

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

Versão 4.0 - Português

Aula Nº 10:

Título: Circuitos combinatórios: somadores, subtractores e comparadores

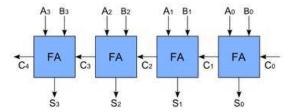
Sumário: Somadores, subtractores e comparadores.

2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Circuitos combinatórios: somadores, subtractores e comparadores



Aula Anterior

Na aula anterior:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexers
 - Demultiplexers

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos	
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	L0
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) – Som., Comp., etc.	L1
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Circuitos Sequenciais: Latches	P2
26/Out a 31/Out	Circuitos Sequenciais: Flip-Flops	Ling. de Descrição e Simulação de HW (ferramentas disponíveis no laboratório)	L2
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5
14/Dez a 18/Dez	P6	P6	L6

Prof. Nuno Roma Sistemas Digitais 2015/16

Sumário

■ Tema da aula de hoje:

- ► Circuitos combinatórios típicos:
 - Somadores / Subtractores
 - Comparadores

■ Bibliografia:

M. Mano, C. Kime: Secções 4.2 a 4.4

- G. Arroz, J. Monteiro, A. Oliveira: Secções 5.1 a 5.3

Prof. Nuno Roma

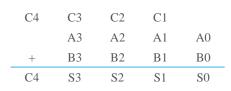
Sistemas Digitais 2015/16

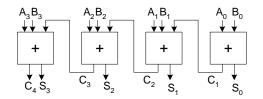
4

Circuito para soma aritmética

▶ Exemplo: Somador de 2 números de 4 bits cada.

▶ A estrutura mais simples resolve 1 bit de cada vez:





Prof. Nuno Roma

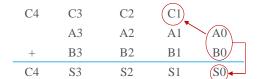
Sistemas Digitais 2015/16

5

Somadores

Circuito semi-somador

- ➤ O circuito semi-somador (em inglês, half-adder) soma 2 bits de entrada (sem transporte anterior) e produz 1 bit da soma e 1 bit de transporte.
- A → Carry-out B → Sum
- ➤ Corresponde p.ex. ao 1º passo do algoritmo de soma: soma os 2 bits de menor peso e obtém 1 bit S0 da soma e o transporte C1 para o passo seguinte.



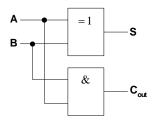
Prof. Nuno Roma

Sistemas Digitais 2015/16

Circuito semi-somador

A	В	C_{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C_{out} = A \cdot B$$
$$S = A \oplus B$$



Prof. Nuno Roma

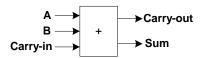
Sistemas Digitais 2015/16

7

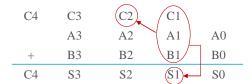
Somadores

Circuito somador completo

 ▶ O circuito somador completo (em inglês, full-adder) soma 3 bits de entrada (incluindo o transporte anterior) e produz 1 bit da soma e 1 bit de transporte.



P.ex. no 2º passo: soma 3 bits A1 e B1 e o transporte C1 do passo anterior, e obtém 1 bit S1 da soma e o transporte C2 para o passo seguinte.

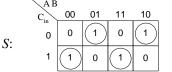


Prof. Nuno Roma

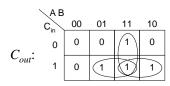
Sistemas Digitais 2015/16

Somador completo

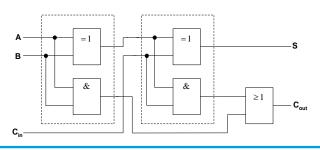
0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1	Α	В	C_{in}	C_{out}	S
0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0	0	0	0	0	0
0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0	0	0	1	0	1
1 0 0 0 1 1 0 1 1 0 1 1 0 1 0	0	1	0	0	1
1 0 1 1 0 1 1 0 1 0	0	1	1	1	0
1 1 0 1 0	1	0	0	0	1
	1	0	1	1	0
1 1 1 1 1	1	1	0	1	0
	1	1	1	1	1



$$S = \overline{C}_{in} \cdot \overline{A} \cdot B + \overline{C}_{in} \cdot A \cdot \overline{B}$$
$$+ C_{in} \cdot \overline{A} \cdot \overline{B} + C_{in} \cdot A \cdot B$$
$$= A \oplus B \oplus C_{in}$$



$$C_{out} = A \cdot B + C_{in} \cdot A + C_{in} \cdot B$$
$$= A \cdot B + C_{in} \cdot (A \oplus B)$$

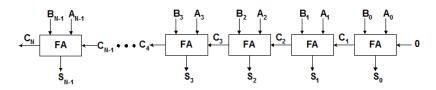


Prof. Nuno Roma

Sistemas Digitais 2015/16

Somadores

Somador em cascata (ripple carry adder)



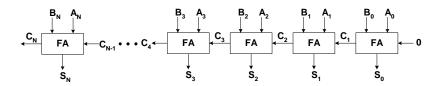
- A velocidade máxima de execução é limitada pela necessidade de propagar o "Carry" desde a soma do primeiro bit até à soma do bit mais significativo.
- ▶ No pior caso, o tempo de propagação do "Carry" será N x t_{PFA}.

Exemplo:

Prof. Nuno Roma

Sistemas Digitais 2015/16

Somador em cascata (ripple carry adder)



- ▶ O "Ripple Carry Adder" é o somador mais simples possível (que requer menos portas lógicas).
- Existem inúmeros circuitos alternativos para diversos compromissos velocidade/área.

Prof. Nuno Roma

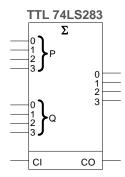
Sistemas Digitais 2015/16

11

Somadores

Somador de 4 bits

- ▶ Somador de 4 bits completo:
 - Soma:
 - o 2 números de 4 bits cada
 - o 1 bit de carry-in.
 - Gera:
 - o Resultado da soma, com 4 bits
 - o 1 bit de carry-out.



Prof. Nuno Roma

Sistemas Digitais 2015/16

Representação de números negativos

▶ Módulo + Sinal

 O bit mais significativo representa o sinal, e os restantes bits representam o seu valor absoluto.

Ex.: -9 = 10001001

• O valor zero tem duas representações...

	Módulo	
Decimal	+ Sinal	
+7	0111	
+6	0110	
+5	0101	
+4	0100	
+3	0011	
+2	0010	
+1	0001	
+0	0000	2
-0	1000	•
-1	1001	
-2	1010	
-3	1011	
-4	1100	
-5	1101	
-6	1110	
-7	1111	
-8	-	

13

Prof. Nuno Roma Sistemas Digitais 2015/16

TÉCNICO

Representação de números com sinal

Representação de números negativos

► Complemento para 1

- O complemento para 1 de N, em n bits, é definido como (2ⁿ - 1) - N.
- 2ⁿ 1 é um número constituído por n 1's.
- Subtrair de 1 equivale a inverter o bit:

$$1 - 0 = 1$$
 e $1 - 1 = 0$.

 Portanto, complementar para 1 corresponde a inverter todos os bits (0 → 1 e 1 → 0).

Ex.:
$$-9 = 11110110$$

(= $11111111 - 00001001 = 255_{10} - 9_{10}$).

• O valor zero tem duas representações...

Complemento		to
Decima	l para 1	
+7	0111	
+6	0110	
+5	0101	
+4	0100	
+3	0011	
+2	0010	
+1	0001	
+0	0000	2
-0	1111	•
-1	1110	
-2	1101	
-3	1100	
-4	1011	
-5	1010	
-6	1001	
-7	1000	
-8	-	

Representação de números negativos

► Complemento para 2

- O complemento para 2 de N, em n bits, é definido como 2ⁿ − N para N ≠ 0, e 0 para N = 0.
- Portanto, complementar para 2 corresponde a complementar para 1 e somar 1.

Ex.: -9 = 11110111(= $100000000 - 00001001 = 256_{10} - 9_{10}$).

- Na prática, o complemento para 2 pode ser formado do seguinte modo: mantém-se todos os 0's menos significativos e o primeiro 1, e invertemse todos os outros bits mais significativos.
- Uma única representação para o valor zero.

Co		Complemen	to
	Decimal	para 2	
	+7	0111	
	+6	0110	
	+5	0101	
	+4	0100	
	+3	0011	
	+2	0010	
	+1	0001	
	+0	0000	?
-0		-	•
-1		1111	
	-2	1110	
-3		1101	
-4		1100	
-5		1011	
-6		1010	
-7		1001	
-8		1000	

Prof. Nuno Roma

Sistemas Digitais 2015/16

15

Representação de números com sinal

Números binários com sinal

- ► As operações usando o sistema de sinal e valor são mais complicadas, devido à necessidade de gerir separadamente o sinal e o valor.
- Por isso, são normalmente utilizadas representações em complemento. A representação em complemento para 2 é habitualmente preferida em sistemas digitais por ter uma única representação para o valor zero, e por as operações envolvidas serem mais simples.

	Complemento	Complement	Módulo	
Decimal	para 2	o para 1	+ Sinal	
+7	0111	0111	0111	
+6	0110	0110	0110	
+5	0101	0101	0101	
+4	0100	0100	0100	
+3	0011	0011	0011	
+2	0010	0010	0010	
+1	0001	0001	0001	
+0	0000	0000	0000	2
-0	-	1111	1000	•
-1	1111	1110	1001	
-2	1110	1101	1010	
-3	1101	1100	1011	
-4	1100	1011	1100	
-5	1011	1010	1101	
-6	1010	1001	1110	
-7	1001	1000	1111	
-8	1000	-	-	

Prof. Nuno Roma

Sistemas Digitais 2015/16

Extensão do sinal (complemento para 2)

▶ Representação de um número utilizando um determinado número de bits, através da adição/remoção de bits à esquerda iguais ao bit de sinal

Exemplos:

Prof. Nuno Roma

Sistemas Digitais 2015/16

17

Representação de números com sinal

Extensão do sinal (complemento para 2)

Representação de um número utilizando um determinado número de bits, através da adição/remoção de bits à esquerda iguais ao bit de sinal

Exemplos:

$$0100 = +4 (4 \text{ bits}) \rightarrow 00000100 = +4 (8 \text{ bits})$$

$$1011 = -5$$
 (4 bits) \rightarrow $11111011 = -5$ (8 bits)

$$0010 = +2 \text{ (4 bits)} \rightarrow 010 = +2 \text{ (3 bits)}$$

$$1010 = -6 \text{ (4 bits)} \rightarrow ??? = -6 \text{ (3 bits)}$$

Prof. Nuno Roma

Sistemas Digitais 2015/16

Soma aritmética de números com sinal usando complemento para 2

▶ A soma aritmética de dois números binários com sinal, representados em complemento para 2, é obtida pela simples adição dos dois números incluindo os bits de sinal. O último "carry out" não é considerado.

Exemplos:

Prof. Nuno Roma

Sistemas Digitais 2015/16

19

Subtractores

Subtracção de números com sinal

▶ A subtracção de 2 números binários com sinal, representados em complemento para 2, é realizada de forma idêntica ao que acontece na representação decimal:

Exemplo:

▶ O bit de empréstimo (*borrow*) é um valor que vai ser retirado ao bit de peso seguinte.

Prof. Nuno Roma

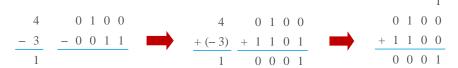
Sistemas Digitais 2015/16

Subtractores

Subtracção de números com sinal usando complemento para 2

- ► A subtracção de dois números binários com sinal, representados em complemento para 2, é obtida do seguinte modo:
 - forma-se o complemento para 2 do subtractor
 - soma-se ao subtraendo.

Exemplo:



(através de complemento para 2)

(através de complemento para 1)

Prof. Nuno Roma

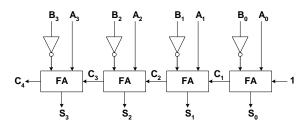
Sistemas Digitais 2015/16

21

Subtractores

Subtracção de números com sinal usando complemento para 2

- ► Complemento para 2 = (Complemento para 1) + 1
 - A complementação para 1 é realizada invertendo todos os bits do subtractor.
 - A adição de 1 é efectuada pondo o Carry inicial a 1.



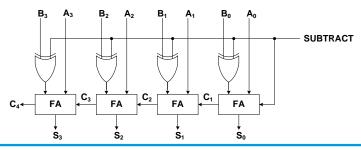
Prof. Nuno Roma

Sistemas Digitais 2015/16

Circuito somador/subtractor

Circuito somador/subtractor

- ► As operações de adição e subtracção são habitualmente combinadas num único somador genérico, através da inclusão de 1 porta ou-exclusivo em cada Full-Adder.
- ▶ Quando o sinal de controlo SUBTRACT = 0, é realizada a adição A + B (os operandos B_i não são invertidos e C₀ = 0).
- ▶ Quando o sinal de controlo SUBTRACT = 1, é realizada a subtracção A B (os operandos B_i são invertidos e C₀ = 1).



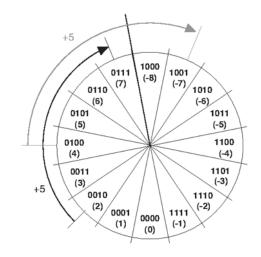
Prof. Nuno Roma

Sistemas Digitais 2015/16

23

Excesso

Excesso (overflow)



Prof. Nuno Roma

Sistemas Digitais 2015/16

Excesso

Excesso (overflow)

- ▶ Para se obter um resultado correcto, na adição e na subtracção, é necessário assegurar que o resultado tem um número de bits suficiente. Se somarmos dois números de N bits e o resultado ocupar N+1 bits diz-se que ocorreu um overflow.
- ► As unidades aritméticas digitais usam um número fixo de bits para armazenar os operandos e os resultados, sendo necessário detectar e sinalizar a ocorrência de um overflow.
 - Exemplo: um **overflow** pode ocorrer na adição se os dois operandos são ambos positivos ou se são ambos negativos.

Prof. Nuno Roma

Sistemas Digitais 2015/16

25

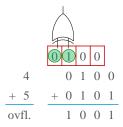
Excesso

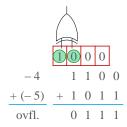
Excesso (overflow)

▶ A condição de overflow pode ser detectada por inspecção dos dois bits de carry mais significativos.

Exemplo:

$$Overflow = CarryOut_{N-1} \oplus CarryOut_{N-2}$$





Excesso

Qual a diferença entre os sinais de carry e overflow?

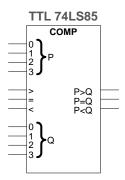
Representação	C = C _{N-1} = 1	O = 1
SEM sinal	Excedeu a capacidade de representação	Sem significado
COM sinal	Sem significado	Excedeu a capacidade de representação

Prof. Nuno Roma Sistemas Digitais 2015/16 27

Circuito Comparador

Comparador de números de 4 bits

- ► Este circuito faz a comparação de 2 números binários de 4 bits.
- A comparação é realizada através de uma operação de subtracção e análise do resultado.
- ▶ O circuito pode ser ligado em cascata, para realizar comparações entre números de N > 4 bits, utilizando os 3 bits de entrada suplementares.



Prof. Nuno Roma Sistemas Digitais 2015/16

Próxima Aula

■ Tema da Próxima Aula:

► Unidade Lógica e Aritmética (ULA)

Prof. Nuno Roma

Sistemas Digitais 2015/16

29

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16