is to pick the width of the Gaussian as o = d/v/2M, where M is the
number of RBFs.

There is another way to deal with the fact that there may be inputs that
are outside the receptive fields of all nodes, and that is to use normalised
Gaussians, so that there is always at least one input firing; the node that is
closest to the current input, even if that is a long way off. It is a modification
of Equation (4.2) and it looks like the soft-max function:

exp(—[jx — wl|/20?)
i exp(—|[x — will/20%)

Using the RBF network on the iris dataset that was used in Section 3.4.3
with five RBF centres gives similar results to the MLP, with well over 90%
classification accuracy.

With the MLP, one question that we failed to find a nice answer to was how
to pick the number of hidden nodes, and we were reduced to training lots of
networks with different numbers of nodes and using the one that performed
best on the validation set. The same problem occurs with the RBF network.

In the RBF network the activations of the hidden nodes is based on the dis-
tance between the current input and the weights. There are various measures
of distance that we can use, as will be discussed in Section 8.4.3; we generally
use the Euclidean distance. These distances can be computed for any number
of dimensions, but as the number of dimensions increases, something rather
worrying happens, which is that we start needing more RBF nodes to cover

(4.3)

g(x’w’ 0) =
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FIGURE 4.6: The unit circle in 2D FIGURE 4.7: The unit sphere in
with its bounding box. 3D with its bounding cube. The sphere
does not reach as far into the corners as
the circle does, and this gets more
noticeable as the number of dimensions
increases.
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the space. The number of input dimensions has a profound effect on learning,
something that has a suitably impressive name: the curse of dimensionality.

4.3 The Curse of Dimensionality

The curse of dimensionality is a very strong name, so you can probably
guess that it is a bit of a problem. The essence of the curse is the realisation
that as the number of dimensions increases, the volume of the unit hypersphere
does not increase with it. The unit hypersphere is the region we get if we start
at the origin (the centre of our coordinate system) and draw all the points
that are distance 1 away from the origin. In 2 dimensions we get a circle of
radius 1 around (0, 0) (drawn in Figure 4.6), and in 3D we get a sphere around
(0,0,0) (Figure 4.7). In higher dimensions, the sphere becomes a hypersphere.
The following table shows the size of the unit hypersphere for the first few
dimensions, and the graph in Figure 4.8 shows the same thing, but also shows
clearly that as the number of dimensions tends to infinity, so the volume of
the hypersphere tends to zero.
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FIGURE 4.8: The volume of the unit hypersphere for different numbers of
dimensions.

Dimension | Volume
2.0000
3.1416
4.1888
4.9348
5.2636
5.1677
4.7248
4.0587
3.2985
2.5502
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At first sight this seems completely counterintuitive. However, think about
enclosing the hypersphere in a box of width 2 (between -1 and 1 along each
axis), so that the box just touches the sides of the hypersphere. For the circle,
almost all of the area inside the box is included in the circle, except for a little
bit at each corner (see Figure 4.6) The same is true in 3D (Figure 4.7), but if we
think about the 100-dimensional hypersphere (not necessarily something you
want to imagine), and follow the diagonal line from the origin out to one of the
corners of the box, then we intersect the boundary of the hypersphere when all
the coordinates are 0.1. The remaining 90% of the line inside the box is outside
the hypersphere, and so the volume of the hypersphere is obviously shrinking
as the number of dimensions grows. The graph in Figure 4.8 shows that
when the number of dimensions is above about 20, the volume is effectively
zero. It was computed using the formula for the volume of the hypersphere
of dimension n is v, = (27/n)v,_2. So as soon as n > 2w, the volume starts
to shrink.

The curse of dimensionality will apply to our machine learning algorithms
because as the number of input dimensions gets larger, so we will need more
data to enable the algorithm to generalise sufficiently well. Our algorithms try
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to separate data into classes based on the features, therefore as the number
of features increases, so will the number of datapoints we need. For RBFs,
the amount of the space covered by an RBF with a fixed receptive field will
decrease, and so we will need many more of them to cover the space.

4.4 Interpolation and Basis Functions

One of the problems that we looked at in Chapter 1 was that of function
approximation: given some data, find a function that goes through the data
without overfitting to the noise, so that values between the known datapoints
can be inferred or interpolated. The RBF network solves this problem by each
of the basis functions making a contribution to the output whenever the input
is within its receptive field. So several RBF nodes will probably respond for
each input. '

We are now going to make the problem a bit simpler. We won’t allow
the receptive fields to overlap, and we’ll space them out so that they just
meet up with each other. Obviously, we won’t need the Gaussian part that
decides how much each one matches now, either — if the datapoint is within the
receptive field of this function then we listen only to this function, otherwise
we ignore it and listen to some other function. If each function just returns
the average value within its patch, then for one-dimensional data we get a
histogram output, as is shown in Figure 4.9. We can extend this a bit further
so that the lines are not horizontal, but instead reflect the first derivative of
the curve at that point, as is shown in Figure 4.10. This is all right, but we
might want the output to be continuous, so that the line within the first bin
meets up with the line in the second bin at the boundary, so we can add the
extra constraint that the lines have to meet up as well. This gives the curve
in Figure 4.11.

Of course, there is no reason why the functions should be linear at all—if we
use cubic functions (i.e., polynomials with 23,22, z and constant components)
to approximate each piece of data then we can get results like those shown in
Figure 4.12. We can continue to make the functions more complicated, with
the important point being how many degrees of continuity we require at the
boundaries between the points. These functions are known as splines, and the
most common one to use is the cubic spline. To reach the stage where we can
understand it, we need to go back and think about some theory.

4.4.1 Bases and Basis Expansion

Radial basis functions and several other machine learning algorithms can
be written in this form:
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FIGURE 4.9: Top: Curve showing a function. Second: A set of datapoints
from the curve. Third: Putting a straight horizontal line through each point
creates a histogram that describes an approximation to the curve. Bottom:

That approximation.
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FIGURE 4.10: Representing the points by straight lines that aren’t
necessarily horizontal (so that their first derivative matches at the point) gives a
better approximation.
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FIGURE 4.11: Making the straight lines meet so that the function is
continuous gives a better approximation.
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FIGURE 4.12: Using cubic functions to connect the points gives an even
better approximation, and the curve is also continuous at the points where the
sections join up (known as knotpoints).
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£ = 3 aithi(x), (1)

where ®;(x) is some function of the input value x and the ¢; are the param-
eters we can solve for in order to make the model fit the data. Note that this
is more general than a neural network, where the ® would correspond to the
neuronal activations and are fixed, while the a; correspond to the network
weights. We will consider the input being scalar values x rather than vector
values x in what follows. The ®;(x) are known as basis functions and they are
parameters of the model that are chosen. The first thing we need to think
about is where each ®; is defined. Looking at the third graph of Figure 4.9 we
see that the first function should only be defined between 0 and z;, the next
between 27 and x2, and so on. These points x; are called knotpoints and they
are generally evenly spaced, but choosing how many of them there should be
is not necessarily easy. The more knotpoints there are, the more complex the
model can be, in which case the model is more likely to overfit, and needs
more training data, just like the neural networks that we have seen.

We can choose the ®; in any way we like. Suppose that we simply use
a constant function ®(z) = 1. Now the model would have value oy to the
left of z,, value as between z; and x,, etc. So depending upon how we fit
the spline model to the data, the model will have different values, but it will
certainly be constant in each region. This is sufficient to make the straight
line approximation shown at the bottom of Figure 4.9. However, we might
decide that a constant value is not enough, and we use a function that varies
linearly (a linear function that has value ®(z) = & within the region). In this
case, we can make Figure 4.10, where each point is represented by a straight
line that is not necessarily horizontal. This represents the line close to each
point fairly well, but looks messy because the line segments do not meet up.

The question then is how to extend the model to include matching at the
knotpoints, where one line segment stops and the next one starts. In fact, this
is easy. We just insist that the a; have to be chosen so that at the knotpoint
the value of f(z,) is the same whether we come from the left of z; or the
right. These are often written as f(2]) and f(z7). Now we just need to work
out which a values are involved in the z; knotpoint from each side. There
are going to be four of them: two for the constant part, and two for the linear
part. The ones connected with the constant are obvious: a; and az. Now
suppose that the linear ones are aj; and aj2 (which would mean that there
were 10 regions and therefore 9 knotpoints, since then a; ...a10 correspond
to the constant functions for each region). In that case, f(z7) = a1 + T1011
and f(z]) = aa + r112. This is an extra constraint that we will need to
include when we solve for the values of the a;.

There is a simpler way to encode this, which is to add some extra basis
functions. As well as ®,(z) = 1, ®2(z) = z, we add some basis functions that
insist that the value is 0 at the boundary with z;: ®3(z) = (z — 1)+, and
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the next with the boundary at zo: ®4(x) = (¢ — z2)+, etc., where (z); =2
if x > 0 and O otherwise. These functions are sufficient to insist that the
knotpoint values are enforced, since one is defined on each knotpoint. This is
then enough for us to construct the approximation shown in Figure 4.11.

4.4.2 The Cubic Spline

We can carry on adding extra powers of x, but it turns out that the cubic
spline is generally sufficient. This has four basic basis functions (®;(z) =
1,®5(z) = z, ®3(z) = 2%, ®4(2) = 23), and then as many extras as there are
knotpoints, each of the form ®,;(z) = (z — 2;)3. This function constrains
the function itself and also its first two derivatives to meet at each knotpoint.
Notice that while the ®s are not linear, we are simply adding up a weighted
sum of them, and so the model is linear in them. We can then produce curves
like Figure 4.12, which represent the data very well.

4.4.3 Fitting the Spline to the Data

Having defined the functions, we need to work out how to choose the «; in
order to make the model fit the data. We will continue to define the sum-of-
squares error and to minimise that, which is known in the statistical literature
as least-squares fitting, and will be described in more detail in Section 11.2.
The important point is that everything is linear in the basis functions, so
computing the least-squares fit is a linear problem. As with the MLP, the
error that we are trying to minimise is:

N
E(y, f(2)) = Y (yi — f(z:))*. (4.5)

i=1
NumPy already has a method defined for computing linear least-squares
optimisation: the function linalg.1stsq(). As a simple example of how to
use it we will make some noisy data from a couple of Gaussians and then fit
the model parameters, which are 2.5 and 3.2. The final line gives the result,

which isn’t too far from the correct one, and Figure 4.13 shows the results.
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FIGURE 4.13: Using linear least-squares to fit parameters for two Gaussians
produces the line from the noisy datapoints plotted as circles.

4.4.4 Smoothing Splines

The way that we constructed the splines in Section 4.4 was to insist that
they went through each knotpoint exactly. This was a good way to describe
our constraints, but it is not necessarily realistic: almost all of the data that
we ever see will be noisy, and insisting that the data goes through the knot-
points therefore overfits: imagine that the line in Figure 4.13 went through
each datapoint. As we try to make the spline model match the data more
and more accurately, we will add further knotpoints in, which leads to further
overfitting. We can deal with this by using regularisation. This is a very im-
portant idea in optimisation. In essence, it means adding an extra constraint
that makes the problem simpler to solve by providing some way to choose
from amongst the set of possible solutions.

The most common regulariser that is used for splines is to make the spline
model as ‘smooth’ as possible, where the smoothness is measured by comput-
ing the second derivative of the curve at each point, squaring it so that it is



114 Machine Learning: An Algorithmic Perspective

FIGURE 4.14: B-spline fitting of the data shown in Figure 4.13 with /eft:
A =0 and right: X\ = 100.

always positive, and integrating it along the curve. In this way, a straight
line is perfectly smooth, but probably won’t be a good match for the data,
so we introduce a parameter A that describes the trade-off between the two
parts. We regain the interpolating spline of Section 4.4 for A = 0, whereas for
A — 00 we get the least-squares straight line. This type of spline is known as
a smoothing spline. The cubic smoothing spline is often used. While there are
automated methods of choosing J, it is more normal to use cross-validation
to find a value that seems to work well. The form of the optimisation is now:

N 2 2
B, £@),3) = 30— f@) + [ (‘fi—t;f) . (4.6)

=1

SciPy already has functions to perform this in Python, the output of two
different values of the smoothing parameter are shown in Figure 4.14.

4.4.5 Higher Dimensions

Everything that we have done so far is aimed at one spatial dimension and
all of our effort has gone into the cubic spline. However, it is not very clear
what to do with higher-dimensional data. One common thing that is done
is to take a set of independent basis functions in each different coordinate
(z, y, and z in 3D) and then to combine them in all possible combinations
(P2i(z)Py; (¥) P2k (2)). This is known as the tensor product basis, and suffers
from the curse of dimensionality very quickly, but works well in 2D and 3D,
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FIGURE 4.15: In 2D the knotpoints (black squares) can be used to
interpolate other points (grey circles) in each dimension individually.

where the B-spline is built up in this way. Figure 4.15 shows a grid of knot-
points and a set of points inbetween that can be interpolated in the z; and
22 directions separately.

However, for the smoothing spline there is another problem: what is the
higher-dimensional analogue of the curvature measurement that was com-
puted with the second derivative in Equation (4.6)? In two dimensions, one
possibility is to consider the bending energy. This measures how much en-
ergy is required to bend a thin plate so that it passes through a set of points
without gravity. It leads to a penalty term that consists of:

2f\? R2f \*  [8%F\°
) ) (B s

Computing the optimal values under this penalty leads to thin-plate splines,
which are radial basis functions of the form f(z,y) = f(r) = r?log|r|, where
7 is the radial distance between z and ¥, which was first published by Duchon
in 1978, but popularised by Bookstein, who uses it to look at what he calls
morphometrics, which is the study of how shape changes as animals are grow-
ing. The fitting is no different, it is just the basis functions that have changed.
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4.4.6 Beyond the Bounds

There is an interesting extra feature to consider. We are fitting our spline
to the training data in order to predict the values for other datapoints that
we do not know target values for. We assume that our training data are rep-
resentative of the entire training set, but that does not mean that it contains
the lowest possible values, nor the highest. The spline model that we have
built has constraints to ensure that the pieces of the spline match up con-
tinuously at the knotpoints, but we haven’t done anything at all regarding
thinking about what happens before the first knotpoint, or after the last. For
the polynomials that we are using here, this turns out to be a serious problem,
which means that guesses outside the boundaries (extrapolations) often turn
out to be very inaccurate. Since we don’t have any data, it is hard to do much,
but one thing that is sometimes done is to insist that outside the boundary
knotpoints the function is linear. This is known as the natural spline.

Further Reading

The original paper on radial basis function neural networks is:

e J. E. Moody and C. Darken. Fast learning in networks of locally-tuned
processing units. Neural Computation, 1:281-294, 1989.

For more information on splines, not necessarily from the machine learning
viewpoint, try:
o C. de Boor. A Practical Guide to Splines. Springer, Berlin, Germany,
1978.

o G. Wahba. Spline Models for Observational Data. SIAM, Philadelphia,
USA, 1990.

e F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural
network architectures. Neural Computation, 7:219-269, 1995.

e Chapter 5 and Section 6.7 of T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning. Springer, Berlin, Germany, 2001.

Chapter 5 of S. Haykin. Neural Networks: A Comprehensive Founda-
tion. Prentice-Hall, New Jersey, USA, 2nd edition, 1999.

The field of morphometrics, studying how shape changes as organisms grow,
is a very interesting one. A possible place to start studying this topic would
be:

e F.L. Bookstein. Morphometric Tools for Landmark Data: Geometry
and Biology. Cambridge University Press, Cambridge, UK, 1991.
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Practice Questions
Problem 4.1 Create an RBF network that solves the XOR function.

Problem 4.2 Apply the RBF network to the Pima Indian dataset and the
classification of the MNIST letters. Can you identify differences in the
results between the RBF and the MLP?

Problem 4.3 The RBF code that is available on the website uses the hybrid
approach. You should be able to change the code so that it uses the fixed
centres or full gradient descent method, and then you can experiment
with them and see which one works better. In particular, you should be
able to find examples where the fixed centres one does not work well if
the order of the inputs is poorly chosen.

Problem 4.4 The following function creates some noisy data from a sinu-
soidal function:

Fit a spline to this data using both the interpolating and smoothing
versions of the B-spline. Which makes more sense here? Experiment
with different values of the smoothing parameter. Can you work out an
algorithm that will attempt to set it based on a validation set?

Problem 4.5 Implement the B-spline in 2D by convolving two 1D cubic
splines in orthogonal directions. Can you use it to warp images?






Chapter 5

Support Vector Machines

Back in Chapter 2 we looked at the Perceptron, a set of McCulloch and
Pitts neurons arranged in a single layer. We identified a method by which
we could modify the weights so that the network learned, and then saw that
the Perceptron was rather limited in that it could only identify straight line
classifiers, that is, it could only separate out groups of data if it was possible
to draw a straight line (hyperplane in higher dimensions) between them. This
meant that it could not learn the difference between the two truth classes of
the 2D XOR function. However, in Section 2.3.2, we saw that it was possible
to modify the problem so that the Perceptron could solve the problem, by
changing the data so that it used more dimensions than the original data.

This chapter is concerned with a method that makes use of that insight,
amongst other things. The main idea is one that we have seen before, in Sec-
tion 4.4, which is to modify the data by changing its representation. However,
the terminology is different here, and we will introduce kernel functions rather
than bases. In principle, it is always possible to transform any set of data so
that the classes within it can be separated linearly. To get a bit of a handle on
this, think again about what we did with the XOR. problem in Section 2.3.2:
we added in an extra dimension and moved a point that we could not classify
properly into that additional dimension so that we could linearly separate the
classes. The problem is how to work out which dimensions to use, and that is
what kernel methods, which is the class of algorithms that we will talk about
in this chapter, do.

We will focus on one particular algorithm, the Support Vector Machine
(SVM), which is one of the most popular algorithms in modern machine learn-
ing. They were introduced by Vapnik in 1992 and have taken off radically since
then, principally because they often (but not always) provide significantly
better classification performance than other machine learning algorithms on
reasonably sized datasets (they do not work well on extremely large datasets,
since they involve a data matrix inversion, which is computationally very ex-
pensive). This should be sufficient motivation to master the (quite complex)
concepts that are needed to understand the algorithm. We won’t be using
any code in this chapter, since implementing an SVM is probably something
you wouldn’t want to implement for yourself: some of the details of the algo-
rithm, particularly the optimisation routine, are difficult to implement. There
are several different implementations of the SVM available on the Internet,
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FIGURE 5.1: Three different classification lines. Is there any reason why
one is better than the others?

and there are references to some of the more popular ones at the end of the
chapter. Some of them include wrappers for Python so that they can be used
from within Python.

There is rather more to the SVM than the kernel method; the algorithm
also reformulates the classification problem in such a way that we can tell
a good classifier from a bad one, even if they both give the same results
on a particular dataset. It is this distinction that enables these advanced
algorithms to be derived, so that is where we will start.

5.1 Optimal Separation

Figure 5.1 shows a simple classification problem with three different possible
linear classification lines. All three of the lines that are drawn separate out the
two classes, so in some sense they are ‘correct.” However, if you had to pick
one of the lines to act as the classifier for a set of test data, I'm guessing that
most of you would pick the line shown in the middle picture. It’s probably
hard to describe exactly why you would do this, but somehow we prefer a
line that runs through the middle of the separation between the datapoints
from the two classes, staying approximately equidistant from the data in both
classes. Of course, if you were feeling smart then you might have asked what
criteria you were meant to pick a line based on, and why one of the lines
should be any better than the others.

To answer that, we are going to try to define why the line that runs halfway
between the two sets of datapoints is better, and then work out some way to
quantify that so we can identify the ‘optimal’ line, that is, the best line accord-
ing to our criteria. The data that we have used to identify the classification
line is our training data. We believe that these data are indicative of some
underlying process that we are trying to learn, and that the testing data that
the algorithm will be evaluated on after training comes from the same under-
lying process. However, we don't expect to see exactly the same datapoints
in the test dataset, and inevitably some of the points will be closer to the
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classifier line, and some will be further away. If we pick the lines shown in
the left or right graphs of Figure 5.1 then there is a chance that a datapoint
from one class will be on the wrong side of the line, just because we have put
the line tight up against some of the datapoints we have seen in the training
set. The line in the middle picture doesn’t have this problem; like the baby
bear’s porridge in Goldilocks, it is ‘just right.’

How can we quantify this? We can measure the distance that we have to
travel away from the line (in a direction perpendicular to the line) before we
hit a datapoint. Imagine that we put a ‘no-man’s land’ around the line (shown
in Figure 5.2), so that any point that lies within that region is declared to
be too close to the line to be accurately classified. This region is symmetric
about the line, so that it forms a cylinder about the line in 3D, and a hyper-
cylinder in higher dimensions. How large could we make the radius of this
cylinder until we started to put points into a no-man’s land, where we don’t
know which class they are from? This largest radius is known as the margin,
labelled M. The classifier in the middle of Figure 5.1 has the largest margin
of the three. It has the imaginative name of the maximum margin (linear)
classifier. The datapoints in each class that lie closest to the classification line
have a name as well. They are called support vectors. Using the argument
that the best classifier is the one that goes through the middle of a no-man’s
land, we can now make two arguments: first that the margin should be as
large as possible, and second that the support vectors are the most useful
datapoints because they are the ones that we might get wrong. This leads to
an interesting feature of these algorithms: after training we can throw away
all data except for the support vectors, and use them for classification.

Now that we’ve got a measurement that we can use to find the optimal
classification line, we just need to work out how to actually compute it from
a given set of datapoints. Let’s start by reminding ourselves of some of the
things that we worked out in Chapter 2. We can use the standard equation
of a straight line to write down our classifier, it is y = w-x + b, where we are
using the same notation as in Chapter 2: the w is the weight vector (it is a
vector, not a matrix, since there is only one output) and x is the particular
input vector, with b being the contribution from the bias weight. We use the
classifier line by saying that any x value that gives a positive value for w-x+b
is above the line, and so is an example of the ‘+’ class, while any x that gives
a negative value is in the ‘o’ class. In our new version of this we want to
include our no-man’s land. So instead of just looking at whether the value of
W - x + b is positive or negative, we also check whether the absolute value is
less than our margin M. Remember that w - x is the inner or scalar product,
WX =) wil.

For a given margin value M we can say that any point x where w-x+b > M
is a plus, and any point where w-x+b < —M is a circle. Now suppose that we
pick a point x* that lies on the ‘4’ class boundary line, so that w - x* = M.
This is a support vector. If we want to find the closest point that lies on
the boundary line for the ‘o’ class, then we travel perpendicular to the ‘+’
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FIGURE 5.2: The margin is the largest region we can put that separates
the classes without there being any points inside.

boundary line until we hit the ‘o’ boundary line. The point that we hit is
the closest point, and we’ll call it x~. How far did we have to travel in this
direction? Figure 5.2 hopefully makes it clear that the distance we travelled
is 2M. We can use this fact to write down the margin size M in terms of w if
we remember one extra thing from Chapter 2, namely that the weight vector
w is perpendicular to the classifier line. If it is perpendicular to the classifier
line, then it is obviously perpendicular to the ‘+’ and ‘o’ boundary lines too,
so the direction we travelled in from x* to x~ is along w, or writing it as an
equation (where v is some distance along the line):

x~ =x" +ow. (5.1)

We know that [x~ — x| = 2M, and so we can use the equation above to
compute that:

1 1
2w 2ywWew
So now, given a classifier line (that is, the vector w and scalar b that define
the line w - x + b) we can compute the margin M. We can also check that
it puts all of the points on the right side of the classification line. Of course,
that isn’t actually what we want to do: we want to find the w and b that

give us the biggest possible value of M. Equation (5.2) tells us that making
M as large as possible is the same as making w - w as small as possible. If

(5.2)
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FIGURE 5.3: If the classifier makes some errors, then the distance by which
the points are over the border should be used to weight each error in order to
decide how bad the classifier is.

that was the only constraint, then we could just set w = 0, and problem
would be solved, but we also want the classification line to separate out the
‘+’ data from the ‘o’, that is, actually act as a classifier. So we are going to
need to try to satisfy two problems simultaneously: find a decision boundary
that classifies well, while also making w - w as small as possible.

How do we decide whether or not a classifier is any good? Obviously, the
fewer mistakes that it makes, the better. So we can write down a set of
constraints that say that the classifier should get the answer right. To do this
we make the target answers for our two classes be £1, rather than 0 and 1. We
can then write down t; x y;, that is, the target multiplied by the output, and
this will be positive if the two are the same and negative otherwise. We can
write down the equation of the straight line again, which is how we computed
Y, to see that we require that ¢;(w-x +b) > 1.

When comparing classifiers, we should consider the case where one classifier
makes a mistake by putting a point just on the wrong side of the line, and
another puts the same point a long way onto the wrong side of the line.
It can be argued that the first classifier is better than the second, because
the mistake was not as serious, so we should include this information in our
minimisation criterion. We can do this by modifying the problem. In fact, we
have to do major surgery, since we want to add a term into the minimisation
problem so that we will now minimise w - w + Ax (distance of misclassified
points from the correct boundary line). Here, X is a trade-off parameter that
decides how much weight to put onto each of the two criteria—small A means
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we prize a large margin over a few errors, while large A means the opposite.
This actually transforms the problem into a soft-margin classifier, since we are
allowing for a few mistakes. Writing this in a more mathematical way, the
function that we want to minimise is:

R
L(w,¢€) =W-W+)\Z€i, (5.3)
i=1

where R is the number of misclassified data points, and each ¢; is the distance
to the correct boundary line for the missing point, which is sometimes known
as a slack variable. The constraints don’t quite work anymore, either, since
they don’t mention the possibility of getting something wrong. We now want
to say for each point that w-x; > 1 —¢; if the target is 1 and w-x; < —1+¢;
if the target is -1. The other thing to notice is that ¢; is a distance, and
therefore has to be a positive number. This has to be specified as an additional
constraint for each 7.

We’ve made a lot of effort to write down this equation, but we don’t know
how to solve it. We could use gradient descent, but we would have to put
a lot of effort into making it enforce the constraints, and it would be very,
very slow and inefficient for the problem. There is a method that is much
better suited, which is quadratic programming, which takes advantage of the
fact that the problem we have described is quadratic and therefore convex,
and has linear constraints. If you want to understand these terms, and don’t,
then a book on numerical optimisation would be a good start; a couple are
given in the references at the end of the chapter. The practical upshot of these
facts for us is that the problem can be solved directly and efficiently (i.e., in
polynomial time) for the problems that we wish to solve. There are very
effective quadratic programming solvers available, but it is not an algorithm
that we will consider writing ourselves, being well beyond the scope of this
book.

We will, however, work out how to formulate the problem so that it can
be presented to a quadratic program solver. This involves transforming the
form of the problem by using the technique of Lagrange multipliers, which
means that we treat A in Equation (5.3) as a parameter instead of a constant,
and find the minimiser by looking at the derivatives of the function with
respect to each of the parameters independently and setting them to zero.
The method of Lagrange multipliers is a very useful one for optimisation, and
good introductions to the method can be found in many textbooks.

There is another modification to the problem that we will make as well,
which is to change it into a maximisation problem by finding its dual. This is
an alternative representation of a constraint problem that has the same solu-
tion, but swaps the constraints and the objective, producing a version of the
problem that is more efficient for quadratic optimisation, and will have certain
other benefits later on. Constructing the dual function requires that we use
the Karush-Kuhn-Tucker construction to eliminate the w from Equation (5.3)
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FIGURE 5.4: By modifying the features we hope to find spaces where the
data are linearly separable.

(by differentiating with respect to it and setting the derivatives equal to 0) to
get:

R R

R
1
L(€) = max E @i E E aotitix; - X;, (5.4)
i=1

i=1 j=1

subject to the constraints 0 < ¢; < A and 2511 a;x; = 0.

5.2 Kernels

Although we've done lots of work up to this point, we haven’t actually
changed things very much, because we are still finding straight line boundary
conditions in the input space of the data. So while the decision boundary that
is found could be better than that found by the Perceptron, if there isn’t a
straight line solution then, just like the Perceptron, our current method won’t
work. Not ideal for something that’s taken lots of effort to work out! It’s time
to pull our extra piece of magic out of the hat: transformation of the data.
To see the idea, have a look at Figure 5.4. It is basically the idea that if we
modify the features in some way then we might be able to linearly separate
the data, as we did for the XOR problem; if we can use more dimensions
then we might be able to find a linear decision boundary that separates the
classes. What extra dimensions can we use? We can’t invent new data, so the
new features will have to be derived from the current ones in some way. Just
like in Section 4.4, we are going to introduce new functions ¢(x) of our input
features.

We still need to pick what functions to use, of course. If we knew something
about the data, then we might be able to identify functions that would be
a good idea, but this kind of domain knowledge is not always going to be
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FIGURE 5.5: Using 22 as well as z; allows these two classes to be
separated.

around, and we would like to automate the algorithm. For now, let’s think
about a basis that consists of the polynomial of everything up to degree 2. It
contains the constant value 1, each of the individual (scalar) input elements
T1,T2,...,Z4, and then the squares of each input element z$,z3,...,27, and
finally, the products of each pair of elements ziz2,212%3,...,24-124. The
total input vector made up of all these things is generally written as ®(x); it
contains about d?/2 elements. The right of Figure 5.5 shows a 2D version of
this (with the constant term suppressed), and I'm going to write it out for
the case d = 3, with a set of v/2s in there (the reasons for them will become
clear soon):

o(x) = (1,\/53317 \/§$2, \/5933,93%,1’3,53%7 \/§$1$2, \/§x1x3, \/§$2$3)- (5.5)

If there was just one feature, z;, then we would have changed this from a
one-dimensional problem into a three-dimensional one (1,21, z%).

Have another look at Equation (5.4). There is no reason why we can’t
modify it so that the x variables look like ®(x;) - ®(x;). (Note the slight
notational intricacy here: x; is the ith input vector, while z; is the ith element
of an input vector.) This seems great, since we don’t have to modify our
derivation of that equation at all. Except that now the function ®(x;) has
d?/2 elements, and we need to multiply it with another one the same size, and
we need to do this R? times. This is rather computationally expensive, and
if we need to use the powers of the input vector greater than 2 it will be even
worse. There is one last piece of trickery that will get us out of this hole: it
turns out that we don’t actually have to compute ®(x;) - ®(x;). To see how
this works, let’s work out what ®(x) - ®(y) actually is:

d d m
d(x)-P(y)=1+2 Zmz% + 23312%2 + Qinxjy,'yj. (5.6)
i=1 i

i=1 i=1
You might not recognise that you can factorise this equation, but fortu-
nately somebody did: it can be written as (1+ x -y)2. The dot product here
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is in the original space, so it only requires d multiplications, which is obviously
much better—this part of the algorithm has now been reduced from O(d?) to
O(d). The same thing holds true for the polynomials of any degree s that we
are making here, where the cost of the naive algorithm is O(d*). The impor-
tant thing is that we remove the problem of computing the dot products of
all the extended basis vectors, which is expensive, with the computation of a
kernel matrix (also known as the Gram matrix) K that is made from the dot
product of the original vectors, which is only linear in cost. This is sometimes
known as the kernel trick. It means that you don’t even have to know what
®(-) is, provided you know a kernel. These kernels are the fundamental reason
why these methods work, and the reason why we went to all that effort to
produce the dual formulation of the problem. They produce a transformation
of the data so that they are in a higher-dimensional space, but because the
datapoints only appear inside those inner products, we don’t actually have to
do any computations in those higher-dimensional spaces, only in the original
(relatively cheap) low-dimensional space.

So how do we go about finding a suitable kernel? Any symmetric function
that is positive definite (meaning that it enforces positivity on the integral
of arbitrary functions) can be used as a kernel. This is a result of Mercer's
theorem, which also says that it is possible to convolve kernels together and
the result will be another kernel. However, there are three different types
of basis functions that are commonly used, and they have nice kernels that
correspond to them:

¢ polynomials up to some degree s in the elements xj of the input vector
(e.g., x3 or x; X x4) with kernel:

Kxy)=(1+x-y) (5.7)
o sigmoid functions of the zxs with parameters x and 4, and kernel:

K(x,y) = tanh(kx -y — 0) (5.8)
e radial basis function expansions of the zys with parameter o and kernel:

K(x,y) = exp (—(x —y)*/20%) (5.9)

Choosing which kernel to use and the parameters in these kernels is a tricky
problem. While there is some theory based on something known as the Vapnik-
Chernik dimension that can be applied, most people just experiment with dif-
ferent values and find one that works, using a validation set as we did for the
MLP in Chapter 3.

There are two things that we still need to worry about for the algorithm.
One is something that we’ve discussed in the context of other machine learning
algorithms: overfitting, and the other is how we will do testing. The second
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one is probably worth a little explaining. We used the kernel trick in order to
reduce the computations for the training set. We still need to work out how
to do the same thing for the testing set, since otherwise we’ll be stuck with
doing the O(d®) computations. In fact, it isn’t too hard to get around this
problem, because the forward computation for the weights is w - ®(x), where:

i where a; >0

So we still have the computation of ®(x;) - #(x;), which we can replace using
the kernel as before.

The overfitting problem goes away because of the fact that we are still
optimising w - w (remember that from somewhere a long way back?), which
tries to keep w small, which means that many of the parameters are kept
close to 0.

5.2.1 Example: XOR

We motivated the SVM by thinking about how we solved the XOR function
in Section 2.3.2. So will the SVM actually solve the problem? We’'ll need to
modify the problem to have targets -1 and 1 rather than 0 and 1, but that
is not difficult. Then we'll introduce a basis of all terms up to quadratic
in our two features: 1,v/2x1,v/2x2, 2122, z2, 22, where the V2 is to keep the
multiplications simple. Then Equation (5.4) looks like:

4

4
Zai - Zaiajt,-th(xi) . q)(Xj), (511)
i?j

i=1

subject to the constraints that oy — a2 + a3 —ay = 0,05 > 0 i = 1...4.
Solving this (which can be done algebraically) tells us that the classifier line
is at z122 = 0. The margin that corresponds to this is /2. Unfortunately we
can’t plot it, since our four points have been transferred into a six-dimensional
space. We know that this is not the smallest number that it can be solved
in, since we did it in three, but the dimensionality of the kernel space doesn’t
matter, as all the computations are in the 2D space anyway.

5.2.2 [Extensions to the Support Vector Machine

We’ve talked about SVMs in terms of two-class classification. You might
be wondering how to use them for more classes, since we can’t use the same
methods as we have done to work out the current algorithm. In fact, you
can’t actually do it in a consistent way. The SVM only works for two classes.
This might seem like a major problem, but with a little thought it is possible
to find ways around the problem. For the problem of N-class classification,
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4 \E(x)

L
X

FIGURE 5.6: The e-insensitive error function is zero for any error below e.

you train an SVM that learns to classify class one from all other classes, then
another that classifies class two from all the others. So for N-classes, we have
N SVMs. This still leaves one problem: how do we decide which of these
SVMs is the one that recognises the particular input? The answer is just to
choose the one that makes the strongest prediction, that is, the one where the
basis vector input point is the furthest into the positive class region.

Interestingly, it is also possible to use the SVM for regression. The key is
to take the usual least-squares error function (with the regulariser that keeps
the norm of the weights small):

1 1
52 (=) + 5w, (5.12)
i=1

and transform it using what is known as a e-insensitive error function (E) that
gives 0 if the difference between the target and output is less than € (and
subtracts € in any other case for consistency). Figure 5.6 shows the form of
this error function, which is:

i 1
"Bt —wi) + A5 llwl® (5.13)
i=1

You might see this written in other texts with the constant X in front of the
second term replaced by a C in front of the first term. This is equivalent up to
scaling. The picture to think of now is almost the opposite of Figure 5.3: we
want the predictions to be inside the tube of radius ¢ that surrounds the correct
line. To allow for errors, we again introduce slack variables for each datapoint
(&; for datapoint i) with their constraints and follow the same procedure of
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introducing Lagrange multipliers, transferring to the dual problem, using a
kernel function and solving the problem with a quadratic solver.

There is a lot of advanced work on kernel methods and SVMs. This includes
lots of work on the optimisation, including Sequential Minimal Optimisation,
and extensions to compute posterior probabilities instead of hard decisions,
such as the Relevance Vector Machine. There are some references in the Further
Reading section.

There are SVM implementations available via the Internet. They are mostly
written in C, but some include wrappers to be called from other languages,
including Python. An Internet search will find you some possibilities to try.

Further Reading

The treatment of SVMs here has only skimmed the surface of the topic.
There is a useful tutorial paper on SVMs at:

e C.J. Burges. A tutorial on support vector machines for pattern recog-
nition. Data mining and knowledge discovery, 2(2): 121-167, 1998.

If you want more information, then any of the following books will provide
it (the first is by the creator of SVMs):

e V. Vapnik. The Nature of Statistical Learning Theory. Springer, Berlin,
Germany, 1995.

e B. Scholkopf, C.J.C. Burges, and A.J. Smola. Advances in Kernel
Methods: Support Vector Learning. MIT Press, Cambridge, MA, USA,
1999.

e J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Anal-
ysts. Cambridge University Press, Cambridge, UK, 2004.

If you want to know more about quadratic programming, then a good ref-
erence is:

e 5. Boyd and L. Vandenberghe. Convez Optimization. Cambridge
University Press, Cambridge, UK, 2004.

Other machine learning books that give useful coverage of this area are:

o Chapter 12 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer, Berlin, Germany, 2001.

o Chapter 7 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.
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Practice Questions

Problem 5.1 Suppose that the following are a set of points in two classes:

wr (O o
wr QOO o

Plot them and find the optimal separating line. What are the support
vectors, and what is the margin?

Problem 5.2 Suppose that the points are now:

A IOIO —
wr (O e

Try out the different basis functions that were given in the chapter to
see which separate this data and which do not.

Problem 5.3 Download one of the SVM packages from the Internet and
practice using it. In particular, apply it to the wine dataset. Compare
the results to using an MLP. Do the same for the yeast dataset.

Problem 5.4 Use an SVM on the MNIST dataset.






Chapter 6

Learning with Trees

We are now going to move away from neural networks and take a rather dif-
ferent approach, starting with one of the most common and powerful data
structures in the whole of computer science: the binary tree. The computa-
tional cost of making the tree is fairly low, but the cost of using it is even
lower: O(log N), where N is the number of data points. This is important
for machine learning, since querying the trained algorithm should be as fast
as possible since it happens more often, and the result is often wanted imme-
diately. This is sufficient to make trees seem attractive for machine learning.
However, they do have other benefits, such as the fact that they are easy
to understand (following a tree to get a classification answer is transparent,
which makes people trust it more than getting an answer from a ‘black box’
neural network). For these reasons, classification by decision trees has grown
in popularity over recent years. You are very likely to have been subjected
to decision trees if you've ever phoned a helpline, for example for computer
faults. The phone operators are guided through the decision tree by your
answers to their questions.

The idea of a decision tree is that we break classification down into a set of
choices about each feature in turn, starting at the root (base) of the tree and
progressing down to the leaves, where we receive the classification decision.
The trees are very easy to understand, and can even be turned into a set of
if-then rules, suitable for use in a rule induction system.

6.1 Using Decision Trees

As a student it can be difficult to decide what to do in the evening. There
are four things that you actually quite enjoy doing, or have to do: going to
the pub, watching TV, going to a party, or even (gasp) studying. The choice
is sometimes made for you—if you have an assignment due the next day, then
you need to study, if you are feeling lazy then the pub isn’t for you, and if there
isn’t a party then you can’t go to it. You are looking for a nice algorithm that
will let you decide what to do each evening without having to think about it
every night. Figure 6.1 provides just such an algorithm.
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Party?
Ye No

Go to party Deadline

Urge w

Study Nepr Go to pub
Lazy?
Yes, 0
Watch TV Study

FIGURE 6.1: A simple decision tree to decide how you will spend the
evening.

Each evening you start at the top (root) of the tree and check whether any
of your friends know about a party that night. If there is one, then you need
to go, regardless. Only if there is not a party do you worry about whether or
not you have an assignment deadline coming up. If there is a crucial deadline,
then you have to study, but if there is nothing that is urgent for the next few
days, you think about how you feel. A sudden burst of energy might make
you study, but otherwise you’ll be slumped in front of the TV indulging your
secret love of Shortland Street (or other soap opera of your choice) rather
than studying. Of course, near the start of the semester when there are no
assignments to do, and you are feeling rich, you’ll be in the pub.

One of the reasons that decision trees are popular is that we can turn
them into a set of logical disjunctions (if ... then rules) that then go into
program code very simply—the first part of the tree above can be turned into:

e if there is a party then go to it
e if there is not a party and you have an urgent deadline then study
e cte.

That’s all that there is to using the decision tree. The far more interesting
part is how to construct the tree from data, and that is the focus of the next
section.

6.2 Constructing Decision Trees

In the example above, the three features that we need for the algorithm are
the state of your energy level, the date of your nearest deadline, and whether
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or not there is a party tonight. The question we need to ask is how, based on
those features, we can construct the tree. There are a few different decision
tree algorithms, but they are almost all variants of the same principle: the
algorithms build the tree in a greedy manner starting at the root, choosing the
most informative feature at each step. We are going to start by focusing on
the most common: Quinlan’s ID3, although we’ll also mention its extension,
known as C4.5, and another known as CART.

There was an important word hidden in the sentence above about how
the trees work, which was informative. Choosing which feature to use next
in the decision tree can be thought of like playing the game ‘20 Questions,’
where you try to elicit the item your opponent is thinking about by asking
questions about it. At each stage, you choose a question that gives you the
most information given what you know already. Thus, you would ask ‘Is it an
animal?’ before you asked ‘Is it a cat?’. The idea is to quantify this question of
how much information is provided to you by knowing certain facts. Encoding
this mathematically is the task of information theory.

6.2.1 Quick Aside: Entropy in Information Theory

Information theory was ‘born’ in 1948 when Claude Shannon published a
paper called “A Mathematical Theory of Communication.” In that paper,
he proposed the measure of information entropy, which describes the amount
of impurity in a set of features. The entropy H of a set of probabilities p; is
(for those who know some physics, the relation to physical entropy should be
clear):

H(p) = — Zpi log, pi, (6.1)

where the logarithm is base 2 because we are imagining that we encode ev-
erything using binary digits (bits), and we define 0log0 = 0. A graph of the
entropy is given in Figure 6.2. Suppose that we have a set of positive and
negative examples of some feature (where the feature can only take 2 values:
positive and negative). If all of the examples are positive, then we don’t get
any extra information from knowing the value of the feature for any particular
example, since whatever the value of the feature, the example will be positive.
Thus, the entropy of that feature is 0. However, if the feature separates the
examples into 50% positive and 50% negative, then the amount of entropy
is at a maximum, and knowing about that feature is very useful to us. The
basic concept is that it tells us how much eztra information we would get from
knowing the value of that feature. A function for computing the entropy is
very simple, as here:
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o "o -

2”7 0“‘4" T Tee T
Proportian of Positive Examples
FIGURE 6.2: A graph of entropy, detailing how much information is
available from finding out another piece of information given what you already

know.
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For our decision tree, the best feature to pick as the one to classify on now
is the one that gives you the most information, i.e., the one with the highest
entropy. After using that feature, we re-evaluate the entropy of each feature
and again pick the one with the highest entropy.

Information theory is a very interesting subject. It is possible to download
Shannon’s 1948 paper from the Internet, and also to find many resources
showing where it has been applied. There are now whole journals devoted to
information theory because it is relevant to so many areas such as computer
and telecommunication networks, machine learning, and data storage. Some
further readings in the area are given at the end of the chapter.

6.2.2 1ID3

Now that we have a suitable measure for choosing which feature to choose
next, entropy, we just have to work out how to apply it. The important idea
is to work out how much the entropy of the whole training set would decrease
if we choose each particular feature for the next classification step. This is
known as the information gain, and it is defined as the entropy of the whole
set minus the entropy when a particular feature is chosen. This is defined by
(where S is the set of examples, F is a possible feature out of the set of all

possible ones, and |Sy| is a count of the number of members of S that have
value f for feature F'):
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Gain(S, F) = Entropy(S) — Z l‘ ‘l Entropy(Sy). (6.2)
f€values(F)

true, so = false, s3 = false, s4 = false} and one feature F that can have values
{f1, fo, f3}. In the example, the feature value for s; could be f;, for s, it
could be fa, for s3, f3 and for s4, f1 then we can calculate the entropy of §
as (where @ means true, of which we have one example, and © means false,
of which we have three examples):

As an example, suppose that we have data (with outcomes) § = {s1 =

Entropy(S) = —pg log, pe — pe logy pe

e 3.3
1 089 171 089 1
= 0.5+0.311 = 0.811. (6.3)

If you were trying to follow that calculation on a calculator, you might
be wondering how to compute logy,p. The answer is to use the identity
log, p = Inp/In(2), where In is the natural logarithm, which your calcula-
tor can produce. NumPy has the log2() function.

We now want to compute the information gain of F, so we now need to com-
pute each of the values inside the summation in Equation (6.2), '—%ILIEntropy(S ):

1851 L (0,0 11
5| ——Entropy(Sy,) = rRell W log, 171 log, il
=0 (6.4)
1S, 2 (1, 1 1 1
S| Entropy(Sy,) = 17\ 73 —log, = 773 —log, 5
1
== 6.5
: (65)
1541 Lo (00,0 1, 1
=Zx[==log,~ — =log, —
5| Entropy(Sy,) Rl O log, 110827
=0 (6.6)

The information gain from adding this feature is the entropy of S minus the
sum of the three values above:

Gain(S, F) = 0.811 — (0 + 0.5 + 0) = 0.311. (6.7)

This can be computed in an algorithm using the following function (where
lots of the code is to get the relevant data):
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The ID3 algorithm computes this information gain for each feature and
chooses the one that produces the highest value. In essence, that is all there
is to the algorithm. It searches the space of possible trees in a greedy way
by choosing the feature with the highest information gain at each stage. The
output of the algorithm is the tree, i.e., a list of nodes, edges, and leaves. As
with any tree in computer science, it can be constructed recursively. At each
stage the best feature is selected and then removed from the dataset, and the
algorithm is recursively called on the rest. The recursion stops when either
there is only one class remaining in the data, or there are no features left. In
the first case a leaf is added with that class as its label, while in the second
the most common label in the remaining data are used.

The ID3 Algorithm

o if all examples have the same label:

— return a leaf with that label
o else if there are no features left to test:

— return a leaf with the most common label
o else:

— choose the feature F' that maximises the information gain of S to
be the next node using Equation (6.2)

— add a branch from the node for each possible value f in F

— for each branch:

* calculate Sy by removing F from the set of features

x recursively call the algorithm with Sf, to compute the gain
relative to the current set of examples

Owing to the focus on classification for real world examples, trees are often
used with text features rather than numeric values. This makes it rather
difficult to use NumPy, and so the sample implementation is pretty well pure
Python. It uses a feature of Python that is uncommon in other languages,
which is the dictionary in order to hold the tree, which uses the braces {, }, and
which is described next before we look at the decision tree implementation.

6.2.3 Implementing Trees and Graphs in Python

Trees are really just a restricted version of graphs, since they both consist of
nodes and edges between the nodes. Graphs are a very useful data structure
in many different areas of computer science. There are two reasonable ways
to represent a graph computationally. One is as an N x N matrix, where N
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is the number of nodes in the network. Each element of the matrix is a 1 if
there is a link between the two nodes, and a 0 otherwise. The benefit of this
approach is that it is easy to give weights to the links by changing the 1s to the
values of the weights. The alternative is to store a list of nodes, following each
by a list of nodes that it is linked to. Both are fairly natural in Python, with
the second making use of the dictionary, a basic data structure that we have
not used much, except for very simply in the decision tree (Chapter 6) that
consists of a set of keys and values. For a graph, the key to each dictionary
entry is the name of the node, and its value is a list of the nodes that it is
connected to, as in this example:

’ma@i

N ATE

PR

G e n w o Sl O

w0 a0 B 6 DD
o v oo KT

That is all there is to it for creating the dictionary, and using it is not very
different, since there are built-in methods to get a list of keys (keys()) and

check if a key is in a dictionary (in). Code to find a path through the graph
can then be written as a simple recursive function:

graph start, e
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Using those methods we can now look at a Python implementation of the
decision tree, which also has a recursive function call as its basis.

6.2.4 Implementation of the Decision Tree

The make_tree() function (which uses the calc_entropy() and calc_info_ga
functions that were described previously) looks like:
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It is worth considering how ID3 generalises from training examples to the
set of all possible inputs. It uses a method known as the inductive bias. The
choice of the next feature to add into the tree is the one with the highest
information gain, which biases the algorithm towards smaller trees, since it
tries to minimise the amount of information that is left. This is consistent with
a well-known principle that short solutions are usually better than longer ones
(not necessarily true, but simpler explanations are usually easier to remember
and understand). You might have heard of this principle as ‘Occam’s Razor,’
although I prefer it as an acronym: KISS (Keep It Simple, Stupid). In fact,
there is a sound information-theoretic way to write down this principle. It
is known as the Minimum Description Length (MDL) and was proposed by
Rissanen in 1989. In essence it says that the shortest description of something,
i.e., the most compressed one, is the best description.

Note that the algorithm can deal with noise in the dataset, because the
labels are assigned to the most common value of the target attribute. Another
benefit of decision trees is that they can deal with missing data. Think what
would happen if an example has a missing feature. In that case, we can
skip that node of the tree and carry on without it, summing over all the
possible values that that feature could have taken. This is virtually impossible
to do with neural networks: how do you represent missing data when the
computation is based on whether or not a neuron is firing? In the case of
neural networks it is common to either throw away any datapoints that have
missing data, or guess (more technically impute any missing values, either by
identifying similar datapoints and using their value or by using the mean or
median of the data values for that feature). This assumes that the data that
is missing is randomly distributed within the dataset, not missing because of
some unknown process.

Saying that ID3 is biased towards short trees is only partly true. The
algorithm uses all of the features that are given to it, even if some of them
are not necessary. This obviously runs the risk of overfitting, indeed it makes
it very likely. There are a few things that you can do to avoid overfitting, the
simplest one being to limit the size of the tree. You can also use a variant of
early stopping by using a validation set and measuring the performance of the
tree so far against it. However, the approach that is used in more advanced
algorithms (most notably C4.5, which Quinlan invented to improve on ID3)
is pruning.

There are a few versions of pruning, all of which are based on computing
the full tree and reducing it, evaluating the error on a validation set. The
most naive version runs the decision tree algorithm until all of the features
are used, so that it is probably overfitted, and then produces smaller trees by
running over the tree, picking each node in turn, and replacing the subtree
beneath every node with a leaf labelled with the most common classification
of the sub-tree. The error of the pruned tree is evaluated on the validation
set, and the pruned tree is kept if the error is the same as or less than the
original tree, and rejected otherwise.
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C4.5 uses a different method called rule post-pruning. This consists of tak-
ing the tree generated by ID3, converting it to a set of if-then rules, and then
pruning each rule by removing preconditions if the accuracy of the rule in-
creases without it. The rules are then sorted according to their accuracy on
the training set and applied in order. The advantages of dealing with rules
are that they are easier to read and their order in the tree does not matter,
just their accuracy in the classification.

6.2.5 Dealing with Continuous Variables

One thing that we have not yet discussed is how to deal with continuous
variables, we have only considered those with discrete sets of feature values.
The simplest solution is to discretise the continuous variable. However, it is
also possible to leave it continuous and modify the algorithm. For a continuous
variable there is not just one place to split it: the variable can be broken
between any pair of datapoints, as shown in Figure 6.3. It can, of course,
be split in any of the infinite locations along the line as well, but they are
no different to this smaller set of locations. Even this smaller set makes the
algorithm more expensive for continuous variables than it is for discrete ones,
since as well as calculating the information gain of each variable to pick the
best one, the information gain of many points within each variable has to be
computed. In general, only one split is made to a continuous variable, rather
than allowing for threeway or higher splits, although these can be done if
necessary.

The trees that these algorithms make are all univariate trees, because they
pick one feature (dimension) at a time and split according to that one. There
are also algorithms that make multivariate trees by picking combinations of
features. This can make for considerably smaller trees if it is possible to find
straight lines that separate the data well, but are not parallel to any axis.
However, univariate trees are simpler and tend to get good results, so we
won’t consider multivariate trees any further. This fact that one feature is
chosen at a time provides another useful way to visualise what the decision
tree is doing. Figure 6.4 shows the idea. Given a dataset that contains three
classes, the algorithm picks a feature and value for that feature to split the
remaining data into two. The final tree that results from this is shown in
Figure 6.5.

6.2.6 Computational Complexity

The computational cost of constructing binary trees is well known for the
general case, being O(N log N) for construction and O{log N) for returning a
particular leaf, where N is the number of nodes. However, these results are
for balanced binary trees, and decision trees are often not balanced; while the
information measures attempt to keep the tree balanced by finding splits that
separate the data into two even parts (since that will have the largest entropy),
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FIGURE 6.3: Possible places to split the variable x,, between each of the
datapoints as the feature value increases.
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FIGURE 6.4: The effect of decision tree choices. The two-dimensional
dataset shown in(a) is split first by choosing feature z; (b) and then z2, (¢)
which separates out the three classes. The final tree is shown in Figure 6.5.
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FIGURE 6.5: The final tree created by the splits in Figure 6.4.

there is no guarantee of this. Nor are they necessarily binary, especially for
ID3 and C4.5, as our example shows.

If we assume that the tree is approximately balanced, then the cost at
each node consists of searching through the d possible features (although this
decreases by 1 at each level, that doesn’t affect the complexity in the O(-)
notation) and then computing the information gain for the dataset for each
split. This has cost O(dnlogn), where n is the size of the dataset at that
node. For the root, n = N, and if the tree is balanced then n is divided by
2 at each stage down the tree. Summing this over the approximately log N
levels in the tree gives computational cost O(dN?log N).

6.3 Classification and Regression Trees (CART)

There is another well-known tree-based algorithm, CART, whose name in-
dicates that it can be used for both classification and regression. Classification
is not wildly different in CART, although it is usually constrained to construct
binary trees. This might seem odd at first, but there are sound computer sci-
ence reasons why binary trees are good, as suggested in the computational
cost discussion above, and it is not a real limation. Even in the example
that we started the chapter with, we can always turn questions into binary
decisions by splitting the question up a little. Thus, a question that has three
answers (say the question about when your nearest assignment deadline is,
which is either ‘urgent’, ‘near’, or ‘none’) can be split into two questions: first,
‘is the deadline urgent?’, and then if the answer to that is ‘no’, second ‘is the
deadline near?’ The only real difference with classification in CART is that
a different information measure is commonly used. This is discussed next,
before we look briefly at regression with trees.
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6.3.1 Gini Impurity

The entropy that was used in ID3 as the information measure is not the
only way to pick features. Another possibility is something known as the Gini
impurity. The ‘impurity’ in the name suggests that the aim. of the decision
tree is to have each leaf node represent a set of datapoints that are in the
same class, so that there are no mismatches. This is known as purity. If a
leaf is pure then all of the training data within it have just one class. In
which case, if we count the number of datapoints at the node (or better, the
fraction of the number of datapoints) that belong to a class ¢ (call it N(7)),
then it should be 0 for all except one value of 7. So suppose that you want to
decide on which feature to choose for a split. The algorithm loops over the
different features and checks how many points belong to each class. If the
node is pure, then N(¢) = 0 for all values of ¢ except one particular one. So
for any particular feature k£ you can compute:

4
Ge =YY N@EHN(), (6.8)
i=1 j#i
where c is the number of classes. In fact, you can reduce the algorithmic effort
required by noticing that ). N(¢) = 1 (since there has to be some output
class) and so Ej# N(j) =1— N(i). Then Equation (6.8) is equivalent to:

Gp=1- ZC:N(i)Q. (6.9)

Either way, the Gini impurity is equivalent to computing the expected error
rate if the classification was picked according to the class distribution. The
information gain can then be measured in the same way, subtracting each
value G; from the total Gini impurity.

The information measure can be changed in another way, which is to add
a weight to the misclassifications. The idea is to consider the cost of mis-
classifying an instance of class i as class j (which we will call the risk in
Section 8.1.1) and add a weight that says how important each datapoint is.
It is typically labelled as A;; and is presented as a matrix, with element A;;
representing the cost of misclassifying ¢ as 7. Using it is simple, modifying
the Gini impurity (Equation (6.8)) to be:

Gi =Y MN@N(). (6.10)
J#i
‘We will see in Section 7.1 that there is another benefit to using these weights,
which is to successively improve the classification ability by putting higher
weight on datapoints that the algorithm is getting wrong.
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6.3.2 Regression in Trees

The new part about CART is its application in regression. While it might
seem strange to use trees for regression, it turns out to require only a simple
modification to the algorithm. Suppose that the outputs are continuous, so
that a regression model is appropriate. None of the node impurity measures
that we have considered so far will work. Instead, we'll go back to our old
favourite—the sum-of-squares error. To evaluate the choice of which feature
to use next, we also need to find the value at which to split the dataset
according to that feature. Remember that the output is a value at each leaf.
In general, this is just a constant value for the output, computed as the mean
average of all the data points that are situated in that leaf. This is the optimal
choice in order to minimise the sum-of-squares error, but it also means that
we can choose the split point quickly for a given feature, by choosing it to
minimise the sum-of-squares error. We can then pick the feature that has the
split point that provides the best sum-of-squares error, and continue to use
the algorithm as for classification.

6.4 Classification Example

We’ll work through an example using ID3 in this section. The data that
we'll use will be a continuation of the one we started the chapter with, about
what to do in the evening. When we want to construct the decision tree to
decide what to do in the evening, we start by listing everything that we've
done for the past few days to get a suitable dataset (here, the last ten days):

[ Deadline? | Is there a party? | Lazy? | Activity
Urgent Yes Yes Party
Urgent No Yes Study

Near Yes Yes Party
None Yes No Party
None No Yes Pub
None Yes No Party
Near No No Study
Near No Yes TV
Near Yes Yes Party
Urgent No No Study

To produce a decision tree for this problem, the first thing that we need to
do is work out which feature to use as the root node. We start by computing
the entropy of S:
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EntrOPy(S ) = —Pparty Ing Pparty — Pstudy 10g2 Pstudy
— Ppub logs Ppub — PV logy PTv
I S B T R T
10 %270 " 10 ®270 10 8210~ 10 °®2 10
= 0.5+ 0.5211 + 0.3322 + 0.3322 = 1.6855 (6.11)

and then find which feature has the maximal information gain:

Gain(S, Deadline) = 1.6855 — '—‘SY“%;’“-'Entropy(Smgent)
_ |Snear|
10

l nonel

10

3 2 1
— 16855 — — (-2 1
10( 3°g23 3Og23>
42,2 1 1 1 1
10\ 1827 4°g24 4°g24

3 (lye 1 2, 2
10\ 39237 3%:23

= 1.6855 — 0.2755 — 0.6 — 0.2755
= 0.5345 (6.12)

EntrOPY(Snear) - EntrOPY(Snone)

5 5 5
S, Party) = 1.6855 — — ( —2 log, =
Gain(S, Party) = 1.6855 10 ( 3 log, 5)

IS SV R S S S

10\ 5 %25 5 %25 5825

— 1.6855 — 0 — 0.6855

= 1.0 (6.13)

6 (3 3 1. 1 1. 1 1. 1
Gain(S, Lazy) = 1.6855 — — | —> log, > — = log, = — ~ logy = — = logy =
ain($, Lazy) 10( Glog2ag —glogzg —clogag — ¢ og26>

A (2,22, 2
10\ 71827 " 19823

= 1.6855 — 1.0755 — 0.4
=0.21 (6.14)

Therefore, the root node will be the party feature, which has two feature
values (‘yes’ and ‘no’), so it will have two branches coming out of it (see
Figure 6.6). When we look at the ‘yes’ branch, we see that in all five cases
where there was a party we went to it, so we just put a leaf node there, saying
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Party?

Yes No Go to party

FIGURE 6.7: The tree after

FIGURE 6.6: The decision tree
another step.

after one step of the algorithm.

‘party’. For the ‘no’ branch, out of the five cases there are three different
outcomes, so now we need to choose another feature. The five cases we are
looking at are:

Deadline? | Is there a party? | Lazy? | Activity
Urgent No Yes Study
None No Yes Pub
Near No No Study
Near No Yes TV
Urgent No Yes Study

We've used the party feature, so we just need to calculate the information
gain of the other two over these five examples:

5 2

2( 1,1 1 1\ _ 1(1 1
5 72825 T 585 | T 7827

=1371-0-04-0

2 2 2
Gain(S, Deadline) = 1.371 — = (—5 log, )

=0.971 (6.15)
4 2 1 1 1 1
Gain(S, Lazy) = 1.371 — R (—% log, 11 log, i ZIng Z)
1 1 1 1
5\ 1 221
=1371-12-0
= 0.1710 (6.16)

This leads to the tree shown in Figure 6.7. From this point it is relatively
simple to complete the tree, leading to the one that was shown in Figure 6.1.
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Further Reading

For more information about decision trees, the following two books are of
interest;:

o JR. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, San Francisco, CA, USA, 1993.

o L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification
and Regression Trees. Chapman & Hall, New York, USA, 1993.

If you want to know more about information theory, then there are lots of
books on the topic, including;:

o T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-
Interscience, New York, USA, 1991.

e F.M. Reza. An Introduction to Information Theory. McGraw-Hill, New
York, USA, 1961.

The original paper that started the field is:

e C.E. Shannon. A mathematical theory of information. The Bell System
Technical Journal, 27(3):379-423 and 623-656, 1948.

A book that covers information theory and machine learning is:

e D.J.C. MacKay. Information Thoery, Inference and Learning Algo-
rithms. Cambridge University Press, Cambridge, UK, 2003.

Other machine learning textbooks that cover decision trees include:

o Sections 8.2-8.4 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern
Classification. Wiley-Interscience, New York, USA, 2nd edition, 2001.

e Chapter 7 of B.D. Ripley. Pattern Recognition and Neural Networks.
Cambridge University Press, Cambridge, UK, 1996.

o Chapter 3 of T. Mitchell. Machine Learning. McGraw-Hill, New York,
USA, 1997.
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Practice Questions

Problem 6.1 Suppose that the probability of five events are P(first) = 0.5,
and P(second) = P(third) = P(fourth) = P(fifth) = 0.125. Calculate
the entropy. Write down in words what this means.

Problem 6.2 Make a decision tree that computes the logical AND function.
How does it compare to the Perceptron solution?

Problem 6.3 Turn this politically incorrect data from Quinlan into a deci-
sion tree to classify which attributes make a person attractive, and then
extract the rules.

[Height [ Hair | Eyes | Attractive?
Small | Blonde | Brown No
Tall Dark | Brown No
Tall | Blonde [ Blue Yes
Tall Dark Blue No
Small | Dark Blue No
Tall Red Blue Yes
Tall { Blonde | Brown No
Small | Blonde | Blue Yes

Problem 6.4 When you arrive at the pub, your five friends already have
their drinks on the table. Jim has a job and buys the round half of the
time. Jane buys the round a quarter of the time, and Sarah and Simon
buy a round one eighth of the time. John hasn’t got his wallet out since
you met him three years ago.

Compute the entropy of each of them buying the round and work out
how many questions you need to ask (on average) to find out who bought
the round.

Two more friends now arrive and everybody spontaneously decides that
it is your turn to buy a round (for all eight of you). Your friends set
you the challenge of deciding who is drinking beer and who is drinking
vodka according to their gender, whether or not they are students, and
whether they went to the pub last night. Use ID3 to work it out, and
then see if you can prune the tree.
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Drink | Gender | Student | Pub last night

Beer T T T

Beer T F T
Vodka T F F
Vodka T F F
Vodka F T T
Vodka F F F
Vodka F T T
Vodka F T T

Problem 6.5 The CPU dataset in the UCI repository is a very good regression
problem for a decision tree. You will need to modify the decision tree
code so that it does regression, as discussed in Section 6.3.2. You will
also have to work out the Gini impurity for multiple classes.

Problem 6.6 Modify the implementation to deal with continuous variables,
as discussed in Section 6.2.5.

Problem 6.7 The misclassification impurity is:
N(i) = 1 — max P(w;). (6.17)
j

Add this into the code and test the new version on some of the datasets
above.



Chapter 7

Decision by Committee: Ensemble
Learning

The old saying has it that two heads are better than one. Which naturally
leads to the idea that even more heads are better than that, and ends up with
decision by committee, which is famously useless for human activities (as in
the old joke that a camel is a horse designed by a committee). For machine
learning methods the results are rather more impressive, as we’ll see in this
chapter.

The basic idea is that by having lots of learners that each get slightly
different results on a dataset—some learning certain things well and some
learning others—and putting them together, the results that are generated
will be significantly better than any one of them on its own (provided that you
put them together well... otherwise the results could be significantly worse).
One analogy that might prove useful is to think about how your doctor goes
about performing a diagnosis of some complaint that you visit her with. If she
cannot find the problem directly, then she will agk for a variety of tests to be
performed, e.g., scans, blood tests, consultations with experts. She will then
aggregate all of these opinions in order to perform a diagnosis. Each of the
individual tests will suggest a diagnosis, but only by putting them together
can an informed decision be reached.

Figure 7.1 shows the basic idea of ensemble learning, as these methods are
collectively called. Given a relatively simple binary classification problem and
some learner that puts an ellipse around a subset of the data, combining the
ellipses can provide a considerably more complex decision boundary.

There are then only a couple of questions to ask: which learners should we
use, how should we ensure that they learn different things, and how should we
combine their results? The methods that we are investigating in this chapter
can use any classifier at all. Although in general they only use one type of
classifier at a time, they do not have to. A common choice of classifier is the
decision tree (see Chapter 6).

Ensuring that the learners see different things can be performed in different
ways, and it is the primary difference between the algorithms that we shall see.
However, it can also come about naturally depending upon the application
area. Suppose that you have lots and lots of data. In that case you couid
simply randomly partition the data and give different sets of data to different
classifiers. Even here there are choices: do you make the partitions separate,



154 Machine Learning: An Algorithmic Perspective

K24 x4 %op

> >

x; X1 X,

FIGURE 7.1: By combining lots of simple classifiers (here that simply put
an elliptical decision boundary onto the data), the decision boundary can be
made much more complicated, enabling the difficult separation of the pluses

from the circles.

or include overlaps? If there is no overlap, then it could be difficult to work out
how to combine the classifiers, or it might be very simple: if your doctor always
asks for opinions from two colleagues, one specialising in heart problems and
one in sports injuries, then upon discovering that your leg started hurting
after you went for a run she would likely accord more weight to the diagnosis
of the sports injury expert.

Interestingly, ensemble methods do very well when there is very little data
as well as when there is too much. To see why, think cross-validation (Sec-
tion 3.3.5). We used cross-validation when there was not enough data to go
around, and trained lots of neural networks on different subsets of the data.
Then we threw away most of them. With an ensemble method we keep them
all, and combine their results in some way. One very simple way to combine
the results is to use majority voting — if it’s good enough for electing govern-
ments in elections, it’s good enough for machine learning. Majority voting has
the interesting property that for binary classification, the combined classifier
will only get the answer wrong if more than half of the classifiers were wrong.
Hopefully, this isn’t going to happen too often (although you might be able
to think of government elections where this has been the case in your view).
There are alternative ways to combine the results, as we'll discuss. These
things will become clearer as we look at the algorithms, so let’s get started.

7.1 Boosting

At first sight the claim of the most popular ensemble method, boosting,
seems amazing. If we take a collection of very poor (weak in the jargon)
learners, each performing only just better than chance, then by putting them
together it is possible to make an ensemble learner that can perform arbitrarily
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well. So we just need lots of low quality learners, and a way to put them
together usefully, and we can make a learner that will do very well.

The principal algorithm of boosting is named AdaBoost, and is described
in Section 7.1.1. The algorithm was first described in the mid-1990s by Fre-
und and Shapiro, and while it has had many variations derived from it, the
principal algorithm is still one of the most widely used. The algorithm was
proposed as an improvement on the original 1990 boosting algorithm, which
was rather data hungry. In that algorithm, the training set was split into
three. A classifier was trained on the first third, and then tested on the sec-
ond third. All of the data that was misclassified during that testing was used
to form a new dataset, along with an equally sized random selection of the
data that was correctly classified. A second classifier was trained on this new
dataset, and then both of the classifiers were tested on the final third of the
dataset. If they both produced the same output, then that datapoint was ig-
nored, otherwise the datapoint was added to yet another new dataset, which
formed the training set for a third classifer. Rather than looking further at
this version, we will look at the more common algorithm.

7.1.1 AdaBoost

The innovation that AdaBoost (which stands for adaptive boosting) uses is
to give weights to each datapoint according to how difficult previous classifiers
have found to get it correct. These weights are given to the classifier as part
of the input when it is trained.

The AdaBoost algorithm is conceptually very simple. At each iteration a
new classifier is trained on the training set, with the weights that are applied
to the training set for each datapoint being modified at each iteration accord-
ing to how successfully that datapoint has been classified in the past. The
weights are initially all set to the same value, 1/N, where N is the number of
datapoints in the training set. Then, at each iteration, the error (€) is com-
puted as the sum of the weights of the misclassified points, and the weights for
incorrect examples are updated by being multiplied by o = ¢/(1 —¢). Weights
for correct examples are left alone, and then the whole set is normalised so
that it sums to 1 (which is effectively a reduction in the importance of the
correctly classified datapoints). Training terminates after a set number of
iterations, or when either all of the datapoints are classified correctly, or one
point contains more than half of the available weight.

Figure 7.2 shows the effect of weighting incorrectly classified examples as
training proceeds, with the size of each datapoint being a measure of its
importance.

As an algorithm this looks like (where I(y, # h:(zy)) is an indicator function
that returns 1 if the target and output are not equal, and 0 if they are):
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FIGURE 7.2: As points are misclassified, so their weights increase in
boosting (shown by the datapoint getting larger), which makes the importance
of those datapoints increase, making the classifiers pay more attention to them.

AdaBoost Algorithm

e initialise all weights to 1/N, where N is the number of datapoints

e while 0 < ¢ < % (and t < T, some maximum number of iterations):

— train classifier on {S,w®}, getting hypotheses hi(z,) for data-
points x,,

N
— compute training error e; = w1 (yn # he(zn))
n=1

— set ap = log (16;:2)

— update weights using:
wr(zt+1) = 'wﬁf) exp(atl (yn # he(zn))/ 2, (7.1)

where Z; is a normalisation constant

e output f(z) = sign (é atht(w)>

There is nothing too difficult to the implementation, either, as can be seen
from the main loop here:
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Most of the work of the algorithm is done by the classification algorithm,
which is given new weights at each iteration. In this respect, boosting is not
quite a stand-alone algorithm: the classifiers need to consider the weights
when they perform their classifications. It is not always obvious how to do
this for a particular classifier, but we have seen methods of doing it for a few
classifiers. For the decision tree we saw a method in Section 6.3.1, when we
looked at the Gini impurity. There, we allowed for a XA matrix that encoded the
risks associated with misclassification, and these are a perfect place in which
to introduce weights. Modification of the decision tree algorithm to deal with
these weights is suggested as an exercise for this chapter. A similar argument
can be used for the Bayes’ classifier; this will be discussed in Section 8.1.1.

As a very simple example showing how boosting works, a very simple classi-
fier was created that can only separate data by fitting one either horizontal or
vertical line, with it choosing which to fit at the current iteration at random.
A two-dimensional dataset was created with data in the top right-hand corner
being in one class, and the rest in another, plus a couple of the datapoints
were randomly mislabelled to simulate noise. Clearly, this dataset cannot be
separated by a single horizontal or vertical decision boundary. However, Fig-
ure 7.3 shows the output of the classifier on an independent test set, where the
algorithm gets only one datapoint wrong, and that is one that is coincidentally
close to one of the ‘noisy’ datapoints in the training data. Figure 7.4 shows
the training data, the error curve on both the training and testing sets and
the first few iterations of the classifier, which can only put in one horizontal
or linear classification line.

Clearly, such impressive results require some explanation and understand-
ing. The key to this understanding is to compute the loss function, which is
simply the measure of the error that is applied (we have been using a sum-of-
squares loss function for many algorithms in the book). The loss function for
AdaBoost has the form
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FIGURE 7.3: Boosting learns this simple dataset very successfully,
producing an ensemble classifier that is rather more complicated than the simple
horizontal or vertical line classifier that the algorithm boosts. On the
independent test set shown here, the algorithm gets only 1 datapoint wrong,
and that is one that is coincidentally close to one that was misclassified to
simulate noise in the training data.

Gila) = 3 exp (~yn(ahe(@n) + fr(en))), (7.2)

n=1

where fi_1(zy,) is the sum of the hypotheses of that datapoint from the pre-
vious iterations:

-1
ft—l(mn) = Zaq.hq-(xn). (73)
7=0
Exponential loss functions are well behaved and robust to outliers. The
weights w® in the algorithm are nothing more than the second term in Equa-
tion (7.2), which can therefore be rewritten as:

N
Gi(a) =Y w™® exp (—ynahe(z,)). (7.4)

n=1

Deriving the rest of the algorithm from here requires substituting in for the
hypotheses h and then solving for a, which produces the full algorithm. Inter-
estingly, this is not the way that AdaBoost was created; this understanding of
why it works so well came later. It is possible to choose other loss functions,
and providing that they are differentiable they will provide useful boosting-
like algorithms, which are collectively known as arcing algorithms (for adaptive
reweighting and combining).

Adaboost can be modified to perform regression rather than classification
(known as real adaboost, or sometime adaboost.R). There is another variant on
boosting (also called AdaBoost, confusingly) that uses the weights to sample
from the full dataset, training on a sample of the data rather than the full
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FIGURE 7.4: Top: the training data and the error curve. Middle and
bottom: The first few iterations of the classifier; each plot shows the output of
one of the weak classifiers that are boosted by the algorithm.
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weighted set, with more difficult examples more likely to be in the training
sample. This is more in line with the original boosting algorithm, and is
obviously faster, since each training run has fewer data to learn about.

7.1.2 Stumping

There is a very extreme form of boosting that is applied to trees. It goes by
the descriptive name of stumping. The stump of a tree is the tiny piece that
is left over when you chop off the rest, and the same is true here: stumping
consists of simply taking the root of the tree and using that as the decision
maker. So for each classifier you use the very first question that makes up the
root of the tree, and that is it. Often, this is worse than chance on the whole
dataset, but by using the weights to sort out when that classifier should be
used, and to what extent, as opposed to the other ones, the overall output of
stumping can be very successful. In fact, it is pretty much exactly what the
simple example that we saw consisted of.

7.2 Bagging

The simplest method of combining classifiers is known as bagging, which
stands for bootstrap aggregating, the statistical description of the method.
This is fine if you know what a bootstrap is, but fairly useless if you don’t.
A bootstrap sample is a sample taken from the original dataset with replace-
ment, so that we may get some data several times and others not at all. The
bootstrap sample is the same size as the original, and lots and lots of these
samples are taken: B of them, where B is at least 50, and could even be
in the thousands. The name bootstrap is more popular in computer science
than anywhere else, since there is also a bootstrap loader, which is the first
program to run when a computer is turned on. It comes from the nonsensical
idea of ‘picking yourself up by your bootstraps,” which means lifting yourself
up by your shoelaces, and is meant to imply starting from nothing.

Bootstrap sampling seems like a very strange thing to do. We've taken a
perfectly good dataset, mucked it up by sampling from it, which might be good
if we had made a smaller dataset (since it would be faster), but we still ended
up with a dataset the same size. Worse, we’ve done it lots of times. Surely this
is just a way to burn up computer time without gaining anything. The benefit
of it is that we will get lots of learners that perform slightly differently, which
is exactly what we want for an ensemble method. Another benefit is that
estimates of the accuracy of the classification function can be made without
complicated analytic work, by throwing computer resources at the problem
(technically, bagging is a variance reducing algorithm; the meaning of this will
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become clearer when we talk about bias and variance in Section 8.2.4). This
is a standard technique in modern statistics; we’ll see another example in
Chapter 14 when we look at Markov Chain Monte Carlo methods. It is
sufficiently common to have inspired the comment that “statistics is defined
as the discipline where those that think don’t count and those that count
don’t think.”

Having taken a set of bootstrap samples, the bagging method simply re-
quires that we fit a model to each dataset, and then combine them by taking
the output to be the majority vote of all the classifiers. A NumPy implemen-
tation is shown next, and then we will look at a simple example.

The example consists of taking the party data that was used in Section 6.4
to demonstrate the decision tree, and restricting the trees to stumps, so that
they can make a classification based on just one variable. The output of a
decision tree that uses the whole dataset for this is not surprising: it takes
the two largest classes, and separates them. However, using just stumps of
trees and 20 samples, bagging can separate the data perfectly, as this output
shows:
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7.2.1 Subagging

For some reason, ensemble methods often have good names, such as boost-
ing and bagging (and we will see my choice for best-named, bragging, in Sec-
tion 7.3). However, the method of subagging wins the prize for the oddest
sounding word. It is a combination of ‘subsample’ and ‘bagging,” and it is
the fairly obvious idea that you don’t need to produce samples that are the
same size as the original data. If you make smaller datasets, then it makes
sense to sample without replacement, but otherwise the implementation is
only very slightly different from the bagging one, except that in NumPy you
use shuffle() to produce the samples. It is common to use a dataset size
that is half that of the original data, and the results of this can often be
comparable to a full bagging simulation.

7.3 Different Ways to Combine Classifiers

Bagging puts most of its effort into ensuring that the different classifiers see
different data, since they see different samples of the data. This is different
than boosting, where the data stays the same, but the importance of each
datapoint changes for the different classifiers, since they each get different
weights according to how well the previous classifiers have performed. Just
as important for an ensemble method, though, is how it combines the out-
puts of the different classifiers. Both boosting and bagging take a vote from
amongst the classifiers, although they do it in different ways: boosting takes a
weighted vote, while bagging simple takes the majority vote. There are other
alternatives to these methods, as well.

In fact, even majority voting is not necessarily simple. Some classification
systems will only produce an output where all the classifiers agree, or more
than half of them agree, whereas others simply take the most common output,
which is what we usually mean by majority voting. The idea of not always
producing an output is to ensure that the ensemble does not produce outputs
that are contentious, because they are probably difficult datapoints. If the
number of classifiers is odd and the classifiers are each independent of each
other, then majority voting will return the correct label if more than half of
the classifiers agree. Assuming that each individual classifier has a success rate
of p, the probability of the ensemble getting the correct answer is a binomial
distribution of the form:

5 (% )ra-nr (7.5)

k=T/2+1
where T is the number of classifiers. If p > 0.5 then this sum approaches 1
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FIGURE 7.5: The Hierarchical Mixture of Networks network, consisting of a
set of classifiers (experts) with gating systems that also use the inputs to decide
which classifiers to trust.

as 7" — oo. This is a lot of the power behind ensemble methods: even if each
classifier only gets about half the answers right, if we use a decent number
of classifiers (maybe 100) then the probability of the ensemble being correct
gets close to 1. In fact, even with less than 50% chance of success for each
individual classifier, the ensemble can often do very well indeed.

For regression problems, rather than taking the majority vote, it is common
to take the mean of the outputs. However, the mean is heavily affected by
outliers, with the result that the median is a more common average to use. It
is the use of the median that produces the bragging algorithm, which is meant
to imply ‘robust bagging.’

There is one more thing that can be done to combine classifiers, and that is
to learn how to do it. There is an algorithm that does precisely this, known
as the mixture of experts.

Inputs are presented to the network, and each individual classifier makes
an assessment. These outputs from the classifiers are then weighted by the
relevant gate, which produces a weight w using the current inputs, and this
is propagated further up the hierarchy. The most common version of the
mixture of experts works as follows:
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The Mixture of Experts Algorithm

¢ for each expert:

— calculate the probability of the input belonging to each possible
class by computing (where the w; are the weights for that classi-

fier):
1
i ;) = . 7.6
0i(x, wi) 1+ exp(—w; - x) (7.6)
o for each gating network up the tree:
— compute:
exp(vix)
(X, V) = =———F—. 7.7
92, v4) > exp(Vix) (77)

e pass as input to the next level gates (where the sum is over the relevant

inputs to that gate):
Z 0;95- (78)
k

The most common way to train this network is using an EM algorithm.
This is a general statistical approximation algorithm that will be discussed in
Section 8.3.1. It is also possible to use gradient descent on the parameters.

There are a couple of other ways to view these mixture of experts methods.
One is to regard them as trees, except that the splits are not the hard splits
that we performed in Chapter 6, but rather soft, because they are based on
probability. The other is to compare them with radial basis function (RBF)
networks (see Section 4.2). Each RBF gave a constant output within its
receptive field. If, instead, each node were to give a linear approximation to
the data, then the result would be the mixture of experts network.

Further Reading

Three papers that cover the three main ensemble methods described in this
section are:

¢ R.E. Schapire. The boosting approach to machine learning: An overview.
In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu,
editors, Nonlinear Estimation and Classification, Springer, Berlin, Ger-
many, 2003.
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o L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140,
1996.

e M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the
EM algorithm. Neural Computation, 6(2):181-214, 1994.

An overview of the whole area is provided by:

o L. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
Wiley-Interscience, New York, USA, 2004.
For an alternative viewpoint, see:

o Sections 15.3-15.6 of E. Alpaydin. Introduction to Machine Learning.
MIT Press, Cambridge, MA, USA, 2004.

e Section 9.5 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classifi-
cation. Wiley-Interscience, New York, USA, 2nd edition, 2001.

Practice Questions

Problem 7.1 Modify the decision tree implementation to use weights in the
computation of the Gini impurity. This is not trivial, since you have to
modify the total value of the Gini impurity, too. Once you have done
it, use stump trees on the party data.

Problem 7.2 Implement the alternative form of boosting that uses the weights
to sample the dataset. Does this make any difference to the outputs?

Problem 7.3 Stumping picks out the single most informative feature in the
dataset and uses this. For a binary classification problem this will typ-
ically get at least half of the dataset correct. Why? How does this
statement generalise to multiple classes?

Problem 7.4 Compare and contrast bagging and cross-validation.

Problem 7.5 The Breastcancer dataset in the UCI Machine Learning repos-
itory gives ten features and asks for a classification of breast tumours
into benign and malignant. It is a difficult dataset, and provides a good
comparison of the standard decision tree with boosted and bagged ver-
sions. Use all of the methods, using stumping and more advanced trees
and see which work better.

Problem 7.6 The Mixture of Experts algorithm works with any kind of ex-
pert. Suppose that the experts were each MLPs. Implement this algo-
rithm and see how well it does on the Breastcancer dataset above.






Chapter 8

Probability and Learning

One criticism that is often made of neural networks—especially the MLP—is
that it is not clear exactly what it is doing: while we can go and have a look
at the activations of the neurons and the weights, they don’t tell us much.
We've already seen some methods that don’t have this problem, principally
the decision tree in Chapter 6. In this chapter we are going to look at methods
that are based on statistics, and that are therefore more transparent, in that
we can always extract and look at the probabilities and see what they are,
rather than having to worry about weights that have no obvious meaning.
The penalty that we pay for this is that there are going to be a whole lot of
statistical ideas that we need to understand.

We will look at how to perform classification by using the frequency with
which examples appear in the training data, and then we will see how we can
deal with our first example of unsupervised learning, when the labels are not
present for the training examples. If the data comes from known probability
distributions, then we will see that it is possible to solve this problem with a
very neat algorithm, the EM algorithm, which we will also see in other guises
in later chapters. Finally, we will have a look at a rather different way of
using the dataset when we look at nearest neighbour methods.

8.1 Turning Data into Probabilities

Take a look at the plot in Figure 8.1. It shows the measurements of some
feature x for two classes, C; and C;. Members of class C tend to have
larger values of feature z than members of class Cy, but there is some overlap
between the two classes. The correct class is fairly easy to predict at the
extremes of the range, but what to do in the middle is unclear. Suppose
that we are trying to classify writing of the letters ‘a’ and ‘b’ based on their
height. Most people write their ‘a’s smaller than their ‘b’s, but not everybody.
However, in this example, we have a secret weapon. We know that in English
text, the letter ‘a’ is much more common than the letter ‘b.” If we see a letter
that is either an ‘a’ or a ‘b’ in normal writing, then there is a 75% chance that
it is an ‘a.” We are using prior knowledge to estimate the probability that the
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P(x)A

FIGURE 8.1: A histogram of feature values () against their probability for
two classes.

letter is an ‘a’: in this example, P(Cy) = 0.75, P(C3) = 0.25. If we weren’t
allowed to see the letter at all, and just had to classify it, then if we picked
‘a’ every time, we'd be right 75% of the time.

However, when we are asked to make a classification we are also given the
value of z. It would be pretty silly to just use the value of P(C}) and ignore
the value of z if it might help! In fact, we are given a training set of values of
z and the class that each exemplar belongs to. This lets us calculate the value
of P(C}) (we just count how many times out of the total the class was C; and
divide by the total number of examples), and also another useful measurement:
the conditional probability of C; given that z has value X: P(Cy|X) . The
conditional probability tells us how likely it is that the class is C; given that
the value of z is X. So in Figure 8.1 the value of P(C1|X) will be much larger
for small values of X than for large values. Clearly, this is exactly what we
want to calculate in order to perform classification. The question is how to
get to this conditional probability, since we can’t read it directly from the
histogram.

The first thing that we need to do to get these values is to quantise the
measurement x, which just means that we put it into one of a discrete set of
values {X}, such as the bins in a histogram. This is exactly what is plotted
in Figure 8.1. Now, if we have lots of examples of the two classes, and the
histogram bins that their measurements fall into, we can compute P(C;, X;),
which is the joint probability, and tells us how often a measurement of C; fell
into histogram bin X;. We do this by looking in histogram bin X;, counting
the number of examples of class C; that are in it, and dividing by the total
number of examples of class C;.

We can also define P(X;|C;), which is a different conditional probability,
and tells us how often (in the training set) there is a measurement of X
given that the example is a member of class C;. Again, we can just get this
information from the histogram. Hopefully, this has just been revision for you
from a statistics course at some stage; if not, and you don’t follow it, get hold
of any introductory probability book.
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FIGURE 8.2: The letters ‘a’ and ‘b’ in pixel form.

So we have now worked out two things from our training data: the joint
probability P(Cj;, X;) and the conditional probability P(X;|C;). Since we
actually want to compute P(C;|X;) we need to know how to link these things
together. As some of you may already know, the answer is Bayes’ rule, which is
what we are now going to derive. There is a link between the joint probability
and the conditional probability. It is:

P(CivXj) = P(X]lcz)P(Cz)v (81)

or equivalently:

P(Cy, X;) = P(Cy]X;)P(X;)- (8.2)

Clearly, the right-hand side of these two equations must be equal to each
other, since they are both equal to P(C;, X;), and so with one division we
can write:

P(X;|Ci)P(Cs)

P(X;)
This is Bayes’ rule. If you don’t already know it, learn it: it is the most
important equation in machine learning. It relates the posterior probability
P(C;|X;) with the prior probability P(C;) and class-conditional probability
P(X,|C;). The denominator (the term on the bottom of the fraction) acts to
normalise everything, so that all the probabilities sum to 1. It might not be
clear how to compute this term. However, if we notice that any observation
X has to belong to some class C;, then we can marginalise over the classes to
compute:

P(Ci|X;) = (8.3)

P(X¢) =3 P(Xk|Ci)P(Ci). (84)
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P(Cly)

X

FIGURE 8.3: The posterior probabilities of the two classes C; and Cs for
feature z.

The reason why Bayes’ rule is so important is that it lets us obtain the
posterior probability—which is what we actually want—Dby calculating things
that are much easier to compute. We can estimate the prior probabilities
by looking at how often each class appears in our training set, and we can
get the class-conditional probabilities from the histogram of the values of the
feature for the training set. We can use the posterior probability (Figure 8.3)
to assign each new observation to one of the classes by picking the class C;
where:

P(Cilx) > P(Cjlx) ¥ i # 3, (85)

where x is a vector of feature values instead of just one feature. This is
known as the maximum a posteriori or MAP hypothesis. It is what we did in
Section 3.4.2 for the MLP, choosing the class that the MLP gave the highest
output activation to. The question is whether this is the right thing to do.
There has been quite a lot of research in both the statistical and machine
learning literatures into what is the right question to ask about our data to
perform classification, but we are going to skate over it very lightly.

The MAP question is what is the most likely class given the training data?
Suppose that there are three possible output classes, and for a particular input
the posterior probabilities of the classes are P(C1|x) = 0.35, P(Cq|x) = 0.45,
P(Cs|x) = 0.2. The MAP hypothesis therefore tells us that this input is in
class Cs, because that is the class with the highest posterior probability. Now
suppose that, based on the class that the data is in, we want to do something,.
If the class is Cy or C3 then we do action 1, and if the class is Cy then we
do action 2. As an example, suppose that the inputs are the results of a
blood test, the three classes are different possible diseases, and the output is
whether or not to treat with a particular antibiotic. The MAP method has
told us that the output is C, and so we will not treat the disease. But what
is the probability that it does not belong to class Cz, and so should have been
treated with the antibiotic? It is 1 — P(C3) = 0.55. So the MAP prediction
seems to be wrong: we should treat with antibiotic, because overall it is more
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likely. This method where we take into account the final outcomes of all of the
classes is called the Bayes’ Optimal Classification. It minimises the probability
of misclassification, rather than maximising the posterior probability.

8.1.1 Minimising Risk

In the medical example we just saw it made sense to classify based on
minimising the probability of misclassification. We can also consider the risk
that is involved in the misclassification. The risk from misclassifying someone
as unhealthy when they are healthy is usually smaller than the other way
around, but not necessarily always: there are plenty of treatments that have
nasty side effects, and you wouldn’t want to suffer from those if you didn’t
have the disease. In cases like this we can create a loss matrix that specifies
the risk involved in classifying an example of class C; as class C;. It looks like
the confusion matrix we saw when we looked at classification, for example in
Section 2.2.6, except that a loss matrix always contains zeros on the leading
diagonal since there should never be a loss from getting the classification
correct! Once we have the loss matrix, we just extend our classifier to minimise
risk by multiplying each case by the relevant loss number.

8.1.2 The Naive Bayes’ Classifier

We’re now going to return to performing classification, without worrying
about the outcomes, so that we are back to calculating the MAP outcome,
Equation (8.5). We can compute this exactly as described above, and it will
work fine. However, suppose that the vector of feature values had many
elements, so that there were lots of different features that were measured.
How would this affect the classifier? We are trying to estimate P(X;|C;) =
P(Xj, X]?, ... X7|C;) (where the superscripts index the elements of the vector)
by looking at the histogram of all of our training data. As the dimensionality
of X increases (as n gets larger), the amount of data in each bin of the
histogram shrinks. This is the curse of dimensionality again (Section 4.3),
and means that we need much more data as the dimensionality increases.

There is one simplifying assumption that we can make. We can assume
that the elements of the feature vector are conditionally independent of each
other, given the classification. So given the class C;, the values of the different
features do not affect each other. This is the naiveté in the name of the
classifier, since it often doesn’t make much sense—it tells us that the features
are independent of each other. If we were to try to classify coins it would say
that the weight and the diameter of the coin are independent of each other,
which clearly isn’t true. However, it does mean that the probability of getting
the string of feature values P(X} =a1,X? =ag,..., X} = a,|C;) is just equal

J J
to the product of multiplying together all of the individual probabilities:
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P(X} = a1|Ci) x P(X? = a2|Cy) x ... x P(X} = a|Ci) = [ [ P(XF = a|C),
k

(8.6)
which is much easier to compute, and reduces the severity of the curse of
dimensionality. So the classifier rule for the naive Bayes’ classifier is to select
the class C; for which the following computation is the maximum:

P(C) [[ P(X} = ax[Cy). (8.7)
k

This is clearly a great simplification over evaluating the full probability, so
it might come as a surprise that the naive Bayes’ classifier has been shown to
have comparable results to other classification methods in certain domains.
Where the simplification is true, so that the features are conditionally inde-
pendent of each other, the naive Bayes’ classifier produces exactly the MAP
classification. ’ )

We will look again at the example that was used in Chapter 6, particularly
Section 6.4, of deciding what to do in the evening. The way that we solve
this problem using the naive Bayes’ classifier is different. We feed in the
current values for our three feature variables and ask the classifier to compute -
the probabilities of each of the four possible classes based on the data in the
training set. Then we pick the most likely class. Note that the probabilities
will be very small. This is one of the problems with the Bayes’ classifier:
since we are multiplying lots of probabilities, which are all less than one, the
numbers get very small.

Suppose that you have deadlines looming, but none of them are urgent,
that there is no party on, and that you are currently poor. Then the classifier
needs to evaluate:

Party) x P(Near | Party) x P(No Party | Party) x P(Lazy | Party)

o P(
e P(Study) x P(Near | Study) x P(No Party | Study) x P(Lazy | Study)
¢ P(Pub) x P(Near | Pub) x P(No Party | Pub) x P(Lazy | Pub)

o P(

TV) x P(Near | TV) x P(No Party | TV) x P(Lazy | TV)
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These evaluate to:

P(Party):—l%xgxgxg
=0 (8.8)

P(Study)z%x%xgx%
= 316 (8.9)

P(Pub):%ax%x%x%
=0 (8.10)

P(TV)=—116><%><%><2
=0 (8.11)

So based on this you will be studying tonight. And quite right, too.

8.2 Some Basic Statistics

This section will provide a quick summary of a few important statistical
concepts. You may well already know about them, but just in case we’ll go
over them, highlighting the points that are important for machine learning.
Any basic statistics book will give considerably more detailed information.

8.2.1 Averages

We'll start as basic as can be, with the two numbers that can be used to
characterise a dataset: the mean and the variance. The mean is easy, it is
the most commonly used average of a set of data, and is the value that is
found by adding up all the points in the dataset and dividing by the number
of points. There are two other averages that are used: the median and the
mode. The median is the middle value, so the most common way to find
it is to sort the dataset according to size and then find the point that is in
the middle (of course, if there is an even number of datapoints then there
is no exact middle, so people typically take the value halfway between the
two points that are closest to the middle). There is a faster algorithm for
computing the median based on a randomised algorithm that is described in
most textbooks on algorithms. The mode is the most common value, so it
just requires counting how many times each element appears and picking the
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most frequent one. We will also need to develop the idea of variance within a
dataset, and of probability distributions.

8.2.2 Variance and Covariance

If we are given a set of random numbers, then we already know how to
compute the mean of the set, together with the median. However, there are
other useful statistics that can be computed, one of which is the expectation.
The name expectation shows the gambling roots of most probability theory,
since it describes the amount of money you can expect to win. It consists
of multiplying together the payoff for each possibility with the probability
of that thing happening, and then adding them all together. So if you are
approached in the street by somebody selling raffle tickets for $1 and they tell
you that there is a prize of $100,000 and they are selling 200,000 tickets, then
you can work out the expected value of your ticket as

199, 999 -1
* 500,000 7% %% * 250,000 —
where the -1 is the price of your ticket, which does not win 199,999 times out
of 200,000 and the 99,999 is the prize minus the cost of your ticket. Note that
the expected value is not a real value: you will never actually get 50 cents
back, no matter what happens. If we just compute the expected value of a
set of numbers, then we end up with the mean value.

The variance of the set of numbers is a measure of how spread out the values
are. It is computed as the sum of the squared distances between each element
in the set and the expected value of the set (the mean, w):

E=-1 —0.5, (8.12)

N
var({xi}) = o2({x.}) = B({x} — w2 = S =) (8.13)
i=1
The square root of the variance, o, is known as the standard deviation.

The variance looks at the variation in one variable compared to its mean.
We can generalise this to look at how two variables vary together, which is
known as the covariance. It is a measure of how dependent the two variables
are (in the statistical sense). It is computed by:

cov({x;}, {¥:}) = E(({x:} — W) E(({y:} - v)?), (8.14)
where v is the mean of set {y;}. If two variables are independent then the
covariance is 0 (the variables are then known as uncorrelated), while if they
both increase and decrease at the same time then the covariance is positive,
and if one goes up while the other goes down then the covariance is negative.

The covariance can be used to look at the correlation between all pairs of
variables within a set of data. We need to compute the covariance of each
pair, and these are then put together into what is imaginatively known as the
covariance matrix. It can be written as:
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FIGURE 8.4: Two different datasets and a testpoint.

El(x1 — p)(x1 = p1)] E[(x1 — p1) (X2 — p5)] - E[(x1 — 1) (Xn — ptn)]
s El(x2 ~ po) (%1 — )] Bl(x2 — pip) (X2 = pa)] .. El(x2 — 1) (Xn ~ p,)]

El(xn ~ pn)(X1 ~ p1)] E[(Xn — pp)(X2 = #83)] - .. E[(Xn — t2,)(%n — ps,)]

(8.15)
where x; describes the elements of the ith variable, and p; is their mean. Note
that the matrix is square, that the elements on the trace (the leading diagonal)
of the matrix are equal to one (since each variable must be exactly dependent
upon itself), and that it is symmetric since cov(x;, x;) = cov(x;,X;). Equation
(8.15) can also be written in matrix form as ¥ = E[(X — E[X])(X — E[X])T],
recalling that the mean of a variable X is E(X).

We will see in Chapter 10 that the covariance matrix has other uses, but
for now we will think about what it tells us about a dataset. In essence, it
says how the data varies along each data dimension. This is useful if we want
to think about distances again. Suppose I gave you the two datasets shown
in Figure 8.4 and the test point (labelled by the large ‘X’ in the figures) and
asked you if the ‘X’ was part of the data. For the figure on the left you would
probably say yes, while for the figure on the right you would say no, even
though the two points are the same distance from the centre of the data. The
reason for this is that as well as looking at the mean, you’ve also looked at
where the test point lies in relation to the spread of the actual datapoints. If
the data is tightly controlled then the test point has to be close to the mean,
while if the data is very spread out then the distance of the test point from
the mean does not matter as much. We can use this to construct a distance
measure that takes this into account. It is called the Mahalanobis distance
after the person who described it in 1936, and is written as:

Dar(x) = y/ (x — w)T= " (x — pr), (8.16)

where x is the usual column vector of data with mean vector u, and =t
is the inverse of the covariance matrix. If we set the covariance matrix to
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FIGURE 8.5: Plot of the one-dimensional Gaussian curve.

the identity matrix, then the Mahalanobis distance reduces to the Euclidean
distance.

Computing the Mahalanobis distance requires some fairly heavy computa-
tional machinery in computing the covariance matrix and then its inverse.
Fortunately these are very easy to do in NumPy. There is a function that
estimates the covariance matrix of a dataset (cov(x) for data matrix x) and
the inverse is called 1inalg.inv(x). The inverse does not have to exist in all
cases, of course.

We are now going to consider a probability distribution, which describes the
probabilities of something occurring over the range of possible feature values.
There are lots of probability distributions that are common enough to have
names, but there is one that is much better known than any other, because it
occurs so often; therefore, that is the only one we will worry about here.

8.2.3 The Gaussian

The probability distribution that is most well known (indeed, the only one
that many people know, or even need to know) is the Gaussian or normal
distribution. In one dimension it has the familiar ‘bell-shaped’ curve shown in
Figure 8.5, and its equation in one dimension is:

1 —(z —p)?
= _—— 8.17
o) = oo (521, .17
where p is the mean and o the standard deviation. The Gaussian distribution
turns up in many problems because of the Central Limit Theorem, which says
that lots of small random numbers will add up to something Gaussian. In
higher dimensions it looks like:

where X is the n x n covariance matrix (with |X| being its determinant and
2! being its inverse). Figure 8.6 shows the appearance in two dimensions of
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FIGURE 8.6: The two-dimensional Gaussian when (/eft) the covariance
matrix is the identity, (centre) the covariance matrix has elements on the
leading diagonal only, and (right) the general case.

three different cases: when the covariance matrix is the identity, when there
are only numbers on the trace (leading diagonal) of the matrix, and the general
case. The first case is known as a spherical covariance matrix, and has only
1 parameter. The second and third cases define ellipses in two dimensions,
either aligned with the axes (with n parameters) or more generally, with n?
parameters.

8.2.4 The Bias-Variance Tradeoff

Whenever we train any type of machine learning algorithm we are making
some choices about a model to use, and fitting the parameters of that model.
The more degrees of freedom the algorithm has, the more complicated the
model that can be fitted. We have already seen that more complicated models
have inherent dangers such as overfitting, and requiring more training data,
and we have seen the need for validation data to ensure that the model does
not overfit. There is another way to understand this idea that more complex
models do not necessarily result in better results. Some people call it the bias-
variance dilemma rather than a trade-off, but this seems to be over-dramatising
things a little.

In fact, it is a very simple idea. A model can be bad for two different
reasons. Either it is not accurate and doesn’t match the data well, or it is
not very precise and there is a lot of variation in the results. The first of
these is known as the bias, while the second is the statistical variance. More
complex classifiers will tend to improve the bias, but the cost of this is higher
variance, while making the model more specific by reducing the variance will
increase the bias. Just like the Heisenberg Uncertainty Principle in quantum
physics, there is a fundamental law at work behind the scenes that says that
we can’t have everything at once. As an example, consider the difference
between a straight line fit to some data and a high degree polynomial spline.
The straight line has no variance at all, but high bias since it is a bad fit to
the data in general. The spline can fit the training data to arbitrary accuracy,
but the variance will increase. Note that the variance probably increases by
rather less than the bias decreases, since we expect that the spline will give
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a better fit. Some models are definitely better than others, but choosing the
complexity of the model is important for getting good results.

When looking at the usual sum-of-squares error function we can split it up
into separate pieces that represent the bias and the variance:

2

E((y - fx)) =0+ [f(X) - % Zf(xn)} + % (8.19)
i=0

The first of the three terms on the right of the equation is beyond our
control. It is the irreducible error and is the variance of the test data. The
second term is the square of the bias, while the third is the variance. For any
particular model and dataset there is some reasonable set of parameters that
will give the best results for the bias and variance together, and part of the
challenge of model fitting is to find this point.

8.3 (Gaussian Mixture Models

For the Bayes’ classifier that we saw in Section 8.1.2 the data was labelled,
so we could use the labels to perform the classification. However, suppose
that the data is not labelled (unsupervised learning). We will see lots of ways
to deal with this in Chapters 9 and 10, but here we will look at one special
case. Suppose that the different classes each come from their own Gaussian
distribution. This is known as multi-modal data, since there is one distribution
(mode) for each different class. We can’t fit one Gaussian to the data, because
it doesn’t look Gaussian overall.

There is, however, something we can do. If we know how many classes there
are in the data, then we can try to estimate the parameters for that many
Gaussians, all at once. If we don’t know, then we can try different numbers
and see which one works best. We will talk about this issue more for a different
method (the k-means algorithm) in Section 9.1. Tt is perfectly possible to use
any other probability distribution instead of a Gaussian, but Gaussians are
by far the most common choice. Then the output for any particular datapoint
that is input to the algorithm will be the sum of the values expected by all of
the M Gaussians:

M
Fx) =" amd(X; g, Bm), (8.20)

m=1

where ¢(x; pt,,,X,,) is a Gaussian function with mean pu,, and covariance

M
matrix X,,, and the a,, are weights with the constraint that > a, = 1.
m=1
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FIGURE 8.7: Histograms of training data from a mixture of two Gaussians

and two fitted models, shown as the line plot. The model shown on the left fits

well, but the one on the right produces two Gaussians right on top of each other
that do not fit the data well.

Figure 8.7 shows two examples, where the data (shown by the histograms)
comes from two different Gaussians, and the model is computed as a sum or
mixture of the two Gaussians together. The figure also gives you some idea of
how to use the mixture model once it has been created. The probability that
input x; belongs to class m can be written as:

Bm @(Xi5 s Bm)

p(x; € ) = v . (8.21)

k;1 Gm®(%i; fu; Tie)

The problem is how to choose the weights a,,,. The common approach is
to aim for the maximum likelihood solution (the likelihood is the conditional
probability of the data given the model, and the maximum likelihood solu-
tion varies the model to maximise this conditional probability). In fact, it is
common to compute the log likelihood and then to minimise that; it is guar-
anteed to be negative, since probabilities are all less than 1, and the logarithm
spreads out the values, making the optimisation more effective. The algorithm
that is used is an example of a very general one known as the expectation-
maximisation (or more compactly, EM) algorithm. The reason for the name
will become clearer below. We will see another example of an EM algorithm
in Section 15.3.3, but here we see how to use it for fitting Gaussian mixtures,
and get a very approximate idea of how the algorithm works for more general
examples. For more details, see the Further Reading section.

8.3.1 The Expectation-Maximisation (EM) Algorithm

The basic idea of the EM algorithm is that sometimes it is easier to add
extra variables that are not actually known (called hidden or latent variables)
and then to maximise the function over those variables. This might seem to
be making a problem much more complicated than it needs to be, but it turns
out for many problems that it makes finding the solution significantly easier.
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In order to see how it works, we will consider the simplest interesting case
of the Gaussian mixture model: a combination of just two Gaussian mixtures.
The assumption now is that data were created by randomly choosing one of
two possible Gaussians, and then creating a sample from that Gaussian. If the
probability of picking Gaussian one is p, then the entire model looks like this
(where N (u, o%) specifies a Gaussian distribution with mean g and standard
deviation o):

G, = N(’J'la 0'%)
Gy = N(NZa 0’%)
y =pG1+ (1 —p)Goe. (8:22)

If the probability distribution of p is written as m, then the probability
density is:

P(y) = mp(y; 1, 01) + (1 — )d(y; pa, 02). (8:23)

Finding the maximum likelihood solution (actually the minimum log like-
lihood) to this problem is then a case of computing the sum of the logarithm
of Equation (8.23) over all of the training data, and differentiating it, which
would be rather difficult. Fortunately, there is a way around it. The key in-
sight that we need is that if we knew which of the two Gaussian components
the data point came from, then the computation would be easy. The mean
and standard deviation for each component could be computed from the dat-
apoints that belong to that component, and there would not be a problem.
Although we don’t know which component each datapoint came from, we can
pretend we do, by introducing a new variable f. If f = 0 then the data came
from Gaussian one, if f =1 then it came from Gaussian two.

This is the typical initial step of an EM algorithm: adding latent variables.
Now we just need to work out how to optimise over them. This is the time
when the reason for the algorithm being called expectation-maximisation be-
comes clear. We don’t know much about variable f (hardly surprising, since
we invented it), but we can compute the expectation of it from the data:

7‘i(ﬂ1aﬂ276‘17&25ﬁ) - E(flp'lap'm&ly&%ﬁ-vD)
= P(f - 1|f1,1,f1,2,&1,6'2,ﬁ',D), (824)

where D denotes the data and a hat (*) means an estimate of a variable.
Computing the value of this expectation is known as the E-step. Then
this estimate of the expectation is maximised over the model parameters (the
parameters of the two Gaussians and the mixing parameter ), the M-step.
This requires differentiating the expectation with respect to each of the model
parameters. These two steps are simply iterated until the algorithm converges.
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Note that the estimate never gets any smaller, and it turns out that EM
algorithms are guaranteed to reach a local maxima.
To see how this looks for the two-component Gaussian mixture, we’ll take
a closer look at the algorithm:
The Gaussian Mixture Model EM Algorithm

¢ Initialisation
— set fiy, fiz to be randomly chosen values from the dataset

N
)°/N (where 7 is the mean of the entire

— set 61,82 = ) (i
=1

dataset)

—set 7 =0.5
N

e repeat until convergence:
Fd(Yisli,Gi) fori=1..

(1=®)p(yi3i1,61)+7d(yishi2,02)

— (E-step) % =
R Z: (I~%)wi
— (M-step 1) fi, = S
;(1—'%)
N
. Z Yivi
~ (Mestep 2) fin = =
PIRE

— (M-step 3) 61 = =
;(1 '71)
N

R ‘; ’A)'l(yi—l’fz)z

— (M-step 4) 6o = =—

PR
i=1
Y ol
I

(M-step 5) ## =
i=1

|
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060

FIGURE 8.8: Plot of the log likelihood changing as the Gaussian Mixture
Model EM algorithm learns to fit the two Gaussians shown on the left of
Figure 8.7.
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Figure 8.8 shows the log likelihood dropping as the algorithm learns for
the example on the left of Figure 8.7. The computational costs of this model
are very good for classifying a new datapoint, since it is O(M), where M
is the number of Gaussians, which is often of the order of log N (where N

is the number of datapoints).
O(NM? + M3).
The general algorithm has pretty much exactly the same steps (the param-

eters of the model are written as @, 8’ is a dummy variable, D is the original
dataset, and D’ is the dataset with the latent variables included):

The training is, however, fairly expensive:

The General Expectation-Maximisation (EM) Algorithm

o Initialisation

(0
— guess parameters 0( )

e repeat until convergence:
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— (E-step) compute the expectation Q(@’, é(j)) = E(f(¢';D")|D, é(f))

— (M-step) estimate the new parameters puty as maxg Q(0' ,@(j))

The trick with applying EM algorithms to problems is in identifying the
correct latent variables to include, and then simply working through the steps.
They are very powerful methods for a wide variety of statistical learning prob-
lems.

We are now going to turn our attention to something much simpler, which is
how we can use information about nearby datapoints to decide on classification
output. For this we don’t use a model of the data at all, but directly use the
data that is available.

8.4 Nearest Neighbour Methods

Suppose that you are in a nightclub and decide to dance. It is unlikely
that you will know the dance moves for the particular song that is playing, so
you will probably try to work out what to do by looking at what the people
close to you are doing. The first thing you could do would be just to pick the
person closest to you and copy them. However, since most of the people who
are in the nightclub are also unlikely to know all the moves, you might decide
to look at a few more people and do what most of them are doing. This is
pretty much exactly the idea behind nearest neighbour methods: if we don’t
have a model that describes the data, then the best thing to do is to look at
similar data and choose to be in the same class as them.

We have the datapoints positioned within input space, so we just need to
work out which of the training data are close to it. This requires computing
the distance to each datapoint in the training set, which is relatively expensive:
if we are in normal Euclidean space, then we have to compute d subtractions
and d squarings (we can ignore the square root since we only want to know
which points are the closest, not the actual distance) and this has to be done
O(N?) times. We can then identify the k nearest neighbours to the test point,
and then set the class of the test point to be the most common one out of
those for the nearest neighbours. The choice of & is not trivial. Make it too
small and nearest neighbour methods are sensitive to noise, too large and
the accuracy reduces as points that are too far away are considered. Some
possible effects of changing the size of k¥ on the decision boundary are shown
in Figure 8.9.

This method suffers from the curse of dimensionality (Section 4.3). First, as
shown above, the computational costs get higher as the number of dimensions
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The nearest neighbours decision boundary with left: one

neighbour and right: two neighbours.
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FIGURE 8

grows. This is not as bad as it might appear at first: there are a set of meth-

ods such as KD-Trees (see Section 8.4.2 for more details) that compute this in

O(Nlog N) time. However

, IMore 11mpor

tantly, as the number of d

1mensions

increases, so the distance to other datapoints tends to increase. In addition,

they can be far away in a variety of different directions—there might be points

that are relatively close in some dimensions, but a long way in others. There

are methods for dealing with these problems, known as adaptive nearest neigh-

bour methods, and there is a reference to them in the Further Reading section

at the end of the chapter.

The only part of this that requires any care during the implementation is
what to do when there is more than one class found in the closest points, but

even with that the implementation is nice and simple:
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We are going to look next at how we can use these methods for regression,
before we turn to the question of how to perform the distance calculations
as efficiently as possible, something that is done simply but inefficiently in
the code above. We will then consider briefly whether or not the Euclidean
distance is always the most useful way to calculate distances, and what alter-
natives there are.

8.4.1 Nearest Neighbour Smoothing

Nearest neighbour methods can also be used for regression by returning the
average value of the neighbours to a point, or a spline or similar fit as the
new value. The most common methods are known as kernel smoothers, and
they use a kernel (a weighting function between pairs of points) that decides
how much emphasis (weight) to put onto the contribution from each datapoint
according to its distance from the input. We will see much more about kernels
in a different context in Section 5.2, but here we shall simply use two kernels
that are used for smoothing.

Both of these kernels are designed to give more weight to points that are
closer to the current input, with the weights decreasing smoothly to zero as
they pass out of the range of the current input, with the range specified by a
parameter A. They are the Epanechnikov quadratic kernel:

0.75(1 — —x)2 /X2 if |z —zol < A
Ko leo.z) = {0 (1 =0 = a/X) i)tlherwisoe| ’ (8.25)
and the tricube kernel:
To—T 3 3 :
Kr\(zo,2) = (1 — || ) if | — 20| <A (8.26)

0 otherwise

The results of using these kernels are shown in Figure 8.10 on a dataset
that consists of the time between eruptions (technically known as the repose)
and the duration of the eruptions of Mount Ruapehu, the large volcano in
the centre of New Zealand’s north island. Values of A of 2 and 4 were used
here. Picking X requires experimentation. Large values average over more
datapoints, and therefore produce lower variance, but at the cost of higher
bias.
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FIGURE 8.10: Output of the nearest neighbour method and two kernel
smoothers on the data of duration and repose of eruptions of Mount Ruapehu
1860-2006.

8.4.2 Efficient Distance Computations: the KD-Tree

As was mentioned above, computing the distances between all pairs of
points is very computationally expensive. Fortunately, as with many prob-
lems in computer science, designing an efficient data structure can reduce the
computational overhead a lot. For the problem of finding nearest neighbours
the data structure of choice is the KD-Tree. It has been around since the late
1970s, when it was devised by Friedman and Bentley, and it reduces the cost of
finding a nearest neighbour to O(log N) for O(N) storage. The construction
of the tree is O(N log? N), with much of the computational cost being in the
computation of the median, which with a naive algorithm requires a sort and
is therefore O(N log N), or can be computed with a randomised algorithm in
O(N) time.

The idea behind the KD-tree is very simple. You create a binary tree by
choosing one dimension at a time to split into two, and placing the line through
the median of the point coordinates of that dimension. Not that different to
a decision tree (Chapter 6), really. The points themselves end up as leaves
of the tree. Making the tree follows pretty much the same steps as usual for
constructing a binary tree: we identify a place to split into two choices, left
and right, and then carry on down the tree. This makes it natural to write the
algorithm recursively. The choice of what to split and where is what makes
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the KD-tree special. Just one dimension is split in each step, and the position
of the split is found by computing the median of the points that are to be split
in that one dimension, and putting the line there. In general, the choice of
which dimension to split alternates through the different choices, or it can be
made randomly. The algorithm below cycles through the possible dimensions
based on the depth of the tree so far, so that in two dimensions it alternates
horizontal and vertical splits.

The centre of the construction method is simply a recursive function that
picks the axis to split on, finds the median value on that axis, and separates
the points according to that value, which in Python can be written as:

Suppose that we had seven two-dimensional points to make a tree from:
(5,4),(1,6),(6,1),(7,5),(2,7),(2,2),(5,8) (as plotted in Figure 8.11). The
algorithm will pick the first coordinate to split on initially, and the median
point here is 5, so the split is through z = 5. Of those on the left of the line,
the median y coordinate is 6, and for those on the right it is 5. At this point
we have separated all the points, and so the algorithm terminates with the
split shown in Figure 8.12 and the tree shown in Figure 8.13.

Searching the tree is the same as any other binary tree; we are more in-
terested in finding the nearest neighbours of a test point. This is fairly easy:
starting at the root of the tree you recurse down through the tree comparing
just one dimension at a time until you find a leaf node that is in the region
containing the test point. Using the tree shown in Figure 8.13 we introduce
the testpoint (3,5), which finds (2,2) as the leaf for the box that (3, 5) is in.
However, looking at Figure 8.14 we see that this is not the closest point at
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FIGURE 8.11: The initial set FIGURE 8.12: The splits and
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FIGURE 8.13: The KD-tree
that made the splits.
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and compute the distance between the testpoint and this point

since any other point has to be closer. Now we need to check any other boxes
that could contain something closer. Looking at Figure 8.14 you can see that

?

so we need to do some more work.
The first thing we do is label the leaf we have found as a potential nearest

neighbour

all

and that is the label of the leaf for the sibling box to

is closer,
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the one that was returned
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8.4.3 Distance Measures

We have computed the distance between points as the Euclidean distance,
which is something that you learnt about in high school. However, it is not the
only option, nor is it necessarily the most useful. In this section we will look
at the underlying idea behind distance calculations and possible alternatives.

If T were to ask you to find the distance between my house and the nearest
shop, then your first guess might involve taking a map of my town, locating
my house and the shop, and using a ruler to measure the distance between
them. By careful application of the map scale you can now tell me how far
it is. However, when I set out to buy some milk I'm liable to find that I
have to walk rather further than you've told me, since the direct line that you
measured would involve walking through (or over) several houses, and some
serious fence-scaling. Your ‘as the crow flies’ distance is the shortest possible
path, and it is the straight-line, or Euclidean, distance. You can measure it
on the map by just using a ruler, but it essentially consists of measuring the
distance in one direction (we'll call it north-south) and then the distance in
another direction that is perpendicular to the first (let’s call it east-west) and
then squaring them, adding them together, and then taking the square root
of that. Writing that out, the Euclidean distance that we are all used to is:
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FIGURE 8.15: The Euclidean and city-block distances between two points.

dg = V/(z1 — 22)% + (y1 — ¥2)?, (8.27)

where (z1,%1) is the location of my house in some coordinate system (say by
using a GPS tracker) and (z4,y2) is the location of the shop.

If I told you that my town was laid out on a grid block system, as is common
in towns that were built in the interval between the invention of the motor
car and the invention of innovative town planners, then you would probably
use a different measure. You would measure the distance between my house
and the shop in the ‘north-south’ direction and the distance in the ‘east-west’
direction, and then add the two distances together. This would correspond
to the distance I actually had to walk. It is often known as the city-block or
Manhattan distance and looks like:

dc = |1 — 22| + ly1 — Y2l- (8.28)

The point of this discussion is to show that there is more than one way
to measure a distance, and that they can provide radically different answers.
These two different distances can be seen in Figure 8.15. Mathematically,
these distance measures are known as metrics. A metric function or norm
takes two inputs and gives a scalar (the distance) back, which is positive, and
0 if and only if the two points are the same, symmetric (so that the distance to
the shop is the same as the distance back), and obeys the triangle inequality,
which says that the distance from a to b plus the distance from b to ¢ should
not be less than the direct distance from a to c.

Most of the data that we are going to have to analyse lives in rather more
than two dimensions. Fortunately, the Euclidean distance that we know about
generalises very well to higher dimensions (and so does the city-block metric).
In fact, these two measures are both instances of a class of metrics that work
in any number of dimensions. The general measure is the Minkowski metric
and it is written as:

d *
Lr(x,y) = (Z |; —yil’“) . (8.29)

i=1
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If we put K = 1 then we get the city-block distance (Equation (8.28)),
and k = 2 gives the Euclidean distance (Equation (8.27)). Thus, you might
possibly see the Euclidean metric written as the La norm and the city-block
distance as the L; norm. These norms have another interesting feature. Re-
member that we can define different averages of a set of numbers. If we define
the average as the point that minimises the sum of the distance to every data
point, then it turns out that the mean minimises the Euclidean distance (the
sum-of-squares distance), and the median minimises the L; metric. We met
another distance measure earlier in the chapter: the Mahalanobis distance in
Section 8.2.2.

There are plenty of other possible metrics to choose, depending upon the
data space. We generally assume that the space is flat (if it isn’t, then none
of these techniques work, and we don’t want to worry about that). However,
it can still be beneficial to look at other metrics. Suppose that we want our
classifier to be able to recognise images, for example of faces. We take a set of
digital photos of faces and use the pixel values as features. Then we use the
nearest neighbour algorithm that we’ve just seen to identify each face. Even
if we ensure that all of the photos are taken fully face-on, there are still a few
things that will get in the way of this method. One is that slight variations in
the angle of the head (or the camera) could make a difference, another is that
different distances between the face and the camera (scaling) will change the
results, and another is that different lighting conditions will make a difference.
We can try to fix all of these things in preprocessing, but there is also another
alternative: use a different metric that is invariant to these changes, i.e., it
does not vary as they do. The idea of invariant metrics is to find measures
that ignore changes that you don’t want. So if you want to be able to rotate
shapes around and still recognise them, you need a metric that is invariant to
rotation.

A common invariant metric in use for images is the tangent distance, which
is an approximation to the Taylor expansion in first derivatives, and works
very well for small rotations and scalings; for example, it was used to halve
the final error rate on nearest neighbour classification of a set of handwritten
letters. Invariant metrics are an interesting topic for further study, and there
is a reference for them in the Further Reading section if you are interested.

Further Reading

For more on nearest neighbour methods, see:

e T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor
classification and regression. In David S. Touretzky, Michael C. Mozer,
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and Michael E. Hasselmo, editors, Advances in Neural Information Pro-
cessing Systems, volume 8, pages 409-415. The MIT Press, 1996.

e N.S. Altman. An introduction to kernel and nearest-neighbor nonpara-
metric regression. The American Statistician, 46:175-185, 1992,

The original description of KD-trees is:

e A. Moore. A tutorial on KD-trees. Extract from PhD Thesis, 1991.
Available from http://www.cs.cmu.edu/simawm/papers.html.

A reference on the tangent distance is:

e P.Y. Simard, Y.A. Le Cun, J.S. Denker, and B. Victorri. Transformation
invariance in pattern recognition: Tangent distance and propagation.
International Journal of Imaging Systems and Technology, 11:181-194,
2001.

Some similar material is covered in:

e Sections 1.2 and 9.2 of C.M. Bishop. Pattern Recognition and Machine
Learning. Springer, Berlin, Germany, 2006.

e Chapter 6 (especially Sections 6.1-6.3) of T. Mitchell. Machine Learn-
ing. McGraw-Hill, New York, USA, 1997.

¢ Section 13.3 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements
of Statistical Learning. Springer, Berlin, Germany, 2001.

Practice Questions

Problem 8.1 Use Bayes’ rule to solve the following problem: At a party you
meet a person who claims to have been to the same school as you. You
vaguely recognise them, but can’t remember properly, so decide to work
out how likely it is given that:

e 1in 2 of the people you vaguely recognise went to school with you
e 1 in 10 of the people at the party went to school with you
e 1in 5 people at the party you vaguely recognise
Problem 8.2 Implement the risk calculation in the naive Bayes classifier and
for the Pima Indian dataset, try using different risk matrices to see how

it affects the results. Setting these risk matrices is generally subjective,
and very difficult to do well.
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Problem 8.3 Use the naive Bayes classifier on the datasets that you used
for the decision tree (this will involve some effort in turning the textual
data into probabilities) and compare the results.

Problem 8.4 Extend the Gaussian Mixture Model algorithm to allow for
more than two classes in the data. This is not trivial, since it involves
modifying the EM algorithm.

Problem 8.5 Modify the KD-tree algorithm so that it works on spheres in
the data, rather than rectangles. Since they no longer cover the space
you will have to add some cases that fail to return a leaf at all. However,
this means that the algorithm will not return points that are far away,
which will make the results more accurate. Now modify it so that it does
not use the Euclidean distance, but rather the L, distance. Compare
the results of using these two methods on the iris dataset.

Problem 8.6 Use the small figures of numbers that are available on the book
website in order to compute the tangent distance. You will have to write
code that rotates the numbers by small amounts in order to check that
you have written it correctly. What happens when you make large
rotations (particularly of a 6 or 9)?7 Compare using nearest neighbours
with Euclidean distance and the tangent distance to verify the results -
claimed in the chapter. Extend the experiment to the MNIST dataset.



Chapter 9

Unsupervised Learning

The learning algorithms that we have seen to date have made use of a training
set that consists of a collection of labelled target data. This is obviously useful,
since it enables us to show the algorithm the correct answer to sample data,
but in many circumstances it is difficult to obtain—it could, for instance,
involve somebody labelling each instance by hand. In addition, it doesn’t
seem to be very biologically plausible: most of the time when we are learning,
we don’t get told exactly what the right answer should be. In this chapter
we will consider exactly the opposite case, where there is no information
about the correct outputs available at all, and the algorithm is left to spot
some similarity between different inputs for itself. We will see some more
methods of doing this in Chapter 10, while in Chapter 13 we will consider the
intermediate possibility, where the system receives information about whether
or not it is correct, but is not told how to correct errors.

Unsupervised learning is a conceptually different problem. Obviously, we
can’t hope to perform regression—we don’t know the outputs for any points,
so we can’t guess what the function is. Can we hope to do classification then?
The aim of classification is to identify similarities between inputs that belong
to the same class. There isn't any information about the correct classes, but if
the algorithm can exploit similarities between inputs in order to cluster inputs
that are similar together, this might perform classification automatically. So
the aim of unsupervised learning is to find clusters of similar inputs in the
data without being explicitly told that these datapoints belong to one class
and those to a different class. Instead, the algorithm has to discover the
similarities for itself.

The supervised learning algorithms that we have discussed so far have aimed
to minimise some external error criterion—mostly the sum-of-squares error—
based on the difference between the targets and the outputs. Calculating and
minimising this error was possible because we had target data to calculate it
from, which is not true for unsupervised learning. This means that we need
to find something else to drive the learning. The problem is more general
than sum-of-squares error: we can’t use any error criterion that relies on
targets or other outside information (an external error criterion), we need to
find something internal to the algorithm. This means that the measure has
to be independent of the task, because we can’t keep on changing the whole
algorithm every time a new task is introduced. In supervised learning the
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error criterion was task-specific, because it was based on the target data that
we provided.

To see how to work out a general error criterion that we can use, we need
to go back to some of the important concepts that were discussed in Sec-
tion 4.1.1: input space and weight space. If two inputs are close together then
it means that their vectors are similar, and so the distance between them is
small (distance measures were discussed in Section 8.4.3, but here we will stick
to Euclidean distance). Then inputs that are close together are identified as
being similar, so that they can be clustered, while inputs that are far apart
are not clustered together. We can extend this to the nodes of a network by
aligning weight space with input space. Now if the weight values of a node are
similar to the elements of an input vector then that node should be a good
match for the input, and any other inputs that are similar. In order to start
to see these ideas in practice we’ll look at a simple clustering algorithm, the
k-means algorithm, which has been around in statistics for a long time.

9.1 The k-Means Algorithm

If you have ever watched a group of tourists with a couple of tour guides
who hold umbrellas up so that everybody can see them and follow them, then
you have seen a dynamic version of the k-means algorithm. Our version is
simpler, because the data (playing the part of the tourists) does not move,
only the tour guides.

Suppose that we want to divide our input data into k categories, where we
know the value of k (for example, we have a set of medical test results from
lots of people for three diseases, and we want to see how well the tests identify
the three diseases). We allocate k cluster centres to our input space, and we
would like to position these centres so that there is one cluster centre in the
middle of each cluster. However, we don’t know where the clusters are, let
alone where their ‘middle’ is, so we need an algorithm that will find them.
Learning algorithms generally try to minimise some sort of error, so we need
to think of an error criterion that describes this aim. The idea of the ‘middle’
is the first thing that we need to think about. How do we define the middle
of a set of points? There are actually two things that we need to define:

A distance measure In order to talk about distances between points, we
need some way to measure distances. It is often the normal Euclidean
distance, but there are other alternatives; we've covered some other
alternatives in Section 8.4.3.

The mean average Once we have a distance measure, we can compute the
central point of a set of datapoints, which is the mean average (if you
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aren’t convinced, think what the mean of two numbers is, it is the point
halfway along the line between them). Actually, this is only true in
Euclidean space, which is the one you are used to, where everything is
nice and flat. Everything becomes a lot trickier if we have to think about
curved spaces; when we have to worry about curvature, the Euclidean
distance metric isn't the right one, and there are at least two different
definitions of the mean. So we aren’t going to worry about any of these
things, and we’ll assume that space is flat. This is what statisticians do
all the time.

We can now think about a suitable way of positioning the cluster centres:
we compute the mean point of each cluster, Mc(;), and put the cluster centre
there. This is equivalent to minimising the Euclidean distance (which is the
sum-of-squares error again) from each datapoint to its cluster centre.

How do we decide which points belong to which clusters? It is important
to decide, since we will use that to position the cluster centres. The obvious
thing is to associate each point with the cluster centre that it is closest too.
This might change as the algorithm iterates, but that’s fine.

We start by positioning the cluster centres randomly though the input
space, since we don’t know where to put them, and then we update their
positions according to the data. We decide which cluster each datapoint be-
longs to by computing the distance between each datapoint and all of the
cluster centres, and assigning it to the cluster that is the closest. Note that
we can reduce the computational cost of this procedure by using the KD-Tree
algorithm that was described in Section 8.4.2. For all of the points that are
assigned to a cluster, we then compute the mean of them, and move the clus-
ter centre to that place. We iterate the algorithm until the cluster centres
stop moving. Here is the algorithmic description:

The k-Means Algorithm

¢ Initialisation

— choose a value for k
— choose k random positions in the input space

— assign the cluster centres p; to those positions
¢ Learning

— repeat
* for each datapoint x;:
- compute the distance to each cluster centre
- assign the datapoint to the nearest cluster centre with dis-
tance
di = min d(x;, ;). (9.1)
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* for each cluster centre:
- move the position of the centre to the mean of the points
in that cluster (N is the number of points in cluster j):

. _
M =5 in (9.2)

— until the cluster centres stop moving
e Usage

— for each test point:

* compute the distance to each cluster centre
* assign the datapoint to the nearest cluster centre with distance

di = mind(x;, p;). (9.3)
y .

The NumPy implementation follows these steps almost exactly, and we
can take advantage of the argmin() function, which returns the index of
the minimum value, to find the closest cluster. The code that computes the
distances, finds the nearest cluster centre, and updates them can then be
written as:

e mgg@g E;s B b 6o b
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To see how this works in practice, Figures 9.1 and 9.2 show some data and
some different ways to cluster that data computed by the k-means algorithm.
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FIGURE 9.1: Left: A two-dimensional dataset. Right: Three possible ways
to position 4 centres (drawn as faces) using the k-means algorithm, which is
clearly susceptible to local minima.
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FIGURE 9.2: Left: A solution with only 2 classes, which does not match the
data well. Right: A solution with 11 classes, showing severe overfitting.

It should be clear that the algorithm is susceptible to local minima: depending
upon where the centres are initially positioned in the space, you can get
very different solutions, and many of them look very unlikely to our eyes.
Figure 9.2 shows examples of what happens when you choose the number of
centres wrongly. There are certainly cases where we don’t know in advance
how many clusters we will see in the data, but the k-means algorithm doesn’t
deal with this at all well.

At the cost of significant extra computational expense, we can get around
both of these problems by running the algorithm many different times. To find
a good local optimum (or even the global one) we use many different initial
centre locations, and the solution that minimises the overall sum-of-squares
error is likely to be the best one.

By running the algorithm with lots of different values of k, we can see which
values give us the best solution. Of course, we need to be careful with this. If
we still just measure the sum-of-squares error, then when we set & to be equal
to the number of datapoints, we can position one centre on every datapoint,
and the sum-of-squares error will be zero (in fact, this won’t happen, since the
random initialisation will mean that several clusters will end up coinciding).
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However, there is no generalisation in this solution (it is a case of serious
overfitting). As usual, the answer is to use a validation set and monitor the
error there.

.9.1.1 Dealing with Noise

There are lots of reasons for perfor\ming clustering, but one of the more
common ones is to deal with noisy data readings. These might be slightly
corrupted, or occasionally just plain wrong. If we can choose the clusters
correctly, then we have effectively removed the noise, because we replace each
noisy datapoint by the cluster centre (we will use this way of representing
datapoints for other purposes in Section 9.2). Unfortunately, the mean aver-
age, which is central to the k-means algorithm, is very susceptible to outliers,
i.e., very noisy measurements. One way to avoid the problem is to replace the
mean average with the median, which is what is known as a robust statistic,
meaning that it is not affected by outliers (the mean of (1,2,1,2,100) is 21.2,
while the median is 2). The only change that is needed to the algorithm is
to replace the computation of the mean with the computation of the median.
This is computationally more expensive, as we’ve discussed previously, but it
does remove noise effectively.

9.1.2 The k-Means Neural Network

The k-means algorithm clearly works, despite its problems with noise and
the difficulty with choosing the number of clusters. Interestingly, while it
might seem a long way from neural networks, it isn’t. If we think about
the cluster centres that we optimise the positions of as locations in weight
space, then we could position neurons in those places and use neural network
training. The computation that happened in the k-means algorithm was that
each input decided which cluster centre it was closest to by calculating the
distance to all of the centres. We could do this inside a neural network, too:
the location of each neuron is its position in weight space, which matches the
values of its weights. So for each input, we just make the activation of a node
be the distance between that node in weight space and the current input, as
we did for Radial Basis Functions in Chapter 4. Then training is just moving
the position of the node, which means adjusting the weights.

So, we can implement the k-means algorithm using a set of neurons. We
will use just one layer of neurons, together with some input nodes, and no
bias node. The first layer will be the inputs, which don’t do any computation,
as usual, and the second layer will be a layer of competitive neurons, that
is, neurons that ‘compete’ to fire, with only one of them actually succeed-
ing. Only one cluster centre can represent a particular input vector, and so
we will choose the neuron with the highest activation A to be the one that
fires. This is known as winner-takes-all activation, and it is an example of
competitive learning, since the set of neurons compete with each other to fire,



Unsupervised Learning 201

FIGURE 9.3: A single-layer neural network can implement the k-means
solution.

with the winner being the one that best matches (i.e., is closest to) the input.
Competitive learning is sometimes said to lead to grandmother cells, because
each neuron in the network will learn to recognise one particular feature, and
will fire only when that input is seen. You would then have a specific neu-
ron that was trained to recognise your grandmother (and others for anybody
else/anything else that you see often).

We will choose k neurons (for hopefully obvious reasons) and fully connect
the inputs to the neurons, as usual. There is a picture of this network in
Figure 9.3. We will use neurons with a linear transfer function, computing
the activation of the neurons as simply the product of the weights and inputs:

hi = Zw,-j:vj. (9.4)
J

Providing that the inputs are normalised so that their absolute size is the
same (a point that we’ll come back to in Section 9.1.3), this effectively mea-
sures the distance between the input vector and the cluster centre represented
by that neuron, with larger numbers (higher activations) meaning that the
two points are closer together.

So the winning neuron is the one that is closest to the current input. The
question is how can we then change the position of that neuron in weight
space, that is, how do we update its weights? In the k-means algorithm that
was described earlier it was easy: we just set the cluster centre to be the mean
of all the datapoints that were assigned to that centre. However, when we do
neural network training, we often just feed in one input vector at a time and
change the weights (that is, we use the algorithm on-line, rather than batch),
we do not know the mean because we don’t know about all the datapoints,
just the current one. So we approximate it by moving the winning neuron
closer to the current input, making that centre even more likely to be the best
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FIGURE 9.4: A set of neurons positioned on the unit sphere in 3D.

match next time that input is seen. This corresponds to:

Aw;; =nxj. (9.5)

However, this is not good enough. To see why not, let’s get back to that
question of normalisation. This is important enough to need its own subsec-
tion.

9.1.3 Normalisation

Suppose that the weights of all the neurons are small (maybe less than 1)
except for those to one particular neuron. We’ll make those weights be 10 for
the example. If an input vector with values (0.2,0.2,—0.1) is presented, and
it happens to be an exact match for one of the neurons, then the activation of
that neuron will be 0.2x0.24+0.2x0.24+—0.1x —0.1 = 0.09. The other neurons
are not perfect matches, so their activations should all be less. However,
consider the neuron with large weights. Its activation will be 10 x 0.2 + 10 x
0.2+ 10 x —0.1 = 3, and so it will be the winner. Thus, we can only compare
activations if we know that the weights for all of the neurons are the same
size. We do this by insisting that the weight vector is normalised so that the
distance between the vector and the origin (the point (0,0, ...0)) is one. This
means that all of the neurons are positioned on the unit hypersphere, which
we described in Section 4.3 when we talked about the curse of dimensionality:
it is the set of all points that are distance one from the origin, so it is a circle
in 2D, a sphere in 3D (as shown in Figure 9.4), and a hypersphere in higher
dimensions.

Computing this normalisation in NumPy takes a little bit of care because
we are normalising the total Euclidean distance from the origin, and the sum
and division are row-wise rather than column-wise, which means that the
matrix has to be transposed before and after the division:
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The neuronal activation (Equation (9.4)) can be written as:

hi =W -x, (9.6)

where, as usual, - refers to the inner product or scalar product between the two
vectors, and W7 is the transpose of the ith row of W. The inner product,
computes |[W;|[||x|| cosé, where @ is the angle between the two vectors and
|| - || is the magnitude of the vector. So if the magnitude of all the vectors is
one, then only the angle ¢ affects the size of the dot product, and this tells us
about the difference between the vector directions, since the more they point
in the same direction, the larger the activation will be.

9.1.4 A Better Weight Update Rule

The weight update rule given in Equation (9.5) lets the weights grow with-
out any bound, so that they do not lie on the unit hypersphere any more. If
we normalise the inputs as well, which certainly seems reasonable, then we
can use the following weight update rule:

Aw;i; = n(z; — wij), 9.7

which has the effect of moving the weight w;; directly towards the current
input. Remember that the only weights that we are updating are those of the
winning unit:

For many of our supervised learning algorithms we minimised the sum-of-
squares difference between the output and the target. This was a global error
criterion that affected all of the weights together. Now we are minimising a
function that is effectively independent in each weight. So the minimisation
that we are doing is actually more complicated, even though it doesn’t look it.
This makes it very difficult to analyse the behaviour of the algorithm, which
is a general problem for competitive learning algorithms. However, they do
tend to work well.



204 Machine Learning: An Algorithmic Perspective

Now that we have a weight update rule that works, we can consider the
entire algorithm for the on-line k-means network.

The On-Line k-Means Algorithm

¢ Initialisation
— choose a value for &, which corresponds to the number of output
nodes

— initialise the weights to have small random values
¢ Learning

— normalise the data so that all the points lie on the unit sphere
— repeat:
* for each datapoint:
- compute the activations of all the nodes
- pick the winner as the node with the highest activation
- update the weights using Equation (9.7)
* until number of iterations is above a threshold
— Usage
* for each test point:
- compute the activations of all the nodes
- pick the winner as the node with the highest activation

9.1.5 Example: The Iris Dataset Again

Now that we have a method of training the k-means algorithm we can use
it to learn about data. Except we need to think about how to understand the
results. If there aren’t any labels in the data, then we can’t really do much
to analyse the results, since we don’t have anything to compare them with.
However, we might use unsupervised learning methods to cluster data where
we know at least some of the labels. For example, we can use the algorithm
on the iris dataset that we looked at in Section 3.4.3, where we classified three
types of iris flowers using the MLP. All we need to do is to give some of the
data to the algorithm and train it, and then use some more to test the output.
However, the output of the algorithm isn’t as clear now, because we don’t use
the labels that come with the data, since we aren’t doing supervised learning
anymore. To get around that, we need to work out some way of turning the
results from the algorithm, which is the index of the cluster that best matches
it, into a classification output that we can compare with the labels. This is
relatively easy if we used three clusters in the algorithm, since there should
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hopefully be a one-to-one correspondence between them, but it might turn
out that using more clusters gets better results, although this will make the
analysis more difficult. You can do this by hand if there are relatively small
numbers of datapoints, or you could use a supervised learning algorithm to
do it for you, as is discussed next.

To see how the k-means algorithm is used, we can see how it is used on the
iris dataset:

The output that is produced by this in an example run is (where the top
line is the output of the algorithm and the bottom line is the classes from the
dataset):

and then we can see that cluster 0 corresponds to label 1 and cluster 1 to
label 2, in which case the algorithm gets 1 of cluster 0 wrong, 2 of cluster 1,
and none of cluster 2.

9.1.6 Using Competitive Learning for Clustering

Deciding which cluster any datapoint belongs to is now an easy task: we
present the datapoint to the trained algorithm and it will tell us. If we don’t
have any target data, then the problem is finished. However, for many prob-
lems we might want to interpret the best-matching cluster as a class label
(alternatively, a set of cluster centres could all correspond to one class). This
is fine, since if we have target data we can match the output classes to the
targets, provided that we are a bit careful: there is no reason why the order of
the nodes in the network should match the order in the data, since the algo-
rithm knows nothing about that order. For that reason, when assigning class
labels to the outputs, you need to check which numbers match up carefully,
or the results will look a lot worse than they actually are.

There is an alternative solution to this problem of assigning labels, and it is
one that we have seen before. In Chapter 4 we considered using the k-means
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network in order to train the positions of the RBF nodes. It is now possible to
see how this works. The k-means part positions the RBFs in the input space,
so that they represent the input data well. A Perceptron is then used on top
of this in order to provide the match to the outputs in the supervised learning
part of the network. Since this is now supervised learning, it erisures that the
output categories match the target data classes. It also means that you can
use lots of clusters in the k-means network without having to work out which
datapoints belong to which cluster, since the Perceptron will do this for you.

We are now going to look at another major algorithm in competitive learn-
ing, the Self-Organising Feature Map. As motivation for it, we are going to
consider a sample problem for competitive learning, which is a problem in
data compression called vector quantisation.

9.2 Vector Quantisation

We've already discussed using competitive learning for removing noise.
There is a related application, data compression, which is used both for stor-
ing data and for the transmission of speech and image data. The reason that
the applications are related is that both replace the current input by the clus-
ter centre that it belongs to. For noise reduction we do this to replace the
noisy input with a cleaner one, while for data compression we do it to reduce
the number of datapoints that we send.

Both of these things can be understood by considering them as examples
of data communication. Suppose that I want to send data to you, but that I
have to pay for each data bit I transmit, so I want to keep the amount of data
that I send to & minimum. I notice that there are lots of repeated datapoints,
so I decide to encode my data before I send it, so that instead of sending the
entire set, we agree a codebook of prototype vectors together. Now, instead
of transmitting the actual data, I can transmit the index of that datapoint
in the codebook, which is shorter. All you have to do is take the indices I
send you and look them up, and you have the data. We can actually make
the code even more efficient by using shorter indices for the datapoints that
are more common. This is an important problem in information theory, and
every kind of sound and image compression algorithm has a different method
of solving it.

There is one problem with the scenario so far, which is that the codebook
won’t contain every possible datapoint. What happens when I want to send
a datapoint and it isn’t in the codebook? In that case we need to accept
that our data will not look exactly the same, and I send you the index of the
prototype vector that is closest to it (this is known as vector quantisation, and
is the way that lossy compression works).
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FIGURE 9.5: The Voronoi tesselation of space that performs vector
quantisation. Any datapoint is represented by the dot within its cell, which is
the prototype vector.

Figure 9.5 shows an interpretation of prototype vectors in two dimensions.
The dots at the centre of each cell are the prototype vectors, and any dat-
apoint that lies within a cell is represented by the dot. The name for each
cell is the Voronoi set of a particular prototype. Together, they produce the
Voronoi tesselation of the space. If you connect together every pair of points
that share an edge, as is shown by the dotted lines, then you get the Delau-
nay triangulation, which is the optimal way to organise the space to perform
function approximation.

The question is how to choose the prototype vectors, and this is where
competitive learning comes in. We need to choose prototype vectors that
are as close as possible to all of the possible inputs that we might see. This
application is called learning vector quantisation because we are learning an
efficient vector quantisation. The k-means algorithm can be used to solve the
problem if we know how large we want our codebook to be. However, another
algorithm turns out to be more useful, the Self-Organising Feature Map, which
is described next.

9.3 The Self-Organising Feature Map

By far the most commonly used competitive learning algorithm is the Self-
Organising Feature Map (often abbreviated to SOM), which was proposed by
Teuvo Kohonen in 1988. Kohonen was considering the question of how sensory
signals get mapped into the cerebral cortex of the brain with an order. For
example, in the auditory cortex, which deals with the sounds that we hear,
neurons that are excited (i.e., that are caused to fire) by similar sounds are
positioned closely together, whereas two neurons that are excited by very
different sounds will be far apart.

There are two novel departures in this for us: firstly, the relative locations
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FIGURE 9.6: The Self-Organising Map network. As usual, input nodes (on
the left) do no computation, and the weights are modified to change the
activations of the neurons (weights are only shown to two nodes for clarity).
However, the nodes within the SOM affect each other in that the winning node
also changes the weights of neurons that are close to it. Connections are shown
in the figure to the eight closest nodes, but this is a parameter of the network.

of the neurons in the network matters (this property is known as feature map-
ping—nearby neurons correspond to similar input patterns), and secondly, the
neurons are arranged in a grid with connections between the neurons, rather
than in layers with connections only between the different layers. In the audi-
tory cortex there appears to be sheets of neurons arranged in 2D, and that is
the typical arrangement of neurons for the SOM: a grid of neurons arranged in
2D, as can be seen in Figure 9.6. A 1D line of neurons is also sometimes used.
In mathematical terms, the SOM demonstrates relative ordering preservation,
which is sometimes known as topology preservation. The relative ordering of
the inputs should be preserved by the ordering in the neurons, so that neurons
that are close together represent inputs that are close together, while neurons
that are far apart represent inputs that are far apart.

This topology preservation is not necessarily possible, because the SOM
typically uses a 1D or 2D array of neurons, and most of our input spaces
are of much higher dimensionality than that. This means that the ordering
cannot be preserved. We have seen this in Figure 1.2, where one view of some
wind turbines made it look like they are on top of each other, when they
clearly are not, because we used a two-dimensional representation of three-
dimensional reality. You’ve probably seen the same thing in other photos,
where trees appear to be growing out of somebody’s head. A different way
to see the same thing is given in Figure 9.7, where mismatches between the
topology of the input space and map lead to changes in the relative ordering.
The best that can be said is that SOM is perfectly topology-preserving, which
means that if the dimensionality of the input and the map correspond, then
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FIGURE 9.7: When inputs in 1D (a straight line), a 2D grid, and a 3D
cube are represented by a 2D grid of neurons, the relative ordering is not
perfectly preserved. The 1D line is bent, which means that points that used to
be a long way apart (such as the first and sixth on the line) are now close
together, while the cube becomes very complicated. The lines in the bottom
part of the figure represent connections that are meant to be close.

the topology of the input space will be preserved. We are going to look at
other methods of performing dimensionality reduction in Chapter 10.

The question, then, is how we can implement feature mapping in an un-
supervised learning algorithm. The first thing to recognise is that we need
some interaction between the neurons in the network, so that when one neu-
ron fires, it affects what happens to those around it. We have seen something
like this before, for example, between different layers of the MLP, but now
we are thinking about neurons that are within a layer. These are known as
lateral connections (i.e., within the layer of the network). How should this
interaction work? We are trying to introduce feature mapping, so neurons
that are close together in the map should represent similar features. This
means that the winning neuron should pull other neurons that are close to
it in the network closer to itself in weight space, which means that we need
positive connections. Likewise, neurons that are further away should repre-
sent different features, and so should be a long way off in weight space, so the
winning neuron ‘repels’ them, by using negative connections to push them
away. Neurons that are very far away in the network should already represent
different features, so we just ignore them. This is known as the ‘Mexican Hat’
form of lateral connections, for reasons that should be clear from the picture
in Figure 9.8. We can then just use ordinary competitive learning, just like
we did for the k-means network in Section 9.1.2. The Self-Organising Map
does pretty much exactly this.
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FIGURE 9.8: Graph of the strength of lateral connections for a feature
mapping algorithm known as the ‘Mexican Hat.'

9.3.1 The SOM Algorithm

Using the full Mexican hat lateral interactions between neurons is fine, but
it isn’t essential. In Kohonen’s SOM algorithm, the weight update rule is
modified instead, so that information about neighhouring neurons is included
in the learning rule, which makes the algorithm simpler. The algorithm is a
competitive learning algorithm, so that one neuron is chosen as the winner,
but when its weights are updated, so are those of its neighbours, although to
a lesser extent. Neurons that are not within the neighbourhood are ignored,
not repelled.

We will now look at the SOM algorithm before examining some of the
details further.

The Self-Organising Feature Map Algorithm

e Initialisation

— choose a size (number of neurons) and number of dimensions d for
the map

— Either:

* choose random values for the weight vectors so that they are
all different OR

* set the weight values to increase in the direction of the first d
principal components of the dataset

e Learning

— repeat:
x for each datapoint:
- select the best-matching neuron n, using the minimum Eu-
clidean distance between the weights and the input,

np = min [lx — wil| (9-8)
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* update the weight vector of the best-matching node using:

Wi —wi +n(t)(x - wD), (9.9)

where 7)(t) is the learning rate.
* update the weight vector of all other neurons using:

wf — wJT + 0n () h(ne, 1) (x — wf), (9.10)

where 7,,(t) is the learning rate for neighbourhood nodes, and
h(ns,t) is the neighbourhood function, which decides whether
each neuron should be included in the neighbourhood of the
winning neuron (so h = 1 for neighbours and A = 0 for non-
neighbours)

* reduce the learning rates and adjust the neighbourhood func-
tion, typically by n(t + 1) = an(t)*/F=ex where 0 < o < 1
decides how fast the size decreases, k is the number of itera-
tions the algorithm has been running for, and kmax is when you
want the learning to stop. The same equation is used for both
learning rates (n,7,) and the neighbourhood function A(n, t).

— until the map stops changing or some maximum number of itera-
tions is exceeded

e Usage

— for each test point:

* select the best-matching neuron n; using the minimum Eu-
clidean distance between the weights and the input:

ny = mjin Ix — WJTH (9.11)

9.3.2 Neighbourhood Connections

The size of the neighbourhood is thus another parameter that we need to
control. How large should the neighbourhood of a neuron be? If we start our
network off with random weights, as we did for the MLP, then at the beginning
of learning, the network is pretty well unordered (as the weights are random,
two nodes that are very close in weight space could be on opposite sides of the
map, and vice versa) and so it makes sense that the neighbourhoods should be
large, so that we get the rough ordering of the network correct. However, once
the network has been learning for a while, the rough ordering has already been
created, and the algorithm starts to fine-tune the individual local regions of
the network. At this stage, the neighbourhoods should be small, as is shown in
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FIGURE 9.9: Top: Initially, similar input vectors excite neurons that are far
apart, so that the neighbourhood (shown as a circle) needs to be large. Bottom:
Later on during training the neighbourhood can be smaller, because similar
input vectors excite neurons that are close together.

Figure 9.9. It therefore makes sense to reduce the size of the neighbourhood as
the network adapts. These two phases of learning are also known as ordering
and convergence. Typically, we reduce the neighbourhood size by a small
amount at each iteration of the algorithm. We control the learning rate n in
exactly the same way, so that it starts off large and decreases over time, as is
shown in the algorithm below.

The fact that the size of the neighbourhood changes as the algorithm runs
has consequences for an implementation. There is no point using actual con-
nections between nodes, since the number of these will change as the algorithm
runs. We therefore set up a matrix that measures the distances between nodes
in the network and choose the nodes in the neighbourhood of a particular node
as those within a neighbourhood radius that shrinks as the algorithm runs.

et e i
i
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There is another way to initialise the weights in the network, which is to use
Principal Components Analysis (which is described in Section 10.2) to find the
two (assuming that the map is two-dimensional) largest directions of variation
in the data and to initialise the weights so that they increase along these two
directions:

This means that the ordering part of the training has already been done in
the initialisation, and so the algorithm can be trained with small neighbour-
hood size from the start. Obviously, this is only possible if the training of
the algorithm is in batch mode, so that you have all of the data available for
training right from the start. This should be true for the SOM anyway-—it is
not designed for on-line learning. This can be a bit of a limitation, because
there are many cases where we would like to do unsupervised on-line learning.

There are a couple of different things that we can do. One is to ignore that
constraint and use the SOM anyway. This is fairly common. However, the size
of the map really starts to matter, and there is no guarantee that the SOM
will converge to a solution unless batch learning is applied. The alternative is
to use one of a variety of networks that are designed to deal with exactly this
situation. There are a fair number of these, but Fritzke’s “Growing Neural
Gas” and Marsland’s “Grow When Required” Network are two of the more
common ones.
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9.3.3 Self-Organisation

You might be wondering what the self-organisation in the name of the SOM
is. A particularly interesting aspect of feature mapping is that we get a global
ordering of the neurons in the network, despite the fact that the interactions
are all local, since neurons that are very far apart do not interact with each
other. We thus get a global ordering of the space using only a set of local
interactions, which is amazing. This is known as self-organisation, and it
appears everywhere. It is part of the growing science of complexity. To see
how common self-organisation is, consider a flock of birds flying in formation.
The birds cannot possibly know exactly where each other are, so how do they
keep in formation? In fact, simulations have shown that if each bird just tries
to stay diagonally behind the bird to its right, and fly at the same speed, then
they form perfect flocks, no matter how they start off and what objects are
placed in their way. So the global ordering of the whole flock can arise from
the local interactions of each bird looking to the one on its right (or left).

9.3.4 Network Dimensionality and Boundary Conditions

We typically think about applying the SOM algorithm to a 2D rectangular
array of neurons (as shown in Figure 9.6), but there is nothing in the algorithm
to force this. There are cases where a line of neurons (1D) works better, or
where three dimensions are needed. It depends on the dimensionality of the
inputs (actually on the intrinsic dimensionality, the number of dimensions that
you actually need to represent the data), not the number that it is embedded
in. As an example, consider a set of inputs spread through the room you are
in, but all on the plane that connects the bottom of the wall to your left with
the top of the wall to your right. These points have intrinsic dimensionality
two since they are all on the plane, but they are embedded in your three-
dimensional room. Noise and other inaccuracies in data often leads to it being
represented in more dimensions than are actually required, and so finding the
intrinsic dimensionality can help to reduce the noise.

‘We also need to consider the boundaries of the network. In some cases, it
makes sense that the edges of the map of neurons is strictly defined — for
example, if we are arranging sounds from low pitch to high pitch, then the
lowest and highest pitches we can hear are obvious end points. However, it is
not always the case that such boundaries are clearly defined. In this case we
might want to remove the boundary conditions. We can do this by removing
the boundary by tying the ends together. In 1D this means that we turn a
line into a circle, while in 2D we turn a rectangle into a torus. To see this, try
taking a piece of paper and bend it so that the top and bottom edges line up.
You’ve now got a tube. If you bend the tube round so that the two open ends
meet up you have a circle of tube known as a torus. Pictures of these effects
are shown in Figure 9.10. In effect, it means that there are no neurons on
the edge of the feature map. The choice of the number of dimensions and the
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FIGURE 9.10: Using circular boundary conditions in 1D turns a line into a
circle, while in 2D it turns a rectangle into a torus.

boundary conditions depends on the problem that we are considering, but it
is usually the case that the torus works better than the rectangle, although it
is not always clear why.

The one cost that this has is that the map distances get more complicated
to calculate, since we now need to calculate the distances allowing for the wrap
around. This can be done using modulo arithmetic, but it is easier to think
about taking copies of the map and putting them around the map, so that the
original map has copies of itself all around: one above, one below, to the right
and left, and also diagonally above and below, as is shown in Figure 9.11.
Now we keep one of the points in the original map, and the distance to the
second node is the smallest of the distances between the first node and the
copies of the second node in the different maps (including the original). By
treating the distances in  and y separately, the number of distances that has
to be computed can be reduced.

As with the competitive learning algorithm that we considered earlier, the
size of the SOM is defined before we start learning. The size of the network
(that is, the number of neurons that we put into it) decides how fine-grained
the learning is. If there are very few neurons, then the best that the network
can do is to find gross generalisations that link the data. However, if there are
very large numbers of neurons, then the network can represent every input
without ever needing to generalise at all. This is yet another example of
overfitting. Clearly, then, choosing the correct size of network is important.
The common approach is to test out several different sizes of network, such
as 5 x 5 and 10 x 10 and see how well the network learns.

9.3.5 Examples of Using the SOM

As a first example of using the SOM, and one that shows the topologi-
cal ordering of the network, consider training the network on a set of two-
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FIGURE 9.11: One way to compute distances between points without any
boundary on the map is to imagine copies of the entire map being placed
around the original, and picking the shortest of the distances between a node
and any of the copies of the other node.

dimensional data drawn at random from a uniform distribution in [-1,1] in
both directions. If the network weights are started off randomly, then initially
the network is completely disordered (as shown in the top-left picture in Fig-
ure 9.12), but after 10 iterations of training the network is ordered so that
neighbouring nodes map to data that is close together (bottom-left). Using
PCA to initialise the map is not especially useful for this dataset, but it does
speed things up: only five iterations through the dataset produce the output
shown on the bottom-right of the figure, where it started from the version on
the top-right.

For two examples of using the SOM on non-random data, where we can
expect to see some actual learning, we will first look at the iris data that we
used with the k-means algorithm earlier in this chapter. Figure 9.13 shows a
plot of which node of a 5 x 5 Self-Organising Map was the best match on a set
of test data after training for 100 iterations. The three different classes are
shown as different shapes (squares, plus triangles pointing up and down), but
remember that the network did not receive any information about these target
classes. It can be seen that the examples in each of the three classes form
different clusters in the map. Looking at the figure, you might be wondering if
it is possible to use the plot to identify the different classes by assuming that
they are separated in the map. This has been investigated—often by using
methods similar to those of Linear Discriminant Analysis that are described
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FIGURE 9.12: Training the SOM on a set of uniformly randomly sampled
two-dimensional data in the range [—1, 1] in both dimensions. Top: Initialisation
of the map using left: random weights and right: PCA (the randomness in the
data means that the directions of variation are not necessarily along the obvious
directions). Bottom: The output after just 10 iterations of training on the left,
and 5 on the right, both with typical parameter values.
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FIGURE 9.13: Plot showing which nodes are the best match according to
class, with the three shapes corresponding to three different classes in the iris
dataset. The small dots represent nodes that did not fire.

in Section 10.1—with some success, and a reference is provided at the end of
the chapter.

A more difficult problem is shown in Figure 9.14. The data are the ecoli
dataset from the UCI Machine Learning repository, and the class is the locali-
sation site of the protein, based on a set of protein measurements. The results
with this dataset when testing are not as clearly impressive (but note that
the MLP gets about 50% accuracy on this dataset, and that has the target
data, which the SOM doesn’t). However, the clusters can still be seen to some
extent, and they are very clear in the training data. Note that the boundary
conditions can make things a little more complicated, since the cluster does
not necessarily respect the edges of the map.

Further Reading

There is a book by Kohonen, the inventor of the SOM, that provides a very
good overview of the area:

o T. Kohonen. Self-Organisation and Associative Memory. Springer,
Berlin, Germany, 3rd edition, 1989.

The two on-line self-organising networks that were mentioned in the chapter
were:
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FIGURE 9.14: Plots showing which nodes are the best match according to

class, with the three shapes corresponding to three different classes in the e-coli

dataset, tested on left: the training set and right: a separate test set. The small
dots represent nodes that did not fire.

e B. Fritzke. A growing neural gas network learns topologies. In Ger-
ald Tesauro, David S. Touretzky, and Todd K. Leen, editors, Advances
in Neural Information Processing Systems, volume 7, MIT Press, Cam-
bridge, MA, USA, 1995.

e S. Marsland, J.S. Shapiro, and U. Nehmzow. A self-organising network
that grows when required. Neural Networks, 15(8-9):1041-1058, 2002.

A possible reference on processing the data in the map in order to identify
clusters is:

e S. Wu and T.-W.S. Chow. Self-organizing-map based clustering using a
local clustering validity index. Neuwral Processing Letters, 17(3):253-271,
2003.

Books that cover the area include:

e Section 10.14 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Clas-
sification. Wiley-Interscience, New York, USA, 2nd edition, 2001.

e Chapter 9 of S. Haykin. Neural Networks: A Comprehensive Founda-
tion. Prentice-Hall, New Jersey, USA, 2nd edition, 1999.

e Section 9.3 of B.D. Ripley. Pattern Recognition and Neural Networks.
Cambridge University Press, Cambridge, UK, 1996.
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Practice Questions

Problem 9.1 What is the purpose of the neighbourhood function in the
SOM? How does it change the learning?

Problem 9.2 A simplistic intruder detection system for a computer network
consists of an attempt to categorise users according to (i) the time of
day they log in, (ii) the length of time they log in for, (iii) the types of
programs they run while logged in, (iv) the number of programs they
run while logged in. Suggest how you would train a SOM and the naive
Bayes’ classifier to perform the categorisation. What preprocessing of
the data would you do, how much data would you need, and how large
would you make the SOM? Do you think that such a system would work
for intruder detection?

Problem 9.3 The Music Genome Project (http:// www.pandora.com) does
not work by using a SOM. But it could. Describe how you would im-
plement it.

Problem 9.4 A bank wants to detect fraudulent credit card transactions.
They have data for lots and lots of transactions (each transaction is an
amount of money, a shop, and the time and date) and some information
about when credit cards were stolen, and the transactions that were
performed on the stolen card. Describe how you could use a competitive
learning method to cluster people’s transactions together to identify
patterns, so that stolen cards can be detected as changes in pattern.
How well do you think this would work? There is much more data of
transactions when cards are not stolen, compared to stolen transactions.
How does this affect the learning, and what can you do about it?

Problem 9.5 It is possible to use any competitive learning method to posi-
tion the basis functions of a Radial Basis Function network. The exam-
ple code used k-means. Modify it to use the SOM instead and compare
the results on the wine and yeast datasets.

Problem 9.6 For the wine dataset, experiment with different sizes of map,
and boundary conditions. How much difference does it make? Can you
use the principal components in order to set the size automatically?



Chapter 10

Dimensionality Reduction

In Chapter 9 we saw that the Self-Organising Map (SOM) reduced the number
of dimensions in the data to the two dimensions of the map. The choice of
two dimensions was imposed arbitrarily by the fact that the neurons were
arranged in a two-dimensional grid, and we saw in Section 9.3 that this can
cause problems, since projecting the data into two dimensions usually changes
the relative ordering of the datapoints. However, there are many reasons
why this dimensionality reduction is useful. The most obvious justification is
that it reduces the curse of dimensionality, and also the computational cost
of many of the algorithms, since the dimensionality is usually an explicit
factor. However, it can also remove noise, significantly improve the results
of the learning algorithm, make the dataset easier to work with, and make
the results easier to understand. In extreme cases such as the Self-Organising
Map, where the number of dimensions becomes three or less, we can also plot
the data, which makes it much easier to understand and interpret.

With this many good things to say about dimensionality reduction, clearly
it is something that we need to understand. The importance of the field
for machine learning and other forms of data analysis can be seen from the
fact that in the year 2000 there were three articles related to dimensionality
reduction published together in the prestigious journal Science. At the end
of the chapter we are going to see two of the algorithms that were described
in those papers: Locally Linear Embedding and Isomap.

There are three different ways to do dimensionality reduction. The first is
feature selection, which typically means looking through the features that are
available and seeing whether or not they are actually useful, i.e., correlated
to the output variables. While many people use neural networks precisely
because they don’t want to ‘get their hands dirty’ and look at the data them-
selves, as we have already seen the results will be better if you check for
correlations and other simple things before using the neural network or other
learning algorithm. The second method is feature derivation, which means
deriving new features from the old ones, generally by applying transforms to
the dataset that simply change the axes (coordinate system) of the graph by
moving and rotating them, which can be written simply as a matrix that we
apply to the data. The reason why this performs dimensionality reduction is
that it enables us to combine features, and to identify which are useful and
which are not. The third method is simply to use clustering in order to group
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FIGURE 10.1: Three views of the same four points. Left: As numbers, where
the links are unclear. Centre: As four plotted points. Right: As four points that
lie on a circle.

together similar datapoints, and to see whether this allows fewer features to
be used.

To see how choosing the right features can make a problem significantly
simpler, have a look at the table on the left of Figure 10.1. It shows the
x and y coordinates of 4 points. Looking at the numbers it is hard to see
any correlation between the points, and even when they are plotted it simply
looks like they might form corners of a rotated rectangle. However, the plot
on the right of the figure shows that they are simply a set of four points from
a circle, (in fact, the points at (7/6,47/6,77/6,117/6)) and using this one
coordinate, the angle, makes the data a lot easier to understand and analyse.

Once we have worked out how to represent the data, we can suppress di-
mensions that aren’t useful to the algorithm. Even before we get into any
form of analysis at all, we can try to perform feature selection, looking at
the possible inputs that we have for the problem, and deciding which are
useful. Many of the methods that we will see in this chapter merge this idea
with transformations of the data, so that combinations of the different inputs,
rather than the inputs themselves, are used. However, even before using any
of the algorithms identified here, input features can be ignored if they do not
seem to be useful.

We have already seen a method of doing feature selection, since it is inherent
to the way that the decision tree (Chapter 6) works: at each stage of the
algorithm it decides which feature to add next. This is the constructive way
to decide on the features: start with none, and then iteratively add more,
testing the error at each stage to see whether or not it changed at all when
that feature was added. The destructive method is the pruning that was
applied to the decision tree, lopping off branches and checking whether the
error changed at all.

In general, selecting the features is a search problem. We take the best
system so far, and then search over the set of possible next features to add.
This can be computationally very expensive, since for d features there are
2¢ — 1 possible sets of features to search over, from any individual feature
up to the full set. In general, greedy methods (Section 11.4) are employed,
although backtracking can also be employed to check whether the search gets
stuck.
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FIGURE 10.2: A set of dat- ing of the between-class and

apoints in two dimensions, with within-class scatter. The hearts

two classes. mark the means of the two
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Many of the algorithms that we will see in this chapter are unsupervised.
The disadvantage of this is that we are not then able to use the knowledge
of their classes in order to reduce the problem further. However, we will
start off by considering a method of dimensionality reduction that is aimed
at supervised learning, Linear Discriminant Analysis. This method is credited
to one of the best-known statisticians of the 20th century, R.A. Fisher, and
dates from 1936.

10.1 Linear Discriminant Analysis (LDA)

Figure 10.2 shows a simple two-dimensional dataset consisting of two classes.
We can compute various statistics about the data, but we will settle for the
means of the two classes in the data, p, and py, the mean of the entire
dataset (p), and the covariance of each class with itself (see Section 8.2.2 for
a description of covariance), which is >, (x; — p)(x; — )T, The question
is what we can do with these pieces of data. The principal insight of LDA
is that the covariance matrix can tell us about the scatter within a dataset,
which is the amount of spread that there is within the data. The way to find
this scatter is to multiply the covariance by the p., the probability of the class
(that is, the number of datapoints there are in that class divided by the total
number). Adding the values of this for all of the classes gives us a measure of
the within-class scatter of the dataset:

Sw= D > pe(xs— p)x; — p)T (10.1)

classes c jEc

If our dataset is easy to separate into classes, then this within-class scatter
should be small, so that each class is tightly clustered together. However, to
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be able to separate the data, we also want the distance between the classes
to be large. This is known as the between-classes scatter and is a significantly
simpler computation, simply looking at the difference in the means:

Sp= > (p.—mw(p.— w7 : (10.2)

classes ¢

The meanings of these two measurements is shown in Figure 10.3. The
argument about good separation suggests that datasets that are easy to sep-
arate into the different classes (i.e., the classes are discriminable) should have
Sp/Sw as large as possible.

This seems perfectly reasonable, but it hasn’t told us anything about di-
mensionality reduction. However, we can say that the rule about making
Sp/Sw as large as possible is something that we want to be true for our data
when we reduce the number of dimensions. Figure 10.4 shows two projections
of the dataset onto a straight line. For the projection on the left it is clear
that we can’t separate out the two classes, while for the one on the right we
can. So we just need to find a way to compute a suitable projection.

Remember from Chapter 2 that any line can be written as a vector w (which
we used as our weight vector in Section 2.3; it is one row of weight matrix
W). The projection of the data can be written as z = w’ - x for datapoint
x. This gives us a scalar that is the distance along the w vector that we need
to go to find the projection of point x. To see this, remember that w’ - x is
the sum of the vectors multiplied together element-wise, and is equal to the
size of w times the size of x times the cosine of the angle between them. We
can make the size of w be 1, so that we don’t have to worry about it, and all
that is then described is the amount of x that lies along w.

So we can compute the projection of our data along w for every point,
and we will have projected our data onto a straight line, as is shown in the
two examples in Figure 10.4. Since the mean can be treated as a datapoint,
we can project that as well: u, = w’ . u_.. Now we just need to work out
what happens to the within-class and between-class scatters. Replacing x;
with w? - x; in Equations (10.1) and (10.2) we can use some linear algebra

(principally the fact that (A7B)T = BTAT" = BTA) to get:

SN pewT (x5 — p))WT - (x5 — p))” = wTSww  (10.3)

classes ¢ jEC

> W — p)(pe —p)Tw = w'Spw.  (10.4)

classes ¢

So our ratio of within-class and between-class scatter looks like %Trg‘i;%v. In
order to find the maximum value of this with respect to w, we differentiate it
and set the derivative equal to 0. This tells us that:
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FIGURE 10.4: Two different possible projection lines. The one on the left
fails to separate the classes.

Spw(wT Sww) — Syw(wlSpw)
(wT'Syw)?
So we just need to solve this equation for w and we are done. We start
with a little bit of rearranging to get:

=0. (10.5)

== " g w. (10.6)

If there are only two classes in the data, then we just need to notice that Sg
in Equation (10.2) reduces to (p4; — o) (6 — p12)T, which tells us that Spw
is in the direction (p; — p15), and so w is in the direction of Sy (p; — p2)
(we can ignore the ratio of within-class and between-class scatter, since it is
a scalar and therefore does not affect the direction of the vector).

Unfortunately, this does not work for the general case. There, finding the
minimum is not simple, and requires computing the generalised eigenvectors of
Si},l Sp, assuming that Sv_vl exists. We will be discussing eigenvectors in the
next section if you are not sure what they are.

Turning this into an algorithm is very simple. You simply have to compute
the between-class and within-class scatters, and then find the value of w.
In NumPy, the entire algorithm can be written as (where the generalised
eigenvectors are computed in SciPy rather than NumPy, which was imported
using from scipy import linalg as la):
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FIGURE 10.5: Plot of the iris data showing the three classes /eft: before
and right: after LDA has been applied.
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As an example of using the algorithm, Figure 10.5 shows a plot of the
first two dimensions of the iris data (with the classes shown as three different
symbols) before and after applying LDA, with the number of dimensions being
set to two. While one of the classes (the triangles) can already be separated

from the others, all three are readily distinguishable after LDA has been
applied (and only one dimension, the y one, is required for this).

10.2 Principal Components Analysis (PCA)

The next few methods that we are going to look at are also involved in
computing transformations of the data in order to identify a lower-dimensional
set of axes. However, unlike LDA, they are designed for unlabelled data. This
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FIGURE 10.6: Two different sets of coordinate axes. The second consists
of a rotation and translation of the first and was found using Principal
Components Analysis.

does not stop them being used for labelled data, since the learning that takes
place in the lower dimensional space can still use the target data, although
it does mean that they miss out on any information that is contained in
the targets. The idea is that by finding particular sets of coordinate axes,
it will become clear that some of the dimensions are not required. This is
demonstrated in Figure 10.6, which shows two versions of the same dataset.
In the first the data are arranged in an ellipse that runs at 45° to the axes,
while in the second the axes have been moved so that the data now runs along
the r—axis and is centred on the origin. The potential for dimensionality
reduction is in the fact that the y dimension does not now demonstrate much
variability, and so it might be possible to ignore it and use the x axis values
alone without compromising the results of a learning algorithm. In fact, it
can make the results better, since we are often removing some of the noise in
the data.

The question is how to choose the axes. The first method we are going
to look at is Principal Components Analysis (PCA). The idea of a principal
component is that it is a direction in the data with the largest variation. The
algorithm first centres the data by subtracting off the mean, and then chooses
the direction with the largest variation and places an axis in that direction,
and then looks at the variation that remains and finds another axis that it
is orthogonal to the first and covers as much of the remaining variation as
possible. It then iterates this until it has run out of possible axes. The end
result is that all the variation is along the axes of the coordinate set, and
so the covariance matrix is diagonal—each new variable is uncorrelated with
every variable except itself. Some of the axes that are found last have very
little variation, and so they can be removed without affecting the variability
in the data.

Putting this in more formal terms, we have a data matrix X and we want to
rotate it so that the data lies along the directions of maximum variation. Thig
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means that we multiply our data matrix by a rotation matrix (often written
as PT) so that Y = PTX, where P is chosen so that the covariance matrix
of Y is diagonal, i.e.,

A0 O0...0
cov(Y) = cov(®TX) = | O 22 0 - 0 (10.7)
0 0 0...An

We can get a different handle on this by using some linear algebra and the
definition of covariance to see that:

cov(Y) = E[YYT] (10.8)
= E[(PTX)(PTX)T] (10.9)
= E[(PTX)(X™P)] (10.10)
= PTEXXT)P (10.11)
= PTcov(X)P. (10.12)

The two extra things that we needed to know were that (P7X)? = XTpT" =
XTP and that E[P] = P (and obviously the same for PT) since it is not a
data-dependent matrix. This then tells us that:

Pcov(Y) = PP cov(X)P = cov(X)P, (10.13)

where there is one tricky fact, namely that for a rotation matrix PT = P~!.
This just says that to invert a rotation we rotate in the opposite direction by
the same amount that we rotated forwards.

As cov(Y) is diagonal, if we write P as a set of column vectors P =
[p17p2> s 7pN] then:

Pcov(Y) = [Mp1, A2P2; - - -, ANPN, (10.14)

which (by writing the A variables in a matrix as A = (A1, Ay, ..., Ax)T and
Z = cov(X)) leads to a very interesting equation:

AP = ZP. (10.15)

At first sight it doesn’t look very interesting, but the important thing is to
realise that A is a column vector, while Z is a full matrix. Since A is only a
column vector, all it does is rescale the components of P; it cannot rotate it or
do anything complicated like that. So this tells us that somehow we have found
a matrix P so that for the directions that P is written in, the matrix Z does
not twist or rotate those directions, but just rescales them. These directions
are special enough that they have a name: they are eigenvectors, and the
amount that they rescale the axes (the As) by are known as eigenvalues.
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All eigenvectors of a square symmetric matrix A are unit length and are
orthogonal to each other. This tells us that the eigenvectors define a space. If
we make a matrix E that contains the eigenvectors of a matrix A as columns
then this matrix will take any vector and rotate it into what is known as
the eigenspace. Since E is a rotation matrix, E-! = ET, so that rotating
the resultant vector back out of the eigenspace requires multiplying it by E7 .
So what should we do between rotating the vector into the eigenspace, and
rotating it back out? The answer is that we can stretch the vectors along
the axes. This is done by multiplying the vector by a diagonal matrix that
has the eigenvalues along its diagonal, D. So we can decompose any square
symmetric matrix A into the following set of matrices: A = EDET, and
this is what we have done to our covariance matrix above. This is called the
spectral decomposition.

Before we get on to the algorithm, there is one other useful thing to note.
The eigenvalues tell us how much stretching we need to do along their cor-
responding eigenvector dimensions. The more of this rescaling is needed,
the larger the variation along that dimension (since if the data was already
spread out equally then the eigenvalue would be close to 1), and so the di-
mensions with large eigenvalues have lots of variation and are therefore useful
dimensions, while for those with small eigenvalues, all the datapoints are very
tightly bunched together, and there is not much variation in that direction.
This means that we can throw away dimensions where the eigenvalues are
very small (usually smaller than some chosen parameter).

It is time to see the algorithm that we need.

The Principal Components Analysis Algorithm

e write N datapoints x; = (X14,X2i,- - . ,XM;) 8 FOW vectors
U
e put these vectors into a matrix X (which will have size N x M)

e centre the data by subtracting off the mean of each column, putting it
into matrix B

e compute the covariance matrix C = %BTB

e compute the eigenvalues and eigenvectors of C, so V-1CV = D, where
V holds the eigenvectors of C and D is the M x M diagonal eigenvalue
matrix

e sort the columns of D into order of decreasing eigenvalues, and apply
the same order to the columns of V'

e reject those with eigenvalue less than some 7, leaving L dimensions in
the data
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FIGURE 10.8: Plot of the first two principal components of the iris data,
showing that the three classes are clearly distinguishable.

Two different examples of using PCA are shown in Figures 10.7 and 10.8.
The former shows two-dimensional data from an ellipse being mapped into
one principal component, which lies along the principal axis of the ellipse.
Figure 10.8 shows the first two dimensions of the iris data, and shows that
the three classes are clearly distinguishable after PCA has been applied.

10.2.1 Relation with the Multi-Layer Perceptron

We've seen (in Section 9.3.2) that PCA can be used in the SOM algo-
rithm to initialise the weights, thus reducing the amount of learning that is
required, and that it is very useful for dimensionality reduction. However,
there is another reason why people who are interested in neural networks
are interested in PCA. We already mentioned it when we talked about the
auto-associative MLP in Section 3.4.5. The auto-associative MLP actually
computes something very similar to the principal components of the data in
the hidden nodes, and this is one of the ways that we can understand what
the network is doing. Of course, computing the principal components with
a neural network isn’t necessarily a good idea. PCA is linear (it just rotates
and translates the axes, it can’t do anything more complicated). This is clear
if we think about the network, since it is the hidden nodes that are computing
PCA, and they are effectively a bit like a Perceptron—they can only perform
linear tasks. It is the extra layers of neurons that allow us to do more.

So suppose we do just that and use a more complicated MLP network with
four layers of neurons instead of two. We still use it as an auto-associator, so
that the targets are the same as the inputs. What will the middle hidden layer,

CaE
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look like then? A full answer is complicated, but we can speculate that the
first layer is computing some non-linear transformation of the data, while the
second (bottleneck) layer is computing the PCA of those non-linear functions.
Then the third layer reconstructs the data, which appears again in the fourth
layer. So the network is still doing PCA, just on a non-linear version of the
inputs. This might be useful, since now we are not assuming that the data are
linearly separable. However, to understand it better we will look at it from a
different viewpoint, thinking of the actions of the first layer as kernels, which
we saw in Section 5.2.

10.2.2 Kernel PCA

One problem with PCA is that it assumes that the directions of variation
are all straight lines. This is often not true. We can use the auto-associator
with multiple hidden layers as just discussed, but there is a very nice extension
to PCA that uses the kernel trick (which we saw in Section 5.2) to get around
this problem, just as the SVM got around it for the Perceptron. Just as we
did there, we apply a (possibly non-linear) function ®(-) to each datapoint
x that transforms the data into the kernel space, and then perform normal
linear PCA in that space. The covariance matrix is defined in the kernel space -
and is:

N

C=+ > ®(x,)@(xn)7, (10.16)

n=1
which produces the eigenvector equation:
A(®(x;)V) = (2(x;,)CV) i=1...N, (10.17)

where V = E;\;l a;®(x;) are the eigenvectors of the original problem and
the a; will turn out to be the eigenvectors of the ‘kernelized’ problem. It is
at this point that we can apply the kernel trick and produce an N x N matrix
K, where:

K, ) = (2(x:) - 2(x;)) - (10.18)

Putting these together we get the equation NA\Ka = K?a, and we left-
multiply by K~ to reduce it to NAa = Ka. Computing the projection of a
new point X into the kernel PCA space requires:

N
(VE-2(x)) = af (2(x:) - @(x;). (10.19)

This is all there is to the algorithm.
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The Kernel PCA Algorithm

compute the distances between all datapoints

choose the kernel and apply it to the distance matrix to get matrix K

compute the eigenvalues and eigenvectors of K

normalise the eigenvectors by the square root of the eigenvalues

retain the eigenvectors corresponding to the largest eigenvalues

The ounly tricky part of the implementation is in the diagonalisation of
K, which is generally done using some well-known linear algebra identities,
leading to:

This is a computationally expensive algorithm, since it requires computing
the kernel matrix and then the eigenvalues and eigenvectors of that matrix.
The naive implementation on the algorithm on the website is O(n3), but with
care it is possible to take advantage of the fact that not all of the eigenvalues
are needed, which can lead to an O(n?) algorithm.

Figure 10.9 shows the output of kernel PCA when applied to the iris dataset.
The fact that it can separate this data well is not very surprising since the
linear methods that we have already seen can do it, but it is a useful check of
the method. A rather more difficult example is shown in Figure 10.10. Data
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FIGURE 10.9: Plot of the first two non-linear principal components of the
iris data, showing that the three classes are clearly distinguishable.
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FIGURE 10.10: A very definitely non-linear dataset consisting of three
concentric circles, and the kernel PCA mapping of the data, which requires only
one component to separate the data.

are sampled from three concentric circles. Clearly, linear PCA would not be
able to separate this data, but applying kernel PCA to this example separates

the data using only one component.

10.3 Factor Analysis

The idea of factor analysis is to ask whether the data that is observed can
be explained by a smaller number of uncorrelated factors or latent variables.
The assumption is that the data comes from some underlying data source
(or set of data sources) that are not directly known. The problem of factor
analysis is to find those independent factors, and the noise that is inherent

in the measurements of each factor.

Factor analysis is commonly used in

psychology and other social sciences, and the factors are generally chosen to
have some particular meanings: in psychology, they can be related to IQ and
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other tests.

Suppose that we have a dataset in the usual N x M matrix X, i.e., each
row of X is an M-dimensional datapoint, and X has covariance matrix 3. As,
with PCA, we centre the data by subtracting off the mean of each variable
(i.e., each column): bj = x; —p;, j =1... M, so that the mean E[b;] = 0.
Which we’ve done before, for example for the MLP and many times since.

We can write the model that we are assuming as:

X=WY +¢, (10.20)

where X are the observations and € is the noise. Since the factors b; that we
want to find should be independent, so cov(b;, b;) = 0if i # j. Factor analysis
takes explicit notice of the noise in the data, using the variable €. In fact, it
assumes that the noise is Gaussian with zero mean and some known variance:
¥, with the variance of each element being ¥; = var(¢;). It also assumes that
these noise measurements are independent of each other, which is equivalent
to the assumption that the data come from a set of separate (independent)
physical processes, and seems reasonable if we don’t know otherwise.

The covariance matrix of the original data, X, can now be broken down
into cov(Wh+€) = WW7 + ¥, where ¥ is the matrix of noise variances and
we have used the fact that cov(b) = I since the factors are uncorrelated.

With all of that set up, the aim of factor analysis is to try to find a set of
factor loadings W;; and values for the variance of the noise parameters ¥, so
that the data in X can be reconstructed from the parameters, or so that we
can perform dimensionality reduction.

Since we are looking at adding additional variables, the natural formula-
tion is an EM algorithm (as described in Section 8.3.1) and this is how the
computations are usually performed to produce the maximum likelihood es-
timate. Getting to the EM algorithm takes some effort. We first define the
log likelihood {where @ is the data we are trying to fit) as:

Q6.16:1) = / p(xly, B:-1) log(p(y|x, 0.)p(x))dx. (10.21)

We can replace several of the terms in here with values, and we can also
ignore any terms that do not depend on 0. The end result of this is a new
version of ¢}, which forms the basis of the E-step:

Q(6:]6:-1) = % /p(x|y,0t_1) log(det(¥~ 1))~ (y — wx)To !y — Wx)) dx.

(10.22)

For the EM algorithm we now have to differentiate this with respect to

W and the individual elements of ¥, and apply some linear algebra, to get
update rules:
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(10.23)

Woew

(10.24)

diagonal (xx” — WE(x y)yT) 5

1

N

\Ilnew

wh i
ere diagonal() ensures that the matrix retains values only on the diagonal

and the expectations are

(10.25)

=WI(WWT +¥)"1b
(10

E(x]y)

The only other thi |
ings that we need to add to the algorithm is some way to

dec

26

1

—-WI(WWT +¥)~

I

(xly)" =

- Exly)E

E(xxT|x)

ing

ikelihood and stopp

ing the log 1

which involves comput

ide when to stop,

th . .
e algorithm when it stops descending. This leads to an algorithm where the

basic steps in the loop are
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Th i
e output of using factor analysis on the iris dataset are shown in Fig

ure 10.11.
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FIGURE 10.11: Plot of the first two factor analysis components of the iris
data, showing that the three classes are clearly distinguishable.

10.4 Independent Components Analysis (ICA)

There is a related approach to factor analysis that is known as Independent
Components Analysis. When we looked at PCA above, the components were
chosen so that they were orthogonal and uncorrelated (so that the covariance
matrix was diagonal, i.e., so cov(b;,b;) = 0 if ¢ # j). If, instead, we require
that the components are statistically independent (so that for E[b;,b;] =
E[b;]E[b;] as well as the b; being uncorrelated), then we get ICA.

The common motivation for ICA is the problem of blind source separation.
As with factor analysis, the assumption is that the data we see are actually
created by a set of underlying physical processes that are independent. The
reason why the data we see are correlated is because of the way the outputs
from different processes have been mixed together. So given some data, we
want to find a transformation that turns it into a mixture of independent
sources or components.

The most popular way to describe blind source separation is known as the
cocktail party problem. If you are at a party, then your ears hear lots of different
sounds coming from lots of different locations (different people talking, the
clink of glasses, background music, etc.) but you are somehow able to focus
on the voice of the people you are talking to, and can in fact separate out the
sounds from all of the different sources even though they are mixed together.
The cocktail party problem is the challenge of separating out these sources,
although there is one wrinkle: for the algorithm to work, you need as many
ears as there are sources. This is because the algorithm does not have the
information we have about what things sound like.

Suppose that we have two sources making noise (st, sh) where the top index
covers the fact that there are lots of datapoints appearing over time, and two
microphones that hear things, giving inputs (zf,z%). The sounds that are
heard come from the sources as:
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T = as) + bSQ, (10.27)
z9 = cs1 + dsg, (10.28)

which can be written in matrix form as:

x = As, (10.29)

where A is known as the mixing matrix. Reconstructing s looks easy now: we
just compute s = A~!'x. Except that, unfortunately, we don’t know A. The
approximation to A~! that we work out is generally labelled as W, and it
is a square matrix since we have the same number of microphones as we do
sources.

At this point we need to work out what we actually know about the sources
and the signals. There are three things:

¢ the mixtures are not independent, even though the sources are

o the mixtures will look like normal distributions even if the sources are
not (this is because of the Central Limit Theorem, something that we
won't look at further here)

e the mixtures will look more complicated than the sources

We can use the first fact to say that if we find factors that are independent
of each other then they are probably sources, and the second to say that if
we find factors that are not Gaussian then they are probably sources. We
can measure the amount of independence between two variables by using the
mutual information, which we saw in Section 6.2.1 when we looked at entropy.
In fact, the most common approach is to use what is rather uglily known
as negentropy: J(y) = H(z) — H(y), which maximises the deviations from
Gaussianness (where H(-) is the entropy):

H(y) = - / 9(y) log g(y)dy. (10.30)

One common approximation is J(y) = (E[G(y)] — E[G(z)])?, where g(u) =
1 ]og cosh(au), so ¢'(u) = tanh(au) 1 < a < 2. Implementing ICA is actually
quite tricky because of some numerical issues, so we won't do it ourselves.
There are a few well-used ICA implementations out there, of which the most
popular is known as FastICA, which is available in Python as part of the MDP
package.
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10.5 Locally Linear Embedding

Two relatively recent methods of computing dimensionality reduction were
mentioned in the introduction because they were published in the journal
Science. Both are non-linear, and both attempt to preserve the neighbourhood
relations in the data (as we talked about for the SOM in Section 9.3) but they
use different approaches. The first tries to approximate the data by sticking
together sets of locally flat patches that cover the dataset, while the second
uses the shortest distances (geodesics) on the non-linear space to find a globally
optimal solution.

We will look first at the locally linear algorithm, which is called Locally
Linear Embedding (LLE). It was introduced by Roweis and Saul in 2000. The
idea is to say that by making linear approximations we will make some errors,
so we should make these errors as small as possible by making the patches
small where there is lots of non-linearity in the data. The error is known
as the reconstruction error and is simply the sum-of-squares of the distance
between the original point and its reconstruction:

2
N

N
€= Z X; — ZW,,;J'XJ: . (1031)
j=1

i=1

The weights W;; say how much effect the jth datapoint has on the recon-
struction of the ith one. The question is which points can be usefully used
to reconstruct a particular datapoint. If another point is a long way off, then
it probably isn't very useful: only those points that are close to the current
datapoint (that are in its neighbourhood) are used. There are two common
ways to create neighbourhoods:

o Points that are less than some predefined distance d to the current point
are neighbours (so we don’t know how many neighbours there are, but
they are all close)

o The k nearest points are neighbours (so we know how many there are,
but some could be far away)

Solving for the weights W;; is a least-squares problem, which we can sim-
plify by enforcing the constraints that for any point x; that is a long way
from the current point x;, W;; = 0, and that ) ;Wi =1 This produces a
reconstruction of the data, but it does not reduce the dimensionality at all.
For this we have to reapply the same basic cost function, but minimise it
according to the positions y; of the points in some lower dimensional space
(dimension L):
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2

N L
Y: = Z y: — ZWijyj . (10.32)
i=1 j=1

Solving this is rather more complicated, so we won’t go into details, but
it turns out that the solution is the eigenvalues of the quadratic form matrix
M;; = 6 — Wi — Wy + 3, W;; Wy, where 0;; is the Kronecker delta
function, so d;; = 1 if ¢ = j and 0 otherwise. This leads to the following
algorithm:

The Locally Linear Embedding Algorithm

¢ decide on the neighbours of each point (e.g., K nearest neighbours):

— compute distances between every pair of points
— find the k smallest distances
— set W;; = 0 for other points
— for each point x;:
x create a list of its neighbours’ locations z;

* compute z; = z; — X;

e compute the weights matrix W that minimises Equation (10.31) accord-
ing to the constraints:

— compute local covariance C = ZZT, where Z is the matrix of z;s
— solve CW =1 for W, where I is the N x N identity matrix

— set W;; = 0 for non-neighbours

— set other elements to W/ > (W)

¢ compute the lower dimensional vectors y; that minimise Equation (10.32):

create M = (I - W)T(I - W)

compute the eigenvalues and eigenvectors of M

|

|

— sort the eigenvectors into order by size of eigenvalue

set the gth row of y to be the ¢ + 1 eigenvector corresponding to
the gth smallest eigenvalue (ignore the first eigenvector, which has
eigenvalue 0)

There are a couple of things in there that are a bit tricky to implement,
and there is a function that we haven’t used before, kron(), which takes two
matrices and multiplies each element of the first one by all the elements of the
second, putting all of the results together into one multi-dimensional output
array. It is used to construct the set of neighbourhood locations for each
point.
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neighbours transforms the iris dataset into three points,

perfectly.

The LLE algorithm produces a very interesting result on the iris dataset: it
separates the three groups into three points (Figure 10.12). This shows that

the algorithm works very well on this type of data, but doesn’t give us any

tis

tricky to find a 2D representation of the 3D data because it is rolled up. The

right of Figure 10.13 shows that LLE can successfully unroll it.

ious reasons, i

hints as to what else it can do. Figure 10.13 shows a common demonstration

dataset for these algorithms. Known as the swissroll for obv
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FIGURE 10.13: A common example used to demonstrate LLE is the
swissroll dataset shown on the left. To produce a useful 2D representation of
this data requires unrolling the data, which the LLE does successfully, as is
shown on the right. The shades are used to identify neighbouring points, and do
not have any other purpose.

10.6 Isomap

The other algorithm was proposed by Tenenbaum et al., also in 2000. It
tries to minimise the global error by looking at all of the pairwise distances and
computing global geodesics. It is a variant of the standard multi-dimensional
scaling (MDS) algorithm, so we’ll talk about that first.

10.6.1 Multi-Dimensional Scaling (MDS)

Like PCA, MDS tries to find a linear approximation to the full dataspace
that embeds the data into a lower dimensionality. In the case of MDS the
embedding tries to preserve the distances between all pairs of points (however
these distances are measured). It turns out that if the space is FEuclidean
then the two methods are identical. We use the same notational setup as
previous, starting with datapoints x;,Xs,...,Xy € RM. We choose a new
dimensionality L < M and compute the embedding so that the datapoints
are z;, Zz, ... zy € RY. As usual, we need a cost function to minimise. There
are lots of choices for MDS cost functions, but the more common ones are:

Kruskal-Shephard scaling (also known as least-squares) Sk (21, Z2, . .. 2Zn)
i (dir — |20 — 2]])?

I TRV .
Sammon mapping Ssum(21,2%2,...2ZN) = Y2,y (d"'_l‘!lz”‘, zl)”  This puts

more weight onto short distances, so that neighbouring points stay the
correct distance apart
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In either case, gradient descent can be used to minimise the distances.
There is another version of MDS called classical MDS that uses similarities
between datapoints rather than distances. These can be constructed from a
set of distances by using the centred inner product sy = (x; — %), (x} — %)7.
By doing this it is possible to construct a direct algorithm that does not
have to use gradient descent. The function that needs to be minimised is

_ _ T2 .
i (sir — (z; — ), (2 — 2)”T)". The computations that are needed are:

The Multi-Dimensional Scaling (MDS) Algorithm

e compute the matrix of squared pairwise similarities D, D;; = ||x; —x;||?

e compute J = Iy — 1/N (where Iy is the N x N identity function and
N is the number of datapoints)

e compute B = ~1IJDJ”

o find the L largest eigenvalues A; of B, together with the corresponding
eigenvectors e;

e put the eigenvalues into a diagonal matrix V and set the eigenvectors
to be columns of matrix P

o Compute the embedding as X = pPVv!/?

This classical MDS algorithm works fine on flat manifolds (data spaces).
However, we are interested in manifolds that are not flat, and this is where
Isomap comes in. The algorithm has to construct the distance matrix for all
pairs of data points on the manifold, but there is no information about the
manifold, and so the distances can’t be computed exactly. Isomap approxi-
mates them by assuming that the distances between pairs of points that are
close together are good, since over a small distance the non-linearity of the
manifold won’t matter. It builds up the distances between points that are far
away by finding paths that run through points that are close together, i.e.,
that are neighbours, and then uses normal MDS on this distance matrix:

The Isomap Algorithm

e construct the pairwise distances between all pairs of points
e identify the neighbours of each point to make a weighted graph G
e estimate the geodesic distances dg by finding shortest paths

e apply classical MDS to the set of dg

Floyd’s and Dijkstra’s algorithms are well-known algorithms for finding
shortest paths on graphs. They are of O(N?) and O(N?) time complexity,
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FIGURE 10.14: Isomap transforms the iris data in a similar way to factor
analysis, provided that the neighbourhood size is large enough to avoid points
becoming disconnected.
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FIGURE 10.15: Isomap also produces a good remapping of the swissroll
dataset.

respectively. Any good algorithms textbook provides the details if you don’t
know them.

There is one practical aspect of Isomap, which is that getting the number
of neighbours right can be important, otherwise the graph splits into separate
components (that is, segments of the graph that are not linked to each other),
which have infinite distance between them. You then have to be careful to
deal only with the largest component, which means that you end up with less
data than you started with. Otherwise the implementation is fairly simple.

Figure 10.14 shows the results of applying Isomap to the iris dataset. Here,
the default neighbourhood size of 12 produced a largest component that held
only one of the three classes, and the other two were deleted. By increasing
the neighbourhood size over 50, so that each point had more neighbours than
were in its class, the results shown in the figure were produced. On the swis-
sroll dataset shown on the left of Figure 10.13, Isomap produces qualitatively
similar results to LLE, as can be seen in Figure 10.15.

Although the two algorithms produce similar mappings of the swissroll
dataset, they are based on different principles. Isomap attempts to find a
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mapping that preserves the distances between pairs of points within the man-
ifold, no matter how far apart they are, while LLE focuses only on local
regions of the manifold. This means that the computational cost of LLE is
significantly less, but it can make errors by putting points close together that
should be far apart. The choice of which algorithm to use often depends upon
the dataset, and trying both of them out for your particular dataset is often
a good idea.

Further Reading

Surveys of the area of dimensionality reduction include:

e L.J.P. van der Maaten. An introduction to dimensionality reduction
using MATLAB. Technical Report MICC 07-07, Maastricht University,
Maastricht, the Netherlands, 2007,

e F. Camastra. Data dimensionality estimation methods: a survey. Pat-
tern Recognition, 36:2945-2954, 2003.

For more information about many of the methods desribed here, there are
books or papers that contain a lot of information. Notable references include:

e (for LDA) Section 4.3 of T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Springer, Berlin, Germany, 2001.

o (for PCA) LT. Jolliffe.  Principal Components Analysis. Springer,
Berlin, Germany, 1986.

e (for kernel PCA) J. Shawe-Taylor and N. Cristianini. Kernel Methods
for Pattern Analysis. Cambridge University Press, Cambridge, UK,
2004.

(for ICA) J.V. Stone. Independent Components Analysis: A Tutorial
Introduction. MIT Press, Cambridge, MA, USA, 2004.

(for ICA) A. Hyvrinen and E. Oja. Independent components analysis:
Algorithms and applications. Neural Networks, 13(4-5):411-430, 2000.

(for LLE) S. Roweis and L. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323-2326, 2000.

(for MDS) T.F. Cox and M.A.A. Cox. Multidimensional Scaling. Chap-
man & Hall, London, UK, 1994.
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e (for Isomap) J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319-2323, 2000.

e Chapter 12 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.

Practice Questions

Problem 10.1 Use LDA on the Iris dataset (which is what Fisher originally
tested LDA on).

Problem 10.2 Compare the results with using PCA, which is not supervised
and will not therefore be able to find the same space.

Problem 10.3 Compute the eigenvalues and eigenvectors of:

1 2 1
(_52 _74) ((1)?) 6 —10 (10.33)
-1-2-1

Problem 10.4 Compare the algorithms described in this chapter on a variety
of different datasets, including the yeast dataset and the wine dataset.
Input the results of the data reduction method to the MLP and SOM.
Are the results better than before this preprocessing?

Problem 10.5 Modify the Isomap code to use Dijkstra’s algorithm rather
than Floyd’s algorithm.

Problem 10.6 Another dataset that the Isomap and LLE algorithms are
commonly demonstrated on is the ‘S’ shape that is available on the
website. Download it and test various algorithms, not just Isomap and
LLE on it. For Isomap and LLE, try different numbers of neighbours to
see the effect that this has.



Chapter 11

Optimisation and Search

In almost all of the algorithms that we’ve looked at in the previous chapters
there has been some element of optimisation, generally by defining some sort
of error function, and attempting to minimise it. We’ve talked about gradi-
ent descent, which is the optimisation method that forms the basis of many
machine learning algorithms. In this chapter, we will look at formalising the
gradient descent algorithm and understanding how it works, and then we will
look at what we can do when there are no gradients in the problem, and so
gradient descent doesn’t work.

Whatever method we have used to solve the optimisation problem, the
basic methodology has been the same: to compute the derivative of the error
function to get the gradient and follow it downhill. What if that derivative
doesn’t exist? This is actually common in many problems—discrete problems
are not defined on continuous functions, and hence can’t be differentiated,
and so gradient descent can’t be used. In theory, it is possible to check all of
the cases for a discrete problem to find the optimum, but the computations
are infeasible for any interesting problem. We therefore need to think of some
other approaches. Some examples of discrete problems are:

Chip design Lay a circuit onto a computer chip so that none of the tracks
Cross.

Timetabling Given a list of courses and which students are on each course.
find a timetable with the minimum number of clashes (or given a number
of planes and routes, schedule the planes onto the routes).

The Travelling Salesman Problem Given a set of cities, find a tour (that
is, a solution that visits every city exactly once, and returns to the
starting point) that minimises the total distance travelled.

One thing that is worth noting is that there is no one ideal solution to the
search problem. That is, there is no one search algorithm that is guaranteed
to perform the best on every problem that is presented to it—you always
have to put some work into choosing the algorithm that will be most effective
for your problem, and phrasing your problem to make the algorithm work as
efficiently as possible. This is called the No Free Lunch theorem.
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Xy

FIGURE 11.1: The downhill gradients to minimise a function. At the
solution the gradient is 0. This is a nice example without local minima; they
would also have gradient 0.

11.1 Going Downhill

We will start by trying to derive a better understanding of gradient descent,
and seeing the algorithms that can be used for finding local optima for general
problems. We will also look at the specific case of solving least-squares op-
timisation problems, which is the most common example we see for machine
learning algorithms.

The basic idea, as we have already seen, is that we want to minimise a
function f(x), where x is a vector (z1,xsg,...,%,) that has elements for each
feature value, starting from some initial guess x(0). We try to find a sequence
of new points x(7) that move downhill towards a solution. The methods that
we are going to look at work in any number of dimensions. We will therefore
have to take derivatives of the function in each of the different dimensions of
x. We write down this whole set of functions as V f(x), which is a vector with
elements (6%%, 6%%, ce a_ax%)’ so that it gives us the gradient in each dimension
separately. Figure 11.1 shows a set of directions in two dimensions in order
to minimise some function.

The first thing to think about is how we know when we have found a
solution, in other words how will we know when to stop? This is relatively
easy: it is when V f = 0, since then there is no more downhill to go. If you
are walking down a hill, then you have reached the bottom when everything
is flat around you (which might not be a very large space before things start
going up again, but if the function is continuous, as we will assume here, then
there must be a point where it is 0 inbetween where it is going down and
where it starts going up). So we will know when to terminate the algorithm
by checking whether or not Vf = 0. In practice, the algorithms will always
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FIGURE 11.2: The lines show contours of equal value (level sets) for a
function.

have some numerical inaccuracy, since they are floating point numbers inside
the computer, so we usually stop if |V f| < e where € is some small number,
maybe 107°, There is another concept that it can be useful to think about,
which is the places that we can travel to without going up or down, i.e., the
places that are at the same level as we are. These are known as level sets of
the function, and some examples are shown in Figure 11.2.

So from the current point x; there are two things that we need to decide:
what direction should we move in to go downhill as fast as possible, and how
far should we move? Looking at the second of these questions first, there are
two types of methods that can be used to solve it. The one that we are going
to use is a line search: if we know what direction to look in, then we move
along it until we reach the minimum in this direction. So this is just a search
along the line we are moving along. Writing this down mathematically, if we
are currently at x; then the next guess will be x4 1, which is:

Xk41 = Xg + Ok Pk, (11.1)

where py is the direction we have chosen to move in and oy is the distance
to travel in that direction, chosen by the line search. Computing this can be
computationally expensive, so it is generally just guessed. The other method
is known as a trust region. It is more complex, since it consists of making a
local model of the function as a quadratic form and finding the minimum of
that model. We will see one example of a trust region method in Section 11.2,
and more information about general trust region methods is available in the
books listed at the end of the chapter.

The direction p;, can also be chosen in several ways. The left of Figure 11.3
shows the ideal situation, which is that we point directly to the minimum
directly, in which case the line search finds it straight away. Since we don’t
know the minimum (it is what we are trying to find!) this is virtually im-
possible. One thing that we can do is to make greedy choices and always ge
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X3

FIGURE 11.3: Left: In an ideal world we would know how to go to the
minimum directly. In practice, we don’t, so we have to approximate it by
something like right: moving in the direction of steepest descent at each stage.

downhill as fast as possible at each point. This is known as steepest descent,
and it means that py = —V f(xx). The problem with it can be seen on the
right of Figure 11.3, which is that many of the directions that it travels in are
not directly towards the centre. In extreme cases they can be very different:
across the valley, rather than down towards the global minimum (we saw this
in Figure 3.7).

If we don’t worry about the stepsize, and just set it as o = 1, then we can
perform the search using Equation (11.1) with a very simple program. All
that is needed is to iterate the line search until the solution stops changing
(or you decide that there have been too many iterations). The only other
thing that you have to compute is the derivative of the function, which is
the direction pi. This is the problem-specific part of the algorithm, and as
a small example, we consider a simple three-dimensional function f(x) =
(0.5z2 + 0.273 + 0.6z2). We can differentiate once to compute the vector of
derivatives, V f(x) = (z1, 0.4z2, 1.223), which is returned by the gradient ()
function in the code below:
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To compute the minimum we now need to pick a start point, for example,
x(0) = (—2,2,—2), and then we can compute the steepest downhill direction
as (—2,0.8,—2.4). Using the steepest descent method for this example gives
fairly poor results, taking several steps before the answer gets close to the
correct answer of (0,0,0), and even then it is not that close:

11.2 Least-Squares Optimisation

Many of the functions that we have tried to minimise in this book have been
least-squares problems, such as the error of the MLP and the linear regres-
sor. Least-squares problems turn out to be the most common optimisation
problems in many fields, and this means that they have been very well stud-
ied and, fortunately, they have special structure in the problem that makes
solving them easier than other problems. This leads to a set of algorithms
for solving least-squares problems that are special cases of the line-search
and trust region methods. One of these has become very well known, the
Levenberg-Marquardt method, which is a trust region optimisation algorithm,
and the only trust region method that we shall look at. However, before we
start to look at it, we should examine why least-squares optimisation is a
special case. To see this, we’ll have to look at the details, so to get started,
we will examine the basics of function approximation.

11.2.1 Taylor Expansion

It might not be clear from what we have written so far that we are using
the Taylor expansion of the function, which is a method of approximating the
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value of a function at a point in terms of its derivatives. So, for a function

f(x):

1

F) = F(x0) +V F(3) o (x=X0) + 5 (x=%0) "V f (%) bo (x —X0) ..., (11.2)
where xg is a common, but potentially slightly confusing notation for the
initial guess x(0), the |x, notation means that the function is evaluated at
that point, and J(-) is the Jacobian matrix of first derivatives:

A f1(x) 0 f1(x)
A (11.3)
ox Ofuls)  Ofnl)

a.’tl - x'n,

and H(x) is the Hessian matrix of second derivatives defined in a similar way
to J(x), but using second derivatives. If f(x) is a scalar function (so that it
returns just 1 number) then J(x) = V f(x) and is a vector and H(x) = V2 f(x)
is a two-dimensional matrix. For a vector f(x), J(x) is a two-dimensional
matrix and H(x) is three-dimensional.

If we choose to minimise Equation (11.2) exactly as it is written (i.e., ignor-
ing third derivatives and higher), then we find the Newton direction at the kth
iteration to be: px = —(V2f(xx)) 1V f(xx). There is something important
to notice about this equation, which is that we actually use the inverse of the
Hessian. Computing this is generally of order O(N?3) (where N is the num-
ber of elements in the matrix) which makes this a computationally expensive
method. The compensation for this cost is that we don’t really have to worry
about the stepsize at all; it is always set to 1.

Implementing this requires only 1 line of change to our basic steepest de-
scent algorithm, plus the addition of a function that computes the Hessian.
The line to change is the one that computes pg, which becomes:

For this simple example, this algorithm goes straight to the correct answer
in one step, which is much better than the steepest descent method that we
saw earlier. However, for more complicated functions it won’t work as well,
and we can do better, as we shall see.

11.2.2 The Levenberg-Marquardt Algorithm

For least-squares problems, the objective function that we are optimising
is:

l\’)|P—‘

Fx) =5 rix) = —Hr )3, (11.4)
Jj=1



Optimisation and Search 253

1 . . . _
wherg the 5 mal'ces the deI'lVatI.VG nicer, and r(x) = (r1(x),r2(x),... T (x))T.
In this last version, we can write the Jacobian of r as:
ory Org AT m
6.’1}1 6311 e 6:121
Or1 Ora Orm or.
J(x) = { 0o 0wz omp 4 — | T . (11.5)
Cee e e e 6.'1,‘1' 1 i—1 *
j=1,...,m, i=1,.. ,n
or; Orp Orm
8z, Oxn ~ '  Oxnp

This is useful because the function gradients that we want can mostly be
computed directly:

VF(x) = I(x)"r(x) (11.6)

V2f(x) = I(x)TI(x) +er x)V2r;(x (11.7)

The upshot of this is that knowing the Jacobian gives you the first (and usu-
ally, most important) part of the Hessian effectively without any additional
computational cost, and it is this that special algorithms can exploit to solve
least-squares problems efficiently. To see this, remember that, as in all of the
other gradient-descent algorithms that we have looked at, we are approximat-
ing the function by the Taylor series (Equation (11.2)) up to second-order
(Hessian) terms.

If ||r(x)|| is linear (which means that f(x) is quadratic), then the Jacobian
is constant and V2r;(x) = 0 for all 5. In this case, f(x) = 1|[Jx +r|?, and
at a solution:

Vfx)=J3T(Jx+r)=0, (11.8)

and so:

JTIx = JTr(x). (11.9)

We can use this along with some linear algebra to find x in a variety of
different ways, such as Cholesky factorisation, QR factorisation, and using the
Singular Value Decomposition. We will look at the last of these methods, since
it uses eigenvectors, which we have already seen in Chapter 10. The Singular
Value Decomposition (SVD) is the decomposition of a matrix A of size m xn
into:

A =USVT, (11.10)

where U and V are orthogonal matrices (i.e., the inverse of the matrix is its
transpose, so UTU = UUT =1, where I is the identity matrix). U is of size
m x m and V is of size n X n. S is a diagonal matrix of size m x n, with the
elements of this matrix, o;, being known as singular values.
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To apply this to the linear least-squares problem we compute the SVD of
J, and use it to obtain:

19% + x| = IS(V"x) + U7 r[l3 + U3 ][5, (11.11)

where U, is the first n columns of U and Uy is the remainihg columns. The
optimal solution is found when the first term on the right is equal to zero,
which means that:

n
Xopt = VS_]'U,{I' = Z )

i=1

T
u;

Vi, (1112)

where u; is the ith column on U, and similarly for V. NumPy has an algo-
rithm for linear least-squares in 1inalg.lstsq().

We can now use this derivation to look at the most well-known method
for solving non-linear least-squares problems, the Levenberg-Marquardt algo-
rithm. The principal approximation that the algorithm makes is to ignore the
residual terms in Equation (11.7), making each iteration a linear least-squares
problem, so that V2f(x) = J(x)TJ(x). Then the problem to be solved is:

!
min o[l Jxp +rill3, [l < A, (11.13)

where Ay is the radius of the trust region, which is the region where it is
assumed that this approximation holds well. In normal trust region methods,
the size of the region (Ay) is controlled explicitly, but in Levenberg-Marquardt
it is used to control a parameter v > 0 that is added to the diagonal elements
of the Jacobian matrix and is known as the damping factor. The minimum p
then satisfies:

(JTI +v)p = -J7r. (11.14)

This is a very similar equation to the one that we solved for the linear
least-squares method, and so we can just use that solver here; effectively
non-linear least-squares solvers solve a lot of linear problems to find the non-
linear solution. There are very efficient Levenberg-Marquardt solvers, since
it is possible to avoid computing the JTJ term explicitly, but it obscures the
algorithm, so we will ignore this.

The basic idea of the trust region method is to assume that the solution is
quadratic about the current point, and use that assumption to minimise the
current step. You then compute the difference between the actual reduction
and the predicted one, based on the model, and make the trust region larger or
smaller depending upon how well these two match, and if they do not match
at all, then you reject that update. The Levenberg-Marquardt algorithm itself
is very general, but it needs to have the function to be minimised, along with
its gradient and Jacobian passed into it. The entire algorithm can be written
as:
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The Levenberg-Marquardt Algorithm

e given start point xq

e while J7r(x) >tolerance and maximum number of iterations not ex-
ceeded:

— repeat
% solve (JTJ + vI)dx = —JTr for dx using linear least-squares
* set Xpew = X +dx
*x compute the ratio of the actual and prediction reductions:
+ actual = || f(x) — f(xnew)|l
- predicted = V7 (x) X Xpew — X
- p = actual/predicted
* if 0 < p<0.25:
- accept step: X = Xpew
* else if p > 0.25:
- accept step: X = Xpew
- increase trust region size (reduce v)
* else:
- reject step
- reduce trust region (increase v)

— until x is updated or maximum number of iterations is exceeded

We will look at two examples of using non-linear least-squares. One is a
simple case of finding the minimum of a function that consists of two quadratic
terms added together, i.e., a sum-of-squares problem, while the second is to
minimise the fitting of a function to data.

The function that we will attempt to minimise is Rosenbrock’s function:

f(z1,z2) = 100(z — 22)2 + (1 — 1) (11.15)

This is a common problem to try since it has a long narrow valley, so
finding the optimal solution is not especially easy (except by hand: if you
look at the problem, then guessing that z; = 1,72 = 1 is the minimum is
fairly obvious). You need to work out how to encode this in the form required
for a sum-of-squares problem, which is basically to write:

r = (10(zg — 22),1 — 27)7. (11.16)
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The Jacobian is then:

_ *20!171 10
J= ( 10 ) (11.17)

In this notation, f(z;,x2) = r’r and the gradient is J7r. All of which can
be written as a simple Python function:

Running the algorithm with starting point (—1.92, 2) leads to the following
outputs, where the numbers printed on each line are the function value, the
parameters that gave it, the gradient, and the value of v.

The second example is fitting a function to data. The function is a moder-
ately complicated beast that is definitely not amenable to linear least-squares
fitting:

y = f(p1,p2) = p1 cos(p2z) + pasin(p1z), (11.18)

where the p; are the parameters to be fitted and z is a datapoint from a set
that are used to construct the function to be fitted. This is a difficult function
to fit because it has lots of minima (since sin and cos are periodic, with period
27). For data fitting problems, the assumption is often that data are generated
at regular = points by a noisy process that produces the y values. Then the
sum-of-squares error that we wish to minimise is the difference between the
data (y) and the current fit (parameter estimates p1, p2):

r =y — Py cos(Paz) + P2 sin(prx). (11.19)

The Jacobian for this function requires some careful differentiating, and
then the whole problem can be left to the optimiser. Figure 11.4 shows two
examples of trying to recover values p; = 100,p; = 102. On the left, the
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-__Fitted Data

& ~=Actlal Data

FIGURE 11.4: Using Levenberg-Marquardt for least-squares data fitting of

data from Equation (11.18). The example on the left converges to the correct

solution, while the one on the right, which still starts from a point close to the
correct solution, fails to find it, resulting in significantly different output.

starting point is (100.5,102.5), while on the right it is (101,101). It can be
seen that on this problem, Levenberg-Marquardt is very susceptible to local
minima, since while the example on the left works (converging after only 8
iterations), the example on the right, which still starts with parameter values
very close to the correct ones, gets stuck and fails, with final parameter values

(100.89, 101.13).

11.3 Conjugate Gradients

Not every problem that we want to solve is a least-squares problem. The
good news is that we can do rather better than steepest descent even when
we want to minimise an arbitrary objective function. The key to this is to
look again at Figure 11.3, where you can see that there are several of the
steepest gradient lines that are in pretty much the same direction. We would
only need to go in that direction once if we knew how far to go the first time.
And then we would go in a direction orthogonal (at right angles) to that one
and, in two dimensions, we would be finished, as is shown on the right of
Figure 11.5, where one step in the z direction and one in the y direction are
enough to complete the minimisation. In n dimensions we would have to take
n steps, and then we would have finished. This amazing scenario is the aim of
the method of conjugate gradients. It manages to achieve it in the linear case,
but in most non-linear cases, which are the kind we are usually interested in,
it usually requires a few more iterations that it theoretically should, although
still many less steps than most other methods for real problems.

It turns out that making the lines be orthogonal is generally impossible,
since you don’t have enough information about the solution space. However,
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FIGURE 11.5: Left: If the directions are orthogonal to each other and the

stepsize is correct, then only one step is needed for each dimension in the data,

here two. Right: The conjugate directions are not orthogonal to each other on
the ellipse.

it is possible to make them conjugate or A-orthogonal. Two vectors p;, p; are
conjugate if pf Ap; = 0 for some matrix A. Conjugate lines for the ellipse
contours in Figure 11.2 are shown on the right of Figure 11.5. Amazingly,
the line search that we wrote down in Equation (11.1) is soluble along these
directions, since they do not interfere with each other, with solution:

_ P{(=Vf(xi1)
' p! Ap;

We then need to use a function to find the zeros of this. The Newton-
Raphson iteration, which is one method that will do it, is described below. So
if we can find conjugate directions, then the line search is much better. The
only question that remains is how to find them. This requires a Gram-Schmidt
process, which constructs each new direction by taking a candidate solution
and then subtracting off any part that lies along any of the directions that
have already been used. We start by picking a set of mutually orthogonal
vectors u; (the basic coordinate axes will do; there are better options, but
they are beyond the scope of this book) and then using:

). (11.20)

k-1
Pr =k + Y Bribi. (11.21)
i=0
There are two possible 8 terms that can be used. They are both based
on the ratios between the squared Jacobian before and after an update. The
Fletcher-Reeves formula is:

— Vf(xet1)TV F(Xiq1)
Biva = Vf(xz)va(xz) ’ (11.22)



Optimisation and Search 259

while the Polak-Ribiere formula is:

Bi1 = Vf(xi1)" (Vf(xip1) = VF(x)i) ) (11.23)
VF(x:)TV f(x:) '

The second one is often faster, but sometimes fails to converge (reach a
stopping point).

We can put these things together to form a complete algorithm. It starts
by computing an initial search direction py (steepest descent will do), then
finding the a; that minimises the function f(x; + a;p;), and using it to set
Xi+1 = X; + a;P;. The next direction is then piy1 = —Vf(xi11) + Bipaps
where (3 is set by one of the two formulas above.

It is common to restart the algorithm every n iterations (where n is the
number of dimensions in the problem) because the algorithm has now gen-
erated the whole set of conjugate directions. The algorithm will then cycle
through the directions again making incremental improvements.

The only thing that we don’t know how to do yet is to find the ays. The
usual method of doing that is the Newton-Raphson iteration, which is a method
of finding the zero points of a polynomial. It works by computing the Taylor
expansion of the function f(x + ap), which is:

2 2
+% (d—da—zf(x + ap))

Sxtap) ~ £ +o (75160 + ap) o

a=0
24)
and differentiating it with respect to a, which requires the Jacobian and Hes-

sian matrices (here, these matrices are derivatives of f(-), not r as they were
in Section 11.2):

a=0

d
2 f(x+ap) ~ I(x)p + ap” H(x)p. (11.25)
Setting this equal to zero tells us that the minimiser of f(x + ap) is:
T
a= —‘IT@J-L. (11.26)
p H(x)p

Unless f(x) is an especially nice function, the second derivative approxima-
tion that we have made here won’t get us to the bottom in one step, so we
will have to iterate this step a few times to find the zero point, which is why
it is known as the Newton-Raphson iteration, i.e., you have to put it into a
loop that runs until the iterate stops changing.

Putting all of those things together gives the entire algorithm, which we’ll
look at before we work on an example:
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The Conjugate Gradients Algorithm

e given start point X, and stopping parameter €, set pg = —V f(x)

¢ set Pnew = Po
¢ while phey > €2po:
— compute oy and X,ew = X + axp using the Newton-Raphson iter-
ation:

x while o2dp > €2:

-~ a=—(Vf(x)"p)/(PTH(x)p)

- X=X+ap

~dp=p'p
— evaluate V f(Xnew)
— compute fg41 using Equation (11.22) or (11.23)
— update Prew = V f(Xnew) + Gk11P
— check for restarts

11.3.1 Conjugate Gradients Example

Computing the conjugate gradients solution to the same function as above:
f(x) = (0.5z2 + 0.22% + 0.622) makes use of the Jacobian and Hessian again.
The first Newton-Raphson step yields an o value of 0.931, so that the next
step is:

-2 2 —0.138
x(1)=| 2 | +0931x | —08 | = | 1.255 (11.27)
0 2.4 0.235

Then 8 = 0.0337, so that the direction is:

0.138 2 0.205
p(1)=| —0.502 | +0.0337x | —0.8 | = —0.529 (11.28)
—0.282 2.4 -0.201
In the second step, a = 1.731,
—0.138 0.205 -0.217
x(2) = 1.255 | +1.731 x { —0.529 | = | —0.136 (11.29)
0.235 -0.201 0.136

and the update is:
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—0.217 0.205 —0.168
p(2) = | —0.136 | +0.240 x | —0.529 | = [ —0.263 (11.30)
0.136 ~0.201 0.088

A third step then gives the final answer as (0,0, 0).

There are other methods of doing gradient descent, some of which are more
effective on certain problems (but note that the No Free Lunch theorem tells
us that no one solver will be the most effective for every problem). How-
ever, they are not necessary for an understanding of machine learning. The
scientific Python libraries SciPy include a set of optimisation algorithms in
scipy.optimize that might be worth a look if you want to find more complete
algorithms in this area.

We will next consider what happens when the problems that we wish to
solve are discrete, and so there is no gradient to find.

11.4 Search: Three Basic Approaches

We are going to discuss three different ways to attempt optimisation without
gradients. For each one, we will see how it works on the Travelling Salesman
Problem (TSP), which is a classic discrete optimisation problem that consists
of trying to find the shortest route through a set of cities that visits each
city exactly once and returns to the start. For the first (starting) city we
can choose any of the N that are available. For the next, there are N — 1
choices, and for the next N — 2. Using a brute force search in this way
provides a O(N!) solution, which is obviously infeasible. In fact, the TSP
is an NP-hard problem. The best known solution that is guaranteed to find
the global maximum is using dynamic programming and its computational cost
is O(n22™), but we won’t be considering that here—the TSP is an example,
not a problem we really want to solve here. The basic search methods are
described next.

11.4.1 Exhaustive Search

Try out every solution and pick the best one. While this is obviously guar-
anteed to find the global optimum, because it checks every single solution, it
is impractical for any reasonable size problem. For the TSP it would involve
testing out every single possible way of ordering the cities, and calculating the
distance for each ordering, so the computational complexity is O(N!), which
is worse than exponential. It is computationally infeasible to do the compu-
tations for more than about N = 10 cities. The basic part of the algorithm
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uses a helper function permutation() that computes possible orderings of the
cities, but is otherwise fairly obvious:
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11.4.2 Greedy Search

Just make one pass through the system, making the best local choice at each
stage. So for the TSP, choose the first city arbitrarily, and then repeatedly
pick the city that is closest to where you are now that hasn’t been visited yet,
until you run out of cities. This is computationally very cheap (O(N)), but it
is certainly not guaranteed to find the optimal solution, and there is no way
to predict how good a solution it will find, it might be terrible. The code is

very simple, though:
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11.4.3 Hill Climbing

The basic idea of the hill climbing algorithm is to perform local search
around the current solution, choosing any option that improves the result. (It
might seem odd to talk about hill climbing when we’ve always talked about
minimising a function. Of course, the difference between maximisation and
minimisation is just whether you put a minus sign in front of the equation or
not, and ‘hill climbing’ sounds much better than ‘hollow descending.’) The
choice of how to do local search is called the move-set. It describes how the
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current solution can be changed to generate new solutions. So if we were to
imagine moving about in 2D Euclidean space, possible moves might be to
move 1 step north, south, east, or west.

For the TSP, the hill climbing solution would consist of choosing an initial
solution randomly, and then swapping pairs of cities in the tour and seeing if
the total length of the tour decreases. The algorithm would stop after some
pre-defined number of swaps had occurred, or when no swap improved the
result for some pre-defined length of time. As with the greedy search, there
is no way to predict how good the solution will be: there is a chance that it
will find the global maximum, but no guarantee of it; it could get stuck in the
first local maxima. The central loop of the hill climbing algorithm just picks
a pair of cities to swap, and keeps the change if it makes the total distance
shorter:

Hill climbing has three particular types of functions that it does badly on.
They can all be imagined using the analogy of real hill climbing. The first
is when there are lots of foothills around the optimal solution. In that case
the algorithm climbs the local maximum, and may get stuck there; certainly
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FIGURE 11.6: A one-armed bandit machine. It has one arm, and it steals
your money.

it will take a very long time to reach the optimal solution. The second is on
a plateau, where no changes that the algorithm makes affect the solution. In
this case the solution will just change randomly, if at all, and the maximum
will probably not be found. The third case is when there is a very gently
sloping ridge in the data. Most directions that the algorithm looks in will be
downhill, and so it may decide that it has already reached the maximum.

11.5 Exploitation and Exploration

The search methods above can be separated into methods that perform
exploration of the search space, always trying out new solutions, like exhaustive
search, and those performing exploitation of the current best solution, by trying
out local variations of that current best solution, like hill climbing. Ideally,
we would like some combination of the two—we should be trying to improve
on the current best solution by local search, and also looking around in case
there is an even better solution hiding elsewhere in the search space.

One way to think about this is known as the n-armed bandit problem. Sup-
pose that we have a room full of one-armed bandit machines in some tacky Las
Vegas casino (for those who don’t know, a one-armed bandit is a slot machine
with a lever that you pull, as in Figure 11.6). You don’t know anything about
the machines in advance, such as what the payouts are, and how likely you
are to get the payout. You enter the room with a fistful of 50 cent coins from
your student loan, aiming to generate enough beer money to get through the
vear. How do you choose which machine to use?

At first, you have no information at all, so you choose randomly. However,
as you explore, you pick up information about which machines are good (here,
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good means that you get a payout more often). You could carry on using them
(exploiting your knowledge) or you could try out other machines in the hope
of finding one that pays out even more (exploring further). The optimal
approach is to trade off the two, always making sure that you have enough
money to explore further by exploiting the best machines you know of, but
exploring when you can.

One place where this combination of exploration and exploitation can be
clearly seen is in evolution. We'll talk about that in the next chapter, but
here we will look to physics instead of biology to act as our inspiration.

11.6 Simulated Annealing

In the field of statistical mechanics physicists have to deal with systems that
are very large (tens of thousands of molecules and more) so that, while the
computations are possible in principle, in practice the computational time
is far too large. They have developed stochastic methods (that is, based on
randomness) in order to get approximate solutions to the problems that, while
still expensive, do not require the massive computational times that the full
solution would.

The method that we will look at is based on the way in which real-world
physical systems can be brought into very low energy states, which are there-
fore very stable. The system is heated, so that there is plenty of energy around,
and each part of the system is effectively random. An annealing schedule is
applied that cools the material down, allowing it to relax into a low energy
configuration. We are going to model the same idea.

We start with an arbitrary temperature 7', which is high. We will then
randomly choose states and change their values, monitoring the energy of the
system before and after. If the energy is lower afterwards then the system
will prefer that solution, so we accept the change. So far, this is similar to
gradient descent. However, if the energy is not lower, then we still consider
whether or not to accept the solution, and do accept it with probability p =
exp((Evefore — Eafter)/T). This is called the Boltzman distribution. Note that
Eefore — Eagter is negative, so this is a well-defined probability. The rationale
behind sometimes accepting poorer states is that we might have found a local
minimum, and by allowing this more expensive energy state we can escape
from it.

After doing this a few times, the annealing schedule is applied in order
to reduce the temperature and the method continues until the temperature
reaches 0. As the temperature gets lower, so does the chance of accepting
any particular higher energy state. The most common annealing schedule is
T(t + 1) = ¢T'(t), where 0 < ¢ < 1 (more commonly, 0.8 < ¢ < 1). The
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Further Reading

Two books on numerical optimization that provide much more information
are:

e J. Nocedal and S.J. Wright. Numerical Optimization. Springer, Berlin,
Germany, 1999.

e C.T. Kelley. Iterative Methods for Optimization. Number 18 in Fron-
tiers in Applied Mathematics. SIAM, Philadelphia, USA, 1999.

A possible reference for the second half of the chapter is:

e J.C. Spall. Introduction to Stochastic Search and Optimization: Esti-

mation, Simulation, and Control. Wiley-Interscience, New York, USA,
2003.

Some of the material is covered in:

e Section 6.9 and Sections 7.1-7.2 of R.O. Duda, P.E. Hart, and D.G.

Stork. Pattern Classification. Wiley-Interscience, New York, USA, 2nd
edition, 2001.

Practice Questions

Problem 11.1 Modify the code in CG.py in order to take a general func-

tion, together with its Jacobian (and if available its Hessian) and then
compute the minimum.
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Problem 11.2 Experiment with the Fletcher-Reeves and Polak-Ribiere for-
mulas (Equations (11.22) and (11.23)) when solving Rosenbrock’s func-
tion using conjugate gradients. Can you find places where one works
better than the other?

Problem 11.3 Generate data from the equation a(l — exp(—b(z — ¢))) for
choice of parameters a, b, c and z in the range —5 to 5 (with noise). Use
Levenberg-Marquardt to fit the parameters.

Problem 11.4 It is possible to use the exact gradient descent methods de-
scribed in this chapter for an MLP. The first thing you have to do is to
put the various sets of weights into one data structure (which is easy:
simply put the two sets into one array). You then need to work out
what the derivatives are for these different functions, and then compute
the Hessian. The structure can then be passed to the optimisation code.
Implement this and compare the results to using back-propagation.

Problem 11.5 By incorporating back-tracking into hill climbing, it is possi-
ble to escape from some poor local maxima. Add this into the code and
test the results on the Travelling Salesman problem.

Problem 11.6 The logical satisfiability problem is an NP-complete problem
that consists of finding truth assignments to sets of logical statements
(e.g., (a1 Aaz) V (—a1 Vas)) so that they are true. It is an NP-complete
problem to find truth assignments. Devise a way to use hill climbing
and simulated annealing on the problem.



Chapter 12

Evolutionary Learning

In this chapter we are going to start by treating evolution the same way that
we treated neuroscience earlier in the book—by cherry-picking a few useful
concepts, and then filling in the gaps with computer science in order to make
an effective learning method. To see why this might be interesting, you need
to view evolution as a search problem. We don’t generally think of it in this
way, but animals are competing with each other in all kinds of ways—for
example, eating each other—which encourages them to try to find camouflage
colours, become toxic to certain predators, etc.

Evolution works on a population through an imaginary fitness landscape,
which has an implicit bias towards animals that are ‘fitter,’ i.e., those animals
that live long enough to reproduce, are more attractive, and so get more
mates, and generate more and healthier offspring. You can find out more
from hundreds of books, such as Charles Darwin’s “The Origin of Species”
(the original book on the topic, still in print and very interesting) and Richard
Dawkin’s “The Blind Watchmaker.”

The genetic algorithm models the genetic process that gives rise to evolu-
tion. In particular, it models sexual reproduction, where both parents give
some genetic information to their offspring. As is sketched in Figure 12.1, in
biological organisms, each parent passes on one chromosome out of their two,
and so there is a 50% chance of any gene making it into the offspring. Of
the two versions of each gene (one from each parent) one allele (variation)
is selected. Hence, children have similarities with their parents, and there is
lots of genetic inheritance. However, there are also random mutations, caused
by copying errors when the chromosome material is reproduced, which mean
that some things do change over time. Real genetics is obviously a lot more
complicated than this, but we are taking only the things that we want for our
model.

The genetic algorithm shows many of the things that are best and worst
about machine learning: it is often, but not always, very effective, it has an
array of parameters that are crucial, but hard to set, and it is impossible to
guarantee that it will find a result that is any good at all. Having said all
that, it often works very well, and it has become a very popular algorithm for
people to use when they have no idea of any other way to find a reasonable
solution.

In the terms that we saw at the end of the previous chapter, genetic al-
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FIGURE 12.1: Each adult in the mating pair passes one of their two
chromosomes to their offspring.

gorithms perform both exploitation and exploration, so that they can make
incremental improvements to current good solutions, but also find radically
new solutions, some of which may be better than the current best.

We will also look briefly at two other topics in this chapter, a variation of the
genetic algorithm that acts on trees that represent computer programs that
is known as genetic programming, and a set of algorithms that use sampling
from a probability distribution rather than an evolving population in order to
find better solutions.

12.1 The Genetic Algorithm (GA)

The Genetic Algorithm is a computational approximation to how evolution
performs search, which is by altering the genome and thus changing the fit-
ness of individuals. Like another mathematical model that we saw earlier in
the book—the neuron—it attempts to abstract away everything except the
important parts that we need to understand what evolution does. From this
principle, the things that we need to model simple genetics inside a computer
and solve problems with it are:

e a method for representing problems as chromosomes
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e a way to calculate the fitness of a solution

e a selection method to choose parents
e a way to generate offspring by breeding the parents

These items are all described in the following sections, and the basic algo-
rithm is described. We are going to use an example to describe the methods,
which is an NP-complete problem (if you are not familiar with the term NP-
complete, its practical implication is that the problem runs in exponential
time in the number of inputs) known as the knapsack problem (a knapsack is
a rather old name for a rucksack or bag). Sections 12.3.1 and 12.3.4 provide
other examples. The knapsack problem is easy to describe, but difficult to
solve in general. Here is the version of it that we will use:

Suppose that you are packing for your holidays. You've bought the biggest and
best rucksack that was for sale, but there is still no way that you are going to fit in
everything you want to take (camera, money, addresses of friends, etc.) and the
things that your mum is insisting you take (spare underwear, phrasebook, stamps
to write home with, etc.). As a good computer scientist you decide to assign a
value to each item, and measure how much space it takes up. Then you want to
maximise the value of the items you will take with you, with the constraint that
everything has to fit into the bag.

This problem, and variations of it, appear in various disguises in cryptog-
raphy, combinatorics, applied mathematics, logistics, and business, so it is an
important problem. Unfortunately, it is also NP-complete, so finding the opti-
mal solution for interesting cases is computationally impossible. We are going
to find approximations to the correct solution using a Genetic Algorithm.

12.1.1 String Representation

The first thing that we need is some way to represent the individual solu-
tions, in analogy to the chromosome. GAs use a string, with each element
of the string (equivalent to the gene) being chosen from some alphabet. The
different values in the alphabet, which is often just binary, are analogous to
the alleles. For the problem we are trying to solve we have to work out a way
of encoding the description of a solution as a string. We then create a set of
random strings to be our initial population.

It is possible to modify the GA so that the alphabet it uses runs over the
real numbers. While purists don’t think that this is a GA at all, it is quite
popular, because of the number of applications, but it is not as elegant as
using a discrete alphabet. Tt also makes the mutation operator that we will
see later less useful.

For the knapsack problem the alphabet is very simple, since we can make
it binary. We make the string L units long, where L is the total number of
things we would like to take with us, and make each unit a binary digit. We
then encode a solution using 0 for the things we will not take and 1 for the



272 Machine Learning: An Algorithmic Perspective

things we will. So if there were four things we wanted to take, then (0,1, 1,0)
would mean that we take the middle two, but not the first or last.

Note that this does not tell us whether or not this string is possible (that is,
whether it will fit into the knapsack), nor whether it is a good string (whether
it fills the knapsack). To work these out we need some way to decide how
well each string fulfills the problem criteria. This is known as the fitness of
the string.

12.1.2 Evaluating Fitness

The fitness function can be seen as an oracle that takes a string as an
argument and returns a value for that string. It is the only problem-specific
part of the algorithm. It is worth thinking about what we want from our
fitness function. Clearly, the best string should have the highest fitness, and
the fitness should decrease as the strings do less well on the problem. In
general, fitness should always be a positive function—even the least fit strings
should have fitness of at least zero. In real evolution, the fitness landscape is
not static: there is competition between different species, such as predators
and prey, or medical cures for certain diseases, and so the measure of fitness
changes over time. We’ll ignore that in the genetic algorithm.

For the knapsack problem, we could decide that we want to make the bag
as full as possible. So we would need to know the volume of each item that
we want to put into the knapsack, and then for a given string that says which
things should be taken, and which should not, we can compute the total
volume. This is then a possible fitness function. However, it does not tell us
anything about whether they will fit into the bag—with this fitness function
the optimal solution is to take everything. So we need to check that they will
fit, and if they will not, reduce the fitness of that solution. One option would
be to set the fitness to 0 if it will not fit. However, suppose that the solution
is almost perfect, it is just that there is one thing too many in the knapsack.
By setting the fitness to 0 we are reducing the chance of this solution being
allowed to evolve and improve during later iterations. For this reason we will
make the fitness function be the sum of the values of the items to be taken if
they fit into the knapsack, but if they do not we will subtract twice the amount
by which they are too big for the knapsack from the size of the knapsack. This
allows solutions that are only just over to be considered for improvement, but
tries to ensure that they are not the fittest solutions around.

There is an obvious greedy algorithm that finds solutions to the knapsack
problem. At each stage it takes the largest thing that hasn’t been packed
yet and that will still fit into the bag, and iterates that rule. This will not
necessarily return the optimal solution (unless each thing is larger than the
sum of all the ones smaller than it, in which case it will), but it is very quick
and simple. So a GA should be getting a much better solution than the greedy
rule in general to be worth all the effort involved in writing and running it.



Evolutionary Learning 273

12.1.3 Population

We can now measure the fitness of any string. The GA works on a popula-
tion of strings, with the first generation usually being created randomly. The
fitness of each string is then evaluated, and that first generation is bred to-
gether to make a second generation, which is then used to generate a third, and
so on. After the initial population is chosen randomly, the algorithm evolves
in such a way that the fitness of individuals in the population increases over
the generations.

So for the knapsack problem, we will now create a set of random binary
strings of length L by using the random number generator. We’ll arbitrar-
ily decide to make 100 strings. We now need to choose parents out of this
population, and start breeding them. At every iteration the population stays
the same size, something else that is unlike real evolution. Creating the ini-
tial population is very easy in NumPy using the uniform random number
generator and the where() function:

12.1.4 Generating Offspring: Parent Selection

For the current generation we need to select those strings that will be used
to generate new offspring. The idea here is that fitness will improve if we
select strings that are already relatively fit compared to the other members
of the population (following natural selection). This is exploitation of our
current population. However, it is also good to allow some exploration in
there, which means that we have to allow some possibility of weak strings
being considered. The basic idea is that we choose strings proportionally to
their fitness, so that fitter strings are more likely to be chosen to enter the
‘mating pool.” There are two commonly employed ways to do this, although
the second one is better:

Truncation Selection A simple method is just to pick some fraction f of
the best strings and ignore the rest. For example, f = 0.5 is often used,
so the best 50% of the strings are put into the mating pool, and chosen
with equal probability. This is obviously very easy to implement, but
it does limit the amount of exploration that is done, biasing the GA
towards exploitation.

Fitness Proportional Selection The better option is to select strings prob-
abilistically, with the probability of a string being selected being pro-
portional to its fitness. The function that is generally used is (for string
Q):
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Fa
¢ = 12.1
D S T (12.1)

where F'* is the fitness. This probabilistic interpretation is the reason
why fitness should be positive. If they aren’t guaranteed positive, then
Boltzmann selection can be used to make them so (where s is the selection
strength, a parameter, and you might recognise the equation as the soft-
max activation from Chapter 3):

o _ _exp(sF?)
L SR ey (122

There is an implementation issue here. We want to pick each string
with probability proportional to its fitness, but if we only have one copy
of each string, then the probability of picking each string is the same.
One way around this is to add more copies of the fitter strings, so that
they are more likely to get chosen. This is sometimes called ‘roulette
selection,” because if you imagine that each string gets an area on a
roulette wheel, then the larger the area associated to one number, the
more likely it is that the ball will land there. You can then just randomly
pick strings from this larger set. A method of doing this is shown in
the following code snippet, which uses the kron() function. We’ve seen
this before (in Section 10.5); it is a NumPy function that multiples
each element of its first array argument by every element of the second,
putting all of the results together into one multi-dimensional output
array. It is useful here in order to populate the new and much larger
newPopulation array, which contains multiple copies of each string.
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However we select the strings to put into the mating pool, the next operation
is to put them into pairs. Since the order that they are in is random, we can
simply pair up the strings so that each even-indexed string takes the following
odd-indexed one as its mate.

12.2 Generating Offspring: Genetic Operators

Having selected our breeding pairs, we now need to decide how to combine
their two strings to generate the offspring, which is the genetics part of the
algorithm. There are two genetic operators that are generally used, and they
are discussed now. There are others, but these were the original choices, and
are far and away the most common.

12.2.1 Crossover

In biology, organisms have two chromosomes, and each parent donates
one of them. Members of our GA population only have one chromosome-
equivalent, the string. Thus, we generate the new string as part of the first
parent and part of the second. The most common way of doing this is to pick
one point at random in the string, and to use parent 1 for the first part of
the string, up to the crossover point and parent 2 for the rest. We actually
generate two offspring, with the second one consisting of the first part of par-
ent 2 and the second part of parent 1. This scheme is known as single point
crossover, and the extension to multi-point crossover is hopefully obvious. The
most extreme version is known as uniform crossover and consists of indepen-
dently selecting each element of the string at random from the two parents.
The three types of crossover are shown in Figure 12.2.

Crossover is the operator that performs global exploration, since the strings
that are produced are radically different to both parents. The hope is that
sometimes we will take good parts of both solutions and put them together
to make an even better solution. A nice picture example is to imagine a bird
that has webbed feet for good swimming, but that cannot fly, breeding with a
bird that can fly, but not swim. The offspring? A duck! Obviously, this is not
biologically plausible, but it is a good picture of how crossover works. One
interesting feature of the GA that obviously isn’t true in real genetics is that
in addition to the duck the algorithm would produce the bird that can’t fly or
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Random
— 00110110110
10011000101 10011000101 smngo 10011000101
011'11010110 C111010410 swingt 01111010110
10011010110 10011010101 10111010111

FIGURE 12.2: The different forms of the crossover operator. (a) Single
point crossover. A position in the string is chosen at random, and the offspring
is made up of the first part of parent 1 and the second part of parent 2.(b)
Multi-point crossover. Multiple points are chosen, with the offspring being made
in the same way. (c) Uniform crossover. Random numbers are used to select
which parent to take each element from.

swim, although it is unlikely to last long since its fitness will presumably not
be high. In fact, there are exceptions to this, such as the great New Zealand
Kiwi, which can neither swim nor fly, but is happily not extinct.

The following code snippet shows a NumPy implementation of smgle point
crossover. The extension to multi-point and uniform crossover is not particu-

larly difficult.

Crossover is not always useful, depending upon the problem; for example,
in the Travelling Salesman Problem that we talked about in Chapter 11, the
strings that are generated by crossover might not even be valid tours. How-
ever, when it is useful, it is often the more powerful of the genetic operators,
and has led to the building block hypothesis of how GAs work. The idea is
that GAs work well on problems where the solution comes from putting to-
gether lots of little solutions, so that different strings assemble each separate
building block, and then crossover puts those substrings together to make the
final solution.
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FIGURE 12.3: The effects of mutation on a string.

12.2.2 Mutation

The exploitation of the current best strings is performed by the mutation
operator, which effectively performs local random search. The value of each
element of the string is changed with some (usually low) probability p. For
our binary alphabet in the knapsack problem, mutation causes a bit-flip, as is
shown in Figure 12.3. For chromosomes with real values, some random number
is generally added or subtracted from the current value. Often, p ~ 1/L where
L is the string length, so that there is approximately one mutation in each
string. This might seem quite high, but it is often found to be a good choice
given that the mutation rate has to trade off doing lots of local search with
the risk of disrupting the good solutions.

12.2.3 Elitism, Tournaments, and Niching

One problem with the standard GA is that the best fitness can decrease
as well as increase in the next generation. This happens because the best
strings in the current population are not copied into the next generation, and
sometimes none of their offspring are as good. One way around this is called
elitism, and it is the simple idea of copying the best strings in the current
population into the next population without any change. Another solution is
to implement a tournament, where the two parents and their two offsprings
compete, with the two fittest out of the four being put into the new population.

The implementation of these functions continues along the same lines as
the previous ones; the argsort() function returns the indices of the array
that sorts them into order, but does not actually sort the array. It returns
an array the same size as the one that is sorted, which is why the squeeze()
function is needed to reduce the array to the right size.
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While elitism and tournaments both ensure that good solutions aren’t lost,
they both have the problem that they can encourage premature convergence,
where the algorithm settles down to a constant population that never changes
even though it hasn’t found an optimum. This happens because the GA
favours fitter members of the population, which means that a solution that
reaches a local maximum will generally be favoured, and this solution will be
exploited. Exploration will be downplayed, making it hard to escape from
the local maximum—most strings will have worse fitness, and will therefore
be replaced in the population. Eventually, the majority of the strings in the
population will be the same, but will represent a local maximum, not the
global maximum.

Tournaments and elitism encourage this, because they reduce the amount
of diversity in the population by allowing the same individuals to remain over
many generations. This means that the exploration aspect of the GA stops oc-
curring. One way to solve the problem is through niching (also known as using
island populations), where the population is separated into several subpopu-
lations, which all evolve independently for some period of time, so that they
are likely to have converged to different local maxima, and a few members of
one subpopulation are occasionally injected into another subpopulation. An-
other approach is known as fitness sharing, where the fitness of a particular
string is averaged across the number of times that that string appears in the
population. This biases the fitness function towards uncommon strings, but
can also mean that very common good solutions are selected against.

There are other methods that have been developed to improve the conver-
gence and final results of GAs, but they aren’t useful for a basic understanding
of how the basic algorithm works, so we’ll ignore them. Anybody who wants
to know more is directed to one of the books in the references at the end of
the chapter.

The complete algorithm for the GA consists of simply putting together the
pieces that we have looked at individually. Extending the basic algorithm
to include some of the methods mentioned above, such as tournaments and
niching can improve the performance of the algorithm, but does not change
the description much. After seeing a complete description of the GA, we’ll
have a look at an example of how the algorithm works by considering the
problem of graph colouring, and then look at how to use the GA to solve two
sample problems.
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The Basic Genetic Algorithm

¢ Initialisation
— generate N random strings of length L with our chosen alphabet
¢ Learning

— repeat:
* create an (initially empty) new population
% repeat:
- select two strings from current population by fitness
- recombine them to produce two new strings
- mutate the offspring

- either add the two offspring to the population or use elitism
or tournaments

- keep track of the best string in the population
* until N strings for the new population are generated
x replace the current population with the new population

— until stopping criteria met

12.3 Using Genetic Algorithms
12.3.1 Map Colouring

Graph colouring is a typical discrete optimisation problem. We want to
colour a graph using only k colours, and choose them in such a way that
adjacent regions have different colours. It has been mathematically proven
that any two-dimensional planar graph can be coloured with four colours,
which was the first ever proof that used a computer program to check the
cases. Even though it might be impossible, we are going to try to solve the
three-colour problem using a genetic algorithm, we just won’t be upset if the
solution isn’t perfect (this is a good idea with a GA anyway, of course). With
all problems where you want to apply a genetic algorithm, there are three
basic tasks that need to be performed:

Encode possible solutions as strings For this problem, we’ll choose our
alphabet to consist of the three possible shades (black (b), dark (d), and
light (1), say). So for a six-region map, a possible string is o = {bdblbb}.
This says that the first region is black, the second dark grey, etc. We
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FIGURE 12.4: A sample map

that we wish to colour using the FIGURE'12-51 A PO_SSibIe
three colours shown, without any colouring with several adjacent
two adjacent squares having the squares having the same colour.

same colour.

choose an order to record the regions in and stick to it for all the strings,
and now we can encode any way of colouring in those six regions. An
example problem and a colouring are given in Figures 12.4 and 12.5.

Choose a suitable fitness function The thing that we want to minimise

(a cost function) is the number of times that two adjacent regions have
the same colour. We could count these up fairly simply, but it is not a
fitness function, because the best solution has the lowest number, not
the highest. One easy way to turn it into a fitness function would be
to use the Boltzmann selection described earlier (Equation (12.2)), or
to count the total number of lines between regions and subtract off the
number where the two regions on either side of the line have the same
colour. However, we could also just count the number of correct edges.
The example in Figure 12.5 has 16 out of the 26 boundaries correct
(where a boundary is the intersection between any two squares), so its
fitness is 16.

Choose suitable genetic operators We’ll use the standard genetic oper-

ators for this, since this example makes the operations of crossover and
mutation clear. The way that they are used is shown in Figures 12.6
and 12.7. In general, people just use the standard operators for most
problems, but if they don’t work well, it can be worth putting some
effort into thinking of new ones.

Having made those choices, we can let the GA run on the problem, with
a possible population and their offspring shown in Figure 12.8, and look at
the best solutions after some preset number of iterations. The GA produces
good solutions to this problem, and implementing it for yourself is one of the
suggested exercises for this chapter.
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FIGURE 12.6: The way
that mutation is performed on a
colour, changing it into one of
the other colours. FIGURE 12.7: The effects
of crossover on a map.

FIGURE 12.8: One generation of the GA working on the map colouring
problem.

12.3.2 Punctuated Equilibrium

For a long time, one thing that creationists and others who did not be-
lieve in evolution used as an argument against it was the problem of the lack
of intermediate animals in the fossil record. The argument runs that if hu-
mans evolved from apes, then there should be some evidence of a whole set
of intermediary species that existed during the transition phase, and there
aren’t. Interestingly, GAs demonstrate one of the explanations why this is
not correct, which is that the way that evolution actually seems to work is
known as punctuated equilibrium. There is basically a steady population of
some species for a long time, and then something changes and over a very
short (in evolutionary terms... still hundreds or thousands of years) period,
there is a big change, and then everything settles down again. So the chance
of finding fossils from the intermediary stage is quite small. There is a graph
showing this effect in Figure 12.9.

12.3.3 Example: The Knapsack Problem

We used the knapsack problem as an example while we were looking at
components of the GA. It is now time to see it being solved. Before we do
that, we can use some of the methods from Section 11.4 to solve it. We've
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FIGURE 12.9: A graph showing punctuated equilibrium in a genetic
algorithm. There is an effectively steady state where fitness does not improve,
followed by rapid improvements in fitness until another steady state is reached.

already mentioned the greedy algorithm solution, and we can of course use
exhaustive search, as well, or any of the other methods we discussed in the
last chapter, such as simulated annealing or hillclimbing.

The website has a simple example with 20 different packages, which have
a total size of 2436.77 and a maximum knapsack size of 500. The greedy
algorithm finds a solution of 487.47, while the optimal solution is eventually
found by the exhaustive search as 499.98. The question is how well the GA
does on the same problem. We will use the fitness function that was de-
scribed in Section 12.1.2, where solutions that are too large are penalised by
having twice the amount they are over subtracted from the maximum size.
Figure 12.10 shows a graph of the output when the GA is run on this problem
for 100 iterations. The GA rapidly finds a near-optimal solution (of 499.94) to
this relatively simple problem, although in this run it did not find the global
optimum.

12.3.4 Example: The Four Peaks Problem

The four peaks is a toy problem (that is, simple problem that isn’t useful
itself, but is good for testing algorithms) that is quite often used to test out
GAs and various developments of them. It is an invented fitness function that
rewards strings with lots of consecutive 0s at the start of the string, and lots
of consecutive 1s at the end. The fitness consists of counting the number of
Os at the start, and the number of 1s at the end and returning the maximum
of them as the fitness. However, if both the number of 0s and the number of
1s are above some threshold value T then the fitness function gets a bonus
of 100 added to it. This is where the name ‘four peaks’ comes from: there
are two small peaks where there are lots of Os, or lots of 1s, and then there
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FIGURE 12.10: Evolution of the solution to the knapsack problem. The
GA finds a very good solution to this simple problem within a few iterations, but
never finds the optimal solution.

are two larger peaks, where the bonus is included. The GA should find these
larger peaks for a successful run.
In NumPy the four peaks fitness function can be written as:
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FIGURE 12.11: Evolution of a
solution to the four peaks problem.
The solution never reaches the
bonus score in the fitness function.

FIGURE 12.12: Another
solution to the four peaks problem.
This solution does reach the bonus
score, but does not get the global

maximum.
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Figures 12.11 and 12.12 show the outputs of two runs for a chromosome
length of 100 and with 77 = 15. In the second the GA reaches the bonus
point, while in the first it does not. Both of these runs used a mutation rate
of 0.01, which is 1/L, and single point crossover. They also used elitism.

12.3.5 Limitations of the GA

Genetic algorithms can be very slow. The main problem is that once a
local maximum has been reached, it can often be a long time before a string
is produced that escapes from the local maximum and finds another, higher,
maximum. In addition, because we do not know anything about the fitness
landscape, we can’t see how well the GA is doing,.

A more basic criticism of genetic algorithms is that it is very hard (read
basically impossible) to analyse the behaviour of the GA. We expect that the
mean fitness of the population will increase until an equilibrium of some kind
is reached. This equilibrium is between the selection operator, which makes
the population less diverse, but increases the mean fitness (exploitation), and
the genetic operators, which usually reduce the mean fitness, but increase the
diversity in the population (exploration). However, proving that this is guar-
anteed to happen has not been possible so far, which means that we cannot
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guarantee that the algorithm will converge at all, and certainly not to the
optimal solution. This bothers a lot of researchers. That said, genetic algo-
rithms are widely used when other methods do not work, and they are usually
treated as a black box—strings are pushed in one end, and eventually an ap-
swer emerges. This is risky, because without knowledge of how the algorithm
works it is not possible to improve it, nor do you know how cautiously you
should treat the results.

12.3.6 Training Neural Networks with Genetic Algorithms

We trained our neural networks, most notably the MLP, using gradient
descent. However, we could encode the problem of finding the correct weights
as a set of strings, with the fitness function measuring the sum-of-squares
error. This has been done, and with good reported results. However, there
are some problems with this approach. The first is that we turn all the
local information from the targets about the error at each output node of
the network into just one number, the fitness, which is throwing away useful
information, and the second is that we are ignoring the gradient information,
which is also throwing away useful information.

A more sensible use for GAs with neural networks is to use the GA to
choose the topology of the network. Previously, we chose the structure in a
completely ad hoc way by trying out different structures and choosing the one
that worked best. We can use a GA for this problem, although the crossover
operator doesn’t make a great deal of sense, so we just consider mutation.
However, we allow for four different types of mutation: delete a neuron, delete
a weight connection, add a neuron, add a connection. The deletion operators
bias the learning towards simple networks. Making the GA more complicated
by adding extra mutation operators might make you wonder if you can make
it more complicated again. And you can; one example of where this can lead
is discussed next.

12.4 Genetic Programming

One extension of genetic algorithms that has had a lot of attention is the
idea of genetic programming. This was introduced by John Koza, and the basic
idea is to represent a computer program as a tree (imagine a flow chart of the
code). For certain programming languages, notably LISP, this is actually a
very natural way to represent a program, but it doesn’t work very well in
Python, so we will have a quick look at the ided, but not get into writing any
explicit algorithms for the method.

Tree-based variants on mutation and crossover are defined (replace sub-
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FIGURE 12.13: Example of a mutation in genetic programming.

trees by other subtrees, either randomly generated (mutation, Figure 12.13)
or swapped from another tree (crossover, Figure 12.14)), and then the ge-
netic program runs just like a normal genetic algorithm, but acting on these
program trees rather than strings. Figure 12.15 shows a set of simple trees
that perform arithmetic operations, and some possible developments of them,
made using these operators.

Genetic programming has been used for many different tasks, from recog-
nising skin melanomas to circuit design, and lots of very impressive results
have been claimed for it. However, the search space is unbelievably large, and
the mutation operator not especially useful, and so a lot depends upon the
initial population. A set of possibly useful subtrees are usually chosen by the
system developer first in order to give the system a head start. There are a
couple of places where you can find more information on genetic programming
in the Further Reading section.

12.5 Combining Sampling with Evolutionary Learning

The last machine learning method in this chapter is an interesting variation
on the theme of evolutionary learning, combined with probabilistic models of
the type that are described in Chapter 15, namely Bayesian networks. They
are often known as estimation of distribution aigorithms (EDA).

The most basic version is known as Population-Based Incremental Learning
(PBIL), and it is amazingly simple. It works on a binary alphabet, just like
the basic GA, but instead of maintaining a population, instead it keeps a
probability vector p that gives the probability of each element being a 0 or
1. Initially, each value of this vector is 0.5, so that each element has equal
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FIGURE 12.14: Example of a crossover in genetic programming.
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FIGURE 12.15: Top: Four arithmetical trees. Bottom: Example
developments of the four trees: (e) and (h) are a possible crossover of (a) and
(d), (f) is a copy of (b), and (g) is a mutation of (c).
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chance of being 0 or 1. A population is then constructed by sampling from the
distribution specified vector, and the fitness of each member of the population
is computed. A subset of this population (typically just the two fittest vectors)
is chosen to update the probability vector, using a learning rate 7, which is
often set to 0.005 (where best and second represent the best and second-best
elements of the population):

p=p x (1 —n) + n(best + second)/2. (12.3)

The population is then thrown away, and a new one sampled from the
updated probability vector. The results of using this simple algorithm on the
four-peaks problem with 7' = 11 are shown in Figure 12.16 using strings of
length 100 with 200 strings in each population. This is directly comparable
with Figure 12.12.

The centre of the algorithm is simply the code to find the strings with the
two highest fitnesses and use them to update the vector. Everything else is
directly equivalent to the genetic algorithm.

The probabilistic model that is used in PBIL is very simple: it is assumed
that each element of the probability vector is independent, so that there is
no interaction. However, there is no reason why more complicated interac-
tions between variables cannot be considered, and several methods have been
developed that do exactly this. The first option is to construct a chain, so
that each variable depends only on the one to its left. This might involve
sorting the order of the probability vector first, but then the algorithm sim-
ply needs to measure the mutual information (see Section 6.2.1) between each
pair of neighbouring variables. This use of mutual information gives the algo-
rithm its name: MIMIC. There are also more complicated variants using full
Bayesian networks, such as the Bayesian Optimisation Algorithm (BOA) and
Factorised Distribution Algorithm (FDA).

The power of these developments of the GA is that they use probabilis-
tic models and are therefore more amenable to analysis than normal GAs,
which have steadfastly withstood many attempts to better understand their
behaviour. They also enable the algorithm to discover correlations between
input variables, which can be useful if you want to understand the solution
rather than just apply it.
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FIGURE 12.16: The evolution of the best fitness using PBIL on the four
peaks problem.

It is important to remember that there is no guarantee that a genetic al-
gorithm will find a good solution, although it often will, and certainly no
guarantee that it will find the optimum. The vast majority of applications of
genetic algorithms and the other algorithms described in this chapter do not
consider this, but use the algorithms as a way to avoid having to understand
the problem. Recall the No Free Lunch theorem of the last chapter—there is
no universally good solution to the search problem—before using the GA or
genetic program as the only search method that you use. Having said that,
providing that you are prepared to accept the long running time and the fact
that there are no guarantees of a good solution, they are frequently very useful
methods.

Further Reading

There are entire books written about genetic algorithms, including:

e J.H. Holland. Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Michigan University Press, Michigan, USA, 1975.

e M. Mitchell. An Introduction to Genetic Algorithms. MIT Press,
Cambridge, MA, USA, 1996.
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e D.E. Goldberg. Genetic Algorithms in Search, Optimisation, and Ma-
chine Learning. Addison-Wesley, Reading, MA, USA, 1999.

There are also entire books on genetic programming, including:

e J.R. Koza. Genetic Programming: On the Programming of Computers
by the Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

e 7Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution
Programs. Springer, Berlin, Germany, third edition, 1999.

For more on Estimation of Distribution algorithms, look at:

e S. Baluja and R. Caruana. Removing the genetics from the standard
genetic algorithm. In A. Prieditis and S. Russel, editors, The Interna-
tional Conference on Machine Learning, pages 38—46, San Mateo, CA,
USA, 1995. Morgan Kaufmann Publishers. )

e M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by
building and using probabilistic models. Computational Optimization
and Applications, 21(1):5-20, 2002. Also IlliGAL Report No. 99018.

Details of the two books mentioned about real evolution are:

e C. Darwin. On the Origin of Species By Means of Natural Selection.
Wordsworth, London, UK, 6th edition, 1872.

e R. Dawkins. The Blind Watchmaker: Why the Evidence of Evolution
Reveals a Universe Without Design. Penguin, London, UK, 1996.

Practice Questions

Problem 12.1 Suppose that you want to archive your data files, but you
have only got one CD, and more data files than will fit on it. You
decide to choose the files you will save so as to try to maximise the
amount of space you fill on the disk, so that the most data is backed
up, but you can’t split a data file. Write a greedy algorithm and a
hill-climbing algorithm to solve this problem. What guarantees can you
make about efficiency of the solutions?

Problem 12.2 (from Jon Shapiro)
In video poker, you are dealt five cards face up. You have one chance
to replace any of the cards (or all or none) with cards drawn from the



Evolutionary Learning 291

deck. You then get a payout related to the value of your hand as a
poker hand. Say your stake is $1. The lowest hand which pays is pair
of jacks or better, this pays $1 (so your net gain is 0). Two pair pays
$2, three-of-a-kind pays $3, and so forth. Your goal is to make as much
money as possible.

In order to play this game, you need a strategy for deciding which cards
to keep and which to replace. For example, if your hand contains two
face cards, but is currently worthless, should you hold them both or
hold only one? If one is held, there are four chances to match one card;
if two are held there are only three chances but there are two cards to
match. If the hand contains a pair of low cards, is it better to keep
the pair in the hopes of drawing another pair or a card which turns the
pair into three-of-a-kind, or is it better to draw five new cards? It is
unclear what is the best strategy for replacing cards in losing hands.
Devise a way to use a genetic algorithm to search for good strategies
for playing this game. Assume that you have a computer version of the
game, so that any strategies which the GA proposes can be tested on
the computer over many plays. Could an MLP using gradient descent
learning be used to learn a good strategy? Why or why not?

Problem 12.3 You have 5000 MP3 files sitting on your computer’s hard
disk. Unfortunately, the hard disk has started making noises, and you
decide that you had better back up the MP3s. Equally unfortunately,
you can only burn CDs, not DVDs, on your computer. You need to
minimise the number of CDs that you use, so you decide to design a
genetic algorithm to choose which MP3s to put onto each CD in order
to fill each CD as completely as possible.

Design a genetic algorithm to solve the problem. You will need to con-
sider how you would encode the inputs, which genetic operators are
suitable, and how you would make the genetic algorithm deal with the
fact that you have multiple CDs, not just one CD.

Problem 12.4 Convert the GA to use real-valued chromosomes and use it
to find the minima in Rosenbrock’s function (Equation (11.15)).

Problem 12.5 Implement the map colouring fitness function (you will have
to design a map first, of course) and see how good the solutions that
the GA finds are. Compare maps that are three-colourable with some
that are not. Can you think of any other algorithm that could be used
to find solutions to this problem?

Problem 12.6 The Royal Road fitness function is designed to test the building
block hypothesis, which says that GAs work by assembling small building
blocks and then put them together by crossover. The function splits the
binary string into ! sequential pieces, all b bits long. The fitness of the
piece is b for blocks that are all 1s, and 0 for others, and the total fitness
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is the sum of the fitness for each block. Implement this fitness function
and test it on strings of length 16, with blocks of lengths 1, 2, 4, 8. Run
your GAs for 10,000 iterations. Compare the results to using PBIL.



Chapter 13

Reinforcement Learning

Reinforcement learning fills the gap between supervised learning, where the
algorithm is trained on the correct answers given in the target data, and
unsupervised learning, where the algorithm can only exploit similarities in
the data to cluster it. The middle ground is where information is provided
about whether or not the answer is correct, but not how to improve it. The
reinforcement learner has to try out different strategies and see which work
best. That ‘trying out’ of different strategies is just another way of describing
search, which was the subject of Chapters 11 and 12. Search is a fundamental
part of any reinforcement learner: the algorithm searches over the state space
of possible inputs and outputs in order to try to maximise a reward.

Reinforcement learning is usually described in terms of the interaction be-
tween some agent and its environment. The agent is the thing that is learning,
and the environment is where it is learning, and what it is learning about.
The environment has another task, which is to provide information about
how good a strategy is, through some reward function. Think about a child
learning to stand up and walk. The child tries out many different strategies
for staying upright, and it gets feedback about which work by whether or not
it ends up flat on its face. The methods that seem to work are tried over and
over again, until they are perfected or better solutions are found, and those
that do not work are discarded. This analogy has another useful aspect: it
may well not be the last thing that the child does before falling that makes
it fall over, but something that happened earlier on (it can take several des-
perate seconds of waving your arms around before you fall over, but the fall
was caused by tripping over something, not by waving your arms about). So
it can be difficult to work out which action (or combination of actions) made
you fall over, because there are many actions in the chain.

The importance of reinforcement learning for psychological learning theory
comes from the concept of trial-and-error learning, which has been around for
a long time, and is also known as the Law of Effect. This is exactly what
happens in reinforcement learning, as we’ll see, and it was described in a
book by Thorndike in 1911 as:

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the sit-
uation, so that, when it recurs, they will be more likely to recur;
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those which are accompanied or closely followed by discomfort to
the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will
be less likely to occur. The greater the satisfaction or discomfort,
the greater the strengthening or weakening of the bond. (E. L.
Thorndike, “Animal Intelligence,” page 244.)

This is where the name ‘reinforcement learning’ comes from, since you re-
peat actions that are reinforced by a feeling of satisfaction. To see how it can
be applied to machine learning, we will need some more notation.

13.1 Overview

Reinforcement learning maps states or situations to actions in order to max-
imise some numerical reward. That is, the algorithm knows about the current
input (the state), and the possible things it can do (the actions), and its aim is
to maximise the reward. There is a clear distinction drawn between the agent
that is doing the learning and the environment, which is where the agent acts,
and which produces the state and the rewards. The most common way to
think about reinforcement learning is on a robot. The current sensor readings
of the robot, or processed versions of them, could define the state. They are
a representation of the environment around the robot in some way. Note that
the state doesn’t necessarily tell us everything that it would be useful to know
(the robot’s sensors don’t tell it its location, only what it can see about it),
and there can be noise and inaccuracies in the state data. The possible ways
that the robot can drive its motors are the actions, which move the robot in
the environment, and the reward could be how well it does its task without
crashing into things. Figure 13.1 shows the idea of state, actions, and envi-
ronment to a robot, while Figure 13.2 shows how they are linked, together
with the reward.

In reinforcement learning the algorithm gets feedback in the form of the
reward about how well it is doing. In contrast to supervised learning, where
the algorithm is ‘taught’ the correct answer, the reward function evaluates
the current solution, but does not suggest how to improve it. Just to make
the situation a little more difficult, we need to think about the possibility
that the reward can be delayed, which means that you don’t actually get the
reward until a long time in the future (for example, think about a robot that
is learning to traverse a maze. It doesn’t know whether it has found the centre
of the maze until it gets there, and it doesn’t get the reward until it reaches
the centre of the maze.) We therefore need to allow for rewards that don’t
appear until long after the relevant actions have been taken. Sometimes we
think of the immediate reward and the total expected reward into the future.
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FIGURE 13.1: A robot perceives the current state of its environment
through its sensors, and performs actions by moving its motors. The
reinforcement learner (agent) within the robot tries to predict the next state and
reward.
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FIGURE 13.2: The reinforcement learning cycle: the learning agent
performs action a; in state s; and receives reward 71 from the environment,
ending up in state s;41.
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Once the algorithm has decided on the reward, it needs to choose the action
that should be performed in the current state. This is known as the policy.
This is done based on some combination of exploration and exploitation (re-
member, reinforcement learning is basically a search method), which in this
case means deciding whether to take the action that gave the highest reward
last time we were in this state, or trying out a different action in the hope of
finding something even better.

13.2 Example: Getting Lost

You arrive in a foreign city exhausted after many hours of flying, catch the
train into town and stagger into a backpacker’s hostel without noticing much
of your surroundings. When you wake up it is dark and you are starving,
s0 you set off for a wander around town looking for somewhere to eat. Un-
fortunately, it is 3 a.m. and, even more unfortunately, you soon realise that
you are completely lost. To make matters worse, you discover that you can’t
remember the name of the backpacker’s, or much else about it except that
it is in one of the old squares. Of course, that doesn’t help much because
this part of the city pretty much consists of old squares. There are only two
things in your favour: you are fairly sure that you’ll recognise the building,
and you've studied reinforcement learning and decide to apply it (yes, this
book can save your life!).

You are sure that you’ve only walked through the old part of the city, so
you don’t need to worry about any street that takes you out of the old part.
So at the next bus stop you come to, you have a proper look at the map,
and note down the map of the old town squares, which turns out to look like
Figure 13.3.

As you finish drawing the map you notice a 24-hour shop and buy as many
bags of potato chips as you can fit into your pockets. As a reinforcement
learner you decide to reward yourself when you take actions that lead to
the backpacker’s rather than stuff your face immediately (this is a delayed
reward). After thinking about a reward structure you decide that the only
one that will work is to eat until you can eat no more when you actually get
to the backpacker’s, and not to reward yourself at all until then. You’ll just
have to hope that you don’t faint from hunger first!

Inspired by the idea of food, you decide that the backpacker’s is almost def-
initely in the square labelled F on the map, because its name seems vaguely
familiar. You decide to work out a reward structure so that you can follow a
reinforcement learning algorithm to get to the backpacker’s. The first thing
you work out is that staying still means that you are sleeping on your feet,
which is bad. So you assign a reward of —5 for that (while negative reinforce-
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FIGURE 13.3: The old town that you find yourself lost in.

ment can be viewed as punishment, it doesn’t necessarily correspond clearly,
but you might want to imagine it as pinching yourself so that you stay awake).
Of course, once you reach state F you are in the backpacker’s and will there-
fore stay there. This is known as an absorbing state, and is the end of the
problem, when you get the reward of eating all the chips you bought. Now
moving between two squares could be good, because it might take you closer
to F. But without looking at the map you won’t know that, so you decide
to just apply a reward when you actually reach F, and leave everything else
as neutral. Where there is no direct road between two squares (so that no
action takes you from one to the other) there is no reward because it is not
a viable action. This results in the reward matrix R shown below (where ‘-’
shows that there is no link) and also in Figure 13.4.

Next State
Current State f A[B|C|D|[E| F
A S0 - -1~ -
B 0|-510([0] - -
C -10|-5[0]| - 1100
D -10]0}-510] -
E - -1-101[-5]100
F -l -(0]-10{ -

Of course, as a reinforcement learner you don’t actually know the reward
matrix. That’s pretty much what you are trying to discover, but it doesn’t
make for a very good example. We’ll assume that you have now reached a
stage of tiredness where you can’t even read what is on your paper properly.
Having got this set up we’ve reached the stage where we need to do some
learning, but for now we’ll leave you stranded in that foreign city and flesh
out a few of the things that we’ve talked about so far.
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FIGURE 13.4: The state diagram if you are correct and the backpacker's is
in square (state) F. The connections from each state back into itself (meaning
that you don't move) are not shown, to avoid the figure getting too
complicated. They are each worth —5 (except for staying in state F, which
means that you are in the backpacker’s).

13.2.1 State and Action Spaces

Our reinforcement learner is basically a search algorithm, and obviously
the larger the number of states that the algorithm has to search through,
the longer it will take to find a good solution. The set of all states that are
possible for the learner to experience is known as the state space. There is a
corresponding action space that contains all of the possible actions. If we can
reduce the size of the state space and action space, then it is almost always a
good idea, providing that it does not oversimplify the problem. In the example
there are only six states, but still, look at Figure 13.4 and imagine wandering
through all of the squares over and over again while we search: it seems like
this learning is going to take a long time. And it generally does.

Computing the size of the state space (and the corresponding action space)
is relatively simple. For example, suppose that there are five inputs, each an
integer between 0 and 100. The size of the state space is then 100 x 100 x 100 x
100 x 100 = 1005, which is incredibly large, so the curse of dimensionality is
really kicking in here. However, if we decide that we can quantize the data so
that instead of 100 numbers there are only two for each input (for example, by
assigning every number less than 50 to class 1, and every number 50 and above
to class 2), then the size of the state space is a more manageable 25 = 32.
Choosing the state space and action space carefully is therefore a crucial part
of making a successful reinforcement learner. You want them to be as small
as possible without losing accuracy in the results—by reducing the scale of
each input from 100 to 2, we have obviously thrown away a lot of information
that might have made the quality of the answer better. As is usually the case,
there is some element of compromise between the two.



Reinforcement Learning 299

13.2.2 Carrots and Sticks: the Reward Function

The basic idea of the learner is that it will choose the action that gets the
maximum expected reward. In the example, we worked out what the rewards
would be in a fairly ad hoc way, by saying what we wanted and then thinking
about how to get it. That’s pretty much the way that it works in practice,
too: in Chapter 12 where we looked at genetic algorithms, we had to carefully
craft the fitness function to solve the problem that we wanted, and the same
thing is true of the reward function. In fact, they can be seen as the same
thing.

The reward function takes the current state and the chosen action and
produces a numerical reward based on them. So in the example, if we are in
state A, and choose the action of doing nothing, so that we remain in state
A, we get a reward of —5. Note that the reward can be positive or negative,
with the latter corresponding to ‘punishment,” showing that particular actions
should be avoided. The reward is generated by the environment around the
learner, it is not internal to the learner itself (this is what makes it difficult to
describe in our example: the environment doesn’t give you rewards in the real
world, only when there is a computer (or brain) as part of the environment
to help out). In effect, the reward function makes the goal of the learner
explicit—the learner is trying to maximise the reward, which means behaving
in exactly the way that the reward function expects. The reward tells the
learner what the goal is, not how the goal should be achieved, which would
be supervised learning. It is therefore usually a bad idea to include sub-goals
(extra things that the learner should achieve along the way, which are meant
to speed up learning), because the learner can find methods of achieving the
sub-goals without actually achieving the real goal.

The choice of a suitable reward function is absolutely crucial, with very
different behaviours resulting from varying the reward function. For exam-
ple, consider the difference between these two reward functions for a maze-
traversing robot (try to work out the difference before reading the paragraph
that follows them):

e receive a reward of 50 when you find the centre of the maze

e receive a reward of -1 for each move and a reward of +50 when you find
the centre of the maze

In the first version, the robot will learn to get to the centre of the maze,
just as it will in the second version, but the second reward function is biased
towards shorter routes through the maze, which is probably a good thing. The
maze problem is episodic: learning is split into episodes that have a definite
endpoint when the robot reaches the centre of the maze. This means that the
rewards can be given at the end and then propagated back through all the
actions that were performed to update the learner. However, there are plenty
of other examples that are not episodic (continual tasks), and there is no cut
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off when the task stops. An example is the child learning to walk that was
mentioned at the start of the chapter. A child can walk successfully when it
doesn’t fall over at all, not when it doesn’t fall over for 10 minutes.

Now that the reward has been broken into two parts—an immediate part
and a pay-off in the end—we need to think about the learning algorithm a
bit more. The thing that is driving the learning is the total reward, which
is the expected reward from now until the end of the task (when the learner
reaches the terminal state or accepting state—the backpacker’s in our example).
At that point there is generally a large pay-off that signals the successful
completion of the task. However, the same thing does not work for continual
tasks, because there is no terminal state, so we want to predict the reward
forever into the infinite future, which is clearly impossible.

13.2.3 Discounting

The solution to this problem is known as discounting, and means that we
take into account how certain we can be about things that happen in the
future: there is lots of uncertainty in the learning anyway, so we should dis-
count our predictions of rewards in the future according to how much chance
there is that they are wrong. The rewards that we expect to get very soon are
probably going to be more accurate predictions than those a long time in the
future, because lots of other things might change. So we add an additional
parameter 0 < v < 1, and then discount future rewards by multiplying them
by ~*, where t is the number of timesteps in the future this reward is from.
As 7 is less than 1, so 72 is smaller again, and v* — 0 as k — oo (i.e., v gets
smaller and smaller as k gets larger and larger), so that we can ignore most
of the future predictions. This means that our prediction of the total future
reward is:

oo
Rt = Tt41 + YTre+2 + "}’27‘t+3 + ...+ 'yk—lrk +...= Z’Yk’[‘t+k+1. (131)
k=0

Obviously, the closer v is to zero, the less distance we look into the future,
while with v = 1 there is no discounting, as in the episodic case above (in fact,
discounting is sometimes used for episodic learning as well, since the eventual
reward could be a very long way off and we have to deal with that uncertainty
in learning somehow). We can apply discounting to the example of learning
to walk. When you fall over you give yourself a reward of -1, and otherwise
there are no rewards. The -1 reward is discounted into the future, so that a
reward k steps into the future has reward —y*. The learner will therefore try
to make k as large as possible, resulting in proper walking.

The point of the reward function is that it gives us a way to choose what to
do next—our predictions of the reward let us exploit our current knowledge and
try to maximise the reward we get. Alternatively, we can carry on exploring
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and trying out new actions in the hope that we find ways to get even larger
rewards. The methods of exploration and exploitation that we carry out are
the methods of action selection that we perform.

13.2.4 Action Selection

At each stage of the reinforcement learning process, the algorithm looks at
the actions that can be performed in the current state and computes the value
of each action, that is, the average reward that is expected for carrying out
that action in the current state. The simplest way to do this is to compute the
average reward that has been received each time in the past. This is known as
Qs,:(a), where s is the state, a is the action, and ¢ is the number of times that
the action has been taken before in this state. This will eventually converge
to the true prediction of the reward for that action. Based on the current
average reward predictions, there are three methods of choosing action a that
are worth thinking about for reinforcement learning. We’ve seen the first and
third of them before:

Greedy Pick the action that has the highest value of Q;:(a), so always
choose to exploit your current knowledge.

e-greedy This is similar to the greedy algorithm, but with some small prob-
ability € we pick some other action at random. So nearly every time we
take the greedy option, but occasionally we try out an alternative in the
hope of finding a better action. This throws some exploration into the
mix. e-greedy selection finds better solutions over time than the pure
greedy algorithm, since it can explore and find better solutions.

Soft-max One refinement of e-greedy is to think about which of the alter-
native actions to select when the exploration happens. The e-greedy
algorithm chooses the alternatives with uniform probability. Another
possibility is to use the soft-max function (which we’ve seen repeatedly,
e.g., as Equation (3.12)) to make the selection:

_ exp(Qs,:(a)/7)
P(Qst(a)) = S exp(@us ()7 (13.2)

Here, there is a new parameter T, which is known as the temperature
because of the link to simulated annealing, see Section 11.6. When 7
is large, all actions have similar probabilities, and when 7 is small, the
selection probabilities matter more. In soft-max selection, the current
best (greedy) action will be chosen most of the time, but the others
will be chosen proportional to their estimated reward, which is updated
whenever they are used.
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13.2.5 Policy

We have just considered different action selection methods, such as e-greedy
and soft-max. The aim of the action selection is to trade off exploration and
exploitation in such a way as to maximise the expected reward into the future.
Instead, we can make an explicit decision that we are going to always take the
optimal choice at each stage, and not do exploration any more. This choice
of which action to take in each state in order to get optimal results is known
as the policy, 7. The hope is that we can learn a better policy that is specific
to the current state s;. This is the crux of the learning part of reinforcement
learning—learn a policy 7 from states to actions. There is at least one optimal
policy that gives the maximum reward, and that is what we want to find. In
order to find a policy, there are a few things that we need to worry about. The
first is how much information we need to know regarding how we got to the
current state, and the second is how we ascribe a value to the current state.
The first one is important enough both for here and for Chapter 15 that we
are going to go into some detail now.

13.3 Markov Decision Processes
13.3.1 The Markov Property

Let’s go back to the example. Standing in the square labelled D you need
to make a choice of what action to take next. There are four possible options
(see Figure 13.4): standing still, or moving to one of B, C, or E. The question
is whether or not that is enough information for you to predict the reward
accurately and so to choose the best possible action. Or do you also need to
know where you have been in the past? Let’s say that you know that you
came to D from B. In that case, maybe it does not make sense to move back
to B, since your reward won’t change. However, if you came to D from E then
it does actually make sense to go back there, since it moves you closer to F.
So in this case, it appears that knowing your previous action doesn’t actually
help very much, because you don’t have enough information to work out what
was useful.

Another example where this is usually true is in a game of chess, where the
current situation of all the pieces on the board (the state) is enough to predict
whether or not the next move is a good one—it does not depend on precisely
how each piece got to the current location. Thus, the current state provides
enough information. A state that has this property, which is that the current
state provides enough information for the reward to be computed without
looking at previous states, is known as a Markov state. The importance of
this can be seen from the following two equations, the first of which is what
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FIGURE 13.5: A simple example of a Markov decision process to decide on
the state of your mind tomorrow given your state of mind today.

is required when the Markov property is not true, while for the second one
it is true. The equation is the computation of the probability that the next
reward is ' and the next state is s'.

! !
Pr(ry =1, 5411 = §'|s¢, 04,741, 841,841, .. . T1, 81,01, T0, S0, @0),  (13.3)

Pr(ry =r',st41 = §'|st, a4). (13.4)

Clearly, Equation (13.4), which depends only on where you are now, and
what you choose to do now, is much simpler to compute, less likely to suffer
from rounding errors, and does not require that the whole history of the
learner is stored. In fact, it makes the computation possible, whereas the first
is not possible for any interesting problem. A reinforcement learning problem
that follows Equation (13.4) (that is, that has the Markov property) is known
as a Markov Decision Process. It means that we can compute the likely next
reward, and what the next state will be, from only the current state and
action, based on previous experience. We can make decisions (predictions)
about the likely behaviour of the learner, and its expected rewards, using just
the current state data.

13.3.2 Probabilities in Markov Decision Processes

We have now reduced our reinforcement learning problem to learning about
Markov Decision Processes (MDP). We will only talk about the case where the
number of possible states and actions is finite, because reasoning about the
infinite case makes your head hurt. There is a very simple example of an MDP
in Figure 13.5, showing predictions for your state-of-mind while preparing for
an exam, together with the (transition probabilities) for moving between each
pair of states shown. This is known as a Markov chain. The diagram can be
extended into something called a transition diagram, which shows the dynamics
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FIGURE 13.6: A small part of the transition diagram for the example.
From state E there are three possible actions, and the states in which they end
up, together with the rewards, are shown here.

of a finite Markov Decision Process and usually includes information about
the rewards.

We can make a transition diagram for our example, based on Figure 13.4.
We'll make the situation a little bit more complicated now by adding in the
assumption that you are so tired that even though you are in state B and
trying to get to state A, there is a small probability that you will actually take
the wrong street and end up in either C or D. We'll make those probabilities
be 0.1 for each extra exit that there is from each state, and we’ll assume that
you can stand in one place without fear of ending up elsewhere. A very tiny bit
of the transition diagram, centred on state E, is shown in Figure 13.6. There
are three actions that can be taken in state E (shown by the black circles),
with associated probabilities and expected rewards. Learning and using this
transition diagram can be seen as the aim of any reinforcement learner.

The Markov Decision Process formalism is a powerful one that can deal
with additional uncertainties. For example, it can be extended to deal with
the case where the true states are not known, only an observation of the state
can be made, which is probabilistically related to the state, and possibly the
action. These are known as partially observable Markov Decision Processes
(POMDPs), and they are related to the Hidden Markov Models that we will
see in Section 15.3. POMDPs are commonly used for robotics, where the
sensors of the robots are usually far too inexact and noisy for places the robot
visits to be identified with any degree of success. Methods to deal with these
problems maintain an estimate of belief of their current state and use that
in the reinforcement learning calculations. It is now time to get back to the
reinforcement learner and the concept of values.
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13.4 Values

The reinforcement learner is trying to decide on what action to take in
order to maximise the expected reward into the future. This expected reward
is known as the value. There are two ways that we can compute a value. We
can consider the current state, and average across all of the actions that can
be taken, leaving the policy to sort this out for itself (the state-value function,
V(s)), or we can consider the current state and each possible action that can
be taken separately, the action-value function, Q(s,a). In either case we are
thinking about what the expected reward would be if we started in state s
(where E(-) is the statistical expectation):

' V(s)=E(ri|se =s)=F {Zf'yirtH_l_l[st = s} , (13.5)

=0

Q(s,a) = E(re|sy =s,as =a) = E {Z Vreririlse = s a0 = a} . (13.6)

i=0

It should be fairly obvious that the second estimate is more accurate in the
long run, because we have more information: we know which action we are
going to take. However, because of that we need to collect a lot more data, and
so it will take a long time to learn. In other words, the action-value function
is even more susceptible to the curse of dimensionality than the state-value
function. In situations where there are lots of states it will not be possible to
store either, and some other method, such as using a parameterised solution
space (i.e., having a set of parameters that are controlled by the learner, rather
than explicit solutions), will be needed. This is more complicated than we
will consider here.

There are now two problems that we need to solve, predicting the value
function, and then selecting the optimal policy. We'll think about the second
one first. The optimal policy is the one in which the value function is the
greatest over all possible states. We label this (not necessarily unique) policy
with a star: 7*. The optimal state-value function is then V*(s) = max, V" (s)
for all possible states s, and the optimal action-value function is @*(s,a) =
max, Q7 (s,a) for all possible states s and actions a. We can link these two
value functions, because the first considers taking the optimal action in each
case (since the policy 7* is optimal), while the second considers taking action
a this time, and then following the optimal policy from then on. Hence we
only need to worry about the current reward and the (discounted) estimate
of the future rewards:
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Q*(s,0) = E(riy1) +ymax Q(s¢41,at41)
at41
= E(rev1) 9V (st41]5: = 5,01 = a). (13.7)

Of course, there is no guarantee that we will ever manage to learn the opti-
mal policy. There is bound to be noise and other inaccuracies in the system,
and the curse of dimensionality is liable to limit the amount of exploration
that we do. However, it will be enough to learn good approximations to the
optimal policy. One thing that will work to our advantage is that reinforce-
ment learning operates on-line, in that the learner is exploring the different
states as it learns, which means that it is getting more chances to learn about
the states that are seen more often, and so will have a better chance of finding
the optimal policy for those states.

The question is how you actually update the value function (V' (s) or Q(s, a)).
The idea is to make a look-up table of all the possible states or state-action
pairs, and set them all to zero to start with. Then we will use experience to
fill them in. Returning to your foreign trip, you wander around until even-
tually you stumble upon the backpacker’s. Gorging yourself on the chips you
remember that at the last timestep you were in square E (this remembering
is known as a backup). Now you can update the value for E (the reward is
v x 100). That is all we do, since your memory is so shot that you can’t
remember anything else. And there we stop until the next night, when you
wake up again and the same thing happens. Except now, you have informa-
tion about E, although not about any other state. However, when you reach E
now, say from D, then you can update the value for D to have reward 2 x 100.
And so it continues, until all of the states (and possibly actions) have values
attached.

The obvious problem with this approach is that we have to wait until we
reach the goal before we can update the values. Instead, we can use the same
trick that we used in Equation (13.7) and use the current reward and the
discounted prediction instead, so that the update equation looks like (where
 is the learning rate as usual):

V(st) & V(st) + pu(re1 + 7V (s041) — V(st))- (13.8)

The Q(s,a) version looks very similar, except that we have to include the
action information. In both cases we are using the difference between the
current and previous estimates, which is why these methods have the name of
temporal difference (TD) methods. Suppose that we knew rather more about
where we had been. In that case, we could have updated more states when
we got to the backpacker’s, which would have been rather more efficient. The
trouble is that we don’t know if those states were useful or not—it might
have been chance that we visited them. The answer to this is similar to
discounting: we introduce another parameter 0 < A < 1 that we apply to
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reduce the amount that being in that particular state matters. The way this
works is known as an eligibility trace, where an eligible state is one that you
have visited recently, and it is computed by setting:

' 1 ifs'=s5,0'"=s
e(s’,d) = {fy)\et_l(s’,a’) otherwise. (13.9)
If A = 0 then you only use the current state, which was the algorithm we
had above. For A = 1 you retain all the knowledge of where you have been.
It can be shown that the TD(0) algorithm (i.e., the TD()) algorithm with
A = 0) is optimal, in the sense that it converges to the correct value function
VT for the current policy m. There are some provisos on the values of the
parameter p, which are usually satisfied by incrementally reducing the size of
4 as learning progresses. The TD(0) algorithm for @) values is also known as
the Q-learning algorithm.

The Q-Learning Algorithm

o Initialisation

— set Q(s,a) to small random values for all s and a
e repeat:

— initialise s

— repeat:

* select action a using e-greedy or another policy

take action a and receive reward r
sample new state s

update Q(s,a) «— Q(s,a) + u(r + ymaxy Q(s',a’) — Q(s,a))
set s «— &

* %X ¥ *

— for each step of the current episode

o until there are no more episodes

Note that we can do exactly the same thing for V(s) values instead of
Q(s, a) values. There is one thing in this algorithm that is slightly odd, which
is in the computation of Q(s’,a’). We do not use the policy to find the value
of o/, but instead choose the one that gives the highest value. This is known
as an off-policy decision. Modifying the algorithm to work on-policy is very
easy. It gets an interesting name based on the fact that it uses the set of
values (st, Gt, Tt4+1, St+1, Gt+1), Which reads ‘sarsa’:
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The Sarsa Algorithm

¢ Initialisation
— set Q(s,a) to small random values for all s and a
® repeat:
— initialise s
— choose action a using the current policy
— repeat:
* take action a and receive reward r

* sample new state s’
* choose action a’ using the current policy

* update Q(s,a) — Q(s,a) + u(r + yQ(s',a’) — Q(s,a))

x s—5§,a+—ad

— for each step of the current episode

o until there are no more episodes

The two algorithms are very similar. They are both bootstrap methods,
because they start from poor estimates of the correct answers and iteratively
update them as the algorithm progresses. The algorithms work on-line, with
the values of ) being updated as soon as 711 and s;,; are known. In both
cases, we are updating the estimates based only on the next state and reward.
We could delay our updating for longer, until we knew values of r;,, and
St+n, and then use a TD()\) algorithm. The only difficulty with this is that
there are many different actions a that could be taken between s; and s;y,.

Once the details of the reward and transition matrices have been sorted
out, the implementation of the algorithms doesn’t hold many surprises. For
example, the central part of the sarsa algorithm using the e-greedy policy can
be written in this form:
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13.5 Back on Holiday: Using Reinforcement Learning

As an example of how to use the reinforcement algorithms we will finish
our example of finding the way to the backpacker’s by using the e-greedy
policy. The specification of the problem is set up in the reward matrix R and
transition matrix t, so the first thing to do is to work out how to describe
those, neither of which is very difficult since they were given in Section 13.2.
NumPy has a useful inf value, so -inf can be used as rewards for impossible
actions.

It is then just a question of running the algorithm for parameter choices of
~, 1, €, and the number of iterations. A run with v = 0.4, 4 = 0.7, e = 0.1,
and 1,000 iterations (with either sarsa or Q-learning), produced the following
Q) matrix:

14 160 O 0 0 0
64 11.0 40.0 160 0 0
0 160 350 160 0 100.0
0 16.0 40.0 11.0 400 0
0 0 0 160 35.0 100.0
0 0 0 0 0 0

Some of the Os can become -infs eventually. The question is how to inter-
pret and use this matrix, and the answer is to simply apply the policy at each
point, choosing the maximum available Q value for the current state most of
the time until you reach the goal state. So from A, the policy will direct you
to move to B (Q = 16) then on to C (Q = 40) and so to F. From D you can
go to either C or E (@ = 40) and from either of those, directly to F.
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/ Goal

FIGURE 13.7: The example environment.

Start

13.6 The Difference between Sarsa and Q-Learning

It might not be clear what the difference is between the two algorithms
in practice. We're going to consider the little environment that is shown in
Figure 13.7, where the agent has to learn a route from the start location on
the left to the final location on the right (the example comes from Section
6.5 of Sutton and Barto’s book, which is in the readings at the end of the
chapter). The reward structure is that every move gets a reward of -1, except
for moves that end up on the cliff. These get a reward of -100, and the agent
gets put back at the start location. This is clearly an episodic problem, since
there is a clear end state.

Both algorithms will start out with no information about the environment,
and will therefore explore randomly, using the e-greedy policy. However, over
time, the strategies that the two algorithms produce are quite different. The
main reason for the difference is that Q-learning always attempts to follow the
optimal path, which is the shortest one. This takes it close to the cliff, and
the e-greedy part means that inevitably it will sometimes fall over. By way of
contrast, the sarsa algorithm will converge to a much safer route that keeps
it well away from the cliff, even though it takes longer. The two solutions are
shown in Figures 13.8 and 13.9. The sarsa algorithm produces the safe route
because it includes information about action selection in its estimates of @,
while Q-learning produces the riskier, but shorter, route. The choice of which
is better is up to you, and it depends on how serious the effects of falling off
the cliff are.

The reason for the difference between the algorithms is because Q-learning
always assumes that the policy will pick the optimal action, and while this is
true most of the time, the e-greedy policy does occasionally choose a different
action, which can cause problems here. However, the algorithm ignores these
dangers because it only focuses on the optimal solution. Sarsa does not take
this maximum, and so it will be biased against solutions that take it close to
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v

Start Goal

FIGURE 13.9: The
Q-learning solution is optimal,
but occasionally the random
search will tip it over the cliff.

Start Goal

FIGURE 13.8: The sarsa
solution is far from optimal, but
it is safe.

the cliff, because these allow for cases where the agent fell off the cliff, and
that therefore have very large negative rewards.

13.7 Uses of Reinforcement Learning

Reinforcement learning has been used successfully for many problems, and
the results of computer modelling of reinforcement learning have been of great
interest to psychologists, as well as computer scientists, because of the close
links to biological learning. However, the place where it has been most popular
is in intelligent robotics, because of the fact that the robot can be left to
attempt to solve the task without human intervention.

For example, reinforcement learning has been used to get robots to learn
to clear a room by pushing boxes to the edges. This isn’t exactly the most
exciting task in the world, but the fact that the robot can learn to do it using
reinforcement learning is impressive. Reinforcement learning has been used
in other robotic applications, including robots learning to follow each other,
travel towards bright lights, and even navigate.

This is not to say that reinforcement learning does not have problems.
Since it is, in essence, a search strategy, reinforcement learning suffers from
the same difficulties as the search algorithms that we talked about in the last
two chapters: it can become stuck in local minima, and if the current search
region is effectively flat, then the algorithm does not find any better solution.
There are several reports of researchers training robots having the batteries
run out before the robot has learnt anything, and even of the researchers
giving up and kicking the robot in the right direction to give it a start. In
general, reinforcement learning is fairly slow, because it has to build up all
of the information through exploration and exploitation in order to find the
better solutions. It is also very dependent upon a carefully chosen reward
function: get that wrong and the algorithm will do something completely
unexpected.
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A famous example of reinforcement learning was TD-Gammon, which was
produced by Gerald Tesauro. His idea was that reinforcement learning should
be very good at learning to play games, because games were clearly episodic—
you played until somebody won—and there was a clear reward structure, with
a positive reward for winning. There was another benefit, which was that you
could set the learner to play against itself. This is actually very important,
since the version of TD-Gammon that was actually bundled with the IBM
operating system OS/2 Warp had played 1,500,000 games against itself before
it stopped improving.

Further Reading
A detailed book on reinforcement learning is:

e R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, USA, 1998.

An interesting article concerning the use of reinforcement learning is:

o G. Tesauro. Temporal difference learning and TD-gammon. Commu-
nications of the ACM, 38(3):58-68, 1995.

Alternative treatments are:

e Chapter 13 of T. Mitchell. Machine Learning. McGraw-Hill, New York,
USA, 1997.

e Chapter 16 of E. Alpaydin. Introduction to Machine Learning. MIT
Press, Cambridge, MA, USA, 2004.

Practice Questions

Problem 13.1 Work through the first few steps of the hill by hand for both
sarsa and QQ-learning. Then modify the code to run on this example and
ensure that they match.

Problem 13.2 Design a Q-learner for playing noughts-and-crosses (also knowt
as Tic-Tac-Toe). Run the algorithm by hand, describing the states,
transitions, rewards, and Q-values. Assume that the opponent picks
a random (but valid) square for each move. How would your learner
change if the opponent played optimally? Would a TD learner behave
differently?
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Problem 13.3 A robot has 8 range-finding sensors and 2 motors. The range
sensors return an integer between 0 and 127 inclusive that represents
the distance in centimetres to the nearest object. If the nearest object
is further than 127 centimetres away, then 127 is returned. The motors
receive an integer input between -100 (full speed backwards) and 100
(full speed forwards).

You want to train the robot to follow the right-hand wall using reinforce-
ment learning. The robot should stay between 15 and 30 centimetres
away from the right-hand wall, and if it reaches corners should be able to
turn to follow the wall. Compute the state space, decide if this is a con-
tinuous or episodic problem, and then design a suitable reinforcement
learner of the problem, considering:

¢ Any quantisation of the input and output spaces.

o The reward system you choose.

A description of your chosen learning algorithm.

Any problems that you anticipate with the system, and what the
final result of the learning will be.

Problem 13.4 There are 5 lifts in a 10-storey office building. On each floor
there are call buttons for somebody wishing to go up or down, except
for the top and bottom floors where there is only 1 call button. When
a lift arrives and somebody enters the lift they press the number of the
floor on which they wish to stop on. Each lift stores the numbers and
travels up or down, stopping at each floor that is requested.

Calculate the state and action spaces for the system, and then describe
a suitable reinforcement learner for this system. You need to devise a
reward function as well as describe the learning method that you believe
to be most appropriate. Should the system use delayed rewards? A good
reinforcement learning system provides a very effective algorithm for this
problem (as compared to standard naive methods for lift scheduling).
Explain why this could be the case, and give possible problems with
using a reinforcement learner.

Problem 13.5 It is possible to write a learning Connect-4 player. In case
you don’t remember connect-4, the game is played on a grid board of
7 x 6. Two players take it in turns to drop tokens into the grid where
they fill the lowest available spot in the chosen column. The aim is to get
four of your coloured tokens in a row. In case that doesn’t make sense,
or just because you are feeling nostalgic, there are plenty of versions of
the game on the Internet.

The state space of Connect-4 is not easy to think about. There is 1 state
with no counters on it, 7 state with 1 counter in them (assuming that
the same colour counter always starts): one state for the counter being
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in each row, and 7 again for 2 counters being on the board. However,
from there the number of states mushrooms. In the case where the game
is a draw, so that all of the squares are full, there is something less than
27x6 — 942 gtates. I say something less because this counts all the cases
that include a line of 4, and also ignores the fact that there are only
21 counters of each colour. The fact remains that the state space is
immense, so it is probably going to take a long time to learn.

However, programming the game is relatively simple. There are two
absorbing states: when the board is full, and when somebody wins. In
either of these cases a reward is given. So you will have to decide on
rewards, and write some code that detects when one or the other state
has happened. The choice that is made at each turn is simply which
column to add the new counter in, so there are only seven possible
actions. You need to represent the board, for which I'd recommend a
2D array with 0 meaning empty, 1 meaning contains a red counter, and
2 meaning contains a yellow counter. This should make it easy to detect
the absorbing states.

Having set up that lot, you need to make a number of modifications to
the Q-learning code. Firstly, you are not going to pass in transition and
reward matrices, since making them would be crazy. You are probably
going to give a reward of 0 to every move except a win and a loss, so
change the code to present those rewards. You then need to change the
e-greedy search strategy to simply pick a random (but not full) column,
rather than look at the transition matrix. Then that’s it, set it running
(and be prepared to wait for a very long time. I trained the algorithm
for 20,000 games against a purely random player, and at the end of that
the Q-learner was winning about 80% of the games).



Chapter 14

Markov Chain Monte Carlo
(MCMC) Methods

In this chapter we are going to look at a method that has revolutionised sta-~
tistical computing and statistical physics over the past 20 years. The principal
algorithm has been around since 1953, but only when computers became fast
enough to be able to perform the computations on real world examples in
hours instead of weeks did the methods become really well known. However,
this algorithm has now been cited as one of the most influential ever created.

There are two basic problems that can be solved using these methods, and
they are the two that we have been wrestling with for pretty much the entire
book: we may want to compute the optimum solution to some objective func-
tion, or compute the posterior distribution of a statistical learning problem.
In either case the state space may well be very large, and we are only inter-
ested in finding the best possible answer—the steps that we go through along
the way are not important. We’ve seen several methods of solving these types
of problems during the book, and here we are going to look at one more. We
will see a place where MCMC methods are very useful in Section 15.1.

The idea behind everything that we are going to talk about in this chapter
is that as we explore the state space, we can also construct samples as we
go along in such a way that the samples are likely to come from the most
probable parts of the state space. In order to see what this means, we will
discuss what Monte Carlo sampling is, and look at Markov chains.

14.1 Sampling

We have produced samples from probability distributions in almost all of
the algorithms we have looked at, for example, for initialisation of weights.
In many cases, the probability distribution we have used has been the uni-
form one on [0,1), and we have done it using the random.rand() function
in NumPy, although we have also seen sampling from Gaussian distributions
using random.normal ().
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14.1.1 Random Numbers

The basis of all of these sampling methods is in the generation of random
numbers, and this is something that computers are not really capable of doing.
However, there are plenty of algorithms that produce pseudo-random numbers,
the simplest of which is the linear congruential generator. This is a very simple
function that is defined by a recurrence relation (i.e., you put one number in
to get the second number, and then feed that back in to get the third, and
then repeat the cycle):

Znt1 = (azn +¢) mod m, (14.1)

where a,c, and m are parameters that have to be chosen carefully. All of
them, and the initial input zg (which is known as the seed), are integers,
and so are all of the outputs. The modulus function means that the largest
number that can be produced is m, and so there are at most m numbers that
can be produced by the algorithm. Once one number appears a second time,
the whole pattern will repeat again since the equation only uses the current
output as input. The length of the sequence between repeats is the period,
and it should obviously be as long as possible, since it is the most obvious non-
randomness in the algorithm. There has been a lot of investigation of choices
of the parameters so that the period is length m, so that every integer between
0 and m is produced before the pattern cycles. There are various choices of
the parameters that have been selected to work well, including m = 232;
a = 1,664,525; and ¢ = 1,013,904,223. Clearly, just picking numbers at
random isn’t going to be that useful.

There has been a lot of effort put into different random number generators,
since they are important not just for statistical computing, but also cryptog-
raphy and security. The industry-standard algorithm for generating random
samples is the Mersenne Twister, which is based on Mersenne prime numbers. It
is the random number generator used in NumPy. No matter what algorithm
generates the numbers, though, it is important to remember that they are not
genuinely random, and as John von Neumann, one of the fathers of modern
computing, stated:

Anyone who considers arithmetic methods of producing random
digits is, of course, in a state of sin.

The other troublesome thing about random numbers is that it is not actually
possible to prove that a sequence of numbers are truly random. There are
several tests that can be made of a sequence of numbers to see if they seem to
be random. Examples include calculating the entropy of the sequence (entropy
was described in Section 6.2.1), using a compression algorithm on the sequence
(since compression algorithms exploit redundancy, i.e., predictability, in the
input, if the compression algorithms fail to make the input smaller, then it
might be because they are random), and just checking how many numbers
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are odd compared to even. However, you can never guarantee that a sequence
is random, just that it hasn’t failed most of the tests yet (but just because
it fails one or two of them at some point in the sequence doesn’t mean that
the sequence isn’t random; truly random numbers can look deterministic for
a long time... this is part of the joy of randomness!). I'll leave the last word
on this to von Neumann again:

In my experience it was more trouble to test random sequences
than to manufacture them.

14.1.2 Gaussian Random Numbers

The Mersenne twistor produces uniform random numbers. However, often
we might want to produce samples from other distributions, e.g., Gaussian.
The usual method of doing this is the Box-Muller scheme, which uses a pair of
uniformly randomly distributed numbers in order to make two independent
Gaussian-distributed numbers with zero mean and unit variance. There are
a few ways to implement this; we will look at the more efficient polar form of
the method, which works as follows:

The Box-Muller Scheme

e Pick two uniformly distributed random numbers between -1 and 1 (1, z2)
(for example, use random.rand(2)*2-1)

o If 22 + 22 > 1, discard them and pick two more (this means that

p(z1,22) = L, since they are inside the unit circle)

e Compute w = z% + z3
1
o Compute y; = 1 (Z22%)? and similarly for y»

o These y; have probability:

plon ) =plon 20 (S0 = L ey (538 ) = exw (54

which describes two independent variables with zero mean, unit variance
Gaussian distribution

A plot of 1,000 samples created by the Box-Muller scheme along with the
zero mean, unit variance Gaussian line is shown in Figure 14.1. There is a
more efficient algorithm for computing Gaussian-distributed random numbers
known as the Ziggurat algorithm.

There may well be many other distributions that we want to sample from.
For common statistical distributions people have worked out schemes like the
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FIGURE 14.1: Histogram of 1,000 Gaussian samples created by the
Box-Muller scheme. The line gives the Gaussian distribution with zero mean and
unit variance.

Box-Muller scheme, but we might want to sample from distributions that we
can’t describe in those terms. We will see examples of this in Chapter 15.
We would like a method of sampling from a distribution that doesn’t have to
be tailored to the distribution. There is one important concept that can be
seen in the Box-Muller scheme, and that is the idea of rejection. When the
original samples were not inside the unit circle they were rejected and another
one computed to replace them. This is a bit like simulated annealing as we
saw it in Section 11.6: we constructed a possible solution and then decided
whether or not to use it. Rejection adds computational cost to the procedure,
since if we were unlucky this algorithm could run for a long time before it
found a pair of numbers that satisfied the criteria. However, it also means
that we find samples that satisfy our requirements without having to design
any tricky code, and it is generally faster as well, since the computational cost
of generating some random numbers is rather less than the cost of doing the
complicated transform. We are going to see rejection used a lot more in this
chapter, but before we get there, we should set the idea of sampling on to a
proper theoretical footing.
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14.2 Monte Carlo or Bust

Monte Carlo, a tiny principality on the Mediterranean coast between France
and Italy, is famous mostly for its casino and Grand Prix race. As the rich
and famous flock to lose money there, they are unlikely to know that the
principality also has the dubious honour of having an important statistical
principle named after it. The Monte Carlo principle states that if you take
independent and identically distributed (i.e., well-behaved) samples from an
unknown high-dimensional distribution p(x), then as the number of samples
gets larger the sample distribution will converge to the true distribution. In
other words, sampling works. Written mathematically, this says:

1 X
pNn(x) = N Z5(xi = x)
— lim p(x), (14.3)

where §(x; = x) is the Kronecker delta function that is 1 if x; is equal to x, and
0 otherwise. This can be used to compute the expectation as well (where f(x)

is some function and x has discrete values, and the superscript (&) represents
the index of the sample):

LS i
En(f) = 5 2 7&)
— lim E(f) =) f(x)p(x). (14.4)

X

The fact that the sample distribution becomes more and more like the
true one as we take more and more samples tells us that samples are more
likely to be drawn from parts of the distribution that have high probability.
This is very useful, since places where there are more samples will allow us
to approximate the function well in those regions, and we only really care
about the appearance of the function in those places—if the probability is
small, then it doesn’t matter that the number of samples is small (the area is
sparsely covered) since the probability is low there anyway. If we use methods
that don’t know anything about the probability (such as sampling based on
a uniform grid and using splines or something similar), then we have to treat
all areas of the space as equally likely, which means that there is going to be
a lot of computational resources wasted. There is another benefit, too. In
addition to using the samples to approximate the expectation, we can also
find a maximum, that is, the most likely outcome, from the samples:
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X = arg max p (x(i)) . (14.5)

Allegedly, the idea of Monte Carlo sampling (and the reason that it got
its name) first came about when Stan Ulam was considering the probabilities
of particular hands of cards. In fact, the whole of probability theory was
originally developed by some of the great French mathematicians, such as
Fermat, in order to reason about games of chance, so Monte Carlo sampling
is in pretty good company. Suppose that you want to do something relatively
simple, such as to predict how many times you should expect to win at the
patience game that came free with your computer. All you need to do is
work out the rules for when you win based on the initial setup, and then
look at how many of these setups there are. In a standard deck there are 52
cards, so there are 52! (=~ 8 x 10%7) different ways in which the cards can be
distributed. So even before we start thinking about the specific rules for the
game, we know that the number of different layouts is so large it is basically
impossible to think about. Despairing of working it out, you might decide
to play a couple of hands of patience and see how well you do. In fact, the
Monte Carlo principle tells you that that is exactly what you should be doing.
Suppose that you play ten games of patience and six of them come out. You
might be able to argue that approximately 60% of the patience games will do
well. To believe this, you will have to play far more than ten games with the
same success rate, or course; and even then it assumes that you are a good
patience player, and don’t cheat.

14.3 The Proposal Distribution

We now have everything that we need if the distribution p(x) that we are
sampling from is easy (that is, not computationally expensive) to sample from.
Unfortunately, this is very rarely the case, but fortunately there is a way to get
around this problem, which is to cheat by inventing a simpler distribution g(x)
that we can sample from easily, and picking samples from there. Obviously
we can’t just pick any distribution g(x), there has to be some relation between
them. So we assume that even though we don’t know p(x), we can evaluate
p(x), for a given x where:

p(x) = Zipﬁ(x), (14.6)

where Z, is some normalisation constant that we don’t know. This is not
usually an unreasonable assumption; we are not saying that we do not know
p(x), just that we can’t sample from it easily. Now we can pick a number M
so that p(x) < Mq(x) for all values of x. We generate a random number x*
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FIGURE 14.2: The proposal distribution method.

from ¢(x), and we want this to look like a sample from p(x). We therefore
turn to the idea of rejection again, looking at how likely it is that the sample
comes from p(x), and discarding it if it turns out to be unlikely.

We make the decision of whether or not to accept the sample by picking
a uniformly distributed random number u between 0 and Mg(x*). If this
random number is less than p(x*), then we reject x*, otherwise we keep it.
The reason why this works is known as the envelope principle: the pair (x*,u)
is uniformly distributed under Mq(x*), and the rejection part throws away
samples that don’t match the uniform distribution on p(x*), so Mq(x) forms
an envelope on p(x). Figure 14.2 shows the idea. We sample from Mgq(x)
and reject any sample that lies in the grey area. The smaller M is, the more
samples we get to keep, but we need to ensure that p(x) < Mg(x). This
method is known as rejection sampling, and the algorithm can be written as:

The Rejection Sampling Algorithm

e Sample x* from ¢(x) (e.g., using the Box-Muller scheme if g(x) is Gaus-
sian)

o Sample 4 from uniform(0, x*)
o if u < p(x*)/Mqg(x*):

— add x* to the set of samples
o else:

— reject x and pick another sample

As an example of using rejection sampling, Figure 14.3 shows the results of
using it to sample from the mixture of two Gaussians by using the uniform
distribution shown by the dotted line. Using M = 0.8, as shown in the figure,
the algorithm rejects about half of the samples. Using M = 2 the algorithm
rejects about 85% of samples. So with rejection sampling, you have to throw
away samples, and if you don’t pick M properly, you will have to reject a lot of
them. The curse of dimensionality makes the problem even worse. There are
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FIGURE 14.3: The histogram shows samples of a mixture of two Gaussians
(given by the solid line) as sampled from the uniform box shown as a dotted line
by using rejection sampling.

two things that we can do to get over this problem. One is to develop some
more sophisticated methods of understanding the space that we are sampling,
and the other is to try to ensure that the samples are taken from areas of the
space that have high probability.

The reason why we are using these methods at all is that we can’t sample
from the actual distribution we want, since that is too difficult and/or expen-
sive, but it might be possible to understand it in other ways. In Section 14.4.1
we will look at methods that allow us to travel around within the space by
using simple local moves. Before we get to that we will look at a method that
tries to ensure that the samples come from regions of high probability. The
method is known as importance sampling, because it attaches a weight that
says how important each sample is.

Suppose that we want to compute the expectation of a function f(x) for a
continuous random variable x distributed according to unknown distribution
p(x). Starting from the expression of the expectation that we wrote out
earlier, we can introduce another distribution q(x):
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where we have used the fact that ¢(x) is the density of a random variable,
and so if we perform [ g(x)dx over all values of x then it must equal 1. The
ratio w(x(®) = p(xM)/g(xD) is called the importance weight, and it corrects
for sampling from the grey region in Figure 14.2 without having to reject
samples. While this can be used to estimate the expectation directly, the
real benefit of computing the importance weights is that they can be used in
order to resample the data. This leads to an algorithm known descriptively as
Sampling-Importance-Resampling. In the words of the advert, it ‘does exactly
what it says on the tin’:

The Sampling-lmportance-Resampling Algorithm

* Produce N samples x(, i =1...N from g(x)

o Compute normalised importance weights

i (x®)/q(x®)
w = Ez;p(x(j);l/q(x(j)) (14.8)

¢ Resample from the distribution {x(®} with probabilities given by the
weights w(®

An implementation of this in Python is shown next, and the results of
using sampling-importance-resampling on the example in Figure 14.3 is given
in Figure 14.4. Note that this method does not reject any samples, but it does
involve two separate sampling steps and a relatively expensive loop. Like the
other algorithms we have seen, it is sensitive to the quality of the match
between the proposal distribution g(x) and the actual distribution p(x).

E%g& s e
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In Section 15.4.2 we will see a method that uses sampl
resampling in an on-line application, known as a particle filter or sequential

Monte Carlo method. However, we will first turn our attention to how we can

find out more about the sample space. The basic idea is to keep track of the

sequence of samples and modify the proposal distribution to take advantage
of this, for whic we will have to use some more complicated machinery.
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14.4 Markov Chain Monte Carlo
14.4.1 Markov Chains

In probabilistic terms a chain is a sequence of possible states, where the
probability of being in state s at time ¢ is a function of the previous state.
A Markov chain is a chain with the Markov property, i.e., the probability at
time ¢ depends only on the state at t—1, as discussed in Section 13.3. The set
of possible states are linked together by transition probabilities that say how
likely it is that you move from the current state to each of the others, and they
are generally written as a matrix 7. They might be constant, or functions of
some other variables, but here we will assume that they are constant. Note
that, unlike the Markov Decision Processes that we saw in Section 13.3, there
is no action here that affects the probability of moving into a particular state.

Given a chain, we can perform a random walk on the chain by choosing
a start state and randomly choosing each successive state according to the
transition probabilities. The link to sampling that we need is that if the
transition probabilities reflect the distribution that we wish to sample from,
then a random walk will explore that distribution. One problem with this
is that random walks are very inefficient at exploring space, since they move
back towards the start as often as they move away, which means the distance
they move from the start scales as /¢, where t is the number of samples. We
therefore want to explore more efficiently than just using a random walk.

We do this by setting up our Markov chain so that it reflects the distribution
we wish to sample from, and we want the distribution p(x(®) to converge to
the actual distribution p(x) no matter what state we start from. Since we can
start from any state, this tells us that every state is reachable from every other
state (so that the transition matrix can’t be cut up into smaller matrices);
this means that the chain is irreducible, a property that is known as ergodicity,
and aperiodic so that there are no cycles in the chain.

We also want the distribution p(x) to be invariant to the Markov chain,
which means that the transition probabilities don’t change the distribution:

p(x) =Y T(y,x)p(x). (14.9)

Finding the transition probabilities to make this true requires that we can
move backwards and forwards along the chain with equal probability, so that
the chain is reversible. This says that the probability of being in an unlikely
state s (sampling datapoint x), but heading for a likely state s’ (datapoint x’)
should be the same as being in the likely state s’ and heading for the unlikely
state s, so that:

p(x)T(x,x") = p(x)T(x',x). (14'10)
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This is known as the detailed balance condition and the fact that it leaves
the distribution p(x) alone is fairly obvious with a little calculation. If the
chain satisfies the detailed balance condition, then it must be ergodic, since
zy T(x,y) = 1, since you must have come from some state, and so:

> p(¥)T(y,x) = p(x), | (14.11)

which means that p(x) must be an invariant distribution of 7. So if we can
work out how to construct a Markov chain with detailed balance we can sample
from it in order to sample from our distribution. This is known as Markov
Chain Monte Carlo (MCMC) sampling, and the most popular algorithm that
is used for MOMC is the Metropolis-Hastings algorithm after the two people
who were directly involved in its creation.

14.4.2 The Metropolis-Hastings Algorithm

We assume that we have a proposal distribution of the form ¢(x®|x(-1))
that we can sample from. The idea of Metropolis-Hastings is similar to that of
rejection sampling: we take a sample x* and choose whether or not to keep it.
Except, unlike rejection sampling, rather than picking another sample if we
reject the current one, instead we add another copy of the previous accepted
sample. Here, the probability of keeping the sample is u(x*|x#~1):

w(x*[xE DY = min f’(x*)‘I(x(i)lx*)
) i (1 TS e

The Metropolis-Hastings Algorithm

e Given an initial value zg
e repeat
— sample x* from ¢(x;|x;_1)
— sample u from the uniform distribution
— if u < Equation (14.12):
* set x[1 + 1] = x*
— otherwise:
* set x[i + 1] = x[i]

e until you have enough samples

So why does this algorithm work? Each step involves using the current
value to sample from the proposal distribution. These values are accepted
if they move the Markov chain towards more likely states, and because the
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FIGURE 14.5: The results of the Metropolis-Hastings algorithm when the
true distribution is a mixture of two Gaussians (shown by the solid line) and the
proposal distribution is a single Gaussian (the dotted line).

Markov chain is reversible (since it satisfies the detailed balance condition)
the algorithm explores states that are proportional to the difficult distribution
p(z).

The Metropolis-Hastings (and variants of it) are by far the most commonly
used MCMC methods, and it is also the most general. It requires that you
choose the proposal distribution g(z*|z) carefully, but it is a very simple algo-
rithm to use. Figure 14.5 shows 5,000 samples computed using the algorithm
on a mixture of two Gaussians based on a proposal distribution that is a single
Gaussian.

Note that if the proposal distribution is symmetric, then it drops out of the
test in Equation (14.12). This is the original Metropolis algorithm, and it is
much closer to the pure random walk. The results of using this algorithm on
the same data can be seen in Figure 14.6.

There are other choices of proposal distribution, and they lead to variants
on the Metropolis-Hastings algorithm. We will consider the two most common
choices next.

14.4.3 Simulated Annealing (Again)

There are lots of times when we might just want to find the maximum of a
distribution rather than approximate the distribution itself. We can do this in
calculating arg max, ) p(x() (that is, the x(¥) with the largest probability),
but while doing this we will have computed samples from many parts of the
space, not just around the maximal region. A possible solution is to use
simulated annealing as we did in Section 11.6. This changes the Markov chain
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1400
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FIGURE 14.6: The results of the Metropolis algorithm when the true
distribution is a mixture of two Gaussians (shown by the solid line) and the
proposal distribution is a single Gaussian (the dotted line).

so that its invariant distribution is not p(x), but rather p!/7(x), where T; — 0 .
as i — 0o. We need an annealing schedule that cools the system down over
time so that we are progressively less likely to accept solutions that are worse
over time.

There are only two modifications needed to the Metropolis-Hastings algo-
rithm, and both are trivial: we extend the acceptance criterion to include the
temperature and add a line into the loop to include the annealing schedule.
The results of using simulated annealing on the example where the true dis-
tribution is a mixture of two Gaussians and the proposal distribution is just
one is shown in Figure 14.7.

14.4.4 Gibbs Sampling

Another variation on the Metropolis-Hastings algorithm comes when we
already know the full conditional probability p(z;|z1,...%j-1,%j+1,...Tn)
(which is often written as p(z;|z_;) for convenience). We are going to see some
examples of this in the next chapter: Bayesian networks. In Section 15.1.2 we
will deal with a set of probabilities from a network that looks like:

p(x) = Hp(j!waj)- (14.13)

Given that we know p(z;|za;) [Tresj) P(TklTaw)) (which is p(zjlz—;)),
maybe we should try using it as the proposal distribution, giving:
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FIGURE 14.7: Using simulated annealing gives the maximum rather than
an approximation to the distribution, as is shown here for the same example as
in Figures 14.5 and 14.6.

. * (i)A ek &
q(z*)z®) = p (mf’x*f) ifaZ;=2; (14.14)
0 otherwise.

If we then use Metropolis-Hastings, we find that the acceptance probability
P, is:

# o e (D) [ (D)

z*)p(z: |z

P, =min{ 1, M]—*l*—’) , (14.15)
P(w(m))P(mjlm—j)

and looking carefully at this and expanding out the conditional probabilities

we get:

(14.16)

. pa)p@ad?, e pEt))
P, =min< 1, - ra— - .
p(w(z))p(xjvw—j)p(m—j)

Since p(z},z*;) = p(z*), and similarily for p), we only have to worry
p(z'?)
p(z j)
Th_j = a:(_’g, and so the computation is actually min1,1 = 1. So we always
accept the proposal, which makes things much simpler.

The total algorithm is given by choosing each variable and sampling from
its conditional distribution. That’s it! The only option that you have is
whether to go through the variables in order, or whether to update them in a
random order. Rather than running up to some maximum value N, it is not

about

. From the definition of the proposal distribution we know that
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uncommon to run until the joint distribution stops changing. This algorithm
is known as the Gibbs sampler and it forms the basis of the software package
BUGS (Bayesian Updating With Gibbs Sampling) that is commonly used in
statistics. It is also a very useful algorithm for Bayesian networks as we shall
see in the next chapter.

The Gibbs Sampler

e for each variable z;:

— initialise wg.O)

e repeat
— for each variable z;:
(i))

* sample a;2 (1) from p(x |a:§ +1),$§%), (i))

* sample x; (41 from p(w1|w

+ sample z{*Y from p(mnlx(lﬂ), z))

e until you have enough samples

As an example, suppose that we have a distribution that is made up of two
different distributions, a binomial one in z and a beta in y. If you don’t know
what these distributions are, the combined distribution can be written as:

pl@.y;m) = (Mnl_m)') YT (L) (14.17)

The important point is that the overall distribution is a product of two
separate ones that can be sampled from separately. Figure 14.8 shows the
output of the sampling using the Gibbs sampler, with the line being the
correct distribution as usual. There is another example of Gibbs sampling in
Section 15.1.2.
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FIGURE 14.8: The Gibbs sampler output for the beta-binomial distribution.

Further Reading

The historical perspective in this area is provided by:

e N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the
American Statistical Association, 44(247):335-341, 1949.

Since MCMC is a very useful, but fairly difficult area, there are a good
number of review and tutorial articles available. Some that you may find
helpful are:

e W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, editors. Markov
Chawn Monte Carlo in practice. Chapman & Hall, London, UK, 1996.

o C. Andrieu, C. de Freitas, A. Doucet, and M. Jordan. An introduction
to MCMC for machine learning. Machine Learning, 50:5-43, 2003.

¢ G. Casella and E.I. George. Explaining the Gibbs sampler. The Amer-
ican Statistician, 46(3):167-174, 1992.

e Chib. S. and E. Greenberg. Understanding the Metropolis-Hastings
algorithm. The Americal Statistician, 49(4):327-335, 1995.

There is also a more complete treatment of sampling methods in:

e Chapter 11 of C.M. Bishop. Pattern Recognition and Machine Learning.
Springer, Berlin, Germany, 2006.
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Practice Questions

Problem 14.1 Use rejection sampling and importance sampling to sample
from a Gaussian distribution using a uniform distribution as the pro-
posal distribution. How many samples do you have to reject with the
rejection sampler?

Problem 14.2 The Gibbs sampler can be used in place of the EM algorithm
in order to fit the mixtures of a Gaussian Mixture Model (Section 8.3).
The idea is to use the samples to introduce the mixing variable = as
we did then, and to use the Gibbs sampler to sample from the current
estimates of the Gaussians. The algorithm will then look something like:

The Gibbs Sampler for Gaussian Mixtures

e Given some estimates of w1, s
e repeat until the distribution stops changing:
— fori=1toN:
x Sample 7 according to the E-step of the EM algorithm
* Update:
N t
y - T (=), 418
i = N O ( . )
Yim (1 —m)
* Sample from the Gaussians with these estimates in order
to produce new estimates of the means

Implement this and compare the results to using the EM algorithm.

Problem 14.3 Show that the Gibbs sampler satisfies the detailed balance
equation.

Problem 14.4 Modify the Metropolis-Hastings algorithm in order to resam-
ple when it rejects the current sample. How does it affect the results?
Explain the result in terms of the effect on the Markov chain.



Chapter 15

Graphical Models

Throughout this book we have seen that machine learning brings together
computer science and statistics. Nowhere is this more clearly shown than in
one of the most popular areas of current research in machine learning: graphi-
cal models (or more completely, probabilistic graphical models), which use graph
theory with all its underlying computational and mathematical machinery in
order to explain probabilistic models.

The graphs used in graphical models are the exact ones that are taught in
basic algorithms classes: a set of nodes, together with links between them,
which can be either directed (i.e., have arrows on them so that you can only go
one way along them) or not. There are two basic types of graphical models,
depending upon whether or not the edges are directed. We will focus primarily
on directed graphs, but the undirected kind (known as Markov Random Fields)
are described in Section 15.2. For such a simple data structure, graphs have
turned out to be incredibly powerful in many different parts of computer
science, from constructing compilers to managing computer networks. For
this reason, there are lots of readily available algorithms for finding shortest
paths (Floyd's and Djiksta's algorithms, which we’ve already discussed briefly
in Section 10.6), determining cycles, etc. Any good book on algorithms will
give details of these and many other graph algorithms.

For our part, we are interested in using graphs to encode probability dis-
tributions and so we need to decide what nodes and links are in this context.
The nodes are fairly obvious. We generate a node for each random variable,
and label it accordingly. In this book, we will only consider discrete variables,
8o that there is a finite number of possible values that the random variable can
take. Given a continuous variable we will discretise it into a finite set. While
this loses information, it makes the problem much simpler. The alternative is
to specify the variable by a probability density function, which can be done,
but makes the whole thing harder to describe and understand.

The question is what to make the links represent. Perhaps the best way to
think about this is to ask what it means if two nodes are not linked. In this
case we are saying that there is no connection between those two variables,
which is the same as saying that they are independent. Except it isn’t quite
as simple as that, because two nodes could be linked through a third node.
Have a look at the right of Figure 15.1, where C is not directly linked to B,
but there is a link through A. For this reason we have to be careful and talk
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FIGURE 15.1: Two simple graphical models. The arrows denote causal
relationships between nodes that represent features.

about conditional independence: C is conditionally independent of B, given A.

We use directed links because these relationships are not symmetrical (un-
less the variables are independent, in which case there is no link). What does
the simplest connected graph that we can make, the one on the left of Fig-
ure 15.1, mean? There is a rather loose interpretation of the link, which is to -
say that ‘A’ causes ‘B’ (but note that this isn’t quite the same semantic usage
that we normally have for ‘causes,’ since there may be several variables that
are all involved in causing B). This is a useful intuition to have, but it is not
really correct. More properly, the graph tells us that the probability of A and
B is the same as the probability of A times the probability of B conditioned
on A: P(a,b) = P(bla)P(a).

There is a third thing that we need in order to specify the problem properly,
which is the conditional probability table for each variable. This specifies what
the probabilities are for each of the nodes, conditioned on any nodes that are
its parents. If we wanted to work out a value for P(a,b), then we would need
a distribution table for P(a) and one for P(b|a). The nodes are separated into
these where we can see their values directly—observed nodes—and hidden or
latent nodes, whose values we hope to infer, and which may not have clear
meanings in all cases.

The basic concept of the graphical model is very simple, which makes it all
the more amazing that it produces a powerful set of tools for understanding
and creating machine learning algorithms. We will start by looking at the most
general model, the Bayesian Belief network or more simply, Bayesian network,
and see how they are represented, and the difficulties involved in dealing with
them. Following this, we will identify a few places where these difficulties can
be overcome, resulting in some very important algorithms that solve a variety
of different tasks. In particular, we will look at Markov Random Fields (MRFs),
Hidden Markov Models (HMMs), the Kalman Filter, and particle filter.
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FIGURE 15.2: The sample graphical model. ‘B’ denotes a node stating
whether the exam was boring, ‘R’ whether or not you revised, ‘A’ whether or not
you attended lectures, and ‘P’ whether or not you will panic before the exam.

15.1 Bayesian Networks

To start with, we will consider directed graphs, and make one restriction to
them, namely that they must not contain cycles, that is, there cannot be any
loops in the graphs. These graphs go by the rather unlovely name of DAGs:
directed, acyclic graphs, but for graphical models, when they are paired with
the conditional probability tables, they are called Bayesian networks. In order
to see what we can do with such a network, we need an example.

15.1.1 Example: Exam Panic

Figure 15.2 shows a graph with a full set of distribution tables specified. It
is a handy guide to whether or not you will panic before an exam based on
whether or not the course was boring (‘B’), which was the key factor you used
to decide whether or not to attend lectures (‘A’) and revise (‘R’). We can use
it to perform inference in order to decide the likelihood of you panicking (‘P’).
There are two kinds of inferences, depending on whether the observations that
are made come from the top of the graph or the bottom. If we have a set
of observations that can be used to predict an unknown outcome, then we
are doing top-down inference or prediction, whereas if the outcome is known,
but the causes are hidden, then we are doing bottom-up inference or diagnosis.
Either way, we are working out the values of the hidden (unknown) nodes
given information about the observed nodes. For the example in Figure 15.2
we will start by predicting whether or not you will panic before the exam, so
it is the outcome that is hidden.

In order to compute the probability of panicking, we need to compute
P(b,r,a,p), where the lower-case letters indicate particular values that the
upper-case variables can take. The wonderful thing about the graphical model
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is that we can read the conditional probabilities from the graph—if there is
no direct link, then variables are conditionally independent given a node that
is already included, so those variables are not needed. For this reason, the
computation we need for Figure 15.2 is:

P(p) = z P(b,r,a,p)

b,ra

=Y " P(b) x P(r|b) x P(alb) x P(p|r,a)

b,ra

=" P(b) x »_ P(rb) x P(alp) x P(p|r,a). (15.1)
b

ra

If we know particular values for the three observable nodes, then we can plug
them in and work out the probability. In fact, the conditional independence
gives us even more: if I know both whether or not you attended lectures
and whether or not you revised, then I don’t need to know if the course was -
boring, since there is no direct connection between ‘B’ and ‘P’. Suppose that
you didn’t attend lectures, but did revise. In that case, the probability of you
panicking can be read off the final distribution table as 0.8. The power of
the graphical model is when you don’t have full information. It is possible to -
marginalise over any of those variables by summing up the values. So suppose
that you know that the course was boring, and want to work out how likely it
is that you will panic before the exam. In that case you need to sum up the
probabilities in Equation (15.1):

P(p)=05x(03x01x0+03x0.9%x08+0.7x0.1x06+0.7x0.9x1)
+0.5% (0.8 x0.5x0+08%x05x%x0.8+0.2x0.5x0.6+0.2x0.5x1)
= 0.684. (15.2)

The backward inference, or diagnosis, can also be useful. Suppose that I
see you panicking outside the exam. You look vaguely familiar, but I’m not
sure whether or not you came to the lectures. I might want to work out why
you are panicking—was it because you didn’t come to the lectures, or because
you didn’t revise? To perform this calculation I need to use Bayes’ rule to
turn the conditional probabilities around, just as was done for the Bayes’
classifier in Chapter 8. So the computations that I need are (where P(p) is
the normalising constant found by summing over all values of r,a, and b, i.e.,
Equation (15.2)):



Graphical Models 337

P(p)
0.5-(0.3-0.1-0+0.3-0.9-0.8) +0.5-(0.8-0.5-0+0.8-0.5-0.8)

P(p)
=0.3918. (15.3)

_0.268
"~ 0.684
Pl ~ PEI0P@)
P(p)
0.144
= 06ed 0.2105. (15.4)

This use of Bayes’ rule is the reason why this type of graphical model is
known as a Bayesian network. Even in this very simple example, the inference
was not trivial, since there were a lot of calculations to do. However, the
problem is actually rather worse than that. The computational cost of the
simple algorithm we used (start at the root, and follow each link through the
graph to perform the computation) is O(2%) for a graph with N nodes where
each node can be either true or false. In general the problem of exact inference
on Bayesian networks is NP-hard (technically, it is actually #P-hard, which
is even worse). However, for so-called polytrees where there is at most one
path between any two nodes, the computational cost is much smaller—linear
in the size of the network.

Unfortunately, it is rare to find such polytrees in real examples, so we can
either try to turn other networks into polytrees, or consider only approximate
inference, which is the most common solution to the problem, and the method
that we’ll consider next. We can speed things up a little by getting things
into the form of Equation (15.1), where the summations were carefully placed
as far to the right as possible, so that program loops can be minimised. By
doing this the algorithm is as efficient as possible, but it is still NP-hard. This
is sometimes known as the variable elimination algorithm, which is a variation
on the bucket elimination algorithm. The idea is to convert the conditional
probability tables into what are called A tables, which simply list all of the
possible values for all variables, and which initially contain the conditional
probabilities. For example, the X table for the ‘P’ variable in Figure 15.2 is:



338 Machine Learning: An Algorthmic Perspective

R A P| A
T T T[] O
T T F| 1
T F T|08
T F F |02
F T T)|06
F T F |04
F F T|1
F F F| O

If T see you panicking outside the exam (so that P is true), then I can
eliminate it from the graph by removing from each table all rows that have P
false in them, and deleting the P column. This simplifies things a little, but
I have to do rather more in order to compute the probability of you having
attended lectures. I don’t know whether you revised or not, and I don’t know
if you found the lectures boring, so I have to marginalise over these variables.
The order in which we marginalise doesn’t change the correctness (although
more advanced algorithms can improve the speed by taking advantage of
conditional independence) so we’ll pick R first. To eliminate it from the graph,
we have to find all of the A tables that contain it (there will be two of them
containing R: the one for R itself and the one that we have just modified to
remove P). To remove R, we have to add together the products of the A values
that correspond to places where the other values match. So to complete the
entry where B is true and A is false, we have to multiply together the values
where B, A, R are respectively true, false, true in the two tables and then
add to that the product of where B, A, R are respectively true, false, false.
In other words:

B R| A R Al A B A A

TT|03 7TH0 T7/03-0+0.7-0.6=0.42

TFI07| x| TF|08]|=|TF03-08+07-1=0.94 (15.5)
FT0.8 FT06 FT|08-0+02-06=0.12

F F|0.2 FFl1 FF08:08+402-1=0.84

We can do the same thing in order to eliminate B, which involves all three of
the tables, and this will enable the computation of the conditional probability
of you attending lectures given that I saw you panicking before the exam. The
benefit of doing things this way is that the whole thing can be written as a
general algorithm:

The Variable Elimination Algorithm

e create the X tables:

— for each variable v:

* make a new table
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* for all possible true assignments z of the parent variables:
- add rows for P(v|z) and 1 — P(v|z) to the table
* add this table to the set of tables

e climinate known variables v:

— for each table:

* remove rows where v is incorrect
* remove columm for v from table

e eliminate other variables (where x is the variable to keep):

— for each variable v to be eliminated:
x create a new table ¢/
* for each table ¢ containing v:
* Utrue,t = Vtrue,t X P(v]T)
* Vfalse,t = Vfalse,t X P(_"le)
* Utrue,t’ = Zt(vtrue,t)
* Vfalse,t’ = Zt('vfalse,t)

— replace tables ¢ with the new one ¢t/
o calculate conditional probability:

— for each table:
* Ttrue = Ttrue X P(x)
* Tfalse = Tfalse X P(“.’L‘)
* probability iS Ztrue/ (Ttrue + Tralse)

To see that these algorithms do not scale well, consider Figure 15.3, which
shows a very simple development of the example in Figure 15.2 by adding just
one extra node to the network: whether or not this is your final year (‘F’).
This makes the network significantly more complicated, since we need another
table and extra entries in two of the other tables, and therefore the variable
elimination algorithm will take rather longer to run.

15.1.2 Approximate Inference

Since the variable elimination algorithm will only take you so far, for reason-
ably sized Bayesian networks there is no choice but to perform approximate
inference. Fortunately, we have already seen a set of algorithms that are ide-
ally suited to the problem: the Markov Chain Monte Carlo methods that
we saw in Chapter 14. There are two other methods of doing approximate
inference (loopy belief propagation and mean field approximation) as well, but
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FIGURE 15.3: Adding just one extra node (‘F’, information about whether
or not this is your final year) makes the conditional probability tables
significantly more complicated.

we will not consider them further; there are references to descriptions of these
methods at the end of the chapter.

The basic idea of using MCMC methods in Bayesian networks is to sample
from the hidden variables, and then (depending upon the MCMC algorithm
employed) weight the samples by their likelihoods. Creating the samples is
very easy: for prediction, we start at the top of the graph and sample from each
of the known probability distributions. Using Figure 15.2 again, we generate a
sample from P(b), and then use that value in the conditional probability tables
for ‘R’ and ‘A’ to compute P(r|b = sample value) and P(a|b = sample value).
These three values are then used to sample from P(p|b,a,7). We can take
as many samples as we like in this way, and expect that as the number of
samples gets large, so the frequency of specific samples will converge to their
expected values.

In this sampling method, we have to work through the graph from top to
bottom and select rows from the conditional probability table that match the
previous case. This is not what we would do if we were constructing the table
by hand. Suppose that you wanted to know how many courses you did not
attend the lectures for because the course was boring. You would simply look
back through your courses and count the number of boring courses where
you didn’t go to lectures, ignoring all the interesting courses. We can use
exactly this idea if we use rejection sampling (see Section 14.3). The method
samples from the unconditional distribution and simply rejects any samples
that don’t have the correct prior probability. It means that we can sample
from each distribution independently, and then throw away any samples that
don’t match the other variables. This is obviously computationally easier, but
we might have to reject a lot of samples.

The solution to this problem is to work out what evidence we already have
and use this evidence to assign likelihoods to the other variables that are
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FIGURE 15.4: The Markov blanket of a node is the set of nodes (shaded
light grey) that are either parents or children of the node, or other parents of its
children (shaded dark grey).

sampled. Suppose that we sample from P(b) and get value ‘true’. If we
already know that we did revise, then we weight the observation P(r|b) by
the appropriate probability, which is 0.3. We continue through the other
variables, sampling where there is no evidence and using the tables to find the
probability if we do have evidence. However, we can do rather better than this
by using the full MCMC framework. We start by setting values for all of the
possible probabilities, based on either evidence or random choijces. This gives
us an initial state for a Markov chain. Now Gibbs sampling (Section 14.4.4)
will find us the maxima of our probability distribution given enough samples.

The probabilities in the network are:
p(@) = [ p(x;l2as), (15.6)
J

where z,; are the parent nodes of x;. In a Bayesian network, any given
variable is independent of any node that is not their child, given their parents.
So we can write:

p(;lz—5) = p(xjla;) [[ Plerlzae), (15.7)
kep(5)

where (3(7) is the set of children of node z; and z_; signifies all values of z;
except z,;. For any node we only need to consider its parents, its children, and
the other parents of the children, as shown in Figure 15.4. This set is known
as the Markov blanket of a node.

Given these calculations, computing the inference on any real Bayesian
network generally consists of using Gibbs sampling in order to approximate
the inference. For the exam panic example, the algorithm to perform the
Gibbs sampling consists of computing the probability distributions (possibly
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fortunately, the news in this area isn’t particularly good

If we are given the structure and conditional probability tables of the
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costs of searching over trees are immense, as we shall see. It is not uncommon
for people to create the entire network by hand, and only then to use algo-
rithms in order to perform inference on the network. Constructing Bayesian
networks by hand is obviously very boring to do, and unless it is based on
real data then it is subjective: putting a whole lot of effort into inference is
a waste of time if the data you are inferring about bears no resemblance to
reality!

So why is it so difficult to construct Bayesian networks? First, we have
already seen that the problem of exact inference on Bayesian networks was
NP-hard, which is why we had to use approximate inference. Now let’s think
about the structure of the graph a little. If there are N nodes (i.e., N random
variables in the graph), then how many different graphs are there? For just
three nodes (‘A’, ‘B’, ‘C’) we can leave the three unconnected, connect ‘A’
to ‘B’ and leave ‘C’ alone, connect ‘B’ to ‘A’ and leave ‘C’ alone (remember
that the links are directional) and lots of variations of that, so that there are
seven possible graphs before we have even connected all three nodes to each
other. For ten nodes there are O(10'®) possible graphs, so we are not going
to be searching over all of them. Further, we might want our algorithm to be
able to include latent variables, i.e., hidden nodes, which might be a sensible
thing to do in terms of explaining the data, but it does make the problem of
search even worse.

We’ve talked about search before: Chapters 11 and 12 are full of search
methods. So can we use those methods to solve this problem? The answer is a
cautious yes, once we have worked out an objective function to maximise. We
want to reward graphs that explain the data well, but we also want to appeal
to Occam’s razor (which we saw in Section 6.2.2) to ensure that the graphs are
as simple as possible. Typical methods are to use an objective function based
on the Minimum Description Length (MDL) (which is based on the argument
that the solution with the shortest description, i.e., fewest parameters that
explains the data, is the best one) or related information-theoretic measures.
Then hill climbing or similar algorithms are used to perform local search
around a set of random starting graphs. As usual for optimisation problems,
getting the scoring function right is critical. You might be wondering why
it is not possible to use a genetic algorithm. It is, but given the number of
iterations of the GA, each of which would involve constructing hundreds of
possible networks, testing them by performing inference, and then combining
them, the computational expense rules it out as a practical possibility. As it
is such an important problem, there has been a lot of very advanced work on
it, which is beyond our scope here. However, there are references at the end
of the chapter that contain more information should you want it.

Given that we cannot make the entire graph, we will consider the compro-
mise situation, where we try to compute the conditional probability tables for
a known graph based on data. This is quite a sensible compromise: you as-
sume that some expert can put together a network that shows how variables
relate to each other, effectively a ‘cartoon’ of the data generating process,
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and then you use data in order to compute the conditional probability tables.
However, it is still difficult. The idea is to choose the probability distributions
to maximise the likelihood of the training data. If there are no hidden nodes,
then it is possible to compute the likelihood directly:

= Mlog H P(Dy,|G)

e
Z 2 og P(X,|parents(X,), Dp), (15.8)

where M is the number of training data examples D,,, and X,, is one of
the N nodes in graph G. Equation (15.8) has broken everything into sums
over each node individually, which means that we can compute each separate
conditional probability table. To compute the values of the table, you just
need to count how often you have panicked in an exam given each of the
possible values for having revised and attended lectures, and normalise it to
make it into a probability. The danger with this is that with small amounts
of data there could be examples that have not happened in training, and that.
will therefore have probability 0, although this can be dealt with by including
prior probabilities and using Bayes’ rule to update the estimates using the
real data.

Obviously, this doesn’t work if there are hidden nodes, since we don’t know
values for them in the data. Surprisingly, getting around this problem isn’t
as difficult as might be expected. The key is to see that if we did have values
for them, then Equation (15.8) could be used. We can estimate values for
them by inference, and then we can iterate these two steps: an estimation
step using inference followed by a maximisation step, making this an EM
algorithm (Section 8.3.1).

There is lots more work on Bayesian networks, and the references at the
end of the chapter include entire books on the topic for anybody wishing to
explore more in this area. We will now turn our attention to some other
types of graphical models, starting with the variation where the edges are
undirected.

15.2 Markov Random Fields

Bayesian networks are inherently asymmetric, since each edge had an arrow
on it. If we remove this constraint, then there is no longer any idea of children
and parent nodes. It also makes the idea of conditional independence that we
saw for the Bayesian network easier: two nodes in a Markov Random Field
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(MRF) are conditionally independent of each other, given a third node, if
there is no path between the two nodes that doesn’t pass through the third
node. This is actually a variation on the Markov property, which is how the
networks got their name: the state of a particular node is a function only of
the states of its immediate neighbours, since all other nodes are conditionally
independent given its neighbours. You might think that this fact would make
inference on MRF's simpler, but unfortunately it doesn’t; in general it is still
a #P-hard problem. However, there are particular applications where MRF
methods have turned out to be particularly useful, often for images.

The most well-known example is image denoising, something that we have
already seen in Section 3.4.5 when we talked about auto-associative learning
in the MLP. Suppose that we have a binary image I with pixel values I, o; €
{—1,1}. This image is a representation of an ‘ideal’ image I;i’wj that has no
noise in it, which is what we want to recover. If we assume that the amount
of noise is small, then there should be a good correlation between the values
of each pixel in the two images, so I, »; and Ia’ci,z,- should be correlated. We
also assume that within a small ‘patch’ or region in an image, there is good
correlation between pixels (so I, «, should correlate well with Iz,-+1,zj and
its other neighbouring pixels (I, -, 1, etc.). This assumption says that there
are lots of places in the image where all of the pixels are of the same value,
and this is (at least approximately) true for most images, and says that the
pixels are correlated (and that other pixels in the image are conditionally
independent of I, », given the neighbours of that pixel, which is the MRF
bit).

The original theory of MRFs was worked out by physicists, initially by
looking at the Ising model, which is a statistic description of a set of atoms
connected in a chain, where each can spin up (+1) or down (-1) and whose
spin affects those connected to it in the chain. Physicists tend to think of the
energy of such systems, and argue that stable states are those with the lowest
energy, since the system needs to get extra energy if it wants to move out of
this state. For this reason, the jargon of MRFs is in terms of energies, and
we therefore want the energy of our pair of images to be low when the pixels
match, and higher when they do not. So we write the energy of the same
pixel in two images as —nlz, o, I:’L,‘_’Ej, where 1 is a positive constant. Note
that if the two pixels have the same sign then the energy is negative, while
if they have opposite signs then the energy is positive and therefore larger.
The energy of two neighbouring pixels is —(ly, z; Iz, 41,2;, and we can just
add these components together to get the total energy:

N N
E(LI) ==Y Iaotrgs1 =0 Y Inyay I,y (15.9)
,J 3,j=1
where the index of the pixels is assumed to run from 1 to N in both the x and
y directions in both images and we are only interested in locally flat patches
of the image we are changing, which is 1.
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FIGURE 15.5: Using the MRF image denoising algorithm with
n=2.1,{ = 1.5 on a map of the world (top left) corrupted by 10% uniformly
distributed random noise (top right) gives the image below which has about 1%
error, although it has smoothed out the edges of all the continents.

There is now a simple iterative update algorithm, which is to start with
noisy image I and ideal I’, and update I so that at each step the energy
calculation is lower. So you pick one pixel I, ., for some values of z;,z; at a
time, and compute the energies with this pixel being set to -1 and 1, picking
the lower one. In probabilistic terms, we are making the probability p(I,I")
higher. The algorithm then moves on to another pixel, either choosing a ran-
dom pixel at each step or moving through them in some pre-determined order,
running through the set of pixels until their values stop changing. Figure 15.5
shows an original black and white image, a version corrupted with 10% noise,
and the MRF-reconstructed version using parameters n = 2.0,{ = 1.5. This
reduces the error from 10% to less than 1%, although it also removes my home
country of New Zealand from the map!

The Markov Random Field Image Denoising Algorithm

e given a noisy image I and an original image I', together with parameters
7, ¢

e loop over the pixels of image I:
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FIGURE 15.6: The Hidden Markov Model is an example of a dynamic
Bayesian network. The figure shows the first three states and the related
observations unrolled as time progresses.

— compute the energies with the current pixel being -1 and 1

— pick the one with lower energy and set its value in I accordingly

We will now focus on a type of graphical model that is in very common use,
and that has computationally tractable algorithms for doing exact inference
on it.

15.3 Hidden Markov Models (HMMs)

The Hidden Markov Model is one of the most popular graphical models.
Tt is used in speech processing and in a lot of statistical work. The HMM
generally works on a set of temporal data. At each clock tick the system
moves into a new state, which can be the same as the previous one. Its power
comes from the fact that it deals with situations where you have a Markov
model, but you do not know exactly which state of the Markov model you
are in—instead, you see observations that do not uniquely identify the state.
This is where the hidden in the title comes from. Performing inference on
the HMM is not that computationally expensive, which is a big improvement
over the more general Bayesian network. The applications that it is most
commonly applied to are temporal: a set of measurements made at regular
time intervals, which comprise the observations of the state. In fact, the HMM
is the simplest dynamic Bayesian network, a Bayesian network that deals with
sequential (often time-series) data. Figure 15.6 shows the HMM as a graphical
model.

The example that we will use is this: As a caring teacher I want to know
whether or not you are actually working towards the exam. I know from
Chapter 6 that there are four things that you do in the evenings (go to the
pub, watch TV, go to a party, study) and I want to work out whether or not
you are studying. However, I can’t just ask you, because you would probably
lie to me. So all I can do is try to make observations about your behaviour and
appearance. Specifically, I can probably work out if you look tired, hungover,
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scared, or fine. I want to use these observations to try to work out what you
did last night. The problem is that I don’t know why you look the way you
do, but I can guess by assigning probabilities to those things. So if you look
hungover, then I might give probability 0.5 to the guess that you went to the
pub last night, 0.25 to the guess that you went to a party, 6.2 to watching
TV, and 0.05 to studying. In fact, we will use these the other way round,
using the probability that you look hungover given what you did last night.
These are known as observation or emission probabilities.

I don’t have access to the other information that was used in Chapter 6,
such as what parties are on and what other assignments you have (one of the
worst things about stopping being a student is that the number of parties you
get invited to drops off ), but based on my own experience of being a student
I can guess how likely parties are, etc., and knowing what student finances
are, I can guess things like the probability of you going to the pub tonight if
you went to the pub last night. So now it is just a question of putting these
things into a form where I can work with them, and I can prepare my lectures
according to how well you are working. ‘ '

Each day that I see you in lectures I make an observation of your appear-
ance, o(t), and I want to use that observation to guess the state w(t). This
requires me to build up some kind of probabilities P (o (t)|w;(t)), which is the
probability that I see observation oy (e.g., you are tired) given that you were
in state w; (e.g., you went to a party) last night. These are usually labelled as
bjk- The other information that I have, or think I have, is the transition prob-
ability, which tells me how likely you are to be in state w; tonight given that
you were in state w; last night. So if I think you were at the pub last night
I will probably guess that the probability of you being there again tonight is
small because your student loan won't be able to handle it. This is written
as P(w;(t + 1)|w;(t)) and is usually labelled as a;;.

I can add one more constraint to each of the probability distributions a;;
and b;;. I know that you did something last night, so 3 ;@ij =1 and I know
that I will make some observation (since if you aren’t in the lecture I'll assume
you were too tired), so ), b;r = 1. There is one other thing that is generally
assumed, which is that the Markov chain is ergodic, something that we saw in
Section 14.4.1: it means that there is a non-zero probability of reaching every
state eventually, no matter what the starting state.

After a couple of weeks of the course I have made observations about you,
and I am ready to sort out my HMM. There are three things that I might
want to do with the data:

e see how well the sequence of observations that I've made match my
current HMM (Section 15.3.1)

e work out the most probable sequence of states that you’ve been in based
on my observations (Section 15.3.2)
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e given several sets of observations (for example, by watching several stu-
dents) generate a good HMM for the data (Section 15.3.3)

We will start by assuming that I invent a model and want to see how
good it is. So I use my own knowledge of being a student to work out the
probability distributions and then I can test the observations I make of you
against my model. At this point I will probably find out that my student life
was different to yours, or things have changed since I was a student, and I
will have to generate a new model to match current data. I can then use this
improved model to work out what you've been doing each evening. These
problems are dealt with in the next three sections.

The HMM itself is made up of the transition probabilities a;; and the ob-
servation probabilities bj;. So these are the things that I need to specify
for myself, starting with the transition probabilities (which are also shown in
Figure 15.7):

Previous night
TV Pub Party Study
TV 04 06 0.7 0.3
Pub | 0.3 0.06 0.05 0.4
Party | 0.1 0.1 0.06 025
Study | 0.2 0.25 0.2 0.05

and then the observation probabilities:

TV Pub Party Study
Tired 0.2 04 0.3 0.3
Hungover | 0.1 0.2 0.4 0.05
Scared 0.2 0.1 0.2 0.3
Fine 0.5 0.3 0.1 0.35

15.3.1 The Forward Algorithm

Suppose that I see the following observations: O = (tired, tired, fine,
hungover, hungover, scared, hungover, fine) and I want to work out the
likely run of states that generated it. The probability that my observations
O = {o(1),...,0(T)} come from the model can be computed using simple
conditional probability. T know you were doing something last night, so for
an observation o(t) =tired (say) I just need to compute the probability that I
made that observation given you were in a particular state (say watching TV)
and multiply it by the probability that you were in that state given the state
I thought you were in the night before (say partying). So for the example,
I compute the probability that you were tired given that you were watching
TV, which is 0.2, and then multiply it by the probability that you spent last
night watching TV given that I thought you were partying the night before,
which is 0.1. So this yields probability 0.02 for this particular state change.
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Tired 03 Tired 0.2
Hungover 0.4 Hungover 0.1
Scared 02y, ¥ Scared 0.2
Fine 0.1 . " Fine 05
01 Tied 03
Tred 04 Hungover 0.05
Hungover 0.2 = Scared 03
Scared 0.1, " Fina 035

Fine 0.3

FIGURE 15.7: The example HMM with transition and observation
probabilities shown.

There is one extra thing that we need which is to decide which state you
actually start in. I don’t know this, so I assign probability 0.25 to each state.

Now I need to do this over every possible sequence of states to find out the
most likely one based on what I actually saw. Note that I have used O to
denote the whole sequence of observations that I made. In the same way,
is an entire sequence of possible states (this is a change in notation from the
rest of the methods we have looked at, but it is consistent with the way that
other authors describe HMMs). This can be written as:

R
P(0)=>_P(0|Q:)P(Q). (15.10)
r=1
The r index here describes a possible sequence of states, so §2; is one se-
quence, {1, another, and so on. We’'ll consider this in a minute, but first we
will use the Markov property to write:

T T
P(Q) = [ [ Plw;(®)lwi(t — 1)) = [ as» (15.11)
t=1 t=1
and
T T
P(OIQ,) = [ Plox(®)lw;®)) = [ bss- (15.12)
t=1 t=1

So Equation (15.10) can be written as:
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This looks fairly easy now. The only problem is in that sum over r, which
runs over all possible sequences of hidden states. If there are N hidden states
then there are N7 possible sequences, and for each one we have to compute
a product of T probabilities. Not only will these probabilities be incredi-
bly small, but the computational cost of getting them will be astronomical:
O(NTT).

Fortunately, the Markov property comes to our rescue again. Since the
probability of each state only depends on the data at the current and previous
timestep (o(t),w(t),w(t — 1)) we can build up our computation of P(O) one
timestep at a time. This is known as the forward trellis by some people, since it
looks like a garden trellis in Figure 15.8. To construct the trellis we introduce
a new variable o;(t) that describes the probability that at time ¢ the state is
w; and that the first (¢ — 1) steps all matched the observations o(t):

0 t = 0,j # initial state
a;(t) = 1 t =0, j = initial state (15.14)
2o it — 1)agjbjo,) otherwise.

where b;(,,) means the particular transition probability for output o;. This
ensures that only the observation probability that has the index that matches
the observation o, contributes to the sum. Computing P(O) now requires only
O(N?T), which is a substantial improvement, in a very simple algorithm:

The HMM Forward Algorithm

e for each observation in order o;, t=1,...,T

— for each possible state s

¥ Qg = bs,ot * Zx (O‘m,t * am,s)

Let’s look at the first two states of our example HMM. In both, the obser-
vation is that you were tired, so we need to compute ;(¢) and so construct
the trellis. Figure 15.8 shows the idea, with the initial a;(-) coming from my
guesses about how likely each state is, and we just need to run through the
set of computations to compute aa(-) and so on, getting the numbers that are
shown in the figure. We then repeat this for the next step to get the as(-)
and so on until we reach the final state. At this stage we can sum up all



352 Machine Learning: An Algorithmic Perspective

Observations

FIGURE 15.8: The forward trellis for the first two observations of the
example HMM.

of the possible probabilities, which tells me in this case that you were most
likely watching TV last night. We will also need to be able to go backwards
through the trellis, which is a very similar algorithm that works backwards to
compute 3 values, also based on the transmission probability and observation
probability matrices.

15.3.2 The Viterbi Algorithm

The next problem that we want to solve is the decoding problem: I can use
my model of how students are expected to behave and match them with my
observations to guess what you have been doing each evening. The algorithm
is known as the Viterbi algorithm after its creator, although he actually derived
it for error correction, a completely different application! It works on very
similar principles to the forward algorithm, except that we act in a greedy
way, since for each timestep we pick the state that is most likely as the next
step in the path, rather than maintaining probabilities of all possible paths.

The HMM Viterbi Algorithm

e for each observation in order oy, t=1...T

— for each possible state s
* Vst = max:z:(v:c,t—l * Qg s ¥ bs,ot)

— path, = arg max;(vz,¢)

Figure 15.9 shows the path for the first three states of the example.
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FIGURE 15.9: The Viterbi trellis for the first three observations of the
example HMM.

15.3.3 The Baum-Welch or Forward-Backward Algorithm

In the example I had to invent the transition and observation probabilities
from my experience, and the result is that the best path is not that likely.
It would obviously be better to generate the HMM from sets of observations
rather than by making up the transition probabilities. This is a learning pro-
cess, and it is an unsupervised learning problem since we don’t have any target
solutions to go on. In fact, finding the optimal probabilities is an NP-complete
problem, since we have to search over all the possible sets of probabilities for
all the possible sequences. Instead, we will use an EM algorithm known as
the Baum-Welch algorithm (see Section 8.3.1 for a previous example of an EM
algorithm). This is not quite as good as the previous one in that it is not
guaranteed to find even a local optima, but in general it works fairly well.

The key to the algorithm is in its second name: Forward-Backward. We
introduced a variable o above that took us forward through the HMM above,
now we will complement it with a variable 3 that takes us backwards through
the HMM, i.e., 5;(¢) tells us the probability that at time ¢ we are in state
w; and the result of the target sequence (times ¢ + 1 to T') will be generated
correctly. Formally:

0 t =T, j # final state
B(t) = 1 t =T, j = final state (15.15)
225 Bt + D)aizbjo,+1) otherwise.

This is now something that we can run backwards through the HMM from
the known end point. So we can run forwards from the beginning and back-
wards from the end, making estimates of the probabilities based on our sam-
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ples. We can then use these forwards and backwards estimates to compute
transition probabilities. It works like this. Suppose we want to compute the
probability of a transition between state w; at time ¢ and w; at time ¢ + 1.
We first use our current model to run forwards via o to get to state w; at
time ¢, and run backwards to get to state w; at time £ +1 via 3. Then we use
the current estimates of a;; and bj,. The only other thing that we need is to
realise that we might have got there by some other path through the states,
so we need to normalise this calculation by how likely this particular training
sequence is according to the current model, which is P(O|a;;,b;x). This value
is usually called +;; and written out in all its glory looks like:

oy oa(t = Daighie;(t)
’Yz] (t) - P(Olaz;, éjk)J .

(15.16)

What is the meaning of Z;‘F:l ~;;(t)? It tells us how many times we can
expect to transition from state w; to state w; at any time in the sequence.
This is the expectation that we are using within this EM algorithm. We just
need to work out how to do the maximisation bit. We know how many times
we can expect to do the w; to w; transition, but a;; is concerned with the
probability of this event. So we need to divide this number by the number of
times we expect to transition out of state w;, regardless of where we end up. -
This is Z;l >, Vim(t). The update rule for a;; is simply the ratio of these:

Qij = . (15.17)

The update rule for b;j is similar, except that we need to think about the
frequency that an observation oy is made in state j compared to any other
symbol:

T

> XmYem(t)
_ t=1,0(t)=o0g

bk = —— : (15.18)
t;l Zm Yim (t)

This leads to the complete Baum-Welch algorithm:

The HMM Baum-Welch (Forward-Backward) Algorithm

e while updates have not converged:

— E-step:
— Compute forwards and backwards steps (a and 3)

— for each observation in order o;,t =1...T
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We can’t really use this algorithm very well on the simple example, since
we would need rather more data to do justice to the training. However,
if we do apply it and then compute the Viterbi path, then it gives the same
answer as with the invented data. That pretty much sums it up for the HMM.
It is worth mentioning two limitations of it, which are that the probability
distributions are not time dependent, and that the probabilities can get very
small. The second of these problems is an implementation detail that needs
careful monitoring, while the first can be dealt with by using more general

graphical models, although with the additional computational costs that come
with that.

15.4 Tracking Methods

We will now look at two methods of performing tracking. You perform
tracking fairly easily, keeping tabs on where something is and how it is mov-
ing. This has an obvious evolutionary benefit, since keeping track of where
predators were and whether they were coming towards you could keep you
alive. It is also useful for a machine to be able to do this, both for similar rea-
sons to a human or animal (watching something moving and predicting what
path it will follow, for example in radar or other imaging method) and to keep

track of a changing probability distribution. We will look at two methods of
doing it, the Kalman filter and the particle filter.
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\

FIGURE 15.10: A representation of the Kalman filter as a graphical model.

15.4.1 The Kalman Filter

The Kalman filter (named for E. Kalman; although he was not the original
inventor he did do quite a lot of work on it) is a recursive estimator. It makes
an estimate of the next step, then computes an error term based on the value
that was actually produced in the next step, and tries to correct it. It then
uses both of those to make the next prediction, and iterates this procedure. It
can be seen as a simple cycle of predict-correct behaviour, where the error at
each step is used to improve the estimate at the next iteration. The Kalman
filter can be represented by the graphical model shown in Figure 15.10.

Much of the jargon that is associated with the Kalman filter is familiar to
us: the state, which is hidden, consists of the variables that we want to know,
which we see through noisy observations over time. There is a transition model
that tells us how states change from one to another, and an observation model
(also called the sensor model here) that tells us how states lead to observations.

The principal simplifying assumptions of the Kalman filter are that the
process is linear and that all of the distributions are Gaussian with constant
covariance. Since the convolution of Gaussians is also Gaussian, this means
that we can put them together to form new Gaussians, and so the model
stays well behaved. This was a significant advantage over previous methods
of tracking, which tended to stop working fairly quickly, since the estimates
broke down because the probability distribution stopped being well-defined.
We assume that both the transition model and the observation model are
Gaussians with means based on the previous observations, and fixed covari-
ances Q and R:

P(xt41|x:) = N (Xt41|Ax:, Q) (15.19)
P(zt41|xt41) = N(2441|Hx: 11, R), (15.20)
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where A and H are matrices that provide a (constant) represention of the
probability models, just as we had for the HMM above.

The idea of the Kalman filter is to make a prediction and then correct
it when the next observation is available, i.e., at the next timestep. The
predicted observation is ;1 = HAx;4+1 (by following the-equations above)
and so the error is z;,1 — HAx;+1. The predicted covariance matrix that
goes with it is 2t+1 = A, AT + Q. The Kalman filter weights these error
computations by how much trust the filter currently has in its predictions;
these weights are known as the Kalman gain and are computed by:

~ N -1
Kis1 = 5o HT (HE,HT +R) . (15.21)
So the update for the estimate is:

Xt4+1 = )A{t+1 + Kt+1 (Zt_;’_l - H}A{t+1) . (15.22)

All that is then required is to update the covariance estimate:

S =T - Ky H)E g, (15.23)

where I is the identity matrix of the relevant size. Putting these equations
together leads to a simple algorithm.

The Kalman Filter Algorithm

e given an initial estimate x(0)
e for each timestep:

— predict the next step

x predict state as X;41 = AXy
* predict covariance as ﬁ)t_,_l =AZAT +Q

— update the estimate

*

compute the error in the estimate, € = 2,11 — HAX; 1
* compute the Kalman gain using Equation (15.21)

* update the state using Equation (15.22)

* update the covariance using Equation (15.23)

Figure 15.11 shows a simple 1D example of using the Kalman filter. The
dots are noisy estimates of a process, and the line is the Kalman filter estimate,
with the dashed lines being the possible error. It can be seen that the initial
estimate was not very good, but the algorithm quickly converges to a good
estimate of the mean of the data, and the error drops accordingly.

Now that we have seen the Kalman filter in action, we need to work out
how to use it for tracking. If we write the position of the object at time ¢
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FIGURE 15.11: Estimates of a 1D noisy process using a Kalman filter.

as yi, then its velocity is the time derivative of its position, y;. Now, the
position at time t + At is y; + yAt. We are using the Kalman filter to keep
track of both the position and the velocity of the object, so we write the state
as:

X; = (i) (15.24)

The update equations will therefore be:

Xt41 = A.Xt + Bat+1, (1525)

where the acceleration a: is a Gaussian random variable with mean 0 and

variance o, and:
_ (1At _ [ 3Ad8
A—(O 1 ) B—< Ar ) (15.26)

The same Kalman filter algorithm can then be used to perform the tracking.
A 1D example of such tracking is shown in Figure 15.12, where an object is
moving in one spatial dimension and time. The Kalman filter does a good job
of following the object.

One of the main assumptions of the Kalman filter was that the process
was linear. Where this is not true it is possible to linearise about the current
estimate (x;, ;) and this leads to the Extended Kalman Filter, where the main
change is that you have to compute the Jacobian of the covariance matrix and
use that in the update rule. This is not an optimal estimator, and there have



360 Machine Learning: An Algorithmic Perspective

— Actual position
== Estimated position
. ) N ——Measured position
5 10 i 20 & 30 3! 40 45

Time

FIGURE 15.12: Demonstration of the Kalman filter tracking an object
moving in one spatial dimension.

been various attempts to improve upon it; the most successful have been to
use sampling, and the leads to the Unscented Kalman Filter, which uses a
particular sampling technique known as the unscented transform. For more
information on this, see the Further Reading section; instead we will look at
a common MCMC algorithm for performing tracking, the particle filter.

15.4.2 The Particle Filter

There was one assumption that the Kalman filter made that we did not
challenge at all, which was that the distributions were Gaussian. If this is
not the case then we cannot use an algorithm like the Kalman filter, since
the distributions would stop behaving as probabilities very quickly. In order
to get around this problem, we return to the methods that have underpinned
many of the algorithms in this chapter: sampling. The particular sampling .
technique that we will use is the sampling-importance-resampling algorithm
of Section 14.3, which forms the basis of the particle filter, or condensation
method. This is a relatively recent development, and has been finding many
successful applications in tracking, including in image and signal analysis.
The idea is to use sampling to keep track of the state of the probability
distribution. This is actually known as sequential sampling, since we are using
a set of samples for time ¢ to estimate the process at time ¢ + 1, and then
resampling from there.

One benefit of sampling methods is that we don’t have to hold on to the
Markov assumption. In tracking, prior history can be useful, which means that
the Markov assumption is a bad one. The proposal distribution is generally
written as g(X¢y1|Xo:t,20:t) to make this dependence clear, and the proposal
distribution that is generally used in the estimated transition probabilities
P(Xit1|Xo0:t, Zo1:t), since it is a simple distribution that is related to the process.
With this decided, there is nothing else to the particle filter. Figure 15.13
shows it keeping track of a distribution based on a noisy sinusoidal function.
The plot on the right of the figure shows the particles that were created at
each iteration.
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FIGURE 15.13: Left: A set of (noisy) data from a noisy distribution based
on a sinusoid, and the results of a particle filter tracking the distribution. Right:
The particles that were sampled at each iteration.

Further Reading

Graphical models are a growth area at the moment, with lots of interesting
research being done in the area. The original work in the area, and the
motivations for it, are described in:

e J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Mateo, CA, USA, 1988.

Alternative overviews of Bayesian networks can be found in the following
papers and books, the last of which is a collection of papers that provides a
good overview of the area:

e W.L. Buntine. Operations for learning with graphical models. Journal
of Artificial Intelligence Research, 2: 159-225, 1994.

e D. Husmeier. Introduction to learning Bayesian networks from data.
In D. Husmeier, R. Dybowski, and S. Roberts, editors, Probabilistic
Modelling in Bioinformatics and Medical Informatics, Springer, Berlin,
Germany, 2005.

o Chapters 8 and 13 of C.M. Bishop. Pattern Recognition and Machine
Learning. Springer, Berlin, Germany, 2006.

e M.I. Jordan, editor. Learning in Graphical Models. MIT Press, Cam-
bridge, MA, USA, 1999.

In the area of Markov Random Fields, the image denoising example comes
from:
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e S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:721-741, 1984.

Markov Random Fields are most commonly used in imaging. There are
good overviews in:

o P. Perez. Markov random fields and images. CWI Quarterly, 11(4):
413-437, 1998.

e R. Kindermann and J.L. Snell. Markov Random Fields and Their Ap-
plications. American Mathematical Society, Providence, RI, USA, 1980.

For more details on the Hidden Markov Model, the Kalman filter and the
particle filter, you might want to look at:

¢ L.R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of the IEEE, T7(2):257-268,
1989.

e Z.Ghahramani. An introduction to Hidden Markov Models and Bayesian
networks. International Journal of Pattern Recognition and Artificial
Intelligence, 15:9-42, 2001.

e G. Welch and G. Bishop. An introduction to the Kalman filter, 1995.
URL http://www.cs.unc.edu/“welch/kalman/. Technical Report TR

95-041, Department of Computer Science, University of North Carolina
at Chapel Hill, USA.

e M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial
on particle filters for online nonlinear /non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174-188, 2002.

A more rigorous treatment is given in:

e Chapters 8 and 13 of C.M. Bishop. Pattern Recognition and Machine
Learning. Springer, Berlin, Germany, 2006.

Practice Questions

Problem 15.1 Compute the probability of taking notes (V) in the Bayesian
network shown in Figure 15.14. The problem describes the chance of
you taking notes in the lecture or sleeping (S) according to whether or
not the course was boring (B) based on whether or not the professor is
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FIGURE 15.14: The Bayesian Network example for Problem 15.1.

boring (L) and the content is dull (C'). Compute the change of falling
asleep in a lecture given that both the professor and the course are
boring.

Problem 15.2 Use MCMC in order to compute the chance of taking notes
in a lecture given only that you know the lecture is interesting.

Problem 15.3 Compute the most likely path through the HMM shown in
Figure 15.15 using the Viterbi algorithm.

Problem 15.4 On the website are a series of robot sensor readings. The aim
is to predict the next reading from the current one by using a Perceptron,
and then monitor the output of the Perceptron by using a Kalman filter
in order to identify problem places where the prediction does not work.

Problem 15.5 One of the most common uses of a particle filter is in tracking
movement in images. There are a series of 20 images on the website of
a white dot moving on a black background. You should use the particle
filter algorithm to track this image. It is also possible to do this simple
problem with the Kalman filter as well, so compare the results of both
methods.
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FIGURE 15.15: The Hidden Markov Mode! example for Problem 15.3.



Chapter 16

Python

The examples in this book are all written in Python, and the various graphs
and results were also created in that language, using the code available via,
the book website. The purpose of this chapter is to give a brief introduction
to using Python, and particularly NumPy, the numerical library for Python.,

16.1 Installing Python and Other Packages

The Python language is very compact, but there are huge numbers of ex-
tensions and libraries available to make it more suited to a wide variety of
tasks. Almost all of the examples in the book use NumPy, a set of numerical
libraries, and the figures are produced using Matplotlib. Both of these pack-
ages have syntax that is similar to MATLAB. There are a few places where
examples also use SciPy, the scientific programming libraries.

An Internet search will turn up working distributions as self-extracting zip
files for the major operating systems, which will include the Python interpreter
and all of the packages that are used in the book, amongst others. If you
download individual packages, then they generally come with a setup script
(setup.py) that can be run from a shell. Package webpages generally give
instructions.

16.2 Getting Started

There are two ways that Python is commonly used. The first is as an inter-
active command environment, such as iPython or IDLE, which are commonly
bundled with the Python interpreter. Starting Python with one of these (us-
ing Start/IPython in Windows, or by typing python at a command prompt in
other operating systems) results in a script window with a command prompt
(which will be shown as >>>). Unlike with C or Java, you can type commands
at this prompt and the interpreter will run the commands and display the
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results, if any, on the screen. You can write functions in a text editor and run
them from the command prompt by calling them by name. We’ll see more
about functions in Section 16.3.

As well as iPython there are several other Python IDEs and code editors
available for various operating systems. The one that I use is the Java-based

IDE Eclipse, which is freely available on the Internet. There is an extension -
of Eclipse for Python called PyDev that works very well. It includes all of

the usual syntax highlighting and development help, you can run programs
directly, and you can also set up an interactive Python environment so that
you can test small pieces of code to see how they work.

The best way to get used to any language is, of course, to write programs in
it. There is lots of code in the book and practical programming assignments
along the way, but if you haven’t used Python before then it will help if you
get used to the language prior to working on the code examples in the book.
Section 16.3 describes how to get started writing Python programs, but here
we will begin by using the command line to see how things work. This can
be in iPython or IDLE, by typing python at the command prompt, or within
the console in the PyDev Eclipse extension.

Creating a variable in Python is easy: you give it a name and assign a .

value. While Python is strongly typed (so that variables that contain integers

don’t suddenly change to holding strings or floats without being told to) it

performs all the declaration and creation of variables for you, unlike lower
level languages like C. So typing >>> a = 3 at the command prompt (note
that the >>> is the command prompt, so you only actually type a = 3) defines
a as an integer variable and gives it value 3. To see the effect of the integer
typing, type >>> a/2, and you will see that the answer is 1. What Python
actually does is compute the answer in the most accurate of the types that are
included in the calculation, but since a is an integer, and so is 2, it returns the
answer as an integer. You can see this using the type() function; type(3/2)
returns <type ’int’>. So >>> a/2.0 will work perfectly well, since the type
of 2.0 is a float (type(3/2.0) = <type ’float’>. When writing floats you
can abbreviate them to 2. without the zero if you really want to save typing
one character. To see the value of a variable you can just type its name at the
command prompt, or use >>> print a, or whatever the name of the variable
is.

o TR s B -

e

e SRR, cfre Do

You can perform all of the usual arithmetic operators on numbers, adding ,

them up, etc. Raising numbers to a power is performed by a**2 or pow(a,2).
In fact, you can use Python as a perfectly good calculator at the command
line.

Just like in many other languages, comparison is performed using the double
equals (==). It returns Boolean values True (1) and False (0) to tests like >>>
3 < 4 and >>> 3 == 4. The other arithmetic comparisons are also available:
<, <=, >, >=and these can be chained (so 3<x<6 performs the two tests and
only returns True if both are true). The not-equal-to test is != or <>, and
there is another useful comparison: is checks if two variables point to the
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same object. This might not seem important, but Python works by reference,
which means that the command >>> a = b does not put a copy of the value
of b into a, but rather assigns to a a reference to the variable b. This can be
a trap for the unwary, as will be discussed more shortly. The normal logical
operators are slightly unusual in Python, with the normal logical operators
using the words and, or and not; the symbols &, | perform bit-wise and /or.
These bit-wise operators are actually quite useful, as we’'ll see later.

In addition to integer and floating point representations of numbers, Python
also deals with strings, which are described by using single or double quotes
(" or ") to surround them: >>> b = ’hello’. For strings, the + operator
is overloaded (given a new meaning), which is concatenation: merging the
strings. So >>> ’a’ + ’d’ returns the new string ’ad’.

Having made the basic data types, Python then allows you to combine them
into three different basic data structures:

Lists A list is a combination of basic data types, surrounded by square brack-
ets. So >>> mylist = [0, 3, 2, ’hi’] is a perfectly good list that
contains integers and a string. This ability to store different types inside
a list gives you a hint that Python handles lists differently to the way
other languages handle arrays. This comes about because Python is in-
herently object-oriented, so that every variable that you make is simply
an object, and so a list is just a collection of objects. This is why the
type of the object does not matter. It also means that you can have
lists of lists without a problem: >>> newlist = [3, 2, [5, 4, 3],
{2, 3, 211.

Accessing particular elements of a list simply requires giving it an in-
dex. Like C, but unlike MATLAB, Python indices start at 0, so >>>
newlist [0] returns the first element (3). You can also index from the
end using a minus sign, so >>> newlist[-1] returns the last element,
>>> newlist[-2] the last-but-one, etc. The length of a list is given by
len, so >>> len(newlist) returns 4. Note that >>> newlist[3] re-
turns the list in the 4th location of newlist (i.e., [2, 3, 21). To access
an element of that list you need an extra index: >>> newlist[3][1]
returns 3.

A useful feature of Python is the slice operator. This is written as a
colon (:) and enables you to access sections of a list easily, such as
>>> newlist[2:4] which returns the elements of newlist in peositions
2 and 3 (the arguments you use in a slice are inclusive at the start
and exclusive at the end, so the second parameter is the first index
that is excluded). In fact, the slice can take three operators, which are
[start:stop:step], the third element saying what stepsize to use. So >>>
newlist[0:4:2] returns the elements in locations 0 and 2, and you can
use this to reverse the order of a list: >>> newlist[::-1]. This last
example shows a couple of other refinements of the slice operator: if
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you don’t put a value in for the first number (so it looks like [:3])
then the value is taken as 0, and if you don’t put a value for the second
operator ([1:1) then it is taken as running to the end of the list. These
can be very useful, especially the second one, since it avoids having to
calculate the length of the list every time you want to run through it.
>>> newlist[:] returns the whole string.

This last use of the slice operator, returning the whole string, might seem
useless. However, because Python is object-oriented, all variable names
are simply references to objects. This means that copying a variable
of type 1list isn’t as obvious as it could be. Consider the following
command: >>> alist = mylist. You might expect that this has made
a copy of mylist, but it hasn’t. To see this, use the following command
>>> alist[3] = 100 and then have a look at the contents of mylist.
You will see that the 3rd element is now 100. So if you want to copy
things you need to be careful. The slice operator lets you make actual
copies using: >>> alist = mylist[:]. Unfortunately, there is an extra
wrinkle in this if you have lists of lists. Remember that lists work as
references to objects. We’ve just used the slice operator to return the
values of the objects, but this only works for one level. In location 2 of
newlist is another list, and the slice operator just copied the reference
to that embedded list. To see this, perform >>> blist = newlist[:]"
and then >>> blist[2][2] = 100 and have a look at newlist again.
What we’ve done is called a shallow copy, to copy everything (known as
a deep copy) requires a bit more effort. There is a deepcopy command,
but to get to it we need to import the copy module using >>> import
copy (we will see more about importing in Section 16.3.1). Now we can
call >>> clist = copy.deepcopy(newlist) and we finally have a copy
of a complete list.

There are a variety of functions that can be applied to lists, but there
is another interesting feature of the fact that they are objects. The
functions (methods) that can be used are part of the object class, so
they modify the list itself and do not return a new list (this is known
as working in place). To see this, make a new list >>> list = [3, 2,
4, 1] and suppose that you want to print out a list of the numbers
sorted into order. There is a function sort() for this, but the obvious:
>>> print list.sort() produces the output None, meaning that no
value was returned. However, the two commands >>> list.sort()
followed by >>> print list do exactly what is required. So functions
on lists modify the list, and any future operations will be applied to this
modified list.

Some other functions that are available to operate on lists are:

append(x) adds x to the end of the list

count(x) counts how many times x appears in the list
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extend(L) adds the elements in list L to the end of the original list
index(x) returns the index of the first element of the list to match x

insert(i, x) inserts element x at location i in the list, moving every-
thing else along

pop (i) removes the item at index i
remove(x) deletes the first element that matches x
reverse() reverses the order of the list

sort() we've already seen

You can compare lists using >>> a==b, which works elementwise through
the list, comparing each element against the matching one in the second
list, returning True if the test is true for each pair (and the two lists are
the same length), and False otherwise.

Tuples A tuple is an immutable list, meaning that it is read-only and doesn’t
change. Tuples are defined using round brackets, e.g., >>> mytuple =
(0, 3, 2, ’h’). It might seem odd to have them in the language,
but they are useful if you want to create lists that cannot be modified,
especially by mistake.

Dictionaries In the list that we saw above we indexed elements by their
position within the list. In a dictionary you assign a key to each entry
that you can use to access it. So suppose you want to make a list of the
number of days in each month. You could use a dictionary (shown by
the curly braces): >>> months = {’Jan’: 31, ’Feb’: 28, ’Mar’:
31} and then you access elements of the dictionary using their key, so
>>> months[’Jan’] returns 31. Giving an incorrect key results in an
exception error.

The function months.keys() returns a list of all the keys in the dic-
tionary, which is useful for looping over all elements in a dictionary.
The months.values() function returns a list of values instead, while
months.items () gives a list of tuples containing everything. There are
lots of other things you can do with dictionaries, and we shall see some
of them when we use the dictionary in Chapter 6.

There is one more data type that is built directly into Python, and that is
the file. This makes reading from and writing to files very simple in Python:
files are opened using >>> input = open(’filename’), closed using >>>
input.close() and reading and writing are performed using readlines()
(and read(), and writelines() and write()). There are also readline()
and writeline() functions, that read and write one line at a time.
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16.2.1 Python for MATLAB and R users

With the NumPy package that we are using there are a great many sim-
ilarities between MATLAB or R and Python. There are useful comparison
websites for both MATLAB and R, but the main thing that you need to be
aware of is that indexing starts at 0 instead of 1 and elements of arrays are
accessed with square brackets instead of round ones. After that, while there
are differences, the similarity between the three languages is striking.

16.3 Code Basics

Python has a fairly small set of commands and is designed to be fairly small
and simple to use. In this section we’ll go over the basic commands and other
programming details. There are lots of good resources available for getting
started with Python; a few books are listed at the end of the chapter, and an
Internet search will provide plenty of other resources.

16.3.1 Writing and Importing Code

Python is a scripting language, meaning that everything can be run inter-

i o

o e

actively from the command line. However, when writing any reasonable sized -

piece of code it is better to write it in a text editor or IDE and then run it.
Eclipse or Idle and other GUIs provide their own code writing editors, but
you can also use any text editor available on your machine. It is a good idea

to use one that is consistent in its tabbing, since the white space indentation =

is how Python blocks code together.

The file can contain a script, which is simply a series of commands, or a
set of functions and classes. In either case it should be saved with a .py
extension, which Python will compile into a .pyc file when you first load it.

< =

Any set of commands or functions is known as a module in Python, and to

load it you use the import command. The most basic form of the command is
import name. If you import a script file then Python will run it immediately,
but if it is a set of functions then it will not run anything.

To run a function you use >>> name.functionname(), where name is the
name of the module and functionname the relevant function. Arguments can
be passed as required in the brackets, but even if no arguments are passed
then the brackets are still needed.

When developing code at a command line there is one slightly irritating
feature of Python, which is that import only works once for a module. Once
a module has been imported, if you change the code and want Python to work
on the new version then you need to use >>> reload(name). Using import
will not give any error messages, but it will not work, either. This is not a

P - UM
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problem when using the PyDev extensions for Eclipse.

Many modules contain several subsets, so when importing you may need
to be more specific. You can import particular parts of a module in this
way using from x import y, or to import everything use from x import .
Finally, you can specify the name that you want to import the module as, by
using from x import y as z. You now have access to the functions within
that module, which can be called by z.name().

Program code also needs to import any modules that it uses, and these are
usually declared at the top of the file (although they don’t need to be, but
can be added anywhere). There is one other thing that might be confusing,
which is that Python uses the pythonpath variable to tell it where to look for
code. Eclipse doesn’t include other packages in your current project on the
path, and so if you want it to find those packages, you have to add them to
the path using the Properties menu item. If you are not using Eclipse, then
you will need to add modules to the path. This can be done using something
like:
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16.3.2 Control Flow

The most obviously strange thing about Python for those who are used to
other programming languages is that the indentation means something: white
space is the way that blocks of code are shown. So if you have a loop or other
construct then the equivalent of begin ... end or the braces { } in other
languages is a colon (:) after the keyword and indented commands following
on. This looks quite strange at first, but is actually quite nice once you get
used to it. The other thing that is unusual is that you can have an (optional)
else clause on loops. This clause runs when the loop terminates normally. If
you break out of a loop using the break command then the else clause does
not run.

The control structures that are available are if, for, and while. The if
statement syntax is:

H
1]
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The most common loop is the for loop, which differs slightly from other

languages in that it iterates over a list of values:
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tive, so with both function names *

and variable names, Name is different to name.

As an example, here is a function that computes the hypotenuse of a triangle

given the other two distances (x and y). Note the use of '#’ to denote a

comment:



Now calling pythagorus(3,4) gets the expected answer of 5.0. You can
also call the function with the parameters in any order provided that you
specify which is which, so pythagorus (y=4,x=3) is perfectly valid. When you
make functions you can allow for default values, which means that if fewer
arguments are presented the default values are given. To do this, modify the
function definition line: def pythagorus(x=3,y=4):

16.3.4 The doc String

The help facilities within Python are accessed by using help (). For help on
a particular module, use help(’modulename’). (So using help(pythagorus)
in the previous example would return the description of the function that is
given there). A useful resource for most code is the doc string, which is the
first thing defined within the function, and is a text string enclosed in three
sets of double quotes ("""). It is intended to act as the documentation for the
function or class. It can be accessed using >>> print functionname._doc_..
The Python documentation generator pydoc uses these strings to automat-
ically generate documentation for functions, in the same way that javadoc
does.

16.3.5 map and lambda

Python has a special way of performing repeated function calls. If you want
to apply the same function to every element of a list you don’t need to loop
over the elements of the list, but can instead use the map command, which
looks like map(function,list). This applies the function to every element
of the list. There is one extra tweak, which is the fact that the function can
be anonymous (created just for this job without needing a name) by using
the lambda command, which looks like lambda args : command. A lambda
function can only execute one command, but it enables you to write very
short code to do relatively complicated things. As an example, the following
instruction takes a list and cubes each number in it and adds 7:

Another way that lambda can be used is in conjunction with the filter
command. This returns elements of a list that evaluate to True, so:
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finally constructions. This example shows the use of the most common ver-
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returns those elements of the list that are greater than or equal to 2. NumPy
For more details, including the types of exceptions that are defined, see

provides simpler ways to do these things for arrays of numbers,
For those that wish to use it in this way, Python is fully object-oriented,

Like other modern languages, Python allows for the trapping of excep-
and classes are defined (with their constructor) by
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If a superclass is not specified then the class does not inherit from elsewhere.
The __init__(self,args) function is the constructor for the class. There can
also be a destructor __del_.(self), although they are rarely used. Accessing
methods from the class uses the classname.functionname() syntax. The
self argument can be ignored in all function calls, since Python fills it in for
you, but it does need to be specified in the function definition. Many of the
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examples in the book are based on classes provided on the book website. You
need to be aware that you have to create an instance of the class before you
can run it. So to import and run the class you need to use:

16.4 Using NumPy and Matplotlib

Most of the commands that are used in this book actually come from the
NumPy and Matplotlib packages, rather than the basic Python language.
More specialised commands are described thoughout the book in the places
where they become relevant. There are lots of examples of performing tasks
using the various functions within NumPy on its website. Getting information
about functions within NumPy is easy, because there is a special command:
info(); for example, to find out about the sum command, use info(sum).

NumPy has a base collection of functions and then additional packages that
have to be imported as well if you want to use them. To import the NumPy
base library and get started you use:

16.4.1 Arrays

The basic data structure that is used for numerical work, and by far the
most important one for the programming in this book, is the array. This
is exactly like multi-dimensional arrays (or matrices) in any other language;
it consists of one or more dimensions of numbers or chars. Unlike Python
lists, the elements of the array all have the same type, which can be Boolean,
integer, real, or complex numbers.

Arrays are made using a function call, and the values are passed in as
a list, or set of lists for higher dimensions. Here are one-dimensional and
two-dimensional arrays (which are effectively arrays of arrays) being made.
Arrays can have as many dimensions as you like up to a language limit of 40
dimensions, which is more than enough for this book.
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Making arrays like this is fine for small arrays where the numbers aren’t
regular, but there are several cases where this is not true. There are nice ways
to make a set of the more interesting arrays, such as those shown next.

Array Creation Functions

arange() Produces an array containing the specified values, acting as an
array version of range(). For example, arange(5) = array([0, 1,
2, 3, 4]) and arange(3,7,2) = array([3, 5]).

ones() Produces an array containing all ones. For both ones() and zeros()
you need two sets of brackets when making arrays of more than one
dimension. ones(3) = array([ 1., 1., 1.]) and ones((3,4)) =
array([[ 1., 1., 1., 1,]
(1., 1., 1.,1.]
(1., 1., 1.,1.1D
You can specify the type of arrays using a = ones((3,4) ,dtype=float)

This can be useful to ensure that you don’t run into problems with in-
teger casting, although NumPy is fairly good at casting things as floats.

zeros() Similar to ones(), except that all elements of the matrix are zero.

eye() Produces the identity matrix, i.e., the 2D matrix that is zero every-
where except down the leading diagonal, where it is one. Given one
argument it produces the square identity: eye(3) =
[([1. 0. o0.]
[0. 1. 0.]
0. 0. 1.1]

while with two arguments it fills spare rows or columns with zeros:

eye(3,4) =
(C1. 0. 0. 0.]
0. 1. 0. o0.]

[o. 0. 1. 0.]1]

linspace(start,stop,spacing) Produces a matrix with linearly spaced el-
ements. The nice thing is that you specify the number of elements, not
the spacing. 1inspace(3,7,3) = array([ 3., 5., 7.])

SAEEE B
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r_[] and c_[] Perform row and column concatenation, including the use of
the slice operator: r_[1:4,0,4] = array([1, 2, 3, 0, 4]). Thereis
also a variation on linspace () using a j in the last entry: r_{2,1:7:3j]
= array([ 2. , 1. , 4. , 7.1). This is another nice feature of
NumPy that can be used with arange () and mgrid() as well. The j on
the last value specifies that you want 3 equally spaced points starting
at 0 and running up to (and including) 7, and the function works out
the locations of these points for you. The column version is similar.

The array a used in the next set of examples was made using >>> a =
arange (6) .reshape (3,2), which produces:
array([[0, 1],

{2, 31,
[4, 511)

Indexing elements of an array is performed using square brackets ‘[* and
‘P, remembering that indices start from 0. So a[2,1] returns 5 and a[:,1]
returns array([i, 3, 5]). We can also get various pieces of information
about an array and change it in a variety of different ways, as follows.

Getting information about arrays, changing their shape, copying them

ndim(a) Returns the number of dimensions (here 2).
size(a) Returns the number of elements (here 6).

shape(a) Returns the size of the array in each dimension (here (3, 2)). You
can access the first element of the result using shape(a) [0].

reshape(a, (2,3)) Reshapes the array as specified. Note that the new di-
mensions are in brackets. One nice thing about reshape() is that you
can use ‘-1’ for 1 dimension within the reshape command to mean ‘as
many as is required.” This saves you doing the multiplication yourself.
For this example, you could use reshape(a,(2,-1)) or reshape(a,
(-1,2)).

ravel(a) Makes the array one-dimensional (here array([0, 1, 2, 3, 4,

51)).

transpose(a) Compute the matrix transpose. For the example:

[[0 2 4]
[1 3 5]]

al::-1] Reverse the elements of each dimension.

a.min(), a.max(a), a.sum(a) Returns the smallest or largest element of
the matrix, or the sum of the elements. Often used to sum the rows
or columns using the axis option: a.sum(axis=0) for columns and
a.sum(axis=1) for rows.
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Note that min, max, and sum did not take the array as a parameter, but
specified it first. This avoids confusion, since they are overloaded functions:
min(1,2) returns 1, the smallest of 1 and 2. All of the commands in this list
can be written using the ‘.’ notation if you wish, e.g., a.reshape(2,-1).

Just like the rest of Python, NumPy generally deals with references to
objects, rather than the objects themselves. So to make a copy of an array
you need to use ¢ = a.copy().

There are two other very useful ways to make arrays in NumPy. They are
mgrid and ogrid, the first of which is an equivalent of MATLAB’s mesh-
grid command. Using m = mgrid{0:3,0:2] should give you a flavour of the
command—it produces a set of all the (x,y) coordinates of points in one
three-dimensional matrix, with the z-values in m(0,:,:) and the y-values
in m(1,:,:). You can also use the j indicator in the third parameter to
specify the number of entries, and have NumPy compute the spacing of the
elements for you. The ogrid command has identical syntax, but returns two
one-dimensional arrays showing the values in z and y.

Once you have defined matrices, you need to be able to add and multiply
them in different ways. As well as the array a used above, for the following
set of examples two other arrays b and c are needed. They have to have sizes
relating to array a. Array b is the same size as a and is made by >>> b = .
arange(3,9) .reshape(3,2), while ¢ needs to have the same inner dimension;
that is, if the size of a is (x, 2) then the size of ¢ needs to be (2, y) where
the values of x and y don’t matter. For the examples >>> ¢ = transpose(b).
Here are some of the operations you can perform on arrays and matrices:

Operations on arrays

a+b Matrix addition. Qutput for the example is:
array([[ 3, 57,
[7, 9],
(11, 1311)

a*b Element-wise multiplication. Output:
array([[ 0, 4],
[10, 18],
[28, 4011)

dot (a,c) Matrix multiplication. Output:
array([[ 4, 6, 8],
[18, 28, 38],
[32, 50, 6811)

pow(a,2) Compute exponentials of elements of matrix. Output:
array([[ 0, 11,
[ 4, 9],
[16, 2511)
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pow(2,a) Compute number raised to matrix elements. Output:
array({[ 1, 2],
[ 4, 8] ’
[16, 32]11)

Matrix subtraction and element-wise division are also defined, but the same
trap that we saw earlier can occur with division, namely that a/3 returns an
integer not a float if a is an array of integers.

There is one more very useful command on arrays, which is the where()
command. This has two forms: x = where(a>2) returns the indices where
the logical expression is true in the variable x, while x = where(a>2,0,1)
returns a matrix the same size as a that contains 0 in those places where the
expression was true in a and 1 everywhere else. To chain these conditions
together you have to use the bitwise logical operations, so that indices =
where((afl:,0]>3) | (al:,11<3)) returns a list of the indices where either
of these statements is true.

16.4.2 Random Numbers

There are some good random number features within NumPy, which you
need to import using >>> from numpy.random import *. To find out about
the functions use help(random) once NumPy has been imported, but the
more useful functions are:

random.rand(matsize) produces uniformly distributed random numbers be-
tween 0 and 1 in an array of size matsize

random.randn(matsize) produces zero mean, unit variance Gaussian ran-
dom numbers

random.normal (mean,stdev,matsize) produces Gaussian random numbers
with specifed mean and standard deviation

random.uniform(low,high,matsize) produces uniform random numbers be-
tween low and high

random.randint (low,high,matsize) produces random integer values be-
tween low and high

16.4.3 Linear Algebra

NumPy has a reasonable linear algebra package that performs standard
linear algebra functions. The functions are available as 1inalg.inv(a), etc.,
where a is an array and possible functions are (if you don’t know what they
all are, don’t worry: they will be defined where they are used in the book):

linalg.inv(a) Compute the inverse of (square) array a
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linalg.pinv(a) Compute the pseudo-inverse, which is defined even if a is
not square

linalg.det(a) Compute the determinant of a

linalg.eig(a) Compute the eigenvalues and eigenvectors of a

16.4.4 Plotting

The plotting functions that we will be using are in the Matplotlib pack-
age. These are designed to look exactly like the MATLAB plotting functions.
The entire set of functions, with examples, are given on the Matplotlib web-
page, but the two most important ones that we will need are plot and hist.
In order to use Matplotlib, you have to import it. For some reason it is
called pylab, so the relevant command is >>> from pylab import *, which
gives you access to the plotting commands. Matplotlib also provides some
MATLAB functionality, and sometimes this can overwrite NumPy functions.
The best way to avoid this is to ensure that you always import PyLab before
NumPy. When producing plots they sometimes do not appear. This is usually
because you need to specify the command >>> ion() which turns interactive
plotting on. If you are using Matplotlib within Eclipse it has a nasty habit of
closing all of the display windows when the program finishes. To get around
this, issue a show() command at the end of your function.

The basic plotting commands of Matplotlib are demonstrated here, for more
advanced plotting facilities see the package webpage.

The following code (best typed into a file and executed as a script) computes
a Gaussian function for values -2 to 2.5 in steps of 0.01 and plots it, then labels
the axes and gives the figure a title:
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The output of running this piece of code is shown in Figure 16.1.
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FIGURE 16.1: The Matplotlib package produces useful graphical output,
such as this plot of the Gaussian function.

Further Reading

Python has become incredibly popular for both general computing and
scientific computing. Because writing extension packages for Python is simple
(it does not require any special programming commands: any Python module
can be imported as a package, as can packages written in C), many people have
done so, and made their code available on the Internet. Any search engine
will find many of these, but a good place to start is the Python Cookbook
website.

If you are looking for more complete introductions to Python, some of the
following may be useful:

e M.L. Hetland. Beginning Python: From Novice to Professional. Apress
Inc., Berkeley, CA, USA, 2nd edition, 2008.

G. van Rossum and F.L. Drake Jr., editors. An Introduction to Python.
Network Theory Ltd, Bristol, UK, 2006.

e W.J. Chun. Core Python Programming. Prentice-Hall, New Jersey,
USA, 2006.

e B. Eckel. Thinking in Python. Mindview, La Mesa, CA, USA, 2001.

T. Oliphant. Guide to NumPy, e-book, 2006. The official guide to
NumPy by its creator.
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Practice Questions

Make an array a of size 6 x 4 where every element is a 2.

Make an array b of size 6 x 4 that has 3 on the leading diagonal and 1
everywhere else. (You can do this without loops.)

Can you multiply these two matrices together? Why does a * b work,
but not dot (a,b)?

Compute dot (a.transpose(),b) and dot(a,b.transpose()). Why
are the results different shapes?

Write a function that prints some output on the screen and make sure
you can run it in Eclipse or whichever environment you are using.

Now write one that makes some random “arrays and prints out their
sums, the mean value, etc.

Write a function that consists of a set of loops that run through an
array and count the number of ones in it. Do the same thing using the
where () function (use info(where) to find out how to use it).



Index

k-Means Algorithm, 196
algorithm, 197
implementation, 198
neural network, 200-202

algorithm, 204
example, 205
1-of-N encoding, 58, 74, 76

Absorbing state, 297
Action selection, 301
Action space, 298
Activation function, 13, 14, 19, 45,
52-54, 58, 59, 63, 74, 85,
87, 88
Gaussian, 99
AdaBoost, 155, 157
algorithm, 156
example, 157, 158
implementation, 156
regression, 160
Approximate inference, 337, 339,
340, 343
Arcing, 158
Artificial Intelligence, ix, 5, 289,
361
Auto-associative network, 80-82
Auto-mpg dataset, 43
Autoencoder, see Auto-associative
network
Average, 174

B-spline, 114, 115
Back-propagation, 50, 84, 88, 103
Backup, 306
Bagging, 160-162

algorithm, 161

bragging, 163

example, 161
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subagging, 162

Basis expansion, 108

Batch training, 59

Baum-Welch algorithm, 353
algorithm, 354
implementation, 355

Bayes classifier, 194

Bayes’ Optimal Classification, 171

Bayes’ rule, 169, 170

Bayesian Belief network, see Bayesian

network
Bayesian network, 334, 337, 341-
343, 345, 363
Bayesian Optimisation Algorithm,
288
Belief propagation, 340
Bias input, 22, 29, 50
Bias-variance tradeoff, 177
Binary threshold device, 14
Binary tree, 133, 187
Black hole, 2, 3
Blind source separation, 237
Boltzman distribution, 265
Boltzman selection, 274
Boosting, 146, 154-156, 160, 162,
165
Bootstraps, 160, 161, 308
Box-Muller Scheme, 317, 318
Brain, 5, 11-13, 15, 18, 207
Breastcancer dataset, 165
Building block hypothesis, 276, 292
Bump function, 64

C4.5, 135, 142, 143

Camel, 153

CART, see Classification and Re-
gression Trees

Central limit theorem, 176, 238
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Chess, 302
City-block distance, 191, 192
Classical conditioning, 12
Classification, 9, 63, 74, 75, 170
Classification and Regression Trees,
145, 147
Clustering, 196, 200, 205, 222
Cocktail party problem, 237
Codebook, 207
Coins, 10
Committee, 153
Competitive learning, 201, 203, 205—
207, 209, 210, 215
Compression, 63, 70
Computational complexity, 5, 24
Conditional independence, 334, 336,
338, 345
Conditional probability table, 334,
340, 344
Confusion matrix, 32, 39, 69, 171
Conjugate gradients, 257, 268
algorithm, 260
example, 260, 261
Connect-4, 313
Covariance, 174
Covariance matrix, 174-178, 223,
228, 229, 235
CPU dataset, 152
Critic, 7
Cross-validation, 67, 68, 114, 154
leave-one-out, 68, 83
Crossover, 275, 276, 280, 281, 286,
287
Cubic spline, 108, 112, 115
Curse of dimensionality, 10, 106,
107, 115, 171, 172, 184,
202, 221, 298, 305, 306,
322

DAG, see Directed acyclic graph

Data compression, 80, 82, 206, 317
lossy, 206

Data mining, 5, 130

Data Preprocessing, 63

Decision boundary, 11, 31-33, 36,
64, 122, 123, 125, 153, 154,
157, 183
Decision tree, 133-136, 139, 140,
142-144, 147, 149, 151-
153, 157, 167, 194, 222
C4.5, see C4.5
Classification and Regression
Tree, see Classification and
Regression Tree
classification example, 147
computational complexity, 143
construction, 134
ID3, see ID3
implementation, 140
Delaunay triangulation, 207
Density estimation, 7
Determinant, 105
Dijkstra’s algorithm, 244
Dimensionality reduction, 81, 209,
222224, 227, 231, 235, 239,
245
Directed acyclic graph, 335
Discounting, 300, 307
Discriminant function, see Decision
boundary, 45
Distance measures, 190
DNA, 2
Dynamic Bayesian network, 347
Dynamic programming, 261

E-coli dataset, 218, 219

Early stopping, 69, 72

EDA, see Estimation of Distribu-
tion Algorithms

Eigenvalue, 228-230, 240, 246, 380

Eigenvector, 225, 229, 230, 240, 380

Elitism, 277, 278

EM, see Expectation-Maximisation
algorithm

Ensemble, 155

Ensemble learning, 153

Entropy, 135-137, 146, 148, 151,
238, 317

implementation, 135
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Epanechnikov quadratic kernel, 185
Episodic learning, 300
Error function, 19, 21, 42, 48, 51,
53, 59, 60, 85-87, 247
e-insensitive, 129
external, 195
sum-of-squares, 44, 51, 53, 59,
67, 69, 80, 85, 112, 129,
147, 178, 199
Estimation of Distribution Algorithms,
286, 290
Euclidean distance, 97, 98, 106, 176,
190-192, 197
Evolution, 7, 269, 270, 272, 281,
284
Evolutionary learning, 7, 269, 286
Excitatory connection, 15
Exhaustive search, 261, 282
computational complexity, 261
Expectation, 174, 183
Expectation-Maximisation algorithm,
179, 180, 235, 332, 344,
353
algorithm, 182
Exploitation, 264, 265, 270, 273,
277, 296, 301, 302, 311
Exploration, 264, 265, 270, 273, 278,
296, 301, 302, 306, 311
Extended Kalman filter, 360

Factor analysis, 234, 235, 237
example, 236
implementation, 236

Factorised Distribution Algotithm,

288

False positive, 70

Feature derivation, 222

Feature mapping, 208, 214

Feature selection, 41, 44, 222

Fitness function, 272, 278, 280, 283—

285

Fitness landscape, 269, 272, 284

Fletcher-Reeves formula, 258

Floyd’s algorithm, 244

Forward algorithm, 351
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Forward-backward algorithm, see Bat
Welch algorithm

Four peaks fitness function, 282

Function approximation, 8, 108, 207,
251

GA, see Genetic Algorithm
Gaussian Mixture Model, 178, 180,
182, 332
algorithm, 181
implementation, 181
Generalisation, 4-7, 17, 66, 69, 84,
200
Genetic Algorithm, 269-273, 276-
280, 288, 289, 291, 343
algorithm, 279
example, 279, 282
implementation, 273, 274, 278
limitations, 284
Genetic operators, 275, 276, 280
Genetic Programming, 270, 285-
287, 290
Geodesic, 239
Gibbs sampling, 328, 330, 331, 341,
343
algorithm, 330
example, 342
Gini impurity, 146, 152, 157, 165
GMM, see Gaussian Mixture Model
GP, see Genetic Programming
Gradient descent, 50, 51, 60, 85—
87,117,124, 247, 248, 261,
265, 285, 291
Gram matrix, 127
Gram-Schmidt process, 258
Grandmother cell, 201
Graphical model, 333, 334, 336, 337,
344, 357
Greedy search, 262, 263, 266

Hard-max function, 74

Hebb’s rule, 12

Heisenberg Uncertainty Principle,
178

Hessian, 252, 253
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Hidden layer, 48-50, 53, 81, 85, 95,
103

Hidden Markov Model, 304, 334,
347, 349, 352-354, 356, 362—
364

Hill climbing, 262, 263

implementation, 263
HMM, see Hidden Markov Model
Horse, 153

ICA, see Independent Components
Analysis
ID3, 135, 136, 139, 142, 143, 147,
151
algorithm, 139
Identity matrix, 42
Image denoising, 345, 346, 361
Auto-associative network, 81
Markov Random Field
algorithm, 346
Importance sampling, 322
Impurity, 135
Gini, see Gini impurity
Independent Components Analysis,
237, 238, 245
Indicator function, 99
Indicator variable, 41
Inference, 150, 335-337, 340, 342,
344, 361
Infinite, see Loop
Information gain, 136, 137, 139, 142,
143, 145, 146, 148, 149
implementation, 137
Information theory, 135, 136, 150,
206
Inhibitory connection, 15
Interpolation, 8, 108
Intrinsic dimensionality, 214
Invariant metrics, 192
Iris dataset, 75, 92, 194, 204, 205,
218, 226, 234, 236, 241,
244, 246
Irreducible error, 178
Isomap, 221, 242, 244, 245
algorithm, 243

Jacobian, 252, 253, 256

Kalman filter, 334, 357, 362
algorithm, 358
example, 358, 359
tracking, 359
Kalman gain, 358
Karush-Kuhn-Tucker conditions, 125
KD-Tree, 186, 187, 190, 194, 197
example, 187, 189
implementation, 187
Kernel classifier, 37
Kernel function, 119, 125, 130
Kernel Principal Components Anal-
ysis, 232
algorithm, 233
example, 234
implementation, 233
Kernel trick, 127, 128, 232
KISS, see Minimum Description Length
Knapsack problem, 271-273, 282

Lagrange multipliers, 124, 130
Law of Effect, 293
LDA, see Linear Discriminant Anal-
ysis
Learning
definition, 6
Learning rate, 21, 22, 26, 39, 62,
86, 211, 212, 306
Learning Vector Quantisation, 207
Least-squares, 42, 112-114, 239, 248,
251, 252
example, 255, 256
Levenberg-Marquardt algorithm, 252,
254
algorithm, 255
example, 257
implementation, 256
Likelihood, 179, 182, 335, 344
Line search, 249, 258
implementation, 250
Linear Congruential Generator, 316
Linear discriminant, 17
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Linear Discriminant Analysis, 44,
218, 223, 224
example, 226
implementation, 225
Linear regression, 37, 41, 42
example, 43
implementation, 42
Linear separability, 32, 34, 47, 125,
232
LLE, see Locally Linear Embed-
ding
Local minimum, 51, 59-61, 69, 265
Locally Linear Embedding, 221, 239,

245
algorithm, 240
example, 241

implementation, 241
Logical satisfiability, 268
Long-Term Potentiation, 13
Loop, see Infinite
Loss function

exponential, 158

sum-of-squares, 157
Loss matrix, 171

Mahalanobis distance, 175, 176
Majority voting, 154, 162
Manhattan distance, see City-block
distance
Manifold, 243, 245
MAP, see Maximum a posteriori
Map colouring, 279, 291
Margin, 121-124, 128, 131
Markov blanket, 341
Markov chain, 304, 315, 325, 327,
328, 348
aperiodic, 325
detailed balance, 326
ergodic, 325
irreducible, 325
Markov Chain Monte Carlo, 161,
315, 325, 326, 331, 340,
341
Markov Decision Process, 302-304,
325
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Markov model, 364
Markov property, 302, 303
Markov Random Field, 333, 334,
344-346
Maximum a posteriori, 170-172
Maximum likelihood, 179, 180, 235
Maximum Margin Classifier, 121
McCulloch and Pitts neuron, 13—
15, 17, 19, 20, 100
MCMC, see Markov Chain Monte
Carlo
MDL, see Minimum Description Leng
MDP, see Markov Decision Process
MDS, see Multi-Dimensional Scal-
ing
Mercer’s Theorem, 127
Mersenne Twister, 316
Metropolis algorithm, 327, 328
Metropolis-Hastings algorithm, 326
algorithm, 326
Mexican hat, 209, 210
MIMIC, 288
Minimum Description Length, 142,
343
Minkowski metric, 191
Misclassification impurity, 152
Mixture of experts, 163, 164
algorithm, 164
MLP, see Multi-layer Perceptron
MNIST dataset, 45, 117, 131, 194
Momentum, 61, 62
Monte Carlo principle, 319
Morphometrics, 115, 116
Mount Ruapehu dataset, 185
MRF, see Markov Random Field
MRI, 2
Multi-Dimensional Scaling, 242, 243
algorithm, 243
example, 244
Kruskal-Shephard scaling, 242
Sammon mapping, 242
Multi-layer Perceptron, 47-50, 54,
56, 58-60, 62, 63, 67, 68,
70, 73, 80, 83, 84, 91, 92,
95, 231, 291
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algorithm, 54
example
classification, 74-77
data compression, 80, 81
regression, 70-72
time-series prediction, 77-80
implementation, 56
learning capability, 64
training by genetic algorithm,
285
Multivariate tree, 143
Music Genome Project, 220
Mutation, 271, 280, 281, 286
Mutual information, 238, 288

N-armed bandit, 264
Naive Bayes’ Classifier, 171, 172
example, 172

Nearest Neighbour Smoothing, 185

Nearest Neighbours, 183

Neighbourhood, 210-213, 220, 239,
241, 244

Neuron, 11-15, 18, 19, 21, 53, 65,
74, 87, 88, 98, 202

Newton-Raphson iteration, 258-260

Niching, 277, 278

No Free Lunch theorem, 247, 261,
289

Normalisation, 40, 63, 71, 76, 83,
99, 156, 202, 321

Normalised Gaussians, 105

Novelty detection, 10, 75, 91

NP, 261, 268, 271, 337, 343

Observation probability, 348, 351,
352

Occam’s Razor, 142, 343

On-line learning, 213

Optimal separation, 120

Optimisation, 42, 60, 61, 112, 114,
125, 179, 247, 248, 251,
290

discrete, 261, 279
OR logic function, 24, 32
Outliers, 63, 158, 163, 200

Overfitting, 66, 67, 69, 84, 105, 108,
113, 128, 142, 177, 199,
200, 215

Ozone dataset, 79

Parity problem, 45
Partially Observable Markov Deci-
sion Process, 304
Particle filter, 324, 334, 356, 360—
362
Pattern recognition, 17, 91, 361,
362
PBIL, see Population-Based Incre-
mental Learning
PCA, see Principal Components Anal-
ysis
Perceptron, 18-20, 22, 23, 25, 26,
31-42, 44, 4749, 52, 54,
70, 103, 105
algorithm, 23
example, 24
implementation, 26, 28
Pima Indian dataset, 37, 40, 92,
117, 193
Polak-Ribiere formula, 259
Policy, 296, 302, 305-307, 309
e-greedy, 301, 302, 308-310, 314
off-policy, 307
on-policy, 307
Polytree, 337
POMDP, see Partially Observable
Markov Decision Process
Population-Based Incremental Learn-
ing, 288
example, 289
implementation, 288
Positive definite, 127
Posterior, 169, 170, 315
Prediction, 1
Premature convergence, 278
Preprocessing, 192
Principal Components Analysis, 81,
213, 226, 227
algorithm, 229
example, 231
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implementation, 230
Prior, 167, 169, 170, 340, 344
Proposal distribution, 320, 321, 323,

324, 326-329

Prostate dataset, 46
Pruning, 142, 143, 222
Pseudo-inverse, 105, 380
Pseudo-random numbers, 316
Punctuated equilibrium, 281, 282
Pythagorus’ theorem, 42

Q-learning, 307, 309-312, 314
algorithm, 307

Quadratic form, 240, 249

Quadratic programming, 124, 130

Radial Basis Function, 95, 99-101,
103, 106, 108, 116, 117,
127, 164
algorithm, 103
implementation, 104
Random numbers, 276, 317
creating, 316
Gaussian, 317
testing, 317
Random walk, 325, 327
Randomised algorithm, 174
RBF, see Radial Basis Function
Receptive field, 95, 97--100, 108
Reconstruction error, 239
Recurrent network, 47, 93
Recursion, see Recursion
Regression, 8, 63, 70, 129, 147, 160
Regularisation, 113
Reinforcement learning, 7, 293, 294,
296, 301304, 306, 309, 311-
313
Rejection sampling, 321, 322, 340
algorithm, 321
Relevance Vector Machine, 130
Reward function, 293, 294, 299, 301,
311, 313
Risk, 142, 146, 157, 171, 193
Robust statistic, 200
ROC curve, 70
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Rosenbrock’s function, 255, 268, 291
Royal Road fitness function, 292

Sampling, 270, 288, 316, 319-326,
328, 330, 341-343
Sampling-importance-resampling, 360
algorithm, 323
implementation, 323
Sarsa, 308, 310, 312
algorithm, 308
Scatter, 223-225
Scrabble, 5
Self-organisation, 214
Self-Organising Map, 207-210, 213~
215, 221
algorithm, 210
boundary conditions, 214, 215
example, 216, 218
implementation, 212
Sensitivity, 70
Sequential Minimal Optimisation,
130
Sequential update, 60
Sigmoid, 52, 54, 58, 64, 87-89, 127
Simulated annealing, 265, 301, 327,
328
implementation, 266
Singular value decomposition, 253
SIR, see Sampling-importance-resamp
Slack variable, 124, 130
Slice operator, 79, 368, 377
Smoothing, 114, 115
Smoothing spline, 113-115
Soft-Margin Classifier, 124
Soft-max, 58, 59, 74, 105, 274, 301,
302
SOM, see Self-Organising Map
Specificity, 70
Spectral decomposition, 229
Spike train, 15
Spline, 108, 111, 112, 114-116, 178
Standardisation, 40, 63
State space, 293, 298, 313-315
Statistics, 161
Steepest descent, 250, 252, 259



390 Machine Learning: An Algorithmic Perspective

example, 251
Hessian, 252
Strong Al 12
Stumping, 160, 161
Supervised learning, 1, 6, 7, 17, 19,
20, 223, 294
Support vector, 121, 122, 131
Support Vector Machine, 37, 47,
119, 120, 125, 232
example, 128
extensions, 128
regression, 129
SVM, see Support Vector Machine
Swissroll dataset, 242, 244, 245
Symbolic processing, 5
Synapse, 12-14, 18

Tangent distance, 192-194

Target vector, 19

Taylor series, 251, 253

TD()), 308

TD-Gammon, 312

TD-learning, 307

Test set, 31, 67, 71, 76, 80

Thin-plate spline, 115

Thought experiment, 98

Time-series prediction, 63, 77, 79

Topology preservation, 208

Tournaments, 277, 278

Tracking, 356, 360, 361

Training data, 7

Training set, 31, 67, 71, 76, 80

Transition probability, 348, 351

Travelling Salesman Problem, 247,
261-263, 268

example, 266

Trellis, 351, 352

Tricube kernel, 185

Truncation selection, 273

Trust region, 249, 251, 254

TSP, see Travelling Salesman Prob-
lem

Two-norm, 98

UCI repository, x, 37, 75, 152, 165,
218

Uniform distribution, 321, 322

Uniform learning, 58

Unsupervised learning, 7, 103, 167,
178, 195, 205, 209

Validation set, 67, 69, 71-73, 76,
80, 84, 105, 127, 142, 200

Value, 305

Vapnik-Chernik dimension, 127

Variable elimination algorithm, 339
algorithm, 338
example, 337

Variance, 174

Vector quantisation, 206, 207

Viterbi algorithm, 352, 363
algorithm, 352

Voronoi tesselation, 207

Voting, see Majority voting

Weak learners, 155

Weight decay, 62

Weight space, 95-97, 100, 196, 200
Wine dataset, 131, 220, 246
Winner-takes-all, 201

XOR logic function, 34, 36, 47, 49,
117

Yeast dataset, 131, 220, 246



