

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

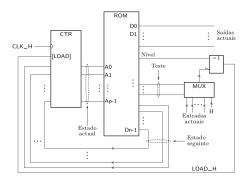
Versão 4.0 - Português

Aula Nº 23:

Título: Máquinas de Estado Microprogramadas: Endereçamento Explícito/Implícito

Sumário: Projecto de máquinas de estados microprogramadas com endereçamento

explícito e com endereçamento implícito; Exemplos.


2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Máquinas de Estado Microprogramadas: Endereçamento Explícito/Implícito

Aula Anterior

Na aula anterior:

- ▶ Projecto de máquinas de estados microprogramadas:
 - Circuito de dados
 - Circuito de controlo
- ▶ Implementação com ROMs
- ▶ Exemplos

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO			
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos				
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0			
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	LO			
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1			
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) - Som., Comp., etc.	L1			
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Linguagens de Descrição e Simulação de Circuitos Digitais	P2			
26/Out a 31/Out	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	L2			
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3			
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3			
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4			
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4			
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5			
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5			
14/Dez a 18/Dez	P6	P6	L6			

Prof. Nuno Roma Sistemas Digitais 2015/16

Sumário

■ Tema da aula de hoje:

- ▶ Projecto de máquinas de estados microprogramadas:
 - com endereçamento explícito
 - com endereçamento implícito
- ▶ Exemplos

■ Bibliografia:

- M. Mano, C. Kime: Secção 7.13
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.5
- G. Arroz, C. Sêrro, "Sistemas Digitais: Apontamentos das Aulas Teóricas", IST, 2005: Secções 19.1 a 19.3 (disponível no Fenix)

Circuito de Dados e Circuito de Controlo

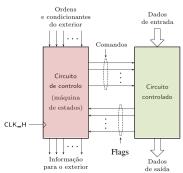
Circuito de Dados e Circuito de Controlo (Revisão)

- Os sistemas digitais com alguma complexidade tornam-se difíceis de ser projectados como vulgares máquinas sequenciais síncronas, porque:
 - Diagramas de estados / tabela de estados de grande dimensão
 - Elevado número de:
 - o Entradas
 - o Saídas
 - o Estados.

Solução: organizar esses sistemas hierarquicamente, estabelecendo uma divisão clara entre:

- circuito de dados dá suporte ao fluxo e à manipulação de dados;
- circuito de controlo controla o circuito de dados.

Prof. Nuno Roma

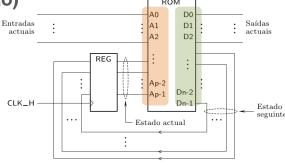

Sistemas Digitais 2015/16

5

Circuito de Dados e Circuito de Controlo

Circuito de Dados e Circuito de Controlo (Revisão)

- ▶ Em geral:
 - O circuito de dados (controlado) é formado por um conjunto de módulos simples, tais como contadores, registos, multiplexeres, somadores, comparadores, memórias, algumas portas lógicas, etc, podendo ser combinatório ou sequencial.
 - O circuito de controlo é sempre um circuito sequencial síncrono.


Prof. Nuno Roma

Controlo por ROM

■ Controlo por ROM (Revisão)

- ► A memória **ROM** substitui a lógica combinatória para gerar:
 - Estado seguinte
 - Saída do circuito

- ► Entradas da ROM (barramento de endereços):
 - Entradas externas da máquina de estados
 - Estado actual
- ► Saídas da ROM (barramento de dados):
 - Saídas para o exterior da máquina de estados
 - Saídas (comandos) internas + estado seguinte

Prof. Nuno Roma

Sistemas Digitais 2015/16

7

Exemplo

Exemplo (simples)

- ▶ 3 estados:
 - A $(Q_1Q_0=00)$
 - B (Q₁Q₀=01)
 - C $(Q_1Q_0=10)$
 - ▶ 2 entradas: I0 e I1
 - 2 saídas: X e Y
- X_H C Y_H B H 10_H L

► Formato da palavra na ROM:

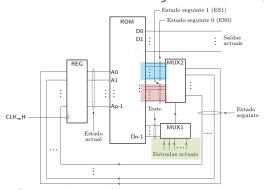
- ▶ Dimensão mínima da ROM:
 - 12 endereços de 4 bits

Como reduzir a dimensão da ROM (nº de endereços)?

Prof. Nuno Roma

Sistemas Digitais 2015/16

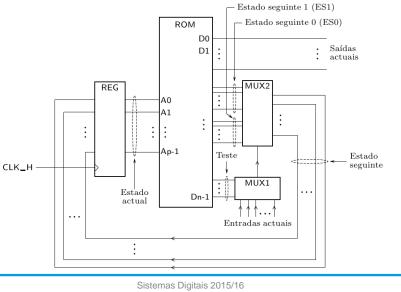
CONTROLO POR ROM COM ENDEREÇAMENTO EXPLÍCITO


Prof. Nuno Roma Sistemas Digitais 2015/16

Controlo por ROM com Endereçamento Explícito

9

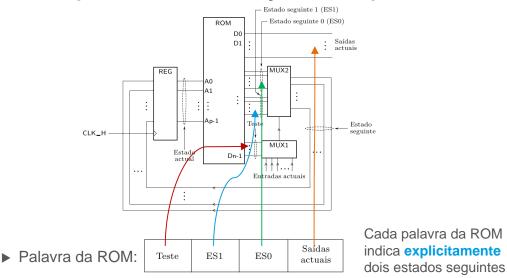
Controlo por ROM com Endereçamento Explícito


- ▶ Para reduzir o número de endereços, as entradas externas são retiradas do barramento de endereços. Consequências:
 - Eliminar o efeito das entradas nas saídas, transformando a máquina de Mealy em máquina de Moore;
 - Cada estado actual só pode evoluir para um de dois estados seguintes (incluindo, eventualmente, o próprio).

Prof. Nuno Roma Sistemas Digitais 2015/16 10

Controlo por ROM com **Endereçamento Explícito**

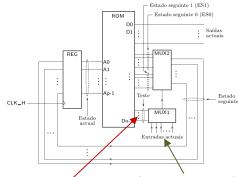
■ Controlo por ROM com Endereçamento Explícito


Prof. Nuno Roma

11

Controlo por ROM com Endereçamento Explícito

Controlo por ROM com Endereçamento Explícito

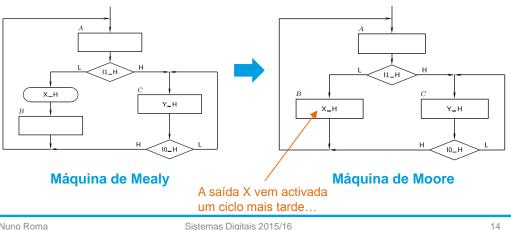

Prof. Nuno Roma

Sistemas Digitais 2015/16

Controlo por ROM com **Endereçamento Explícito**

Controlo por ROM com Endereçamento Explícito

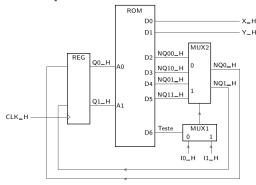
- ▶ O MUX1 tem as suas entradas ligadas às entradas primárias do circuito de controlo. O campo de teste da ROM permite, para cada estado actual, escolher a entrada ou combinações de entradas a testar.
 - Se a entrada seleccionada tiver o valor 0, o estado seguinte escolhido é o que vier indicado no campo ES0;
 - No caso contrário, será o estado seguinte ES1.


Prof. Nuno Roma Sistemas Digitais 2015/16 13

Exemplo

Exemplo (simples)

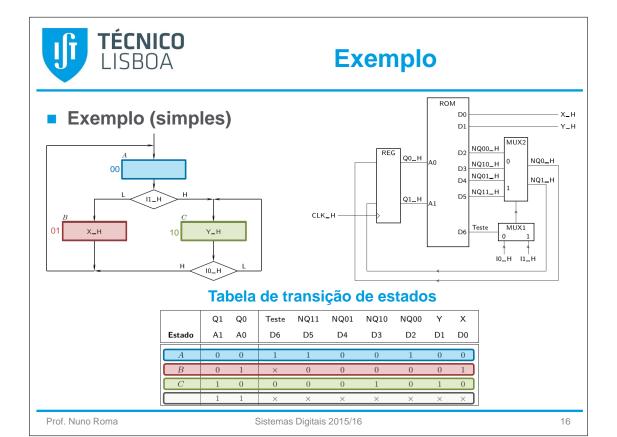
▶ O fluxograma original (máq. Mealy) vai ter de ser transformado, de modo a assumir um comportamento do tipo máquina de **Moore**:



Sistemas Digitais 2015/16 Prof. Nuno Roma

Exemplo (simples)

▶ Diagrama de blocos de um controlador implementado com ROM com endereçamento explícito:



▶ Formato de cada palavra da ROM:

Prof. Nuno Roma

Sistemas Digitais 2015/16

Exemplo (simples)

Tabela de transição de estados

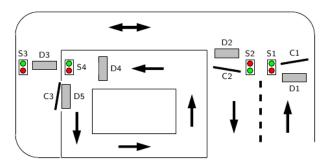
	Q1	Q0	Teste	NQ11	NQ01	NQ10	NQ00	Υ	Χ
Estado	A1	Α0	D6	D5	D4	D3	D2	D1	D0
A	0	0	1	1	0	0	1	0	0
В	0	1	×	0	0	0	0	0	1
C	1	0	0	0	0	1	0	1	0
	1	1	×	×	×	×	×	×	×

Conteúdo da ROM

Endereço	Dados
0h	1100100
1h	0000001
2h	0001010
3h	0000000

- ► Circuito controlador original:
 - 12 endereços de 4 bits (48 bits) → Mem. normalizada: 16x4 bits
- ► Circuito controlador com endereçamento explícito da ROM:
 - 3 endereços de 7 bits (21 bits) → Mem. normalizada: 4x8 bits

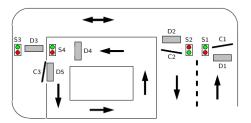
Prof. Nuno Roma


Sistemas Digitais 2015/16

17

Exemplo

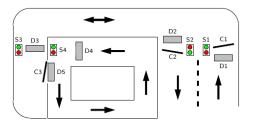
Exemplo: acesso a um parque de estacionamento



- O acesso faz-se por uma via de sentido único, controlada na entrada e na saída pelas <u>cancelas</u> C1 a C3, pelos <u>semáforos</u> S1 a S4, e pelos <u>sensores</u> D1 a D5.
- ▶ O controlador contém um contador ascendente/descendente, que guarda a informação sobre o <u>número de carros estacionados no parque</u>.

Prof. Nuno Roma Sistemas Digitais 2015/16

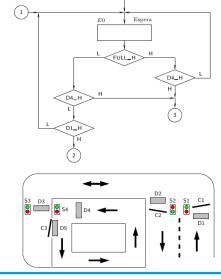
■ Exemplo: acesso a um parque de estacionamento

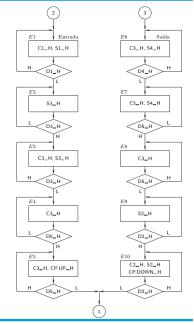

- ► Funcionamento:
 - A saída é detectada pela presença de um carro que pisa D4. Se não há entrada em curso, o semáforo S4 fica verde e a cancela C3 abre. Em seguida, espera-se que o carro pise D5 e saia, para se fechar a cancela e colocar o semáforo S4 em vermelho. Entretanto, coloca-se o semáforo S2 a verde. Quando o carro pisa D2, abre-se C2, que se mantém aberta enquanto a viatura estiver a pisar D2. Quando o carro deixar de pisar D2, o semáforo S2 passa a vermelho e C2 fecha. Nessa altura desconta-se uma unidade no contador de lugares ocupados no parque.

Prof. Nuno Roma Sistemas Digitais 2015/16 19

Exemplo

■ Exemplo: acesso a um parque de estacionamento


20

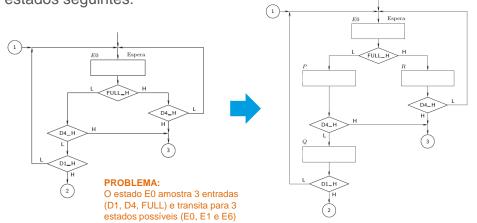

- ► Funcionamento:
 - A entrada começa com um carro a pisar D1. Se não há saída em curso, o semáforo S1 fica verde e a cancela C1 abre, ficando aberta enquanto o carro é detectado por D1. Quando o carro deixa D1, S3 fica a verde, e quando chega a D3 a cancela C3 é aberta e o carro entra, passando S3 a vermelho e ficando o circuito à espera que D5 seja pisado. Só depois de D5 deixar de ser pisado é que C3 fecha. Nessa altura, o contador é incrementado.

Prof. Nuno Roma Sistemas Digitais 2015/16

■ Fluxograma do circuito de controlo

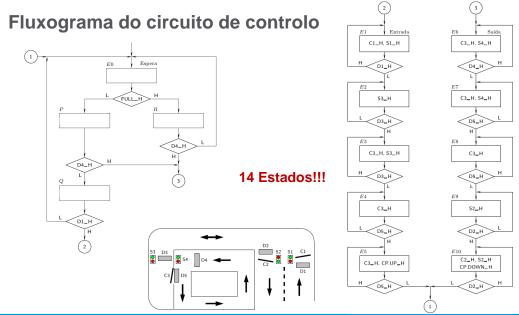
Prof. Nuno Roma

Sistemas Digitais 2015/16


21

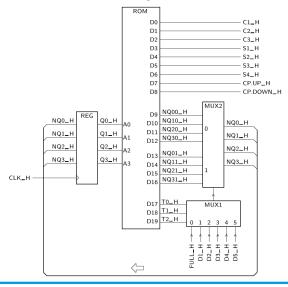
Exemplo

Fluxograma do circuito de controlo


▶ É necessário acrescentar alguns estados para garantir que, de qualquer estado actual, apenas se prossegue para um de dois estados seguintes:

Prof. Nuno Roma

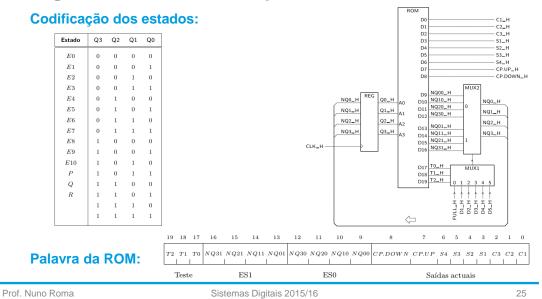
Sistemas Digitais 2015/16


Sistemas Digitais 2015/16

Prof. Nuno Roma

Exemplo

Diagrama de blocos da máquina de estados


Prof. Nuno Roma

Sistemas Digitais 2015/16

24

Diagrama de blocos da máquina de estados

Exemplo

26

Diagrama de blocos da máquina de estados

Tabela de Transição de Estados

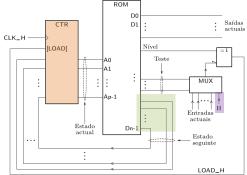
						Teste			ES	1			ES	0			S	aídas	acti	ıais				
	Q3	Q2	Q1	Q0	T2	Т1	T0	NQ31	NQ21	NQ11	NQ01	NQ30	NQ20	NQ10	NQ00	CP.DOWN	CP.UP	S4	S3	S2	S1	С3	C2	C1
Estado	A3	A2	Α1	A0	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
E0	0	0	0	0	0	0	0	1	1	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0
E1	0	0	0	1	0	0	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	1
E2	0	0	1	0	0	1	1	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0
E3	0	0	1	1	0	1	1	0	0	1	1	0	1	0	0	0	0	0	1	0	0	1	0	0
E4	0	1	0	0	1	0	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0
E5	0	1	0	1	1	0	1	0	1	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0
E6	0	1	1	0	1	0	0	0	1	1	0	0	1	1	1	0	0	1	0	0	0	1	0	0
E7	0	1	1	1	1	0	1	1	0	0	0	0	1	1	1	0	0	1	0	0	0	1	0	0
E8	1	0	0	0	1	0	1	1	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
E9	1	0	0	1	0	1	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0	0
E10	1	0	1	0	0	1	0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	0	1	0
P	1	0	1	1	1	0	0	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0
Q	1	1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
R	1	1	0	1	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	1	1	1	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
_	1	1	1	1	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×

Dimensão da ROM: 16 endereços de 20 bits (320 bits)

Prof. Nuno Roma Sistemas Digitais 2015/16

CONTROLO POR ROM COM ENDEREÇAMENTO IMPLÍCITO

Prof. Nuno Roma Sistemas Digitais 2015/16 27


Controlo por ROM com Endereçamento Implícito

■ Controlo por ROM com Endereçamento Implícito

ROM DO DI Estado seguinte 0 (ESO) Saídas actuais AP-1 Teste Estado seguinte 0 (ESO) MUX2 AP-1 Teste Estado seguinte 0 (ESO)

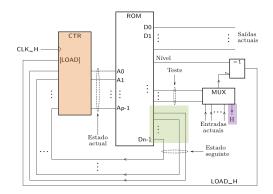
Endereçamento Explícito

Endereçamento Implícito

- Para reduzir as dimensões da ROM, um dos endereços de estado seguinte está implícito: Estado Seguinte = Estado Actual + 1
 - O registo é substituído por um contador com carregamento paralelo.

Prof. Nuno Roma Sistemas Digitais 2015/16 28

Controlo por ROM com Endereçamento Implícito


Controlo por ROM com Endereçamento Implícito

Alterações:

- O registo é substituído por um contador com carregamento paralelo.
- O fluxograma é ajustado de modo a garantir que cada estado evolui para:
 - Estado seguinte da contagem: EstadoSeguinte=EstadoActual+1

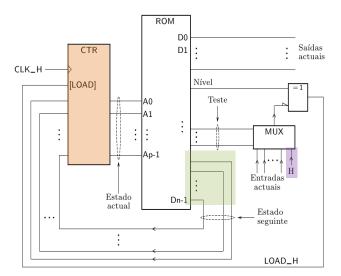
ou

 Saltar para um outro estado qualquer, n\u00e3o imediatamente a seguir em termos de contagem

Não é necessário ter dois campos de estado seguinte (ES0 e ES1) na ROM

Palavras mais curtas

Prof. Nuno Roma


Sistemas Digitais 2015/16

29

Controlo por ROM com Endereçamento Implícito

■ Controlo por ROM com Endereçamento Implícito

Prof. Nuno Roma

Sistemas Digitais 2015/16

Controlo por ROM com Endereçamento Implícito

Controlo por ROM com Endereçamento Implícito

- ▶ Modos de contagem:
 - [INC] O estado seguinte corresponde ao valor seguinte da contagem:

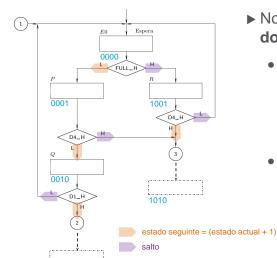
Estado Seguinte = Estado Actual + 1

[LOAD] - O estado seguinte corresponde a um estado que não corresponde ao estado seguinte de <u>contagem</u>:

Estado Seguinte = Outro Estado (salto)

- o Salto condicional depende do valor de uma variável de entrada:
 - campo Teste selecciona a variável de entrada;
 - campo Nível decide se o salto se deve efectuar quando ela tiver o valor 1 ou o valor 0;
- Salto incondicional:
 - Selecção da entrada H do MUX (sempre activa);
 - campo Nível a 1.

Prof. Nuno Roma


Sistemas Digitais 2015/16

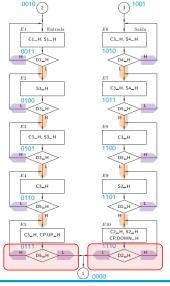
31

Exemplo

Exemplo: acesso a um parque de estacionamento

- Novos cuidados a ter na codificação dos estados:
 - Sempre que possível: é necessário garantir que o estado seguinte a cada estado corresponde à codificação dada por:

estado seguinte = (estado actual + 1);


 <u>Caso não seja possível</u>: codificar com um salto

Prof. Nuno Roma

Sistemas Digitais 2015/16

■ Exemplo: acesso a um parque de estacionamento

PROBLEMA:

Os estados E5 e E10 transitam sempre através de um salto!!!

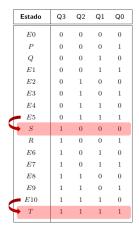
Prof. Nuno Roma

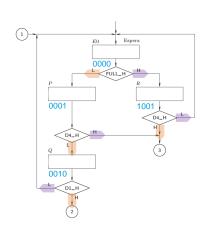
Sistemas Digitais 2015/16

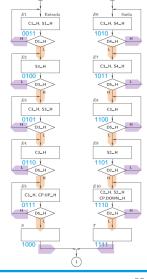
33

Exemplo

■ Exemplo: acesso a um parque de estacionamento



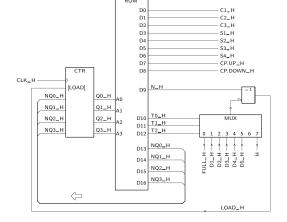

Prof. Nuno Roma


Sistemas Digitais 2015/16

Exemplo: acesso a um parque de estacionamento

Prof. Nuno Roma

Sistemas Digitais 2015/16


35

Exemplo

■ Exemplo: acesso a um parque de estacionamento

Diagrama de blocos:

Palavra da ROM:

NNQ3 NQ2 NQ1 NQ0 T2T1T0CP.DOWN CP.UP S4 S3 S2 S1 C3 C2 C1 Saídas actuais

Prof. Nuno Roma

Sistemas Digitais 2015/16

Diagrama de blocos da máquina de estados

Tabela de Transição de Estados

	rabola do Transigao do																				
					ES			Teste Nível			Saídas actuais										
	Q3	Q2	Q1	Q0	NQ3	NQ2	NQ1	NQ0	T2	Т1	T0	N	CP.DOWN	CP.UP	S4	S3	S2	S1	С3	C2	C1
Estado	А3	A2	Α1	A0	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
E0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
P	0	0	0	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0
Q	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
E1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	0	1	0	1	1	0	1
E2	0	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0
E3	0	1	0	1	0	1	0	1	0	1	1	1	0	0	0	1	0	0	1	0	0
E4	0	1	1	0	0	1	1	0	1	0	1	0	0	0	0	0	0	0	1	0	0
E5	0	1	1	1	0	1	1	1	1	0	1	1	0	1	0	0	0	0	1	0	0
S	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
R	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
E6	1	0	1	0	1	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	0
E7	1	0	1	1	1	0	1	1	1	0	1	1	0	0	1	0	0	0	1	0	0
E8	1	1	0	0	1	1	0	0	1	0	1	1	0	0	0	0	0	0	1	0	0
E9	1	1	0	1	1	1	0	1	0	1	0	0	0	0	0	0	1	0	0	0	0
E10	1	1	1	0	1	1	1	0	0	1	0	1	1	0	0	0	1	0	0	1	0
T	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0

Dimensão da ROM: 16 endereços de 17 bits (272 bits)

Prof. Nuno Roma Sistemas Digitais 2015/16 37

Próxima Aula

Tema da Próxima Aula:

- ▶ Circuitos de Controlo, Transferência e Processamento de Dados
- ▶ Exemplo de uma arquitectura simples de um processador

Prof. Nuno Roma

Sistemas Digitais 2015/16

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16