
9Linked Lists: The Role
of Locking

9.1 Introduction

In Chapter 7 we saw how to build scalable spin locks that provide mutual
exclusion efficiently, even when they are heavily used. We might think that it
is now a simple matter to construct scalable concurrent data structures: take
a sequential implementation of the class, add a scalable lock field, and ensure
that each method call acquires and releases that lock. We call this approach
coarse-grained synchronization.

Often, coarse-grained synchronization works well, but there are important
cases where it does not. The problem is that a class that uses a single lock to medi-
ate all its method calls is not always scalable, even if the lock itself is scalable.
Coarse-grained synchronization works well when levels of concurrency are low,
but if too many threads try to access the object at the same time, then the object
becomes a sequential bottleneck, forcing threads to wait in line for access.

This chapter introduces several useful techniques that go beyond coarse-
grained locking to allow multiple threads to access a single object at the same time.

! Fine-grained synchronization: Instead of using a single lock to synchronize
every access to an object, we split the object into independently synchronized
components, ensuring that method calls interfere only when trying to access
the same component at the same time.

! Optimistic synchronization: Many objects, such as trees or lists, consist of mul-
tiple components linked together by references. Some methods search for a
particular component (e.g., a list or tree node containing a particular key).
One way to reduce the cost of fine-grained locking is to search without acquir-
ing any locks at all. If the method finds the sought-after component, it locks
that component, and then checks that the component has not changed in the
interval between when it was inspected and when it was locked. This technique
is worthwhile only if it succeeds more often than not, which is why we call it
optimistic.

195



196 Chapter 9 Linked Lists: The Role of Locking

1 public interface Set<T> {
2 boolean add(T x);
3 boolean remove(T x);
4 boolean contains(T x);
5 }

Figure 9.1 The Set interface: add() adds an item to the set (no effect if that item is already
present), remove() removes it (if present), and contains() returns a Boolean indicating
whether the item is present.

! Lazy synchronization: Sometimes it makes sense to postpone hard work. For
example, the task of removing a component from a data structure can be split
into two phases: the component is logically removed simply by setting a tag bit,
and later, the component can be physically removed by unlinking it from the
rest of the data structure.

! Nonblocking synchronization: Sometimes we can eliminate locks entirely,
relying on built-in atomic operations such as compareAndSet() for synchro-
nization.

Each of these techniques can be applied (with appropriate customization) to a
variety of common data structures. In this chapter we consider how to use linked
lists to implement a set, a collection of items that contains no duplicate elements.

For our purposes, as illustrated in Fig. 9.1, a set provides the following three
methods:

! The add(x) method adds x to the set, returning true if, and only if x was not
already there.

! The remove(x) method removes x from the set, returning true if, and only if
x was there.

! The contains(x) returns true if, and only if the set contains x.

For each method, we say that a call is successful if it returns true, and unsuccessful
otherwise. It is typical that in applications using sets, there are significantly more
contains() calls than add() or remove() calls.

9.2 List-Based Sets

This chapter presents a range of concurrent set algorithms, all based on the same
basic idea. A set is implemented as a linked list of nodes. As shown in Fig. 9.2,
the Node<T> class has three fields. The item field is the actual item of interest.
The key field is the item’s hash code. Nodes are sorted in key order, providing
an efficient way to detect when an item is absent. The next field is a reference to
the next node in the list. (Some of the algorithms we consider require technical
changes to this class, such as adding new fields, or changing the types of existing
fields.) For simplicity, we assume that each item’s hash code is unique (relaxing
this assumption is left as an exercise). We associate an item with the same node



9.2 List-Based Sets 197

1 private class Node {
2 T item;
3 int key;
4 Node next;
5 }

Figure 9.2 The Node<T> class: this internal class keeps track of the item, the item’s key, and
the next node in the list. Some algorithms require technical changes to this class.

remove b

b

head

pred

tail

c

curr

a

b

head

pred

tail

c

curr

a

add b

(a)

(b)

Figure 9.3 A seqential Set implementation: adding and removing nodes. In Part (a), a thread
adding a node b uses two variables: curr is the current node, and pred is its predecessor.
The thread moves down the list comparing the keys for curr and b. If a match is found, the
item is already present, so it returns false. If curr reaches a node with a higher key, the item
is not in the set so Set b’s next field to curr , and pred ’s next field to b. In Part (b), to delete
curr , the thread sets pred ’s next field to curr ’s next field.

and key throughout any given example, which allows us to abuse notation and
use the same symbol to refer to a node, its key, and its item. That is, node a may
have key a and item a, and so on.

The list has two kinds of nodes. In addition to regular nodes that hold items
in the set, we use two sentinel nodes, called head and tail, as the first and last
list elements. Sentinel nodes are never added, removed, or searched for, and their
keys are the minimum and maximum integer values.1 Ignoring synchronization
for the moment, the top part of Fig. 9.3 schematically describes how an item is

1 All algorithms presented here work for any any ordered set of keys that have maximum and min-
imum values and that are well-founded, that is, there are only finitely many keys smaller than any
given key. For simplicity, we assume here that keys are integers.



198 Chapter 9 Linked Lists: The Role of Locking

added to the set. Each thread A has two local variables used to traverse the list:
currA is the current node and predA is its predecessor. To add an item to the set,
thread A sets local variables predA and currA to head, and moves down the list,
comparing currA’s key to the key of the item being added. If they match, the item
is already present in the set, so the call returns false. If predA precedes currA in
the list, then predA’s key is lower than that of the inserted item, and currA’s key
is higher, so the item is not present in the list. The method creates a new node b
to hold the item, sets b’s nextA field to currA, then sets predA to b. Removing
an item from the set works in a similar way.

9.3 Concurrent Reasoning

Reasoning about concurrent data structures may seem impossibly difficult, but it
is a skill that can be learned. Often, the key to understanding a concurrent data
structure is to understand its invariants: properties that always hold. We can show
that a property is invariant by showing that:

1. The property holds when the object is created, and
2. Once the property holds, then no thread can take a step that makes the

property false.

Most interesting invariants hold trivially when the list is created, so it makes sense
to focus on how invariants, once established, are preserved.

Specifically, we can check that each invariant is preserved by each invocation
of insert(), remove(), and contains() methods. This approach works only if
we can assume that these methods are the only ones that modify nodes, a prop-
erty sometimes called freedom from interference. In the list algorithms considered
here, nodes are internal to the list implementation, so freedom from interference
is guaranteed because users of the list have no opportunity to modify its internal
nodes.

We require freedom from interference even for nodes that have been removed
from the list, since some of our algorithms permit a thread to unlink a node
while it is being traversed by others. Fortunately, we do not attempt to reuse list
nodes that have been removed from the list, relying instead on a garbage collector
to recycle that memory. The algorithms described here work in languages with-
out garbage collection, but sometimes require nontrivial modifications that are
beyond the scope of this chapter.

When reasoning about concurrent object implementations, it is important to
understand the distinction between an object’s abstract value (here, a set of items),
and its concrete representation (here, a list of nodes).

Not every list of nodes is a meaningful representation for a set. An algorithm’s
representation invariant characterizes which representations make sense as
abstract values. If a and b are nodes, we say that a points to b if a’s next field is a



9.3 Concurrent Reasoning 199

reference to b. We say that b is reachable if there is a sequence of nodes, starting
at head, and ending at b, where each node in the sequence points to its successor.

The set algorithms in this chapter require the following invariants (some
require more, as explained later). First, sentinels are neither added nor removed.
Second, nodes are sorted by key, and keys are unique.

Let us think of the representation invariant as a contract among the object’s
methods. Each method call preserves the invariant, and also relies on the other
methods to preserve the invariant. In this way, we can reason about each method
in isolation, without having to consider all the possible ways they might interact.

Given a list satisfying the representation invariant, which set does it represent?
The meaning of such a list is given by an abstraction map carrying lists that satisfy
the representation invariant to sets. Here, the abstraction map is simple: an item
is in the set if and only if it is reachable from head.

What safety and liveness properties do we need? Our safety property is
linearizability. As we saw in Chapter 3, to show that a concurrent data structure
is a linearizable implementation of a sequentially specified object, it is enough to
identify a linearization point, a single atomic step where the method call “takes
effect.” This step can be a read, a write, or a more complex atomic operation.
Looking at any execution history of a list-based set, it must be the case that if the
abstraction map is applied to the representation at the linearization points, the
resulting sequence of states and method calls defines a valid sequential set exe-
cution. Here, add(a) adds a to the abstract set, remove(a) removes a from the
abstract set, and contains(a) returns true or false, depending on whether a was
already in the set.

Different list algorithms make different progress guarantees. Some use locks,
and care is required to ensure they are deadlock- and starvation-free. Some
nonblocking list algorithms do not use locks at all, while others restrict locking
to certain methods. Here is a brief summary, from Chapter 3, of the nonblocking
properties we use2:

! A method is wait-free if it guarantees that every call finishes in a finite number
of steps.

! A method is lock-free if it guarantees that some call always finishes in a finite
number of steps.

We are now ready to consider a range of list-based set algorithms. We start with
algorithms that use coarse-grained synchronization, and successively refine them
to reduce granularity of locking. Formal proofs of correctness lie beyond the scope
of this book. Instead, we focus on informal reasoning useful in everyday problem-
solving.

As mentioned, in each of these algorithms, methods scan through the list using
two local variables: curr is the current node and pred is its predecessor. These

2 Chapter 3 introduces an even weaker nonblocking property called obstruction-freedom.



200 Chapter 9 Linked Lists: The Role of Locking

variables are thread-local,3 so we use predA and currA to denote the instances
used by thread A.

9.4 Coarse-Grained Synchronization

We start with a simple algorithm using coarse-grained synchronization. Figs. 9.4
and 9.5 show the add() and remove() methods for this coarse-grained algorithm.
(The contains() method works in much the same way, and is left as an exercise.)
The list itself has a single lock which every method call must acquire. The principal
advantage of this algorithm, which should not be discounted, is that it is obviously
correct. All methods act on the list only while holding the lock, so the execution
is essentially sequential. To simplify matters, we follow the convention (for now)

1 public class CoarseList<T> {
2 private Node head;
3 private Lock lock = new ReentrantLock();
4 public CoarseList() {
5 head = new Node(Integer.MIN_VALUE);
6 head.next = new Node(Integer.MAX_VALUE);
7 }
8 public boolean add(T item) {
9 Node pred, curr;
10 int key = item.hashCode();
11 lock.lock();
12 try {
13 pred = head;
14 curr = pred.next;
15 while (curr.key < key) {
16 pred = curr;
17 curr = curr.next;
18 }
19 if (key == curr.key) {
20 return false;
21 } else {
22 Node node = new Node(item);
23 node.next = curr;
24 pred.next = node;
25 return true;
26 }
27 } finally {
28 lock.unlock();
29 }
30 }

Figure 9.4 The CoarseList class: the add() method.

3 Appendix A describes how thread-local variables work in Java.



9.5 Fine-Grained Synchronization 201

31 public boolean remove(T item) {
32 Node pred, curr;
33 int key = item.hashCode();
34 lock.lock();
35 try {
36 pred = head;
37 curr = pred.next;
38 while (curr.key < key) {
39 pred = curr;
40 curr = curr.next;
41 }
42 if (key == curr.key) {
43 pred.next = curr.next;
44 return true;
45 } else {
46 return false;
47 }
48 } finally {
49 lock.unlock();
50 }
51 }

Figure 9.5 The CoarseList class: the remove() method. All methods acquire a single lock,
which is released on exit by the finally block.

that the linearization point for any method call that acquires a lock is the instant
the lock is acquired.

The CoarseList class satisfies the same progress condition as its lock: if the
Lock is starvation-free, so is our implementation. If contention is very low, this
algorithm is an excellent way to implement a list. If, however, there is contention,
then even if the lock itself performs well, threads will still be delayed waiting for
one another.

9.5 Fine-Grained Synchronization

We can improve concurrency by locking individual nodes, rather than locking
the list as a whole. Instead of placing a lock on the entire list, let us add a Lock
to each node, along with lock() and unlock() methods. As a thread traverses
the list, it locks each node when it first visits, and sometime later releases it. Such
fine-grained locking permits concurrent threads to traverse the list together in a
pipelined fashion.

Let us consider two nodes a and b where a points to b. It is not safe to unlock
a before locking b because another thread could remove b from the list in the
interval between unlocking a and locking b. Instead, thread A must acquire locks
in a kind of “hand-over-hand” order: except for the initial head sentinel node,
acquire the lock for currA only while holding the lock for predA. This locking



202 Chapter 9 Linked Lists: The Role of Locking

protocol is sometimes called lock coupling. (Notice that there is no obvious way
to implement lock coupling using Java’s synchronized methods.)

Fig. 9.6 shows the FineList algorithm’s add() method, and Fig. 9.7 its
remove() method. Just as in the coarse-grained list, remove() makes currA
unreachable by setting predA’s next field to currA’s successor. To be safe,
remove() must lock both predA and currA. To see why, let us consider the
following scenario, illustrated in Fig. 9.8. Thread A is about to remove node a, the
first node in the list, while threadB is about to remove node b, where a points to b.
Suppose A locks head, and B locks a. A then sets head.next to b, while B sets
a.next to c. The net effect is to remove a, but not b. The problem is that there
is no overlap between the locks held by the two remove() calls. Fig. 9.9 illustrates
how this “hand-over-hand” locking avoids this problem.

To guarantee progress, it is important that all methods acquire locks in the
same order, starting at the head and following next references toward the tail.
As Fig. 9.10 shows, a deadlock could occur if different method calls were to acquire
locks in different orders. In this example, thread A, trying to add a, has locked b
and is attempting to lock head, while B, trying to remove b, has locked head and

1 public boolean add(T item) {
2 int key = item.hashCode();
3 head.lock();
4 Node pred = head;
5 try {
6 Node curr = pred.next;
7 curr.lock();
8 try {
9 while (curr.key < key) {

10 pred.unlock();
11 pred = curr;
12 curr = curr.next;
13 curr.lock();
14 }
15 if (curr.key == key) {
16 return false;
17 }
18 Node newNode = new Node(item);
19 newNode.next = curr;
20 pred.next = newNode;
21 return true;
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }

Figure 9.6 The FineList class: the add() method uses hand-over-hand locking to traverse
the list. The finally blocks release locks before returning.



9.5 Fine-Grained Synchronization 203

29 public boolean remove(T item) {
30 Node pred = null, curr = null;
31 int key = item.hashCode();
32 head.lock();
33 try {
34 pred = head;
35 curr = pred.next;
36 curr.lock();
37 try {
38 while (curr.key < key) {
39 pred.unlock();
40 pred = curr;
41 curr = curr.next;
42 curr.lock();
43 }
44 if (curr.key == key) {
45 pred.next = curr.next;
46 return true;
47 }
48 return false;
49 } finally {
50 curr.unlock();
51 }
52 } finally {
53 pred.unlock();
54 }
55 }

Figure 9.7 The FineList class: the remove() method locks both the node to be removed
and its predecessor before removing that node.

b
head tail

c

remove bremove a

a

Figure 9.8 The FineList class: why remove() must acquire two locks. Thread A is about
to remove a, the first node in the list, while thread B is about to remove b, where a points
to b. Suppose A locks head, and B locks a. Thread A then sets head.next to b, while B sets
a’s next field to c. The net effect is to remove a, but not b.

is trying to lock b. Clearly, these method calls will never finish. Avoiding deadlocks
is one of the principal challenges of programming with locks.

The FineList algorithm maintains the representation invariant: sentinels are
never added or removed, and nodes are sorted by key value without duplicates.



204 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

Figure 9.9 The FineList class: Hand-over-hand locking ensures that if concurrent remove()
calls try to remove adjacent nodes, then they acquire conflicting locks. Thread A is about to
remove node a, the first node in the list, while thread B is about to remove node b, where
a points to b. Because A must lock both head and A and B must lock both a and b, they are
guaranteed to conflict on a, forcing one call to wait for the other.

b

head tail

c

a

B: remove bA: add a

Figure 9.10 The FineList class: a deadlock can occur if, for example, remove() and add()
calls acquire locks in opposite order. Thread A is about to insert a by locking first b and then
head, and thread B is about to remove node b by locking first head and then b. Each thread
holds the lock the other is waiting to acquire, so neither makes progress.

The abstraction map is the same as for the course-grained list: an item is in the
set if, and only if its node is reachable.

The linearization point for an add(a) call depends on whether the call was
successful (i.e., whether a was already present). A successful call (a absent) is lin-
earized when the node with the next higher key is locked (either Line 7 or 13).

The same distinctions apply to remove(a) calls. A successful call (a present) is
linearized when the predecessor node is locked (Lines 36 or 42). A successful call
(a absent) is linearized when the node containing the next higher key is locked
(Lines 36 or 42). An unsuccessful call (a present) is linearized when the node
containing a is locked.

Determining linearization points for contains() is left as an exercise.
The FineList algorithm is starvation-free, but arguing this property is

harder than in the course-grained case. We assume that all individual locks are



9.6 Optimistic Synchronization 205

starvation-free. Because all methods acquire locks in the same down-the-list
order, deadlock is impossible. If thread A attempts to lock head, eventually it
succeeds. From that point on, because there are no deadlocks, eventually all locks
held by threads ahead ofA in the list will be released, andAwill succeed in locking
predA and currA.

9.6 Optimistic Synchronization

Although fine-grained locking is an improvement over a single, coarse-grained
lock, it still imposes a potentially long sequence of lock acquisitions and releases.
Moreover, threads accessing disjoint parts of the list may still block one another.
For example, a thread removing the second item in the list blocks all concurrent
threads searching for later nodes.

One way to reduce synchronization costs is to take a chance: search without
acquiring locks, lock the nodes found, and then confirm that the locked nodes
are correct. If a synchronization conflict causes the wrong nodes to be locked,
then release the locks and start over. Normally, this kind of conflict is rare, which
is why we call this technique optimistic synchronization.

In Fig. 9.11, thread A makes an optimistic add(a). It traverses the list with-
out acquiring any locks (Lines 6 through 8). In fact, it ignores the locks com-
pletely. It stops the traversal when currA’s key is greater than, or equal to a’s.
It then locks predA and currA, and calls validate() to check that predA is
reachable and its next field still refers to currA. If validation succeeds, then
thread A proceeds as before: if currA’s key is greater than a, thread A adds a
new node with item a between predA and currA, and returns true. Otherwise it
returns false. The remove() and contains() methods (Figs. 9.12 and 9.13) oper-
ate similarly, traversing the list without locking, then locking the target nodes
and validating they are still in the list.

The code of validate() appears in Fig. 9.14. We are reminded of the following
story:

A tourist takes a taxi in a foreign town. The taxi driver speeds through a red
light. The tourist, frightened, asks “What are you are doing?” The driver answers:
“Do not worry, I am an expert.” He speeds through more red lights, and the
tourist, on the verge of hysteria, complains again, more urgently. The driver
replies, “Relax, relax, you are in the hands of an expert.” Suddenly, the light turns
green, the driver slams on the brakes, and the taxi skids to a halt. The tourist picks
himself off the floor of the taxi and asks “For crying out loud, why stop now that
the light is finally green?” The driver answers “Too dangerous, could be another
expert crossing.”

Traversing any dynamically changing lock-based data structure while ignor-
ing locks requires careful thought (there are other expert threads out there). We
must make sure to use some form of validation and guarantee freedom from
interference.



206 Chapter 9 Linked Lists: The Role of Locking

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = pred.next;
6 while (curr.key <= key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock(); curr.lock();
10 try {
11 if (validate(pred, curr)) {
12 if (curr.key == key) {
13 return false;
14 } else {
15 Node node = new Node(item);
16 node.next = curr;
17 pred.next = node;
18 return true;
19 }
20 }
21 } finally {
22 pred.unlock(); curr.unlock();
23 }
24 }
25 }

Figure 9.11 The OptimisticList class: the add() method traverses the list ignoring locks,
acquires locks, and validates before adding the new node.

26 public boolean remove(T item) {
27 int key = item.hashCode();
28 while (true) {
29 Node pred = head;
30 Node curr = pred.next;
31 while (curr.key < key) {
32 pred = curr; curr = curr.next;
33 }
34 pred.lock(); curr.lock();
35 try {
36 if (validate(pred, curr)) {
37 if (curr.key == key) {
38 pred.next = curr.next;
39 return true;
40 } else {
41 return false;
42 }
43 }
44 } finally {
45 pred.unlock(); curr.unlock();
46 }
47 }
48 }

Figure 9.12 The OptimisticList class: the remove() method traverses ignoring locks,
acquires locks, and validates before removing the node.



9.6 Optimistic Synchronization 207

49 public boolean contains(T item) {
50 int key = item.hashCode();
51 while (true) {
52 Entry pred = this.head; // sentinel node;
53 Entry curr = pred.next;
54 while (curr.key < key) {
55 pred = curr; curr = curr.next;
56 }
57 try {
58 pred.lock(); curr.lock();
59 if (validate(pred, curr)) {
60 return (curr.key == key);
61 }
62 } finally { // always unlock
63 pred.unlock(); curr.unlock();
64 }
65 }
66 }

Figure 9.13 The OptimisticList class: the contains() method searches, ignoring locks,
then it acquires locks, and validates to determine if the node is in the list.

67 private boolean validate(Node pred, Node curr) {
68 Node node = head;
69 while (node.key <= pred.key) {
70 if (node == pred)
71 return pred.next == curr;
72 node = node.next;
73 }
74 return false;
75 }

Figure 9.14 The OptimisticList: validation checks that predA points to currA and is
reachable from head.

As Fig. 9.15 shows, validation is necessary because the trail of references lead-
ing to predA or the reference from predA to currA could have changed between
when they were last read by A and when A acquired the locks. In particular, a
thread could be traversing parts of the list that have already been removed. For
example, the node currA and all nodes between currA and a (including a) may
be removed while A is still traversing currA. Thread A discovers that currA
points to a, and, without validation, “successfully” removes a, even though a is
no longer in the list. A validate() call detects that a is no longer in the list,
and the caller restarts the method.

Because we are ignoring the locks that protect concurrent modifications, each
of the method calls may traverse nodes that have been removed from the list.
Nevertheless, absence of interference implies that once a node has been unlinked
from the list, the value of its next field does not change, so following a sequence of
such links eventually leads back to the list. Absence of interference, in turn, relies
on garbage collection to ensure that no node is recycled while it is being traversed.



208 Chapter 9 Linked Lists: The Role of Locking

a

currA

head

predA

tail

...

Figure 9.15 The OptimisticList class: why validation is needed. Thread A is attempting to
remove a node a. While traversing the list, currA and all nodes between currA and a (including
a) might be removed (denoted by a lighter node color). In such a case, thread A would proceed
to the point where currA points to a, and, without validation, would successfully remove a,
even though it is no longer in the list. Validation is required to determine that a is no longer
reachable from head.

The OptimisticList algorithm is not starvation-free, even if all node locks
are individually starvation-free. A thread might be delayed forever if new nodes
are repeatedly added and removed (see Exercise 107). Nevertheless, we would
expect this algorithm to do well in practice, since starvation is rare.

9.7 Lazy Synchronization

The OptimisticList implementation works best if the cost of traversing the
list twice without locking is significantly less than the cost of traversing the list
once with locking. One drawback of this particular algorithm is that contains()
acquires locks, which is unattractive since contains() calls are likely to be much
more common than calls to other methods.

The next step is to refine this algorithm so that contains() calls are wait-free,
and add() and remove() methods, while still blocking, traverse the list only once
(in the absence of contention). We add to each node a Boolean marked field indi-
cating whether that node is in the set. Now, traversals do not need to lock the target
node, and there is no need to validate that the node is reachable by retraversing
the whole list. Instead, the algorithm maintains the invariant that every unmarked
node is reachable. If a traversing thread does not find a node, or finds it marked,
then that item is not in the set. As a result, contains() needs only one wait-free
traversal. To add an element to the list, add() traverses the list, locks the target’s
predecessor, and inserts the node. The remove() method is lazy, taking two steps:
first, mark the target node, logically removing it, and second, redirect its prede-
cessor’s next field, physically removing it.



9.7 Lazy Synchronization 209

In more detail, all methods traverse the list (possibly traversing logically and
physically removed nodes) ignoring the locks. The add() and remove() methods
lock the predA and currA nodes as before (Figs. 9.16 and 9.17), but validation
does not retraverse the entire list (Fig. 9.18) to determine whether a node is in
the set. Instead, because a node must be marked before being physically removed,
validation need only check that currA has not been marked. However, as Fig. 9.19
shows, for insertion and deletion, since predA is the one being modified, one must
also check that predA itself is not marked, and that it points to currA. Logical
removals require a small change to the abstraction map: an item is in the set if, and
only if it is referred to by an unmarked reachable node. Notice that the path along

1 private boolean validate(Node pred, Node curr) {
2 return !pred.marked && !curr.marked && pred.next == curr;
3 }

Figure 9.16 The LazyList class: validation checks that neither the pred nor the curr nodes
has been logically deleted, and that pred points to curr .

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key == key) {
15 return false;
16 } else {
17 Node node = new Node(item);
18 node.next = curr;
19 pred.next = node;
20 return true;
21 }
22 }
23 } finally {
24 curr.unlock();
25 }
26 } finally {
27 pred.unlock();
28 }
29 }
30 }

Figure 9.17 The LazyList class: add() method.



210 Chapter 9 Linked Lists: The Role of Locking

1 public boolean remove(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Node pred = head;
5 Node curr = head.next;
6 while (curr.key < key) {
7 pred = curr; curr = curr.next;
8 }
9 pred.lock();
10 try {
11 curr.lock();
12 try {
13 if (validate(pred, curr)) {
14 if (curr.key != key) {
15 return false;
16 } else {
17 curr.marked = true;
18 pred.next = curr.next;
19 return true;
20 }
21 }
22 } finally {
23 curr.unlock();
24 }
25 } finally {
26 pred.unlock();
27 }
28 }
29 }

Figure 9.18 The LazyList class: the remove() method removes nodes in two steps, logical
and physical.

1 public boolean contains(T item) {
2 int key = item.hashCode();
3 Node curr = head;
4 while (curr.key < key)
5 curr = curr.next;
6 return curr.key == key && !curr.marked;
7 }

Figure 9.19 The LazyList class: the contains() method.

which the node is reachable may contain marked nodes. The reader should check
that any unmarked reachable node remains reachable, even if its predecessor is
logically or physically deleted. As in the OptimisticList algorithm, add() and
remove() are not starvation-free, because list traversals may be arbitrarily delayed
by ongoing modifications.

The contains() method (Fig. 9.20) traverses the list once ignoring locks and
returns true if the node it was searching for is present and unmarked, and false



9.7 Lazy Synchronization 211

0

00 a0

head tail

0 00 a1

predA

head tail

currA(a)

(b)

0

predA currA

Figure 9.20 The LazyList class: why validation is needed. In Part (a) of the figure, thread A
is attempting to remove node a. After it reaches the point where predA refers to currA , and
before it acquires locks on these nodes, the node predA is logically and physically removed.
After A acquires the locks, validation will detect the problem. In Part (b) of the figure, A
is attempting to remove node a. After it reaches the point where predA equals currA , and
before it acquires locks on these nodes, a new node is added between predA and currA . After
A acquires the locks, even though neither predA or currA are marked, validation detects that
predA is not the same as currA , and A’s call to remove() will be restarted.

otherwise. It is thus wait-free.4 A marked node’s value is ignored. Each time the
traversal moves to a new node, the new node has a larger key than the previous
one, even if the node is logically deleted.

Logical removal requires a small change to the abstraction map: an item is in
the set if, and only if it is referred to by an unmarked reachable node. Notice that
the path along which the node is reachable may contain marked nodes. Physical
list modifications and traversals occur exactly as in the OptimisticList class,
and the reader should check that any unmarked reachable node remains reachable
even if its predecessor is logically or physically deleted.

The linearization points for LazyList add() and unsuccessful remove() calls
are the same as for the OptimisticList. A successful remove() call is linearized
when the mark is set (Line 17), and a successful contains() call is linearized when
an unmarked matching node is found.

To understand how to linearize an unsuccessful contains(), let us consider
the scenario depicted in Fig. 9.21. In Part (a), node a is marked as removed (its
marked field is set) and thread A is attempting to find the node matching a’s key.

4 Notice that the list ahead of a given traversing thread cannot grow forever due to newly inserted
keys, since the key size is finite.



212 Chapter 9 Linked Lists: The Role of Locking

0

a1 1

0 00 b0

0 b

(a)

(b)

predA

currA

head tail

head tail

...

a1 1

currA

...

0

0a

0

Figure 9.21 The LazyList class: linearizing an unsuccessful contains() call. Dark nodes are
physically in the list and white nodes are physically removed. In Part (a), while thread A is
traversing the list, a concurrent remove() call disconnects the sublist referred to by curr .
Notice that nodes with items a and b are still reachable, so whether an item is actually in the
list depends only on whether it is marked. Thread A’s call is linearized at the point when it
sees that a is marked and is no longer in the abstract set. Alternatively, let us consider the
scenario depicted in Part (b). While thread A is traversing the list leading to marked node
a, another thread adds a new node with key a. It would be wrong to linearize thread A’s
unsuccessful contains() call to when it found the marked node a, since this point occurs
after the insertion of the new node with key a to the list.

While A is traversing the list, currA and all nodes between currA and a including
a are removed, both logically and physically. Thread A would still proceed to the
point where currA points to a, and would detect that a is marked and no longer
in the abstract set. The call could be linearized at this point.

Now let us consider the scenario depicted in Part (b). While A is traversing
the removed section of the list leading to a, and before it reaches the removed
node a, another thread adds a new node with a key a to the reachable part of
the list. Linearizing thread A’s unsuccessful contains() method at the point
it finds the marked node a would be wrong, since this point occurs after the
insertion of the new node with key a to the list. We therefore linearize an unsuc-
cessful contains() method call within its execution interval at the earlier of the



9.8 Non-Blocking Synchronization 213

following points: (1) the point where a removed matching node, or a node with
a key greater than the one being searched for is found, and (2) the point imme-
diately before a new matching node is added to the list. Notice that the second is
guaranteed to be within the execution interval because the insertion of the new
node with the same key must have happened after the start of the contains()
method, or the contains() method would have found that item. As can be
seen, the linearization point of the unsuccessful contains() is determined by
the ordering of events in the execution, and is not a predetermined point in the
method’s code.

One benefit of lazy synchronization is that we can separate unobtrusive logical
steps such as setting a flag, from disruptive physical changes to the structure, such
as disconnecting a node. The example presented here is simple because we discon-
nect one node at a time. In general, however, delayed operations can be batched
and performed lazily at a convenient time, reducing the overall disruptiveness of
physical modifications to the structure.

The principal disadvantage of the LazyList algorithm is that add() and
remove() calls are blocking: if one thread is delayed, then others may also be
delayed.

9.8 Non-Blocking Synchronization

We have seen that it is sometimes a good idea to mark nodes as logically removed
before physically removing them from the list. We now show how to extend this
idea to eliminate locks altogether, allowing all three methods, add(), remove(),
and contains(), to be nonblocking. (The first two methods are lock-free and the
last wait-free). A naı̈ve approach would be to use compareAndSet() to change
the next fields. Unfortunately, this idea does not work. The bottom part of
Fig. 9.22 shows a thread A attempting to add node a between nodes predA and
currA. It sets a’s next field to currA, and then calls compareAndSet() to set
predA’s next field to a. If B wants to remove currB from the list, it might call
compareAndSet() to set predB ’s next field to currB ’s successor. It is not hard
to see that if these two threads try to remove these adjacent nodes concurrently,
the list would end up with b not being removed. A similar situation for a pair of
concurrent add() and remove() methods is depicted in the upper part of Fig. 9.22.

Clearly, we need a way to ensure that a node’s fields cannot be updated, after
that node has been logically or physically removed from the list. Our approach is
to treat the node’s next and marked fields as a single atomic unit: any attempt to
update the next field when the marked field is true will fail.

Pragma 9.8.1. An AtomicMarkableReference<T> is an object from the
java.util.concurrent.atomic package that encapsulates both a reference to an
object of type T and a Boolean mark. These fields can be updated atomically,



214 Chapter 9 Linked Lists: The Role of Locking

b

head tail

ca

remove bremove a

remove a

b

head tail

ca
add b

(a)

(b)

Figure 9.22 The LazyList class: why mark and reference fields must be modified atomi-
cally. In Part (a) of the figure, thread A is about to remove a, the first node in the list, while
B is about to add b. Suppose A applies compareAndSet() to head.next, while B applies
compareAndSet() to a.next. The net effect is that a is correctly deleted but b is not added
to the list. In Part (b) of the figure, thread A is about to remove a, the first node in the list,
while B is about to remove b, where a points to b. Suppose A applies compareAndSet() to
head.next, while B applies compareAndSet() to a.next. The net effect is to remove a, but
not b.

either together or individually. For example, the compareAndSet() method
tests the expected reference and mark values, and if both tests succeed,
replaces them with updated reference and mark values. As shorthand, the
attemptMark() method tests an expected reference value and if the test suc-
ceeds, replaces it with a new mark value. The get() method has an unusual
interface: it returns the object’s reference value and stores the mark value in a
Boolean array argument. Fig. 9.23 illustrates the interfaces of these methods.

1 public boolean compareAndSet(T expectedReference,
2 T newReference,
3 boolean expectedMark,
4 boolean newMark);
5 public boolean attemptMark(T expectedReference,
6 boolean newMark);
7 public T get(boolean[] marked);

Figure 9.23 Some AtomicMarkableReference<T> methods: the compareAndSet()
method tests and updates both the mark and reference fields, while the attemptMark()
method updates the mark if the reference field has the expected value. The get() method
returns the encapsulated reference and stores the mark at position 0 in the argument
array.



9.8 Non-Blocking Synchronization 215

In C or C++, one could provide this functionality efficiently by “stealing”
a bit from a pointer, using bit-wise operators to extract the mark and the
pointer from a single word. In Java, of course, one cannot manipulate pointers
directly, so this functionality must be provided by a library.

As described in detail in Pragma 9.8.1, an AtomicMarkableReference<T>
object encapsulates both a reference to an object of type T and a Boolean mark.
These fields can be atomically updated, either together or individually.

We make each node’s next field an AtomicMarkableReference<Node>.
Thread A logically removes currA by setting the mark bit in the node’s next
field, and shares the physical removal with other threads performing add()
or remove(): as each thread traverses the list, it cleans up the list by physi-
cally removing (using compareAndSet()) any marked nodes it encounters. In
other words, threads performing add() and remove() do not traverse marked
nodes, they remove them before continuing. The contains() method remains
the same as in the LazyList algorithm, traversing all nodes whether they
are marked or not, and testing if an item is in the list based on its key and
mark.

It is worth pausing to consider a design decision that differentiates the
LockFreeList algorithm from the LazyList algorithm. Why do threads that
add or remove nodes never traverse marked nodes, and instead physically remove
all marked nodes they encounter? Suppose that thread A were to traverse marked
nodes without physically removing them, and after logically removing currA,
were to attempt to physically remove it as well. It could do so by calling
compareAndSet() to try to redirect predA’s next field, simultaneously veri-
fying that predA is not marked and that it refers to currA. The difficulty is that
because A is not holding locks on predA and currA, other threads could insert
new nodes or remove predA before the compareAndSet() call.

Consider a scenario in which another thread marks predA. As illustrated
in Fig. 9.22, we cannot safely redirect the next field of a marked node, so A
would have to restart the physical removal by retraversing the list. This time,
however, A would have to physically remove predA before it could remove
currA. Even worse, if there is a sequence of logically removed nodes leading to
predA, A must remove them all, one after the other, before it can remove currA
itself.

This example illustrates why add() and remove() calls do not traverse marked
nodes: when they arrive at the node to be modified, they may be forced to
retraverse the list to remove previous marked nodes. Instead, we choose to have
both add() and remove() physically remove any marked nodes on the path to
their target node. The contains() method, by contrast, performs no modifi-
cation, and therefore need not participate in the cleanup of logically removed
nodes, allowing it, as in the LazyList, to traverse both marked and unmarked
nodes.



216 Chapter 9 Linked Lists: The Role of Locking

In presenting our LockFreeList algorithm, we factor out functionality
common to the add() and remove() methods by creating an inner Window class to
help navigation. As shown in Fig. 9.24, a Window object is a structure with pred
and curr fields. The Window class’s find() method takes a head node and a key
a, and traverses the list, seeking to set pred to the node with the largest key less
than a, and curr to the node with the least key greater than or equal to a. As
thread A traverses the list, each time it advances currA, it checks whether that
node is marked (Line 16). If so, it calls compareAndSet() to attempt to physi-
cally remove the node by setting predA’s next field to currA’s next field. This
call tests both the field’s reference and Boolean mark values, and fails if either
value has changed. A concurrent thread could change the mark value by logically
removing predA, or it could change the reference value by physically removing
currA. If the call fails, A restarts the traversal from the head of the list; otherwise
the traversal continues.

The LockFreeList algorithm uses the same abstraction map as the LazyList
algorithm: an item is in the set if, and only if it is in an unmarked reachable node.

1 class Window {
2 public Node pred, curr;
3 Window(Node myPred, Node myCurr) {
4 pred = myPred; curr = myCurr;
5 }
6 }
7 public Window find(Node head, int key) {
8 Node pred = null, curr = null, succ = null;
9 boolean[] marked = {false};

10 boolean snip;
11 retry: while (true) {
12 pred = head;
13 curr = pred.next.getReference();
14 while (true) {
15 succ = curr.next.get(marked);
16 while (marked[0]) {
17 snip = pred.next.compareAndSet(curr, succ, false, false);
18 if (!snip) continue retry;
19 curr = succ;
20 succ = curr.next.get(marked);
21 }
22 if (curr.key >= key)
23 return new Window(pred, curr);
24 pred = curr;
25 curr = succ;
26 }
27 }
28 }

Figure 9.24 The Window class: the find() method returns a structure containing the nodes
on either side of the key. It removes marked nodes when it encounters them.



9.8 Non-Blocking Synchronization 217

The compareAndSet() call at Line 17 of the find() method is an example of a
benevolent side effect: it changes the concrete list without changing the abstract
set, because removing a marked node does not change the value of the abstrac-
tion map.

Fig. 9.25 shows the LockFreeList class’s add() method. Suppose thread A
calls add(a). A uses find() to locate predA and currA. If currA’s key is
equal to a’s, the call returns false. Otherwise, add() initializes a new node a
to hold a, and sets a to refer to currA. It then calls compareAndSet() (Line 10)
to set predA to a. Because the compareAndSet() tests both the mark and
the reference, it succeeds only if predA is unmarked and refers to currA. If
the compareAndSet() is successful, the method returns true, and otherwise it
starts over.

Fig. 9.26 shows the LockFreeList algorithm’s remove() method. When A
calls remove() to remove item a, it uses find() to locate predA and currA.
If currA’s key fails to match a’s, the call returns false. Otherwise, remove()
calls attemptMark() to mark currA as logically removed (Line 27). This call
succeeds only if no other thread has set the mark first. If it succeeds, the call
returns true. A single attempt is made to physically remove the node, but there
is no need to try again because the node will be removed by the next thread
to traverse that region of the list. If the attemptMark() call fails, remove()
starts over.

The LockFreeList algorithm’s contains() method is virtually the same as
that of the LazyList (Fig. 9.27). There is one small change: to test if curr is
marked we must apply curr.next.get(marked) and check that marked[0] is
true.

1 public boolean add(T item) {
2 int key = item.hashCode();
3 while (true) {
4 Window window = find(head, key);
5 Node pred = window.pred, curr = window.curr;
6 if (curr.key == key) {
7 return false;
8 } else {
9 Node node = new Node(item);
10 node.next = new AtomicMarkableReference(curr, false);
11 if (pred.next.compareAndSet(curr, node, false, false)) {
12 return true;
13 }
14 }
15 }
16 }

Figure 9.25 The LockFreeList class: the add() method calls find() to locate predA and
currA . It adds a new node only if predA is unmarked and refers to currA .



218 Chapter 9 Linked Lists: The Role of Locking

17 public boolean remove(T item) {
18 int key = item.hashCode();
19 boolean snip;
20 while (true) {
21 Window window = find(head, key);
22 Node pred = window.pred, curr = window.curr;
23 if (curr.key != key) {
24 return false;
25 } else {
26 Node succ = curr.next.getReference();
27 snip = curr.next.attemptMark(succ, true);
28 if (!snip)
29 continue;
30 pred.next.compareAndSet(curr, succ, false, false);
31 return true;
32 }
33 }
34 }

Figure 9.26 The LockFreeList class: the remove() method calls find() to locate predA and
currA , and atomically marks the node for removal.

35 public boolean contains(T item) {
36 boolean[] marked = false{};
37 int key = item.hashCode();
38 Node curr = head;
39 while (curr.key < key) {
40 curr = curr.next;
41 Node succ = curr.next.get(marked);
42 }
43 return (curr.key == key && !marked[0])
44 }

Figure 9.27 The LockFreeList class: the wait-free contains() method is the almost the
same as in the LazyList class. There is one small difference: it calls curr.next.get(marked)
to test whether curr is marked.

9.9 Discussion

We have seen a progression of list-based lock implementations in which the
granularity and frequency of locking was gradually reduced, eventually reach-
ing a fully nonblocking list. The final transition from the LazyList to the
LockFreeList exposes some of the design decisions that face concurrent
programmers. As we will see, approaches such as optimistic and lazy synchro-
nization will appear time and again as when designing more complex data
structures.



9.11 Exercises 219

On the one hand, the LockFreeList algorithm guarantees progress in the face
of arbitrary delays. However, there is a price for this strong progress guarantee:

! The need to support atomic modification of a reference and a Boolean mark
has an added performance cost.5

! As add() and remove() traverse the list, they must engage in concurrent
cleanup of removed nodes, introducing the possibility of contention among
threads, sometimes forcing threads to restart traversals, even if there was no
change near the node each was trying to modify.

On the other hand, the lazy lock-based list does not guarantee progress in the
face of arbitrary delays: its add() and remove() methods are blocking. However,
unlike the lock-free algorithm, it does not require each node to include an atom-
ically markable reference. It also does not require traversals to clean up logically
removed nodes; they progress down the list, ignoring marked nodes.

Which approach is preferable depends on the application. In the end, the
balance of factors such as the potential for arbitrary thread delays, the relative
frequency of calls to the add() and remove() methods, the overhead of imple-
menting an atomically markable reference, and so on determine the choice of
whether to lock, and if so, at what granularity.

9.10 Chapter Notes

Lock coupling was invented by Rudolf Bayer and Mario Schkolnick [19]. The first
designs of lock-free linked-list algorithms are credited to John Valois [147]. The
Lock-free list implementation shown here is a variation on the lists of Maged
Michael [115], who based his work on earlier linked-list algorithms by Tim Harris
[53]. This algorithm is referred to by many as the Harris-Michael algorithm. The
Harris-Michael algorithm is the one used in the Java Concurrency Package. The
OptimisticList algorithm was invented for this chapter, and the lazy algorithm
is credited to Steven Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, Nir
Shavit, and Bill Scherer [55].

9.11 Exercises

Exercise 100. Describe how to modify each of the linked list algorithms if object
hash codes are not guaranteed to be unique.

5 In the Java Concurrency Package, for example, this cost is somewhat reduced by using a reference
to an intermediate dummy node to signify that the marked bit is set.



220 Chapter 9 Linked Lists: The Role of Locking

Exercise 101. Explain why the fine-grained locking algorithm is not subject to
deadlock.

Exercise 102. Explain why the fine-grained list’s add() method is linearizable.

Exercise 103. Explain why the optimistic and lazy locking algorithms are not sub-
ject to deadlock.

Exercise 104. Show a scenario in the optimistic algorithm where a thread is forever
attempting to delete a node.

Hint: since we assume that all the individual node locks are starvation-free, the
livelock is not on any individual lock, and a bad execution must repeatedly add
and remove nodes from the list.

Exercise 105. Provide the code for the contains() method missing from the fine-
grained algorithm. Explain why your implementation is correct.

Exercise 106. Is the optimistic list implementation still correct if we switch the
order in which add() locks the pred and curr entries?

Exercise 107. Show that in the optimistic list algorithm, if predA is not null, then
tail is reachable from predA, even if predA itself is not reachable.

Exercise 108. Show that in the optimistic algorithm, the add() method needs to
lock only pred.

Exercise 109. In the optimistic algorithm, the contains() method locks two
entries before deciding whether a key is present. Suppose, instead, it locks no
entries, returning true if it observes the value, and false otherwise.

Either explain why this alternative is linearizable, or give a counterexample
showing it is not.

Exercise 110. Would the lazy algorithm still work if we marked a node as removed
simply by setting its next field to null? Why or why not? What about the lock-free
algorithm?

Exercise 111. In the lazy algorithm, can predA ever be unreachable? Justify your
answer.

Exercise 112. Your new employee claims that the lazy list’s validation method
(Fig. 9.16) can be simplified by dropping the check that pred.next is equal to
curr. After all, the code always sets pred to the old value of curr, and before
pred.next can be changed, the new value of curr must be marked, causing the
validation to fail. Explain the error in this reasoning.

Exercise 113. Can you modify the lazy algorithm’s remove() so it locks only one
node?



9.11 Exercises 221

Exercise 114. In the lock-free algorithm, argue the benefits and drawbacks of
having the contains() method help in the cleanup of logically removed entries.

Exercise 115. In the lock-free algorithm, if an add() method call fails because pred
does not point to curr, but pred is not marked, do we need to traverse the list
again from head in order to attempt to complete the call?

Exercise 116. Would the contains() method of the lazy and lock-free algorithms
still be correct if logically removed entries were not guaranteed to be sorted?

Exercise 117. The add() method of the lock-free algorithm never finds a marked
node with the same key. Can one modify the algorithm so that it will simply insert
its new added object into the existing marked node with same key if such a node
exists in the list, thus saving the need to insert a new node?

Exercise 118. Explain why this cannot happen in the LockFreeList algorithm.
A node with item x is logically but not yet physically removed by some thread,
then the same item x is added into the list by another thread, and finally a
contains() call by a third thread traverses the list, finding the logically removed
node, and returning false, even though the linearization order of the remove()
and add() implies that x is in the set.



This page intentionally left blank


