Equações Diferenciais Ordinárias de Primeira Ordem

Análise Matemática II E

Modelos de Crescimento e Decaimento Exponencial

Quando a taxa de variação de uma certa quantidade é proporcional ao total dessa quantidade:

$$\frac{dy}{dx} = k y,$$

com k constante não nula.

k>0 - modelo de crescimento k<0 - modelo de decaimento

Solução:
$$y = c e^{kx}$$
, com $c \in \mathbb{R}$ e $x \in \mathbb{R}$

Modelos de Crescimento e Decaimento Exponencial

Exemplo 1

Suponha que num acidente nuclear foram libertados 10 gr do isótopo de plutónio Pu-239. Sabendo que a meia-vida deste material radiactivo é igual a 24100 anos, quanto tempo será necessário para os 10 gr decaírem para 1 gr?

Modelos de Crescimento e Decaimento Exponencial

Exemplo 2 - Datação por Carbono-14

Um pedaço de carvão vegetal antigo tem 15% do carbono radioactivo de um pedaço de carvão vegetal actual. Sabendo que a meia-vida do Carbono-14 é 5730 anos, há quantos anos foi a árvore queimada para fazer o carvão vegetal?

Lei da Variação da Temperatura de Newton

A taxa de variação da temperatura de um objecto num ambiente com temperatura constante é proporcional à diferença de temperatura entre a temperatura do objecto e a temperatura do ambiente.

Exemplo 3

Um copo de água a uma temperatura de 95° é colocado numa sala com uma temperatura constante de 21° . Sabendo que ao fim de um minuto a temperatura do copo é de 85° , quanto tempo demorará a atingir os 51° ?

Método numérico para aproximar a solução de um problema de valor inicial:

$$\frac{dy}{dx} = f(x, y)$$
$$y(x_0) = y_0$$

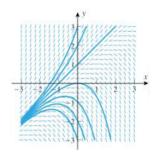
Campo de Direcções

Mostra as direcções ou inclinações das curvas integrais nos pontos da malha.

Exemplo

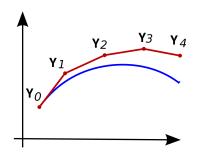
$$y' = y - x$$

	y = -3	y = -2	y = -1	y = 0	y = 1	y = 2	y = 3
x = -3	0	1	2	3	4	5	6
x = -2	-1	0	1	2	3	4	5
x = -1	-2	-1	0	1	2	3	4
x = 0	-3	-2	-1	0	1	2	3
x = 1	-4	-3	-2	-1	0	1	2
x = 2	-5	-4	-3	-2	-1	0	1
<i>x</i> = 3	-6	-5	-4	-3	-2	-1	0



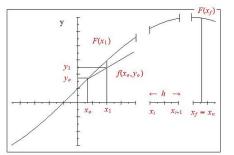
http://www.bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html

O campo de direcções é usado para aproximar a solução de um problema de valor inicial nalguns pontos, distanciados entre si uma certa quantidade fixa h.



$$x_0 \quad y_0 = y(x_0)$$
 $x_1 = x_0 + h \quad y_1 \simeq y(x_1)$
 $x_2 = x_1 + h \quad y_2 \simeq y(x_2)$
 $x_3 = x_2 + h \quad y_3 \simeq y(x_3)$
 $x_4 = x_3 + h \quad y_4 \simeq y(x_4)$

O campo de direcções é usado para aproximar a solução de um problema de valor inicial nalguns pontos, distanciados entre si uma certa quantidade fixa h.



$$x_0 \quad y_0 = y(x_0)$$

 $x_1 = x_0 + h \quad y_1 \simeq y(x_1)$
 $x_2 = x_1 + h \quad y_2 \simeq y(x_2)$
 $x_3 = x_2 + h \quad y_3 \simeq y(x_3)$
 $x_4 = x_3 + h \quad y_4 \simeq y(x_4)$
...

$$y_{n+1} = y_n + hf(x_n, y_n)$$

Nota: A qualidade da aproximação é melhorada com a redução de h.

Exemplo

$$\frac{dy}{dx} = -xy$$
$$y(0) = 1$$
$$y(1) = ????$$

Considere h = 0.2, h = 0.1 e h = 0.05.

Solução analítica:
$$y = e^{-x^2/2} \log y(1) = e^{-1/2} \simeq 0.606531$$