
Chapter 9

Support Vector Machines, part 1

Maximum margin classifier. Signed distance to decision frontier. Support Vectors and
Support Vector Machine for linear classification

9.1 Maximum margin
In logistic regression and the perceptron we saw examples of separating different classes using a
hyperplane. We saw that the squared error between the class and the distance to the hyperplane was
not a good measure because it pulls the frontier towards the more distant points. By using a function
that “squashes” the outputs away from the frontier, such as the logistic function, allowed us to find
a better way of separating the classes. Figure 10.1 illustrates this difference. The left panel shows a
linear discriminant computed by minimizing the squared errors loss function esq., and the right panel
the discriminant obtained with logistic regression, minimizing the loss function Elog.:

Esq.(w̃) =
N∑
j=1

(g(~xj)− tj)2 Elog.(w̃) = −
N∑
n=1

[tn ln gn + (1− tn) ln(1− gn)]

gn =
1

1 + e−(~wT ~xn+w0)

Figure 9.1: Gene activities for cancerous and normal cells. The linear discriminants were computed by
least squared error (left panel) and logistic regression (right panel).

81

82 CHAPTER 9. SUPPORT VECTOR MACHINES, PART 1

However, there is one disadvantage to an error function like the one used in logistic regression.
While the quadratic error function has a well-defined minimum, because increasing the norm of vector
w̃ can make the decision function arbitrarily steep in the frontier, the frontier can be placed in any of a
range of possible places. Figure 9.2 illustrates this problem. The left panel shows a series of results
from the logistic regression minimization. Since the logistic function is flat away from the frontier,
displacing the frontier makes little difference. This may result in the frontier being placed closer to
some points, as shown in the right panel, increasing overfitting.

Figure 9.2: Logistic regression frontiers. Different runs of the same optimization result in different
positions for the frontier because, if the logistic function is very steep at the frontier, placing it at
different positions makes no difference for the loss function.

Regularization helps reduce this effect by forcing vector w̃ to be shorter, smoothing the logistic
function and forcing the frontier away from the closest points. Figure 9.3 shows the same logistic
regression results as Figure 9.2, but this time using L21 regularization. This forces the optimization to
always give the same result and always the same frontier, fixed farther away from the points.

Figure 9.3: Logistic regression with L2 regularization, forcing the norm of w̃ to be small, smooths the
function and fixes the frontier away from the closest points.

This example shows the important concept of a maximum margin classifier. A margin classifier
is a classifier that provides a measure of the distance between the frontier and the points closest to
it. This is the margin of the classifier. A maximum margin classifier is a classifier that maximizes
this distance. With logistic regression, we can approximate this using regularization, but this requires
modifying the loss function to include the regularization term. The code below shows the loss function

1L2 regularization penalizes the square of the norm of w̃

9.1. MAXIMUM MARGIN 83

for the regularized logistic regression. Even though the regularization constant is small (0.00001),
regularization always distorts the objective function of minimizing the error.

1 def log_cost(theta,X,y):

2 coefs = np.zeros((len(theta),1))

3 coefs[:,0] = theta

4 sig_vals = logistic(np.dot(X,coefs))

5 log_1 = np.log(sig_vals)*y

6 log_0 = np.log(1-sig_vals)*(1-y)

7 return -np.mean(log_0+log_1)+np.sum(coefs**2)*0.00001

A better option is to make margin maximization an explicit goal for our loss function. Figure 9.4
shows the margin, which is the distance between the frontier and the examples closest to it. These
vectors are called the support vectors. To explicitly maximize the margin, we can consider the signed
distance between a vector and the decision hyperplane:

r =
~wTx+ w0

||~w||
The value of r is positive on one side of the decision hyperplane and negative on the other, because

of the value of the inner product r = ~wTx+ w0. Furthermore, r is invariant with respect to the norm
of the vector defining the hyperplane, due to the division by ||~w||.

Figure 9.4: The margin is the distance to the points nearest to the decision frontier.

Now we can try to find the hyperplane that maximizes the minimum distance to points being
classified:

argmax
~w,b

(
min
j

yj(~w
Txj + w0)

||~w||

)
writing this loss function:

1 def closest_dist(ws, Xs, Ys):

2 coefs = np.zeros((len(ws)-1,1))

3 coefs[:,0] = ws.flatten()[:-1]

84 CHAPTER 9. SUPPORT VECTOR MACHINES, PART 1

4 dists = np.dot(Xs,coefs) + ws[2]

5 norm = np.sqrt(ws[0]**2+ws[1]**2)

6 return -np.min(dists * Ys / norm)

7
8 # load data

9 x0 = np.random.rand(3)

10 sol = minimize(closest_dist, x0, args = (Xs,Ys))

Note the negative sign on the returned value because we are using the minimize function to find
the maximum value. Despite the conceptual simplicity of this solution and the ease with which it can
be implemented, unfortunately this does not work. As Figure 9.5 shows, the landscape of this loss
function has discontinuous derivatives because, as the position of the discriminant hyperplane changes,
it also changes which vectors are closest to this plane. Furthermore, the maximum value of the margin
coincides with orientations for which several vectors are equidistant to the decision hyperplane, making
the derivative discontinuous at the desired solution. Because of this, the optimization algorithm is
unable to find the correct solution, as shown on the right panel.

Figure 9.5: Landscape of the loss function for maximizing the minimum distance to the decision
hyperplane (left panel) and the resulting hyperplanes due to the inability of the minimization algorithm
to converge to the maximum margin.

To solve this problem we need a different approach.

9.2 Support Vector Machine
We start by noting that the normalized distance is invariant to scaling:

yn(wTxn + w0)

||w||
=
yn(β ~wTxn + βw0)

β||~w||
So we can impose this condition by making ~w and w0 as large as necessary:

yn(~wTxn + w0) ≥ 1,∀n ∈ N

Subject to this condition, the problem of maximizing the margin is equivalent to the problem
of minimizing the norm ||~w||. As long as the condition above is not violated, shrinking the size of
~w means we are effectively increasing the distance between the discriminant and the closest points.
More conveniently, we can minimize a quadratic function of the norm ||~w, since minimizing quadratic
functions is computationally more convenient.

9.2. SUPPORT VECTOR MACHINE 85

argmax
~w,b

(
min
j

yj(~w
Txj + w0)

||~w||

)
= arg min

~w,w0

1

2
||~w||2

Note that w0 is determined by the constraint. This is thus a constraint optimization problem. One
method for solving constraint optimization problems is to use Lagrange multipliers. To illustrate the
approach, consider the following example:

arg max
x,y

(1− x2 − y2) s.t.x− y − 1 = 0

At the maximum along the line defining the constraint, the component of the function’s derivative
that is parallel to the constraint line must be zero, because otherwise this would not be a local maximum.
This means that, at this point, the constraint line is tangent to a contour line of the objective function.
Figure 9.6 illustrates this.

Figure 9.6: Objective function surface (in red) and the constraint line (blue). The red lines depict the
contour lines of the objective function.

Since g(x, y) = 0 is a contour line of g, if f(x, y) is a maximum subject to g(x, y) = 0, then the
contour line of f(x, y) is parallel to the contour line of g(x, y). And if the contour lines are parallel
then the gradient vectors are also parallel, because the gradient must be perpendicular to the contour
line. So we can write:

~∇x,yf(x, y) = −α~∇x,yg(x, y)

The negative sign is conventional and α is a Lagrange multiplier. We combine these in the La-
grangian function:

L(x, y, α) = f(x, y) + αg(x, y)

and solve:

~∇x,y,αL(x, y, α) = 0

86 CHAPTER 9. SUPPORT VECTOR MACHINES, PART 1

to find the critical points of the Lagrangian, among which the constrained optimum can be found.
In our example:

~∇x,y,α

(
1− x2 − y2 + α(x− y − 1)

)
= 0

Can be solved by

δL
δx

= −2x+ α
δL
δy

= −2y − α δL
δα

= x− y˘1

x− y − 1 = 0⇔ x = y + 1 α = 2x , α = −2y ⇔ x = −y

The solution is thus {0.5,−0.5}. Applying the same method to the problem of maximizing the
margin of the classifier:

arg min
w,w0

1

2
||~w||2 s.t.yn(~wT~xn + w0) ≥ 1,∀n ∈ N

Noting that

yn(~wT~xn + w0) ≥ 1 ⇐⇒ −
(
(yn(~wTxn + w0)− 1

)
≤ 0

we obtain the following Lagrangian :

L(~w,w0, ~α) =
1

2
||~w||2 −

N∑
n=1

αn
(
yn(~wTxn + w0)− 1

)
We want to minimize the function with respect to vector ~w and b, while obtaining the maximum

with respect to the αn multipliers. Since at the critical point the derivatives with respect to ~w and w0

are 0, we can write:

δL
δ ~w

= 0⇔ ~w =
N∑
n=1

αnyn~xn
δL
δw0

= 0⇔
N∑
n=1

αnyn = 0

Replacing, we obtain the dual representation of our original problem. In optimization problems,
duality is a relation between two different perspectives on the problem, solving for different sets of
variables. In general, the dual of an optimization problem only provides a bound on the optimal value
but, in this case, solving the dual solves the original problem. So now we solve this dual representation
of our problem as a function of the lagrangian multipliers:

L̃(~α) =
N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

N∑
n=1

αnyn = 0 αn ≥ 0

This can be solved by standard quadratic programming algorithms.

9.3. IMPLEMENTING A SUPPORT VECTOR MACHINE 87

9.3 Implementing a Support Vector Machine
As an example, we’ll see how to implement a SVM using the optimize function from the scipy
library. First, we compute the matrix with the inner products of all pairs of training vectors multiplied
by their respective classes:

H =
N∑
n=1

N∑
m=1

ynym~x
T
n~xm

1 def H_matrix(X,Y):

2 H = np.zeros((X.shape[0],X.shape[0]))

3 for row in range(X.shape[0]):

4 for col in range(X.shape[0]):

5 H[row,col] = np.dot(X[row,:],X[col,:])*Y[row]*Y[col]

6 return H

Now we define the function to maximize:

arg max
~α

N∑
n=1

αn −
1

2

N∑
n=1

N∑
m=1

αnαmynym~x
T
n~xm

Intuitively, we can see that αn will be zero (all lagrangian multipliers are non-negative numbers)
for all vectors that are surrounded by vectors of the same class, because for these the inner products
with vectors of the same class will have a greater weight in the sum, and these contribute positively to
the total because the products of the class labels ynym will be positive. Conversely, for vectors close to
vectors of the opposite class, there will be a non-zero optimal value for αn that balances the increase of
the sum of the α values and the penalty given to the sum of the inner products. However, if a point has
too many neighbours of the other class, the inner products sum will be negative and the αn value will
tend towards infinity, so no solution can be found. This happens if the classes are not linearly separable.

Since we are using the minimize function, we need to change the sign of the result. It is also
useful to provide the optimization algorithm with the jacobian matrix, which consists of the derivatives
of our function with respect to each αn. This improves the convergence of the algorithm.

1 def loss(alphas):

2 return 0.5 * np.dot(alphas.T, np.dot(H, alphas)) - np.sum(alphas)

3
4 def jac(alphas):

5 return np.dot(alphas.T,H)-np.ones(alphas.shape[0])

Now we set up the constraints and minimize the target function using the Sequential Least Squares
Programming method (SLSQP).

1 H = H_matrix(Xs,Ys)

2 A = Ys[:,0] # sum of alphas is zero

3 cons = {’type’:’eq’,

4 ’fun’:lambda alphas: np.dot(A,alphas),

5 ’jac’:lambda alphas: A}

6 bounds = [(0,None)]*Xs.shape[0] #alpha>=0

7 x0 = np.random.rand(Xs.shape[0])

8 sol = minimize(loss, x0, jac=jac, constraints=cons, method=’SLSQP’, bounds = bounds)

88 CHAPTER 9. SUPPORT VECTOR MACHINES, PART 1

For the minimize function, the constraints are specified in the dictionary with the function and

derivatives for the constraint line setting
N∑
n=1

αnyn = 0, which corresponds to the inner product of

thevector of α values and the classes of the respective points. The constraint αn ≥ 0 is specified in the
bounds variable.

For all examples that are distant from the margins, the α values are zero. The support vectors, those
examples that lie at the margins, have an α value greater than zero and can be easily identified:

1 svs = sol.x>0.001

2 print svs

3 [False False False False False False True False False False False False

4 False False False False False False False False False False False True

5 False False False False False False False False False False False True]

Now we can compute ~w and b from the support vectors (for b, we can average over all support
vectors).

~w =
N∑
n=1

αnyn~xn b = yn − ~wT~xn

1 def svm_coefs(X,Y,alphas):

2 w = np.sum(alphas*Y*X.T,axis = 1)[:,np.newaxis]

3 b = np.mean(Y-np.dot(X,w))

4 coefs = np.zeros(len(w)+1)

5 coefs[-1] = b

6 coefs[:-1] = w.flatten()

7 return coefs

8
9 coefs = svm_coefs(Xs[svs,:],Ys[svs,0],sol.x[svs])

Figure 9.7 shows the resulting hyperplane and the support vectors found.

Figure 9.7: SVM classifier. The decision hyperplane is represented in blue and the support vectors are
outlined with a black circle.

9.4. FURTHER READING 89

9.4 Further Reading

1. Alpaydin [2], Sections 13.1 and 13.2

2. Marsland [17], Section 5.1

Bibliography

[1] Uri Alon, Naama Barkai, Daniel A Notterman, Kurt Gish, Suzanne Ybarra, Daniel Mack, and
Arnold J Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and
normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of
Sciences, 96(12):6745–6750, 1999.

[2] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

[3] David F Andrews. Plots of high-dimensional data. Biometrics, pages 125–136, 1972.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer, New York, 1st ed. edition, oct 2006.

[5] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen. Hierarchical clustering of
www image search results using visual. Association for Computing Machinery, Inc., October
2004.

[6] Guanghua Chi, Yu Liu, and Haishandbscan Wu. Ghost cities analysis based on positioning data
in china. arXiv preprint arXiv:1510.08505, 2015.

[7] Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Hand-
written digit recognition with a back-propagation network. In Advances in Neural Information
Processing Systems, pages 396–404. Morgan Kaufmann, 1990.

[8] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning. Stanford CA Morgan Kaufmann, pages 231–238, 2000.

[9] Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen, Yuqing Gao, and Michael Picheny. Using
semantic analysis to improve speech recognition performance. Computer Speech & Language,
19(3):321–343, 2005.

[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Kdd, volume 96, pages 226–231,
1996.

[11] Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points. science,
315(5814):972–976, 2007.

181

182 BIBLIOGRAPHY

[12] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

[13] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley. Dna visual
and analytic data mining. In Visualization’97., Proceedings, pages 437–441. IEEE, 1997.

[14] Chang-Hwan Lee, Fernando Gutierrez, and Dejing Dou. Calculating feature weights in naive
bayes with kullback-leibler measure. In Data Mining (ICDM), 2011 IEEE 11th International
Conference on, pages 1146–1151. IEEE, 2011.

[15] Stuart Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on,
28(2):129–137, 1982.

[16] James MacQueen et al. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
volume 1, pages 281–297. Oakland, CA, USA., 1967.

[17] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC, 1st
edition, 2009.

[18] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition,
1997.

[19] Yvan Saeys, Iñaki Inza, and Pedro Larrañaga. A review of feature selection techniques in
bioinformatics. bioinformatics, 23(19):2507–2517, 2007.

[20] Roberto Valenti, Nicu Sebe, Theo Gevers, and Ira Cohen. Machine learning techniques for face
analysis. In Matthieu Cord and Pádraig Cunningham, editors, Machine Learning Techniques for
Multimedia, Cognitive Technologies, pages 159–187. Springer Berlin Heidelberg, 2008.

[21] Giorgio Valentini and Thomas G Dietterich. Bias-variance analysis of support vector machines for
the development of svm-based ensemble methods. The Journal of Machine Learning Research,
5:725–775, 2004.

[22] Jake VanderPlas. Frequentism and bayesianism: a python-driven primer. arXiv preprint
arXiv:1411.5018, 2014.

	Multi-layer Perceptron
	Perceptron
	A Single Neuron
	Multilayer Perceptron
	Training the Multilayer Perceptron
	Further Reading

	Bibliography

