
15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 1/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 4. Files, Modules, and ProgramsChapter 4. Files, Modules, and Programs
We've so far experienced OCaml largely through the toplevel. As you move from exercises to real-

world programs, you'll need to leave the toplevel behind and start building programs from �les.

Files are more than just a convenient way to store and manage your code; in OCaml, they also

correspond to modules, which act as boundaries that divide your program into conceptual units.

In this chapter, we'll show you how to build an OCaml program from a collection of �les, as well

as the basics of working with modules and module signatures.

SINGLE-FILE PROGRAMSSINGLE-FILE PROGRAMS

We'll start with an example: a utility that reads lines from stdin and computes a frequency count

of the lines. At the end, the 10 lines with the highest frequency counts are written out. We'll start

with a simple implementation, which we'll save as the �le freq.ml.

This implementation will use two functions from the List.Assoc module, which provides utility

functions for interacting with association lists, i.e., lists of key/value pairs. In particular, we use

the function List.Assoc.find, which looks up a key in an association list; and

List.Assoc.add, which adds a new binding to an association list, as shown here:

let assoc = [("one", 1); ("two",2); ("three",3)] ;;
val assoc : (string * int) list = [("one", 1); ("two", 2); ("three", 3)]
List.Assoc.find assoc "two" ;;
- : int option = Some 2
List.Assoc.add assoc "four" 4 (* add a new key *) ;;
- : (string, int) List.Assoc.t =
[("four", 4); ("one", 1); ("two", 2); ("three", 3)]
List.Assoc.add assoc "two" 4 (* overwrite an existing key *) ;;
- : (string, int) List.Assoc.t = [("two", 4); ("one", 1); ("three", 3)]

OCaml Utop ∗ files-modules-and-programs/intro.topscript ∗ all code

Note that List.Assoc.add doesn't modify the original list, but instead allocates a new list with

the requisite key/value pair added.

Now we can write freq.ml:

open Core.Std

let build_counts () =
 In_channel.fold_lines stdin ~init:[] ~f:(fun counts line ->
 let count =
 match List.Assoc.find counts line with
 | None -> 0
 | Some x -> x
 in
 List.Assoc.add counts line (count + 1)
)

let () =
 build_counts ()
 |> List.sort ~cmp:(fun (_,x) (_,y) -> Int.descending x y)
 |> (fun l -> List.take l 10)
 |> List.iter ~f:(fun (line,count) -> printf "%3d: %s\n" count line)

OCaml ∗ files-modules-and-programs-freq/freq.ml ∗ all code

The function build_counts reads in lines from stdin, constructing from those lines an

association list with the frequencies of each line. It does this by invoking

In_channel.fold_lines (similar to the function List.fold described in Chapter 3, Lists and

Patterns), which reads through the lines one by one, calling the provided fold function for each

line to update the accumulator. That accumulator is initialized to the empty list.

With build_counts de�ned, we then call the function to build the association list, sort that list by

frequency in descending order, grab the �rst 10 elements o� the list, and then iterate over those

10 elements and print them to the screen. These operations are tied together using the |>

operator described in Chapter 2, Variables and Functions.

Where Is the Main Function?Where Is the Main Function?

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/intro.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq/freq.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 2/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Unlike C, programs in OCaml do not have a unique main function. When an OCaml

program is evaluated, all the statements in the implementation �les are evaluated in

the order in which they were linked together. These implementation �les can

contain arbitrary expressions, not just function de�nitions. In this example, the

declaration starting with let () = plays the role of the main function, kicking o�

the processing. But really the entire �le is evaluated at startup, and so in some

sense the full codebase is one big main function.

The idiom of writing let () = may seem a bit odd, but it has a purpose. The let

binding here is a pattern-match to a value of type unit, which is there to ensure

that the expression on the righthand side returns unit, as is common for functions

that operate primarily by side e�ect.

If we weren't using Core or any other external libraries, we could build the executable like this:

$ ocamlc freq.ml -o freq.byte
File "freq.ml", line 1, characters 0-13:
Error: Unbound module Core

Terminal ∗ files-modules-and-programs-freq/simple_build_fail.out ∗ all code

But as you can see, it fails because it can't �nd Core. We need a somewhat more complex

invocation to get Core linked in:

$ ocamlfind ocamlc -linkpkg -thread -package core freq.ml -o freq.byte

Terminal ∗ files-modules-and-programs-freq/simple_build.out ∗ all code

This uses ocaml�ndocaml�nd, a tool which itself invokes other parts of the OCaml toolchain (in this case,

ocamlcocamlc) with the appropriate �ags to link in particular libraries and packages. Here, -package

core is asking ocaml�ndocaml�nd to link in the Core library; -linkpkg asks ocaml�nd to link in the

packages as is necessary for building an executable, while -thread turns on threading support

(which is required for Core).

While this works well enough for a one-�le project, more complicated projects require a tool to

orchestrate the build. One good tool for this task is ocamlbuildocamlbuild, which is shipped with the OCaml

compiler. We'll talk more about ocamlbuildocamlbuild in Chapter 22, The Compiler Frontend: Parsing and

Type Checking, but for now, we'll just use a simple wrapper around ocamlbuildocamlbuild called corebuildcorebuild

that sets build parameters appropriately for building against Core and its related libraries:

$ corebuild freq.byte

Terminal ∗ files-modules-and-programs-freq-obuild/build.out ∗ all code

If we'd invoked corebuildcorebuild with a target of freq.native instead of freq.byte, we would have

gotten native code instead.

We can run the resulting executable from the command line. The following line extracts strings

from the ocamloptocamlopt binary, reporting the most frequently occurring ones. Note that the speci�c

results will vary from platform to platform, since the binary itself will di�er between platforms:

$ strings `which ocamlopt` | ./freq.byte
 14: movq
 10: cmpq
 9: ", &
 7: .globl
 6: addq
 6: leaq
 6: ", (
 6: +pci_expr =
 6: -pci_params =
 6: .pci_virt = %a

Terminal ∗ files-modules-and-programs-freq-obuild/test.out ∗ all code

Bytecode Versus Native CodeBytecode Versus Native Code

OCaml ships with two compilers: the ocamlcocamlc bytecode compiler and the ocamloptocamlopt

native-code compiler. Programs compiled with ocamlcocamlc are interpreted by a virtual

machine, while programs compiled with ocamloptocamlopt are compiled to native machine

code to be run on a speci�c operating system and processor architecture. With

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq/simple_build_fail.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq/simple_build.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-obuild/build.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-obuild/test.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 3/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

ocamlbuildocamlbuild, targets ending with .byte are build as bytecode executables, and those

ending with .native are built as native code.

Aside from performance, executables generated by the two compilers have nearly

identical behavior. There are a few things to be aware of. First, the bytecode

compiler can be used on more architectures, and has some tools that are not

available for native code. For example, the OCaml debugger only works with

bytecode (although gdbgdb, the GNU Debugger, works with OCaml native-code

applications). The bytecode compiler is also quicker than the native-code compiler.

In addition, in order to run a bytecode executable, you typically need to have OCaml

installed on the system in question. That's not strictly required, though, since you

can build a bytecode executable with an embedded runtime, using the -custom

compiler �ag.

As a general matter, production executables should usually be built using the

native-code compiler, but it sometimes makes sense to use bytecode for

development builds. And, of course, bytecode makes sense when targeting a

platform not supported by the native-code compiler. We'll cover both compilers in

more detail in Chapter 23, The Compiler Backend: Bytecode and Native code.

MULTIFILE PROGRAMS AND MODULESMULTIFILE PROGRAMS AND MODULES

Source �les in OCaml are tied into the module system, with each �le compiling down into a

module whose name is derived from the name of the �le. We've encountered modules before,

such as when we used functions like find and add from the List.Assoc module. At its simplest,

you can think of a module as a collection of de�nitions that are stored within a namespace.

Let's consider how we can use modules to refactor the implementation of freq.ml. Remember

that the variable counts contains an association list representing the counts of the lines seen so

far. But updating an association list takes time linear in the length of the list, meaning that the

time complexity of processing a �le is quadratic in the number of distinct lines in the �le.

We can �x this problem by replacing association lists with a more e�cient data structure. To do

that, we'll �rst factor out the key functionality into a separate module with an explicit interface.

We can consider alternative (and more e�cient) implementations once we have a clear interface

to program against.

We'll start by creating a �le, counter.ml, that contains the logic for maintaining the association

list used to represent the frequency counts. The key function, called touch, bumps the frequency

count of a given line by one:

open Core.Std

let touch t s =
 let count =
 match List.Assoc.find t s with
 | None -> 0
 | Some x -> x
 in
 List.Assoc.add t s (count + 1)

OCaml ∗ files-modules-and-programs-freq-with-counter/counter.ml ∗ all code

The �le counter.ml will be compiled into a module named Counter, where the name of the

module is derived automatically from the �lename. The module name is capitalized even if the

�le is not. Indeed, module names are always capitalized.

We can now rewrite freq.ml to use Counter. Note that the resulting code can still be built with

ocamlbuildocamlbuild, which will discover dependencies and realize that counter.ml needs to be

compiled:

open Core.Std

let build_counts () =
 In_channel.fold_lines stdin ~init:[] ~f:Counter.touch

let () =
 build_counts ()
 |> List.sort ~cmp:(fun (_,x) (_,y) -> Int.descending x y)
 |> (fun l -> List.take l 10)
 |> List.iter ~f:(fun (line,count) -> printf "%3d: %s\n" count line)

OCaml ∗ files-modules-and-programs-freq-with-counter/freq.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-counter/counter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-counter/freq.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 4/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

SIGNATURES AND ABSTRACT TYPESSIGNATURES AND ABSTRACT TYPES

While we've pushed some of the logic to the Counter module, the code in freq.ml can still

depend on the details of the implementation of Counter. Indeed, if you look at the de�nition of

build_counts, you'll see that it depends on the fact that the empty set of frequency counts is

represented as an empty list. We'd like to prevent this kind of dependency, so we can change the

implementation of Counter without needing to change client code like that in freq.ml.

The implementation details of a module can be hidden by attaching an interface. (Note that in the

context of OCaml, the terms interface, signature, and module type are all used interchangeably.)

A module de�ned by a �le filename.ml can be constrained by a signature placed in a �le called

filename.mli.

For counter.mli, we'll start by writing down an interface that describes what's currently

available in counter.ml, without hiding anything. val declarations are used to specify values in

a signature. The syntax of a val declaration is as follows:

val <identifier> : <type>

Syntax ∗ files-modules-and-programs/val.syntax ∗ all code

Using this syntax, we can write the signature of counter.ml as follows:

open Core.Std

(** Bump the frequency count for the given string. *)
val touch : (string * int) list -> string -> (string * int) list

OCaml ∗ files-modules-and-programs-freq-with-sig/counter.mli ∗ all code

Note that ocamlbuildocamlbuild will detect the presence of the mli �le automatically and include it in the

build.

Autogenerating mli FilesAutogenerating mli Files

If you don't want to construct an mli entirely by hand, you can ask OCaml to

autogenerate one for you from the source, which you can then adjust to �t your

needs. Here's how you can do that using corebuild:

Terminal ∗ files-modules-and-programs-freq-with-counter/infer_mli.out ∗ all code

The generated code is basically equivalent to the mli that we wrote by hand but is a

bit uglier and more verbose and, of course, has no comments. In general,

autogenerated mlis are only useful as a starting point. In OCaml, the mli is the key

place where you present and document your interface, and there's no replacement

for careful human editing and organization.

To hide the fact that frequency counts are represented as association lists, we'll need to make the

type of frequency counts abstract. A type is abstract if its name is exposed in the interface, but its

de�nition is not. Here's an abstract interface for Counter:

open Core.Std

(** A collection of string frequency counts *)
type t

(** The empty set of frequency counts *)
val empty : t

(** Bump the frequency count for the given string. *)
val touch : t -> string -> t

(** Converts the set of frequency counts to an association list. A string shows
 up at most once, and the counts are >= 1. *)
val to_list : t -> (string * int) list

OCaml ∗ files-modules-and-programs-freq-with-sig-abstract/counter.mli ∗ all code

$ corebuild counter.inferred.mli
$ cat _build/counter.inferred.mli
val touch :
 ('a, int) Core.Std.List.Assoc.t -> 'a -> ('a, int) Core.Std.List.Assoc

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/val.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig/counter.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-counter/infer_mli.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-abstract/counter.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 5/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Note that we needed to add empty and to_list to Counter, since otherwise there would be no

way to create a Counter.t or get data out of one.

We also used this opportunity to document the module. The mli �le is the place where you

specify your module's interface, and as such is a natural place to put documentation. We started

our comments with a double asterisk to cause them to be picked up by the ocamldococamldoc tool when

generating API documentation. We'll discuss ocamldococamldoc more in Chapter 22, The Compiler

Frontend: Parsing and Type Checking.

Here's a rewrite of counter.ml to match the new counter.mli:

open Core.Std

type t = (string * int) list

let empty = []

let to_list x = x

let touch t s =
 let count =
 match List.Assoc.find t s with
 | None -> 0
 | Some x -> x
 in
 List.Assoc.add t s (count + 1)

OCaml ∗ files-modules-and-programs-freq-with-sig-abstract/counter.ml ∗ all code

If we now try to compile freq.ml, we'll get the following error:

$ corebuild freq.byte
File "freq.ml", line 4, characters 42-55:
Error: This expression has type Counter.t -> string -> Counter.t
 but an expression was expected of type 'a list -> string -> 'a list
 Type Counter.t is not compatible with type 'a list
Command exited with code 2.

Terminal ∗ files-modules-and-programs-freq-with-sig-abstract/build.out ∗ all code

This is because freq.ml depends on the fact that frequency counts are represented as

association lists, a fact that we've just hidden. We just need to �x build_counts to use

Counter.empty instead of [] and Counter.to_list to get the association list out at the end for

processing and printing. The resulting implementation is shown below:

open Core.Std

let build_counts () =
 In_channel.fold_lines stdin ~init:Counter.empty ~f:Counter.touch

let () =
 build_counts ()
 |> Counter.to_list
 |> List.sort ~cmp:(fun (_,x) (_,y) -> Int.descending x y)
 |> (fun counts -> List.take counts 10)
 |> List.iter ~f:(fun (line,count) -> printf "%3d: %s\n" count line)

OCaml ∗ files-modules-and-programs-freq-with-sig-abstract-fixed/freq.ml ∗ all code

Now we can turn to optimizing the implementation of Counter. Here's an alternate and far more

e�cient implementation, based on the Map data structure in Core:

open Core.Std

type t = int String.Map.t

let empty = String.Map.empty

let to_list t = Map.to_alist t

let touch t s =
 let count =
 match Map.find t s with
 | None -> 0
 | Some x -> x
 in
 Map.add t ~key:s ~data:(count + 1)

OCaml ∗ files-modules-and-programs-freq-fast/counter.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-abstract/counter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-abstract/build.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-abstract-fixed/freq.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-fast/counter.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 6/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Note that in the preceding example we use String.Map in some places and simply Map in others.

This has to do with the fact that for some operations, like creating a Map.t, you need access to

type-specialized information, and for others, like looking something up in Map.t, you don't. This

is covered in more detail in Chapter 13, Maps and Hash Tables.

CONCRETE TYPES IN SIGNATURESCONCRETE TYPES IN SIGNATURES

In our frequency-count example, the module Counter had an abstract type Counter.t for

representing a collection of frequency counts. Sometimes, you'll want to make a type in your

interface concrete, by including the type de�nition in the interface.

For example, imagine we wanted to add a function to Counter for returning the line with the

median frequency count. If the number of lines is even, then there is no precise median, and the

function would return the lines before and after the median instead. We'll use a custom type to

represent the fact that there are two possible return values. Here's a possible implementation:

type median = | Median of string
 | Before_and_after of string * string

let median t =
 let sorted_strings = List.sort (Map.to_alist t)
 ~cmp:(fun (_,x) (_,y) -> Int.descending x y)
 in
 let len = List.length sorted_strings in
 if len = 0 then failwith "median: empty frequency count";
 let nth n = fst (List.nth_exn sorted_strings n) in
 if len mod 2 = 1
 then Median (nth (len/2))
 else Before_and_after (nth (len/2 - 1), nth (len/2));;

OCaml ∗ files-modules-and-programs-freq-median/counter.ml , continued (part 1) ∗ all code

In the preceding implementation, we use failwith to throw an exception for the case of the

empty list. We'll discuss exceptions more in Chapter 7, Error Handling. Note also that the function

fst simply returns the �rst element of any two-tuple.

Now, to expose this usefully in the interface, we need to expose both the function and the type

median with its de�nition. Note that values (of which functions are an example) and types have

distinct namespaces, so there's no name clash here. Adding the following two lines added to

counter.mli does the trick:

(** Represents the median computed from a set of strings. In the case where
 there is an even number of choices, the one before and after the median is
 returned. *)
type median = | Median of string
 | Before_and_after of string * string

val median : t -> median

OCaml ∗ files-modules-and-programs-freq-median/counter.mli , continued (part 1) ∗ all code

The decision of whether a given type should be abstract or concrete is an important one. Abstract

types give you more control over how values are created and accessed, and make it easier to

enforce invariants beyond what is enforced by the type itself; concrete types let you expose more

detail and structure to client code in a lightweight way. The right choice depends very much on

the context.

NESTED MODULESNESTED MODULES

Up until now, we've only considered modules that correspond to �les, like counter.ml. But

modules (and module signatures) can be nested inside other modules. As a simple example,

consider a program that needs to deal with multiple identi�ers like usernames and hostnames. If

you just represent these as strings, then it becomes easy to confuse one with the other.

A better approach is to mint new abstract types for each identi�er, where those types are under

the covers just implemented as strings. That way, the type system will prevent you from

confusing a username with a hostname, and if you do need to convert, you can do so using

explicit conversions to and from the string type.

Here's how you might create such an abstract type, within a submodule:

open Core.Std

module Username : sig
 type t

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-median/counter.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-median/counter.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 7/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 val of_string : string -> t
 val to_string : t -> string
end = struct
 type t = string
 let of_string x = x
 let to_string x = x
end

OCaml ∗ files-modules-and-programs/abstract_username.ml ∗ all code

Note that the to_string and of_string functions above are implemented simply as the identity

function, which means they have no runtime e�ect. They are there purely as part of the discipline

that they enforce on the code through the type system.

The basic structure of a module declaration like this is:

module <name> : <signature> = <implementation>

Syntax ∗ files-modules-and-programs/module.syntax ∗ all code

We could have written this slightly di�erently, by giving the signature its own top-level module

type declaration, making it possible to create multiple distinct types with the same underlying

implementation in a lightweight way:

open Core.Std

module type ID = sig
 type t
 val of_string : string -> t
 val to_string : t -> string
end

module String_id = struct
 type t = string
 let of_string x = x
 let to_string x = x
end

module Username : ID = String_id
module Hostname : ID = String_id

type session_info = { user: Username.t;
 host: Hostname.t;
 when_started: Time.t;
 }

let sessions_have_same_user s1 s2 =
 s1.user = s2.host

OCaml ∗ files-modules-and-programs/session_info.ml ∗ all code

The preceding code has a bug: it compares the username in one session to the host in the other

session, when it should be comparing the usernames in both cases. Because of how we de�ned

our types, however, the compiler will �ag this bug for us:

$ corebuild session_info.native
File "session_info.ml", line 24, characters 12-19:
Error: This expression has type Hostname.t
 but an expression was expected of type Username.t
Command exited with code 2.

Terminal ∗ files-modules-and-programs/build_session_info.out ∗ all code

This is a trivial example, but confusing di�erent kinds of identi�ers is a very real source of bugs,

and the approach of minting abstract types for di�erent classes of identi�ers is an e�ective way

of avoiding such issues.

OPENING MODULESOPENING MODULES

Most of the time, you refer to values and types within a module by using the module name as an

explicit quali�er. For example, you write List.map to refer to the map function in the List

module. Sometimes, though, you want to be able to refer to the contents of a module without this

explicit quali�cation. That's what the open statement is for.

We've encountered open already, speci�cally where we've written open Core.Std to get access

to the standard de�nitions in the Core library. In general, opening a module adds the contents of

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/abstract_username.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/module.syntax
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/session_info.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/build_session_info.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 8/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

that module to the environment that the compiler looks at to �nd the de�nition of various

identi�ers. Here's an example:

module M = struct let foo = 3 end;;
module M : sig val foo : int end
foo;;
Characters -1-3:
Error: Unbound value foo
open M;;

foo;;
- : int = 3

OCaml Utop ∗ files-modules-and-programs/main.topscript ∗ all code

open is essential when you want to modify your environment for a standard library like Core, but

it's generally good style to keep the opening of modules to a minimum. Opening a module is

basically a trade-o� between terseness and explicitness—the more modules you open, the fewer

module quali�cations you need, and the harder it is to look at an identi�er and �gure out where it

comes from.

Here's some general advice on how to deal with opens:

Opening modules at the toplevel of a module should be done quite sparingly, and generally

only with modules that have been speci�cally designed to be opened, like Core.Std or

Option.Monad_infix.

If you do need to do an open, it's better to do a local open. There are two syntaxes for local

opens. For example, you can write:

let average x y =
 let open Int64 in
 x + y / of_int 2;;
val average : int64 -> int64 -> int64 = <fun>

OCaml Utop ∗ files-modules-and-programs/main.topscript , continued (part 1) ∗ all code

Here, of_int and the in�x operators are the ones from the Int64 module.

There's another, even more lightweight syntax for local opens, which is particularly useful for

small expressions:

let average x y =
 Int64.(x + y / of_int 2);;
val average : int64 -> int64 -> int64 = <fun>

OCaml Utop ∗ files-modules-and-programs/main.topscript , continued (part 2) ∗ all code

An alternative to local opens that makes your code terser without giving up on explicitness is

to locally rebind the name of a module. So, when using the Counter.median type, instead of

writing:

let print_median m =
 match m with
 | Counter.Median string -> printf "True median:\n %s\n" string
 | Counter.Before_and_after (before, after) ->
 printf "Before and after median:\n %s\n %s\n" before after

OCaml ∗ files-modules-and-programs-freq-median/use_median_1.ml , continued (part 1) ∗ all code

you could write:

let print_median m =
 let module C = Counter in
 match m with
 | C.Median string -> printf "True median:\n %s\n" string
 | C.Before_and_after (before, after) ->
 printf "Before and after median:\n %s\n %s\n" before after

OCaml ∗ files-modules-and-programs-freq-median/use_median_2.ml , continued (part 1) ∗ all code

Because the module name C only exists for a short scope, it's easy to read and remember what

C stands for. Rebinding modules to very short names at the top level of your module is usually

a mistake.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-median/use_median_1.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-median/use_median_2.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 9/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

INCLUDING MODULESINCLUDING MODULES

While opening a module a�ects the environment used to search for identi�ers, including a

module is a way of actually adding new identi�ers to a module proper. Consider the following

simple module for representing a range of integer values:

module Interval = struct
 type t = | Interval of int * int
 | Empty

 let create low high =
 if high < low then Empty else Interval (low,high)
 end;;
module Interval :
 sig type t = Interval of int * int | Empty val create : int -> int -> t end

OCaml Utop ∗ files-modules-and-programs/main.topscript , continued (part 3) ∗ all code

We can use the include directive to create a new, extended version of the Interval module:

module Extended_interval = struct
 include Interval

 let contains t x =
 match t with
 | Empty -> false
 | Interval (low,high) -> x >= low && x <= high
 end;;
module Extended_interval :
 sig
 type t = Interval.t = Interval of int * int | Empty
 val create : int -> int -> t
 val contains : t -> int -> bool
 end
Extended_interval.contains (Extended_interval.create 3 10) 4;;
- : bool = true

OCaml Utop ∗ files-modules-and-programs/main.topscript , continued (part 4) ∗ all code

The di�erence between include and open is that we've done more than change how identi�ers

are searched for: we've changed what's in the module. If we'd used open, we'd have gotten a quite

di�erent result:

module Extended_interval = struct
 open Interval

 let contains t x =
 match t with
 | Empty -> false
 | Interval (low,high) -> x >= low && x <= high
 end;;
module Extended_interval :
 sig val contains : Extended_interval.t -> int -> bool end
Extended_interval.contains (Extended_interval.create 3 10) 4;;
Characters 28-52:
Error: Unbound value Extended_interval.create

OCaml Utop ∗ files-modules-and-programs/main.topscript , continued (part 5) ∗ all code

To consider a more realistic example, imagine you wanted to build an extended version of the

List module, where you've added some functionality not present in the module as distributed in

Core. include allows us to do just that:

open Core.Std

(* The new function we're going to add *)
let rec intersperse list el =
 match list with
 | [] | [_] -> list
 | x :: y :: tl -> x :: el :: intersperse (y::tl) el

(* The remainder of the list module *)
include List

OCaml ∗ files-modules-and-programs/ext_list.ml ∗ all code

Now, how do we write an interface for this new module? It turns out that include works on

signatures as well, so we can pull essentially the same trick to write our mli. The only issues is

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/ext_list.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 10/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

that we need to get our hands on the signature for the List module. This can be done using

module type of, which computes a signature from a module:

open Core.Std

(* Include the interface of the list module from Core *)
include (module type of List)

(* Signature of function we're adding *)
val intersperse : 'a list -> 'a -> 'a list

OCaml ∗ files-modules-and-programs/ext_list.mli ∗ all code

Note that the order of declarations in the mli does not need to match the order of declarations in

the ml. The order of declarations in the ml mostly matters insofar as it a�ects which values are

shadowed. If we wanted to replace a function in List with a new function of the same name, the

declaration of that function in the ml would have to come after the include List declaration.

We can now use Ext_list as a replacement for List. If we want to use Ext_list in preference

to List in our project, we can create a �le of common de�nitions:

module List = Ext_list

OCaml ∗ files-modules-and-programs/common.ml ∗ all code

And if we then put open Common after open Core.Std at the top of each �le in our project, then

references to List will automatically go to Ext_list instead.

COMMON ERRORS WITH MODULESCOMMON ERRORS WITH MODULES

When OCaml compiles a program with an ml and an mli, it will complain if it detects a mismatch

between the two. Here are some of the common errors you'll run into.

Type MismatchesType Mismatches

The simplest kind of error is where the type speci�ed in the signature does not match the type in

the implementation of the module. As an example, if we replace the val declaration in

counter.mli by swapping the types of the �rst two arguments:

(** Bump the frequency count for the given string. *)
val touch : string -> t -> t

OCaml ∗ files-modules-and-programs-freq-with-sig-mismatch/counter.mli , continued (part 1) ∗ all code

and we try to compile, we'll get the following error:

$ corebuild freq.byte

Terminal ∗ files-modules-and-programs-freq-with-sig-mismatch/build.out ∗ all code

Missing De�nitionsMissing De�nitions

We might decide that we want a new function in Counter for pulling out the frequency count of a

given string. We can update the mli by adding the following line:

val count : t -> string -> int

OCaml ∗ files-modules-and-programs-freq-with-missing-def/counter.mli , continued (part 1) ∗ all code

Now, if we try to compile without actually adding the implementation, we'll get this error:

$ corebuild freq.byte
File "counter.ml", line 1:
Error: The implementation counter.ml
 does not match the interface counter.cmi:
 The field `count' is required but not provided
Command exited with code 2.

Terminal ∗ files-modules-and-programs-freq-with-missing-def/build.out ∗ all code

A missing type de�nition will lead to a similar error.

Type De�nition MismatchesType De�nition Mismatches

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/ext_list.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs/common.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-mismatch/counter.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-sig-mismatch/build.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-missing-def/counter.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-missing-def/build.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 11/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Type de�nitions that show up in an mli need to match up with corresponding de�nitions in the

ml. Consider again the example of the type median. The order of the declaration of variants

matters to the OCaml compiler, so the de�nition of median in the implementation listing those

options in a di�erent order:

(** Represents the median computed from a set of strings. In the case where
 there is an even number of choices, the one before and after the median is
 returned. *)
type median = | Before_and_after of string * string
 | Median of string

OCaml ∗ files-modules-and-programs-freq-with-type-mismatch/counter.mli , continued (part 1) ∗ all code

will lead to a compilation error:

$ corebuild freq.byte
File "counter.ml", line 1:
Error: The implementation counter.ml
 does not match the interface counter.cmi:
 Type declarations do not match:
 type median = Median of string | Before_and_after of string * string
 is not included in
 type median = Before_and_after of string * string | Median of string
 File "counter.ml", line 18, characters 5-84: Actual declaration
 Fields number 1 have different names, Median and Before_and_after.
Command exited with code 2.

Terminal ∗ files-modules-and-programs-freq-with-type-mismatch/build.out ∗ all code

Order is similarly important to other type declarations, including the order in which record �elds

are declared and the order of arguments (including labeled and optional arguments) to a

function.

Cyclic DependenciesCyclic Dependencies

In most cases, OCaml doesn't allow cyclic dependencies, i.e., a collection of de�nitions that all

refer to one another. If you want to create such de�nitions, you typically have to mark them

specially. For example, when de�ning a set of mutually recursive values (like the de�nition of

is_even and is_odd in the section called “Recursive Functions”), you need to de�ne them using

let rec rather than ordinary let.

The same is true at the module level. By default, cyclic dependencies between modules are not

allowed, and cyclic dependencies among �les are never allowed. Recursive modules are possible

but are a rare case, and we won't discuss them further here.

The simplest example of a forbidden circular reference is a module referring to its own module

name. So, if we tried to add a reference to Counter from within counter.ml:

let singleton l = Counter.touch Counter.empty

OCaml ∗ files-modules-and-programs-freq-cyclic1/counter.ml , continued (part 1) ∗ all code

we'll see this error when we try to build:

$ corebuild freq.byte
File "counter.ml", line 18, characters 18-31:
Error: Unbound module Counter
Command exited with code 2.

Terminal ∗ files-modules-and-programs-freq-cyclic1/build.out ∗ all code

The problem manifests in a di�erent way if we create cyclic references between �les. We could

create such a situation by adding a reference to Freq from counter.ml, e.g., by adding the

following line:

let _build_counts = Freq.build_counts

OCaml ∗ files-modules-and-programs-freq-cyclic2/counter.ml , continued (part 1) ∗ all code

In this case, ocamlbuildocamlbuild (which is invoked by the corebuildcorebuild script) will notice the error and

complain explicitly about the cycle:

$ corebuild freq.byte
Circular dependencies: "freq.cmo" already seen in

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-type-mismatch/counter.mli
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-with-type-mismatch/build.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html#recursive-functions
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-cyclic1/counter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-cyclic1/build.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-cyclic2/counter.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 12/13

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 ["counter.cmo"; "freq.cmo"]

Terminal ∗ files-modules-and-programs-freq-cyclic2/build.out ∗ all code

DESIGNING WITH MODULESDESIGNING WITH MODULES

The module system is a key part of how an OCaml program is structured. As such, we'll close this

chapter with some advice on how to think about designing that structure e�ectively.

Expose Concrete Types RarelyExpose Concrete Types Rarely

When designing an mli, one choice that you need to make is whether to expose the concrete

de�nition of your types or leave them abstract. Most of the time, abstraction is the right choice,

for two reasons: it enhances the �exibility of your design, and it makes it possible to enforce

invariants on the use of your module.

Abstraction enhances �exibility by restricting how users can interact with your types, thus

reducing the ways in which users can depend on the details of your implementation. If you

expose types explicitly, then users can depend on any and every detail of the types you choose. If

they're abstract, then only the speci�c operations you want to expose are available. This means

that you can freely change the implementation without a�ecting clients, as long as you preserve

the semantics of those operations.

In a similar way, abstraction allows you to enforce invariants on your types. If your types are

exposed, then users of the module can create new instances of that type (or if mutable, modify

existing instances) in any way allowed by the underlying type. That may violate a desired

invariant i.e., a property about your type that is always supposed to be true. Abstract types allow

you to protect invariants by making sure that you only expose functions that preserves your

invariants.

Despite these bene�ts, there is a trade-o� here. In particular, exposing types concretely makes it

possible to use pattern-matching with those types, which as we saw in Chapter 3, Lists and

Patterns is a powerful and important tool. You should generally only expose the concrete

implementation of your types when there's signi�cant value in the ability to pattern match, and

when the invariants that you care about are already enforced by the data type itself.

Design for the Call SiteDesign for the Call Site

When writing an interface, you should think not just about how easy it is to understand the

interface for someone who reads your carefully documented mli �le, but more importantly, you

want the call to be as obvious as possible for someone who is reading it at the call site.

The reason for this is that most of the time, people interacting with your API will be doing so by

reading and modifying code that uses the API, not by reading the interface de�nition. By making

your API as obvious as possible from that perspective, you simplify the lives of your users.

There are many ways of improving readability at the call site. One example is labeled arguments

(discussed in the section called “Labeled Arguments”), which act as documentation that is

available at the call site.

You can also improve readability simply by choosing good names for your functions, variant tags

and record �elds. Good names aren't always long, to be clear. If you wanted to write an

anonymous function for doubling a number: (fun x -> x * 2), a short variable name like x is

best. A good rule of thumb is that names that have a small scope should be short, whereas names

that have a large scope, like the name of a function in an a module interface, should be longer and

more explicit.

There is of course a tradeo� here, in that making your APIs more explicit tends to make them

more verbose as well. Another useful rule of thumb is that more rarely used names should be

longer and more explicit, since the cost of concision and the bene�t of explicitness become more

important the more often a name is used.

Create Uniform InterfacesCreate Uniform Interfaces

Designing the interface of a module is a task that should not be thought of in isolation. The

interfaces that appear in your codebase should play together harmoniously. Part of achieving that

is standardizing aspects of those interfaces.

Core itself is a library that works hard to create uniform interfaces. Here are some of the

guidelines that are used in Core.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-cyclic2/build.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html#labeled-arguments

15/01/2019 Chapter 4. Files, Modules, and Programs / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html 13/13

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts

1. A Guided Tour
2. Variables and Functions
3. Lists and Patterns
4. Files, Modules, and Programs
5. Records
6. Variants
7. Error Handling
8. Imperative Programming
9. Functors
10. First-Class Modules
11. Objects
12. Classes

II. Tools and Techniques
III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

A module for (almost) every type. You should mint a module for almost every type in your

program, and the primary type of a given module should be called t.

Put t �rst. If you have a module M whose primary type is M.t, the functions in M that take a

value of M.t should take it as their �rst argument.

Functions that routinely throw an exception should end in _exn. Otherwise, errors should be

signaled by returning an option or an Or_error.t (both of which are discussed in Chapter 7,

Error Handling).

There are also standards in Core about what the type signature for speci�c functions should be.

For example, the signature for map is always essentially the same, no matter what the underlying

type it is applied to. This kind of function-by-function API uniformity is achieved through the use

of signature includes, which allow for di�erent modules to share components of their interface.

This approach is described in the section called “Using Multiple Interfaces”.

Core's standards may or may not �t your projects, but you can improve the usability of your

codebase by �nding some consistent set of standards to apply.

Interfaces before implementationsInterfaces before implementations

OCaml's concise and �exible type language enables a type-oriented approach to software design.

Such an approach involves thinking through and writing out the types you're going to use before

embarking on the implementation itself.

This is a good approach both when working in the core language, where you would write your

type de�nitions before writing the logic of your computations, as well as at the module level,

where you would write a �rst draft of your mli before working on the ml.

Of course, the design process goes in both directions. You'll often �nd yourself going back and

modifying your types in response to things you learn by working on the implementation. But

types and signatures provide a lightweight tool for constructing a skeleton of your design in a

way that helps clarify your goals and intent, before you spend a lot of time and e�ort �eshing it

out.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html
https://v1.realworldocaml.org/v1/en/html/variables-and-functions.html
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
https://v1.realworldocaml.org/v1/en/html/records.html
https://v1.realworldocaml.org/v1/en/html/variants.html
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html
https://v1.realworldocaml.org/v1/en/html/functors.html
https://v1.realworldocaml.org/v1/en/html/first-class-modules.html
https://v1.realworldocaml.org/v1/en/html/objects.html
https://v1.realworldocaml.org/v1/en/html/classes.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Ffiles-modules-and-programs.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/error-handling.html
https://v1.realworldocaml.org/v1/en/html/functors.html#using-multiple-interfaces
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
https://v1.realworldocaml.org/v1/en/html/records.html

