
15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 1/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 14. Command-Line ParsingChapter 14. Command-Line Parsing
Many of the OCaml programs that you'll write will end up as binaries that need to be run from a

command prompt. Any nontrivial command line should support a collection of basic features:

Parsing of command-line arguments

Generation of error messages in response to incorrect inputs

Help for all the available options

Interactive autocompletion

It's tedious and error-prone to code all of this manually for every program you write. Core

provides the Command library, which simpli�es all of this by letting you declare all your

command-line options in one place and by deriving all of the above functionality from these

declarations.

Command is simple to use for simple applications but also scales well as your needs grow more

complex. In particular, Command provides a sophisticated subcommand mode that groups

related commands together as the complexity of your user interface grows. You may already be

familiar with this command-line style from the Git or Mercurial version control systems.

In this chapter, we'll:

Learn how to use Command to construct basic and grouped command-line interfaces

We will build simple equivalents to the cryptographic md5 and shasum utilities

Demonstrate how functional combinators can be used to declare complex command-line

interfaces in a type-safe and elegant way

BASIC COMMAND-LINE PARSINGBASIC COMMAND-LINE PARSING

Let's start by working through a clone of the md5sum command that is present on most Linux

installations (the equivalent command on Mac OS X is simply md5). The following function

de�ned below reads in the contents of a �le, applies the MD5 one-way cryptographic hash

function to the data, and outputs an ASCII hex representation of the result:

open Core.Std

let do_hash file =
 In_channel.with_file file ~f:(fun ic ->
 let open Cryptokit in
 hash_channel (Hash.md5 ()) ic
 |> transform_string (Hexa.encode ())
 |> print_endline
)

OCaml ∗ command-line-parsing/basic_md5.ml ∗ all code

The do_hash function accepts a filename parameter and prints the human-readable MD5 string

to the console standard output. The �rst step toward turning this function into a command-line

program is to declare all the possible command-line arguments in a speci�cation. Command.Spec

de�nes combinators that can be chained together to de�ne optional �ags and positional

arguments, what types they should map to, and whether to take special actions (such as pausing

for interactive input) if certain inputs are encountered.

Anonymous ArgumentsAnonymous Arguments

Let's build the speci�cation for a single argument that is passed directly on the command line.

This is known as an anonymous argument:

let spec =
 let open Command.Spec in
 empty
 +> anon ("filename" %: string)

OCaml ∗ command-line-parsing/basic_md5.ml , continued (part 1) ∗ all code

The Command.Spec module de�nes the tools you'll need to build up a command-line

speci�cation. We start with the empty value and add parameters to that using the +> combinator.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 2/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

(Both of these values come from Command.Spec.)

In this case, we de�ned a single anonymous argument called filename, which takes a value of

type string. Anonymous parameters are created using the %: operator, which binds a textual

name (used in the help text to identify the parameter) to an OCaml conversion function that

parses the command-line string fragments into a higher-level OCaml data type. In the preceding

example, this is just Command.Spec.string, but we'll see more complex conversion options later

in the chapter.

De�ning Basic CommandsDe�ning Basic Commands

Once we've de�ned a speci�cation, we need to put it to work on real input. The simplest way is to

directly create a command-line interface via the Command.basic module:

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 spec
 (fun filename () -> do_hash filename)

OCaml ∗ command-line-parsing/basic_md5.ml , continued (part 2) ∗ all code

Command.basic de�nes a complete command-line interface that takes the following extra

arguments, in addition to the ones de�ned in the speci�cation:

summary

A required one-line description to go at the top of the command help screen.

readme

For longer help text when the command is called with -help. The readme argument is a function

that is only evaluated when the help text is actually needed.

The speci�cation and the callback function follow as nonlabeled arguments.

The callback function is where all the work happens after the command-line parsing is complete.

This function is applied with the arguments containing the parsed command-line values, and it

takes over as the main thread of the application. The callback's arguments are passed in the same

order as they were bound in the speci�cation (using the +> operator).

The Extra unit Argument to CallbacksThe Extra unit Argument to Callbacks

The preceding callback needs an extra unit argument after filename. This is to

ensure that speci�cations can work even when they are empty (i.e. the

Command.Spec.empty value).

Every OCaml function needs at least one argument, so the �nal unit guarantees

that it will not be evaluated immediately as a value if there are no other arguments.

Running Basic CommandsRunning Basic Commands

Once we've de�ned the basic command, running it is just one function call away:

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5.ml , continued (part 3) ∗ all code

Command.run takes a couple of optional arguments that are useful to identify which version of

the binary you are running in production. You'll need to install Cryptokit via opam install

cryptokit before building this example. Once that's completed, run the following to compile the

binary:

$ corebuild -pkg cryptokit basic_md5.native

Terminal ∗ command-line-parsing/build_basic_md5.out ∗ all code

You can now query the version information for the binary you just compiled:

$./basic_md5.native -version
1.0
$./basic_md5.native -build-info
RWO

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/build_basic_md5.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 3/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Terminal ∗ command-line-parsing/get_basic_md5_version.out ∗ all code

The versions that you see in the output were de�ned via the optional arguments to Command.run.

You can leave these blank in your own programs or get your build system to generate them

directly from your version control system (e.g., by running hg id to generate a build revision

number, in the case of Mercurial):

$./basic_md5.native
Generate an MD5 hash of the input data

 basic_md5.native FILENAME

More detailed information

=== flags ===

 [-build-info] print info about this build and exit
 [-version] print the version of this build and exit
 [-help] print this help text and exit
 (alias: -?)

missing anonymous argument: FILENAME

Terminal ∗ command-line-parsing/get_basic_md5_help.out ∗ all code

When we invoke this binary without any arguments, it helpfully displays all of the command-line

options available, along with a message to the standard error that informs you that a required

argument filename is missing.

If you do supply the filename argument, then do_hash is called with the argument and the MD5

output is displayed to the standard output:

$./basic_md5.native ./basic_md5.native
70542622b37dd76c09296bc86dac5dec

Terminal ∗ command-line-parsing/run_basic_md5.out ∗ all code

And that's all it took to build our little MD5 utility! Here's a complete version of the example we

just walked through, made slightly more succinct by removing intermediate variables:

open Core.Std

let do_hash file () =
 In_channel.with_file file ~f:(fun ic ->
 let open Cryptokit in
 hash_channel (Hash.md5 ()) ic
 |> transform_string (Hexa.encode ())
 |> print_endline
)

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon ("filename" %: string))
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_succinct.ml ∗ all code

Now that we have the basics in place, the rest of the chapter will examine some of the more

advanced features of Command.

ARGUMENT TYPESARGUMENT TYPES

You aren't just limited to parsing command lines as strings, of course. Command.Spec de�nes

several other conversion functions (shown in Table 14.1, “Conversion functions de�ned by

Command.spec”) that validate and parse input into various types.

Table 14.1. Conversion functions de�ned by Table 14.1. Conversion functions de�ned by Command.spec

Argument typeArgument type OCaml typeOCaml type ExampleExample
string string foo

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/get_basic_md5_version.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/get_basic_md5_help.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_basic_md5.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_succinct.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 4/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Argument typeArgument type OCaml typeOCaml type ExampleExample
int int 123
float float 123.01
bool bool true
date Date.t 2013-12-25
time_span Span.t 5s
file string /etc/passwd

We can tighten up the speci�cation of the command to file to re�ect that the argument must be

a valid �lename, and not just any string:

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon ("filename" %: file))
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_as_filename.ml , continued (part 1) ∗ all code

Running this with a nonexistent �lename will now output an error if the �le doesn't exist. As a

bonus, it also enables interactive command-line completion to work on the �lename argument

(explained later in the chapter):

$./basic_md5_as_filename.native nonexistent
Uncaught exception:

 (Sys_error "nonexistent: No such file or directory")

Raised by primitive operation at file "pervasives.ml", line 292, characters 20-46
Called from file "lib/in_channel.ml", line 19, characters 46-65
Called from file "lib/exn.ml", line 69, characters 6-10

Terminal ∗ command-line-parsing/run_basic_md5_as_filename.out ∗ all code

De�ning Custom Argument TypesDe�ning Custom Argument Types

We can also de�ne our own argument types if the prede�ned ones aren't su�cient. For instance,

let's make a regular_file argument type that ensures that the input �le isn't a character device

or some other odd UNIX �le type that can't be fully read:

open Core.Std

let do_hash file () =
 In_channel.with_file file ~f:(fun ic ->
 let open Cryptokit in
 hash_channel (Hash.md5 ()) ic
 |> transform_string (Hexa.encode ())
 |> print_endline
)

let regular_file =
 Command.Spec.Arg_type.create
 (fun filename ->
 match Sys.is_file filename with
 | `Yes -> filename
 | `No | `Unknown ->
 eprintf "'%s' is not a regular file.\n%!" filename;
 exit 1
)

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon ("filename" %: regular_file))
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_with_custom_arg.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_as_filename.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_basic_md5_as_filename.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_with_custom_arg.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 5/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The regular_file function transforms a filename string parameter into the same string but

�rst checks that the �le exists and is a regular �le type. When you build and run this code, you

will see the new error messages if you try to open a special device such as /dev/null:

$./basic_md5_with_custom_arg.native /etc/passwd
b96af7576939a17ac4b2d4b6edb50ce7
$./basic_md5_with_custom_arg.native /dev/null
'/dev/null' is not a regular file.

Terminal ∗ command-line-parsing/run_basic_md5_with_custom_arg.out ∗ all code

Optional and Default ArgumentsOptional and Default Arguments

A more realistic MD5 binary could also read from the standard input if a filename isn't speci�ed:

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon (maybe ("filename" %: string)))
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_with_optional_file_broken.ml , continued (part 1) ∗ all code

This just wraps the filename argument declaration in the maybe function to mark it as an

optional argument. However, building this results in a compile-time error:

$ corebuild -pkg cryptokit basic_md5_with_optional_file_broken.native
File "basic_md5_with_optional_file_broken.ml", line 18, characters 4-11:
Error: This expression has type string -> unit -> unit
 but an expression was expected of type string option -> unit -> unit
 Type string is not compatible with type string option
Command exited with code 2.

Terminal ∗ command-line-parsing/build_basic_md5_with_optional_file_broken.out ∗ all code

This is because changing the argument type has also changed the type of the callback function. It

now wants a string option instead of a string, since the value has become optional. We can

adapt our example to use the new information and read from standard input if no �le is speci�ed:

open Core.Std

let get_inchan = function
 | None | Some "-" ->
 In_channel.stdin
 | Some filename ->
 In_channel.create ~binary:true filename

let do_hash filename () =
 let open Cryptokit in
 get_inchan filename
 |> hash_channel (Hash.md5 ())
 |> transform_string (Hexa.encode ())
 |> print_endline

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon (maybe ("filename" %: file)))
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_with_optional_file.ml ∗ all code

The filename parameter to do_hash is now a string option type. This is resolved into an

input channel via get_inchan to determine whether to open the standard input or a �le, and

then the rest of the command is similar to our previous examples.

Another possible way to handle this would be to supply a dash as the default �lename if one isn't

speci�ed. The maybe_with_default function can do just this, with the bene�t of not having to

change the callback parameter type (which may be a problem in more complex applications).

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_basic_md5_with_custom_arg.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_with_optional_file_broken.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/build_basic_md5_with_optional_file_broken.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_with_optional_file.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 6/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The following example behaves exactly the same as the previous example, but replaces maybe

with maybe_with_default:

open Core.Std

let get_inchan = function
 | "-" -> In_channel.stdin
 | filename -> In_channel.create ~binary:true filename

let do_hash filename () =
 let open Cryptokit in
 get_inchan filename
 |> hash_channel (Hash.md5 ())
 |> transform_string (Hexa.encode ())
 |> print_endline

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(
 empty
 +> anon (maybe_with_default "-" ("filename" %: file))
)
 do_hash

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_with_default_file.ml ∗ all code

Building and running both against a system �le con�rms that they have the same behavior:

$ cat /etc/passwd | ./basic_md5_with_optional_file.native
b96af7576939a17ac4b2d4b6edb50ce7
$ cat /etc/passwd | ./basic_md5_with_default_file.native
b96af7576939a17ac4b2d4b6edb50ce7

Terminal ∗ command-line-parsing/run_basic_and_default_md5.out ∗ all code

Sequences of ArgumentsSequences of Arguments

One last transformation that's useful is to obtain lists of anonymous arguments rather than a

single one. As an example, let's modify our MD5 code to take a collection of �les to process on the

command line:

open Core.Std

let do_hash filename ic =
 let open Cryptokit in
 hash_channel (Hash.md5 ()) ic
 |> transform_string (Hexa.encode ())
 |> fun md5 -> printf "MD5 (%s) = %s\n" filename md5

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 ~readme:(fun () -> "More detailed information")
 Command.Spec.(empty +> anon (sequence ("filename" %: file)))
 (fun files () ->
 match files with
 | [] -> do_hash "-" In_channel.stdin
 | _ ->
 List.iter files ~f:(fun file ->
 In_channel.with_file ~f:(do_hash file) file
)
)

let () =
 Command.run ~version:"1.0" ~build_info:"RWO" command

OCaml ∗ command-line-parsing/basic_md5_sequence.ml ∗ all code

The callback function is a little more complex now, to handle the extra options. The files are

now a string list, and an empty list reverts to using standard input, just as our previous maybe

and maybe_with_default examples did. If the list of �les isn't empty, then it opens up each �le

and runs them through do_hash sequentially.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_with_default_file.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_basic_and_default_md5.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_sequence.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 7/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

ADDING LABELED FLAGS TO THE COMMAND LINEADDING LABELED FLAGS TO THE COMMAND LINE

You aren't just limited to anonymous arguments on the command line. A �ag is a named �eld that

can be followed by an optional argument. These �ags can appear in any order on the command

line, or multiple times, depending on how they're declared in the speci�cation.

Let's add two arguments to our md5 command that mimics the Mac OS X version. A -s �ag

speci�es the string to be hashed directly on the command line and -t runs a self-test. The

complete example follows:

open Core.Std
open Cryptokit

let checksum_from_string buf =
 hash_string (Hash.md5 ()) buf
 |> transform_string (Hexa.encode ())
 |> print_endline

let checksum_from_file filename =
 let ic = match filename with
 | "-" -> In_channel.stdin
 | _ -> In_channel.create ~binary:true filename
 in
 hash_channel (Hash.md5 ()) ic
 |> transform_string (Hexa.encode ())
 |> print_endline

let command =
 Command.basic
 ~summary:"Generate an MD5 hash of the input data"
 Command.Spec.(
 empty
 +> flag "-s" (optional string) ~doc:"string Checksum the given string"
 +> flag "-t" no_arg ~doc:" run a built-in time trial"
 +> anon (maybe_with_default "-" ("filename" %: file))
)
 (fun use_string trial filename () ->
 match trial with
 | true -> printf "Running time trial\n"
 | false -> begin
 match use_string with
 | Some buf -> checksum_from_string buf
 | None -> checksum_from_file filename
 end
)

let () = Command.run command

OCaml ∗ command-line-parsing/basic_md5_with_flags.ml ∗ all code

The speci�cation now uses the flag function to de�ne the two new labeled, command-line

arguments. The doc string is formatted so that the �rst word is the short name that appears in the

usage text, with the remainder being the full help text. Notice that the -t �ag has no argument,

and so we prepend its doc text with a blank space. The help text for the preceding code looks like

this:

$./basic_md5_with_flags.native -help
Generate an MD5 hash of the input data

 basic_md5_with_flags.native [FILENAME]

=== flags ===

 [-s string] Checksum the given string
 [-t] run a built-in time trial
 [-build-info] print info about this build and exit
 [-version] print the version of this build and exit
 [-help] print this help text and exit
 (alias: -?)

$./basic_md5_with_flags.native -s "ocaml rocks"
5a118fe92ac3b6c7854c595ecf6419cb

Terminal ∗ command-line-parsing/run_basic_md5_flags_help.out ∗ all code

The -s �ag in our speci�cation requires a string argument and isn't optional. The Command

parser outputs an error message if the �ag isn't supplied, as with the anonymous arguments in

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic_md5_with_flags.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_basic_md5_flags_help.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 8/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

earlier examples. Table 14.2, “Flag functions” contains a list of some of the functions that you can

wrap �ags in to control how they are parsed.

Table 14.2. Flag functionsTable 14.2. Flag functions

Flag functionFlag function OCaml typeOCaml type
required arg arg and error if not present

optional arg arg option

optional_with_default val arg arg with default val if not present

listed arg arg list, �ag may appear multiple times
no_arg bool that is true if �ag is present

The �ags a�ect the type of the callback function in exactly the same way as anonymous

arguments do. This lets you change the speci�cation and ensure that all the callback functions

are updated appropriately, without runtime errors.

GROUPING SUBCOMMANDS TOGETHERGROUPING SUBCOMMANDS TOGETHER

You can get pretty far by using �ags and anonymous arguments to assemble complex, command-

line interfaces. After a while, though, too many options can make the program very confusing for

newcomers to your application. One way to solve this is by grouping common operations

together and adding some hierarchy to the command-line interface.

You'll have run across this style already when using the OPAM package manager (or, in the non-

OCaml world, the Git or Mercurial commands). OPAM exposes commands in this form:

$ opam config env
$ opam remote list -k git
$ opam install --help
$ opam install cryptokit --verbose

Terminal ∗ command-line-parsing/opam.out ∗ all code

The config, remote, and install keywords form a logical grouping of commands that factor out

a set of �ags and arguments. This lets you prevent �ags that are speci�c to a particular

subcommand from leaking into the general con�guration space.

This usually only becomes a concern when your application organically grows features. Luckily,

it's simple to extend your application to do this in Command: just swap the Command.basic for

Command.group, which takes an association list of speci�cations and handles the subcommand

parsing and help output for you:

Command.basic ;;
- : summary:string ->
 ?readme:(unit -> string) ->
 ('main, unit -> unit) Command.Spec.t -> 'main -> Command.t
= <fun>
Command.group ;;
- : summary:string ->
 ?readme:(unit -> string) -> (string * Command.t) list -> Command.t
= <fun>

OCaml Utop ∗ command-line-parsing/group.topscript ∗ all code

The group signature accepts a list of basic Command.t values and their corresponding names.

When executed, it looks for the appropriate subcommand from the name list, and dispatches it to

the right command handler.

Let's build the outline of a calendar tool that does a few operations over dates from the command

line. We �rst need to de�ne a command that adds days to an input date and prints the resulting

date:

open Core.Std

let add =
 Command.basic
 ~summary:"Add [days] to the [base] date and print day"
 Command.Spec.(
 empty
 +> anon ("base" %: date)
 +> anon ("days" %: int)
)

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/opam.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/group.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 9/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 (fun base span () ->
 Date.add_days base span
 |> Date.to_string
 |> print_endline
)

let () = Command.run add

OCaml ∗ command-line-parsing/cal_add_days.ml ∗ all code

Everything in this command should be familiar to you by now. Once you've tested it and made

sure it works, we can de�ne another new command that takes the di�erence of two dates.

However, instead of creating a new binary, we group both operations as subcommands using

Command.group:

open Core.Std

let add =
 Command.basic ~summary:"Add [days] to the [base] date"
 Command.Spec.(
 empty
 +> anon ("base" %: date)
 +> anon ("days" %: int)
)
 (fun base span () ->
 Date.add_days base span
 |> Date.to_string
 |> print_endline
)

let diff =
 Command.basic ~summary:"Show days between [date1] and [date2]"
 Command.Spec.(
 empty
 +> anon ("date1" %: date)
 +> anon ("date2" %: date)
)
 (fun date1 date2 () ->
 Date.diff date1 date2
 |> printf "%d days\n"
)

let command =
 Command.group ~summary:"Manipulate dates"
 ["add", add; "diff", diff]

let () = Command.run command

OCaml ∗ command-line-parsing/cal_add_sub_days.ml ∗ all code

And that's all you really need to add subcommand support! Let's build the example �rst in the

usual way and inspect the help output, which now re�ects the subcommands we just added.

$ corebuild cal_add_sub_days.native
$./cal_add_sub_days.native -help
Manipulate dates

 cal_add_sub_days.native SUBCOMMAND

=== subcommands ===

 add Add [days] to the [base] date
 diff Show days between [date1] and [date2]
 version print version information
 help explain a given subcommand (perhaps recursively)

Terminal ∗ command-line-parsing/build_cal_add_sub_days.out ∗ all code

We can invoke the two commands we just de�ned to verify that they work and see the date

parsing in action:

$./cal_add_sub_days.native add 2012-12-25 40
2013-02-03
$./cal_add_sub_days.native diff 2012-12-25 2012-11-01
54 days

Terminal ∗ command-line-parsing/run_cal_add_sub_days.out ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_add_days.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_add_sub_days.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/build_cal_add_sub_days.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/run_cal_add_sub_days.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 10/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

ADVANCED CONTROL OVER PARSINGADVANCED CONTROL OVER PARSING

The functions for generating a speci�cation may seem like magic. In particular, even if you know

how to use them, it's not entirely clear how they work, and in particular, why the types work out

the way they do.

Understanding the details of how these speci�cations �t together becomes more useful as your

command-line interfaces get more complex. In particular, you may want to factor out common

functionality between speci�cations or interrupt the parsing to perform special processing, such

as requesting an interactive passphrase from the user before proceeding. All of this is helped by a

deeper understanding of the Command library.

In the following sections we'll explain the logic behind the combinators we've already described

and show you some new combinators that let you use Command even more e�ectively.

The Types Behind Command.SpecThe Types Behind Command.Spec

The Command module's safety relies on the speci�cation's output values precisely matching the

callback function which invokes the main program. In order to prevent any such mismatches,

Command uses some interesting type machinery to guarantee they remain in sync. You don't

have to understand this section to use the more advanced combinators, but it'll help you debug

type errors as you use Command more.

The Command.Spec.t type looks deceptively simple: ('a, 'b) t. You can think of ('a, 'b) t

here as a function of type 'a -> 'b, but embellished with information about:

How to parse the command line

What the command does and how to call it

How to autocomplete a partial command line

The type of a speci�cation transforms a 'a to a 'b value. For instance, a value of Spec.t might

have type (arg1 -> ... -> argN -> 'r, 'r) Spec.t.

Such a value transforms a main function of type arg1 -> ... -> argN -> 'r by supplying all

the argument values, leaving a main function that returns a value of type 'r. Let's look at some

examples of specs, and their types:

Command.Spec.empty ;;
- : ('m, 'm) Command.Spec.t = <abstr>
Command.Spec.(empty +> anon ("foo" %: int)) ;;
- : (int -> '_a, '_a) Command.Spec.t = <abstr>

OCaml Utop ∗ command-line-parsing/command_types.topscript ∗ all code

The empty speci�cation is simple, as it doesn't add any parameters to the callback type. The

second example adds an int anonymous parameter that is re�ected in the inferred type. One

forms a command by combining a spec of type ('main, unit) Spec.t with a function of type

'main. The combinators we've shown so far incrementally build the type of 'main according to

the command-line parameters it expects, so the resulting type of 'main is something like arg1 -

> ... -> argN -> unit.

The type of Command.basic should make more sense now:

Command.basic ;;
- : summary:string ->
 ?readme:(unit -> string) ->
 ('main, unit -> unit) Command.Spec.t -> 'main -> Command.t
= <fun>

OCaml Utop ∗ command-line-parsing/basic.topscript ∗ all code

The parameters to Spec.t are important here. They show that the callback function for a spec

should consume identical arguments to the supplied main function, except for an additional unit

argument. This �nal unit is there to make sure the callback is evaluated as a function, since if

zero command-line arguments are speci�ed (i.e., Spec.empty), the callback would otherwise

have no arguments and be evaluated immediately. That's why you have to supply an additional ()

to the callback function in all the previous examples.

Composing Speci�cation Fragments TogetherComposing Speci�cation Fragments Together

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/command_types.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/basic.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 11/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

If you want to factor out common command-line operations, the ++ operator will append two

speci�cations together. Let's add some dummy verbosity and debug �ags to our calendar

application to illustrate this.

open Core.Std

let add ~common =
 Command.basic ~summary:"Add [days] to the [base] date"
 Command.Spec.(
 empty
 +> anon ("base" %: date)
 +> anon ("days" %: int)
 ++ common
)
 (fun base span debug verbose () ->
 Date.add_days base span
 |> Date.to_string
 |> print_endline
)

let diff ~common =
 Command.basic ~summary:"Show days between [date2] and [date1]"
 Command.Spec.(
 empty
 +> anon ("date1" %: date)
 +> anon ("date2" %: date)
 ++ common
)
 (fun date1 date2 debug verbose () ->
 Date.diff date1 date2
 |> printf "%d days\n"
)

OCaml ∗ command-line-parsing/cal_append.ml ∗ all code

The de�nitions of the speci�cations are very similar to the earlier example, except that they

append a common parameter after each speci�cation. We can supply these �ags when de�ning the

groups.

let () =
 let common =
 Command.Spec.(
 empty
 +> flag "-d" (optional_with_default false bool) ~doc:" Debug mode"
 +> flag "-v" (optional_with_default false bool) ~doc:" Verbose output"
)
 in
 List.map ~f:(fun (name, cmd) -> (name, cmd ~common))
 ["add", add; "diff", diff]
 |> Command.group ~summary:"Manipulate dates"
 |> Command.run

OCaml ∗ command-line-parsing/cal_append.ml , continued (part 1) ∗ all code

Both of these �ags will now be applied and passed to all the callback functions. This makes code

refactoring a breeze by using the compiler to spot places where you use commands. Just add a

parameter to the common de�nition, run the compiler, and �x type errors until everything works

again.

For example, if we remove the verbose �ag and recompile, we'll get this impressively long type

error:

$ corebuild cal_append_broken.native
File "cal_append_broken.ml", line 38, characters 45-52:
Error: This expression has type
 (bool -> unit -> unit -> unit, unit -> unit -> unit) Command.Spec.t
 but an expression was expected of type
 (bool -> unit -> unit -> unit, unit -> unit) Command.Spec.t
 Type unit -> unit is not compatible with type unit
Command exited with code 2.

Terminal ∗ command-line-parsing/build_cal_append_broken.out ∗ all code

While this does look scary, the key line to scan is the last one, where it's telling you that you have

supplied too many arguments in the callback function (unit -> unit versus unit). If you

started with a working program and made this single change, you typically don't even need to

read the type error, as the �lename and location information is su�cient to make the obvious �x.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_append.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_append.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/build_cal_append_broken.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 12/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Prompting for Interactive InputPrompting for Interactive Input

The step combinator lets you control the normal course of parsing by supplying a function that

maps callback arguments to a new set of values. For instance, let's revisit our �rst calendar

application that added a number of days onto a supplied base date:

open Core.Std

let add =
 Command.basic
 ~summary:"Add [days] to the [base] date and print day"
 Command.Spec.(
 empty
 +> anon ("base" %: date)
 +> anon ("days" %: int)
)
 (fun base span () ->
 Date.add_days base span
 |> Date.to_string
 |> print_endline
)

let () = Command.run add

OCaml ∗ command-line-parsing/cal_add_days.ml ∗ all code

This program requires you to specify both the base date and the number of days to add onto it. If

days isn't supplied on the command line, an error is output. Now let's modify it to interactively

prompt for a number of days if only the base date is supplied:

open Core.Std

let add_days base span () =
 Date.add_days base span
 |> Date.to_string
 |> print_endline

let add =
 Command.basic
 ~summary:"Add [days] to the [base] date and print day"
 Command.Spec.(
 step
 (fun m base days ->
 match days with
 | Some days ->
 m base days
 | None ->
 print_endline "enter days: ";
 read_int ()
 |> m base
)
 +> anon ("base" %: date)
 +> anon (maybe ("days" %: int))
)
 add_days

let () = Command.run add

OCaml ∗ command-line-parsing/cal_add_interactive.ml ∗ all code

The days anonymous argument is now an optional integer in the spec, and we want to transform

it into a nonoptional value before calling our add_days callback. The step combinator lets us

perform this transformation by applying its supplied callback function �rst. In the example, the

callback �rst checks if days is de�ned. If it's unde�ned, then it interactively reads an integer from

the standard input.

The �rst m argument to the step callback is the next callback function in the chain. The

transformation is completed by calling m base days to continue processing with the new values

we've just calculated. The days value that is passed onto the next callback now has a nonoptional

int type:

$ ocamlbuild -use-ocamlfind -tag thread -pkg core cal_add_interactive.native
$./cal_add_interactive.native 2013-12-01
enter days:
35
2014-01-05

Terminal ∗ command-line-parsing/build_and_run_cal_add_interactive.out ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_add_days.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_add_interactive.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/build_and_run_cal_add_interactive.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 13/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The transformation means that the add_days callback can just keep its original de�nition of

Date.t -> int -> unit. The step function transformed the int option argument from the

parsing into an int suitable for add_days. This transformation is explicitly represented in the

type of the step return value:

open Command.Spec ;;

step (fun m (base:Date.t) days ->
 match days with
 | Some days -> m base days
 | None ->
 print_endline "enter days: ";
 m base (read_int ())) ;;
- : (Date.t -> int -> '_a, Date.t -> int option -> '_a) t = <abstr>

OCaml Utop ∗ command-line-parsing/step.topscript ∗ all code

The �rst half of the Spec.t shows that the callback type is Date.t -> int, whereas the resulting

value expected from the next speci�cation in the chain is a Date.t -> int option.

Adding Labeled Arguments to CallbacksAdding Labeled Arguments to Callbacks

The step chaining lets you control the types of your callbacks very easily. This can help you

match existing interfaces or make things more explicit by adding labeled arguments:

open Core.Std

let add_days ~base_date ~num_days () =
 Date.add_days base_date num_days
 |> Date.to_string
 |> print_endline

let add =
 Command.basic
 ~summary:"Add [days] to the [base] date and print day"
 Command.Spec.(
 step (fun m base days -> m ~base_date:base ~num_days:days)
 +> anon ("base" %: date)
 +> anon ("days" %: int)
)
 add_days

let () = Command.run add

OCaml ∗ command-line-parsing/cal_add_labels.ml ∗ all code

This cal_add_labels example goes back to our noninteractive calendar addition program, but

the add_days main function now expects labeled arguments. The step function in the

speci�cation simply converts the default base and days arguments into a labeled function.

Labeled arguments are more verbose but can also help prevent errors with command-line

arguments with similar types but di�erent names and purposes. It's good form to use labels

when you have a lot of otherwise anonymous int and string arguments.

COMMAND-LINE AUTOCOMPLETION WITH BASHCOMMAND-LINE AUTOCOMPLETION WITH BASH

Modern UNIX shells usually have a tab-completion feature to interactively help you �gure out

how to build a command line. These work by pressing the Tab key in the middle of typing a

command, and seeing the options that pop up. You've probably used this most often to �nd the

�les in the current directory, but it can actually be extended for other parts of the command, too.

The precise mechanism for autocompletion varies depending on what shell you are using, but

we'll assume you are using the most common one: bashbash. This is the default interactive shell on

most Linux distributions and Mac OS X, but you may need to switch to it on *BSD or Windows

(when using Cygwin). The rest of this section assumes that you're using bashbash.

Bash autocompletion isn't always installed by default, so check your OS package manager to see if

you have it available.

Operating systemOperating system Package managerPackage manager PackagePackage
Debian Linux apt bash-completion

Mac OS X Homebrew bash-completion

FreeBSD Ports system /usr/ports/shells/bash-completion

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/step.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_add_labels.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 14/15

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Once bash completion is installed and con�gured, check that it works by typing the ssh

command and pressing the Tab key. This should show you the list of known hosts from your

~/.ssh/known_hosts �le. If it lists some hosts that you've recently connected to, you can continue

on. If it lists the �les in your current directory instead, then check your OS documentation to

con�gure completion correctly.

One last bit of information you'll need to �nd is the location of the bash_completion.d directory.

This is where all the shell fragments that contain the completion logic are held. On Linux, this is

often in /etc/bash_completion.d, and in Homebrew on Mac OS X, it would be

/usr/local/etc/bash_completion.d by default.

Generating Completion Fragments from CommandGenerating Completion Fragments from Command

The Command library has a declarative description of all the possible valid options, and it can

use this information to generate a shell script that provides completion support for that

command. To generate the fragment, just run the command with the

COMMAND_OUTPUT_INSTALLATION_BASH environment variable set to any value.

For example, let's try it on our MD5 example from earlier, assuming that the binary is called

basic_md5_with_�agsbasic_md5_with_�ags in the current directory:

$ env COMMAND_OUTPUT_INSTALLATION_BASH=1 ./basic_md5_with_flags.native
function _jsautocom_76186 {
 export COMP_CWORD
 COMP_WORDS[0]=./basic_md5_with_flags.native
 COMPREPLY=($("${COMP_WORDS[@]}"))
}
complete -F _jsautocom_76186 ./basic_md5_with_flags.native

Terminal ∗ command-line-parsing/md5_completion.out ∗ all code

Recall that we used the Arg_type.file to specify the argument type. This also supplies the

completion logic so that you can just press Tab to complete �les in your current directory.

Installing the Completion FragmentInstalling the Completion Fragment

You don't need to worry about what the preceding output script actually does (unless you have an

unhealthy fascination with shell scripting internals, that is). Instead, redirect the output to a �le in

your current directory and source it into your current shell:

$ env COMMAND_OUTPUT_INSTALLATION_BASH=1 ./cal_add_sub_days.native > cal.cmd
$. cal.cmd
$./cal_add_sub_days.native <tab>
add diff help version

Terminal ∗ command-line-parsing/cal_completion.out ∗ all code

Command completion support works for �ags and grouped commands and is very useful when

building larger command-line interfaces. Don't forget to install the shell fragment into your global

bash_completion.d directory if you want it to be loaded in all of your login shells.

Installing a Generic Completion HandlerInstalling a Generic Completion Handler

Sadly, bashbash doesn't support installing a generic handler for all Command-based

applications. This means you have to install the completion script for every

application, but you should be able to automate this in the build and packaging

system for your application.

It will help to check out how other applications install tab-completion scripts and

follow their lead, as the details are very OS-speci�c.

ALTERNATIVE COMMAND-LINE PARSERSALTERNATIVE COMMAND-LINE PARSERS

This rounds up our tour of the Command library. This isn't the only way to parse command-line

arguments of course; there are several alternatives available on OPAM. Three of the most

prominent ones follow:

The Arg module

The Arg module is from the OCaml standard library, which is used by the compiler itself to

handle its command-line interface. Command is generally more featureful than Arg (mainly via

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/md5_completion.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/command-line-parsing/cal_completion.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 14. Command-Line Parsing / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html 15/15

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

support for subcommands, the step combinator to transform inputs, and help generation), but

there's absolutely nothing wrong with using Arg either.

You can use the Command.Spec.flags_of_args_exn function to convert Arg speci�cations into

ones compatible with Command. This is quite often used to help port older non-Core code into

the Core standard library world.

ocaml-getopt

ocaml-getopt provides the general command-line syntax of GNU getopt and getopt_long.

The GNU conventions are widely used in the open source world, and this library lets your OCaml

programs obey the same rules.

Cmdliner

Cmdliner is a mix between the Command and Getopt libraries. It allows for the declarative

de�nition of command-line interfaces but exposes a more getopt-like interface. It also

automates the generation of UNIX man pages as part of the speci�cation. Cmdliner is the parser

used by OPAM to manage its command line.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fcommand-line-parsing.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://forge.ocamlcore.org/projects/ocaml-getopt/
http://erratique.ch/software/cmdliner
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html

