

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

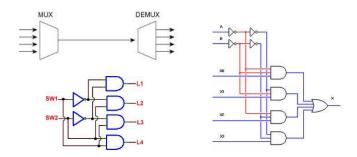
Versão 4.0 - Português

Aula Nº 09:

Título: Circuitos combinatórios: descodificadores, codificadores, multiplexers e de-

multiplexers

Sumário: Descodificadores, codificadores, multiplexers e demultiplexers


2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Circuitos combinatórios: descodificadores, codificadores, multiplexers e demultiplexers

Aula Anterior

Na aula anterior:

- ▶ Noção de circuito combinatório;
- ▶ Tempo de propagação num circuito;
- ▶ Dispositivos lógicos especiais:
 - Buffer de três estados (tri-state);
 - Portas de passagem (transmission gates).

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos	
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	LO
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) – Som., Comp., etc.	L1
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Circuitos Sequenciais: Latches	P2
26/Out a 31/Out	Circuitos Sequenciais: Flip-Flops	Ling. de Descrição e Simulação de HW (ferramentas disponíveis no laboratório)	L2
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5
14/Dez a 18/Dez	P6	P6	L6

Prof. Nuno Roma Sistemas Digitais 2015/16

Sumário

■ Tema da aula de hoje:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexers
 - Demultiplexers

Bibliografia:

- M. Mano, C. Kime: Secções 3.7 a 3.9
- G. Arroz, J. Monteiro, A. Oliveira: Secções 4.2 a 4.5

Descodificador

Descodificador (em inglês, Decoder)

▶ O descodificador binário é um circuito combinatório que permite, perante uma combinação de entradas, activar uma e só uma saída.

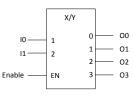
		O0			
0	0	1 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

No símbolo do componente, o índice dos sinais de entrada/saída permite identificar claramente as saídas e o "peso" de cada um dos sinais de entrada.

Prof. Nuno Roma

Sistemas Digitais 2015/16

5


Descodificador

■ Descodificador com entrada de activação (*Enable*):

▶ A entrada de **ENABLE** permite, quando activa (neste caso, a "1"), que o descodificador funcione normalmente. Quando não activa, inibe o seu funcionamento fazendo com que todas as saídas fiquem inactivas (neste caso, todas a "0").

EN	I1	Ι0	O0	O1	O2	О3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0

DESCODIFICADOR 2:4

Prof. Nuno Roma

Sistemas Digitais 2015/16

Descodificador

Descodificador: estrutura interna

- ▶ A figura representa a estrutura interna de um descodificador binário de 2 entradas.
- ► Cada saída representa uma das combinações possíveis das entradas

	I1	10				
Ī	0	0	1	0	0	0
	0	1	0	1	0	0
	1	0	0	0	0 0 1 0	0
	1	1	0	0	0	1

$$O_0 = \overline{I_1} . \overline{I_0}$$
 $O_2 = I_1 . \overline{I_0}$

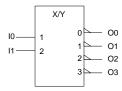
$$O_2 = I_1 \cdot \overline{I_0}$$

$$O_1 = \overline{I_1} \cdot I_0$$

$$O_1 = \overline{I_1} \cdot I_0$$
 $O_3 = I_1 \cdot I_0$

Prof. Nuno Roma

Sistemas Digitais 2015/16



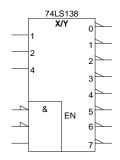
Descodificador

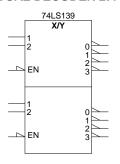
Descodificador com saídas activas a zero

▶ No símbolo do componente, o ∆ na saída indica que esta é activa a "0", i.e., a saída seleccionada tem um "0" e as outras têm um "1". (funciona como se tivesse um inversor na saída)

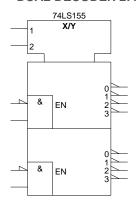
I1	IO	O0	O1	O2	O3
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Prof. Nuno Roma


Sistemas Digitais 2015/16


Descodificador

■ Descodificadores: exemplos de componentes


DESCODIFICADOR 3:8

DUAL DECODER 2:4

DUAL DECODER 2:4

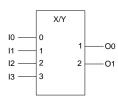
Nos 3 exemplos os sinais de saída são activos a zero.

No 138 o Enable é um AND de 3 entradas, 2 delas negadas. No 139 o Enable é activo a zero. No 155 o Enable é um AND de 2 entradas, 1 delas negada.

Prof. Nuno Roma

Sistemas Digitais 2015/16

9



Codificador

Codificador (em inglês, encoder):

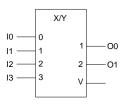
▶ O codificador binário é um circuito combinatório que indica qual das entradas possíveis é que está activa (neste caso, a "1").

I3	I2	I1	10	O1	00
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

- Nesta versão simples, o codificador só considera 4 das 16 combinações possíveis de entrada.
- ▶ O circuito não distingue a situação de todas as entradas estarem a "0".
- ➤ O circuito não distingue as situações em que estão a "1" mais do que uma entrada.

Prof. Nuno Roma

Sistemas Digitais 2015/16



Codificador

Codificador de prioridade:

▶ As entradas deste codificador têm uma ordem de prioridades: em caso de mais de uma entrada activa (a "1") é considerada a de maior prioridade.

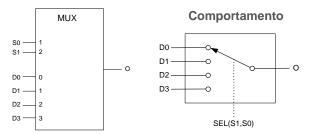
I3	I2	I1	10	O1	O0	V
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- ▶ A entrada I3 é a de maior prioridade, seguida da I2, da I1, e a I0 é a de menor prioridade.
- ▶ A saída V suplementar indica se existe pelo menos uma entrada activa (a "1").

Prof. Nuno Roma

Sistemas Digitais 2015/16

11



Multiplexer

Multiplexer:

➤ O multiplexer é um circuito combinatório que permite, através da especificação dos sinais de selecção, encaminhar uma das N entradas de dados para a saída.

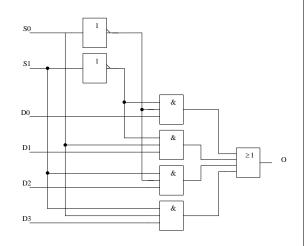
Exemplo: multiplexer 4:1

S1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

► As entradas de selecção determinam a entrada de dados cujo valor é colocado na saída.

Prof. Nuno Roma

Sistemas Digitais 2015/16



Multiplexer

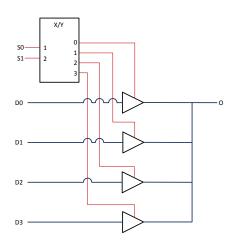
■ Multiplexer: estrutura interna

S1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

$$O = D_0 . \overline{S_1} . \overline{S_0} + D_1 . \overline{S_1} . S_0 + D_2 . S_1 . \overline{S_0} + D_3 . S_1 . S_0$$

Prof. Nuno Roma

Sistemas Digitais 2015/16

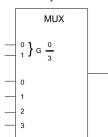

13

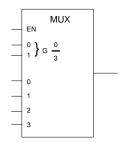
Multiplexer

■ Multiplexer: estrutura interna alternativa

S 1	S0	О
0	0	D0
0	1	D1
1	0	D2
1	1	D3

Prof. Nuno Roma


Sistemas Digitais 2015/16


Multiplexer

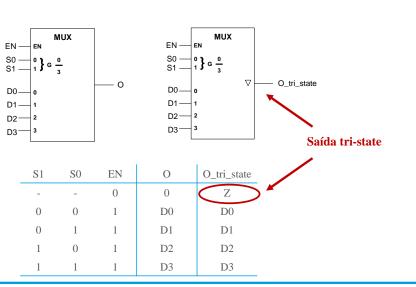
Multiplexer: simbologia

MULTIPLEXER 4:1 simples

MULTIPLEXER 4:1 com enable

EN	S 1	S0	О
1	0	0	D0
1	0	1	D1
1	1	0	D2
1	1	1	D3
0	X	X	0

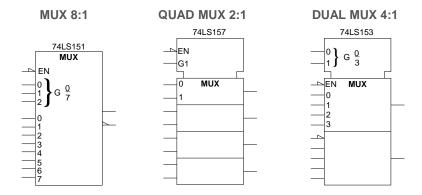
Prof. Nuno Roma


Sistemas Digitais 2015/16

15

Multiplexer

Multiplexer: saída tri-state


Prof. Nuno Roma

Sistemas Digitais 2015/16

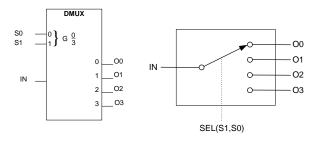
Multiplexer

Multiplexers: exemplos de componentes

Nos 3 exemplos os sinais de Enable são activos a zero (a activação do funcionamento normal do componente acontece quando EN=0).

O 74151 tem uma saída suplementar que é a negação da outra.

Prof. Nuno Roma Sistemas Digitais 2015/16 17



Demultiplexer

Demultiplexer:

➤ O demultiplexer é um circuito combinatório que permite, através da especificação dos sinais de selecção, encaminhar a entrada para uma das N saídas.

Exemplo: Demultiplexer 1:4

S 1			01		
0	0	IN	0 IN	0	0
0	1	0	IN	0	0
1	0	0	0	IN	0
1	1	0	0	0	IN

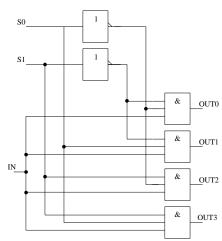
Prof. Nuno Roma

Sistemas Digitais 2015/16

Demultiplexer

■ Demultiplexer: estrutura interna

DEMULTIPLEXER 1:4


S 1	S0	O0	O1	O2	O3
0	0	IN	0	0	0
0	1	0	IN	0	0
1	0	0	0	IN	0
1	1	0	0	0	IN

$$O_0 = IN.\overline{S_1}.\overline{S_0}$$
 $O_2 = IN.S_1.\overline{S_0}$

$$O_2 = IN.S_1.\overline{S_0}$$

$$O_1 = IN.\overline{S_1}.S_0$$
 $O_3 = IN.S_1.S_0$

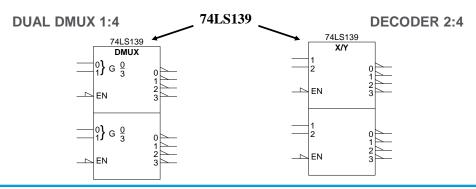
$$O_3 = IN.S_1.S_0$$

Prof. Nuno Roma

Sistemas Digitais 2015/16

19

20



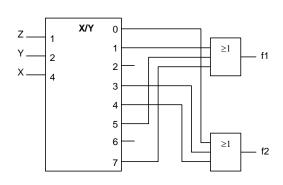
Demultiplexer vs Descodificador

Demultiplexeres e Descodificadores:

▶ Um descodificador com enable é equivalente a um demultiplexer, sendo as entradas de dados do primeiro as entradas de selecção do segundo e a entrada de enable do primeiro a entrada de dados do segundo.

Nota: os 2 símbolos abaixo referem a mesma funcionalidade do circuito.

Prof. Nuno Roma Sistemas Digitais 2015/16



Descodificadores: aplicações (f. combinatórias)

▶ Realização de funções combinatórias de 3 variáveis com decoders 3:8

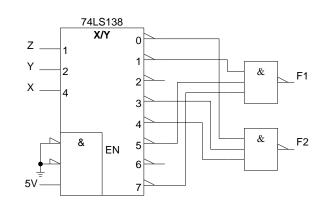
$$f1(X,Y,Z) = \sum m(1,5,7)$$

$$f2(X,Y,Z) = \sum m(0,3,4)$$

Prof. Nuno Roma

Sistemas Digitais 2015/16

21


Aplicações

Descodificadores: aplicações (f. combinatórias)

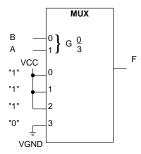
▶ Realização de funções combinatórias de 3 variáveis com decoders 3:8 com saídas activas a 0.

$$f1(X,Y,Z) = \sum m(1,5,7)$$

$$f2(X,Y,Z) = \sum m(0,3,4)$$

Prof. Nuno Roma

Sistemas Digitais 2015/16



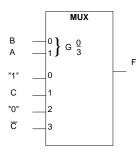
Multiplexers: aplicações (f. combinatórias)

► Exemplo de realização de funções combinatórias de 2 variáveis com MUX 4:1

$$F = \overline{A} + A\overline{B}$$

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Prof. Nuno Roma Sistemas Digitais 2015/16

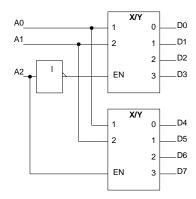

Aplicações

Multiplexers: aplicações (f. combinatórias)

► Exemplo de realização de funções combinatórias de 3 variáveis com MUX 4:1

$$F = \overline{A} \overline{B} + \overline{A} C + AB\overline{C}$$

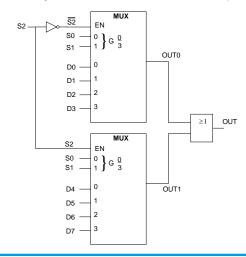
Α	В	С	F	
0	0	0	1	
0	0	1	1	F = 1
0	1	0	0	
0	1	1	1	F = C
1	0	0	0	
1	0	1	0	F = 0
1	1	0	1	$F = \overline{C}$
1	1	1	0	r – C


Prof. Nuno Roma

Sistemas Digitais 2015/16

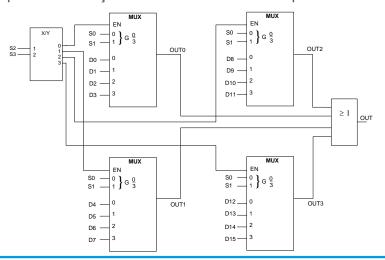
24

- Descodificadores: aplicações (descodificação)
 - ► Exemplo de realização de um DECODER 3:8 tendo por base 2 DECODERs 2:4


Prof. Nuno Roma Sistemas Digitais 2015/16 25

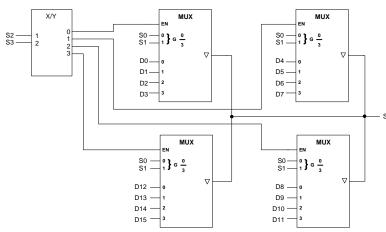
Aplicações

26


- Multiplexers: aplicações (multiplexagem)
 - ▶ Exemplo de realização de um MUX 8:1 tendo por base 2 MUXs 4:1

Prof. Nuno Roma Sistemas Digitais 2015/16

- Multiplexers: aplicações (multiplexagem)
 - ▶ Exemplo de realização de um MUX 16:1 tendo por base 4 MUXs 4:1



Prof. Nuno Roma Sistemas Digitais 2015/16

Aplicações

- Multiplexers: aplicações (multiplexagem)
 - ► Exemplo de realização de um MUX 16:1 tendo por base 4 MUXs 4:1 tri-state

Prof. Nuno Roma

Sistemas Digitais 2015/16

28

Próxima Aula

Prof. Nuno Roma Sistemas Digitais 2015/16 29

Próxima Aula

■ Tema da Próxima Aula:

- ► Circuitos combinatórios típicos:
 - Somadores / Subtractores
 - Comparadores

Prof. Nuno Roma

Sistemas Digitais 2015/16

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16