
15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 1/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 13. Maps and Hash TablesChapter 13. Maps and Hash Tables
Lots of programming problems require dealing with data organized as key/value pairs. Maybe the

simplest way of representing such data in OCaml is an association list, which is simply a list of

pairs of keys and values. For example, you could represent a mapping between the 10 digits and

their English names as follows:

let digit_alist =
 [0, "zero"; 1, "one"; 2, "two" ; 3, "three"; 4, "four"
 ; 5, "five"; 6, "six"; 7, "seven"; 8, "eight"; 9, "nine"]
 ;;
val digit_alist : (int * string) list =
 [(0, "zero"); (1, "one"); (2, "two"); (3, "three"); (4, "four");
 (5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 1) ∗ all code

We can use functions from the List.Assoc module to manipulate this data:

List.Assoc.find digit_alist 6;;
- : string option = Some "six"
List.Assoc.find digit_alist 22;;
- : string option = None
List.Assoc.add digit_alist 0 "zilch";;
- : (int, string) List.Assoc.t =
[(0, "zilch"); (1, "one"); (2, "two"); (3, "three"); (4, "four");
 (5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 2) ∗ all code

Association lists are simple and easy to use, but their performance is not ideal, since almost every

nontrivial operation on an association list requires a linear-time scan of the list.

In this chapter, we'll talk about two more e�cient alternatives to association lists: maps and hash

tables. A map is an immutable tree-based data structure where most operations take time

logarithmic in the size of the map, whereas a hash table is a mutable data structure where most

operations have constant time complexity. We'll describe both of these data structures in detail

and provide some advice as to how to choose between them.

MAPSMAPS

Let's consider an example of how one might use a map in practice. In Chapter 4, Files, Modules,

and Programs, we showed a module Counter for keeping frequency counts on a set of strings.

Here's the interface:

open Core.Std

(** A collection of string frequency counts *)
type t

(** The empty set of frequency counts *)
val empty : t

(** Bump the frequency count for the given string. *)
val touch : t -> string -> t

(* Converts the set of frequency counts to an association list. Every strings
 in the list will show up at most once, and the integers will be at least
 1. *)
val to_list : t -> (string * int) list

OCaml ∗ files-modules-and-programs-freq-fast/counter.mli ∗ all code

The intended behavior here is straightforward. Counter.empty represents an empty collection of

frequency counts; touch increments the frequency count of the speci�ed string by 1; and

to_list returns the list of nonzero frequencies.

Here's the implementation:

open Core.Std

type t = int String.Map.t

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-fast/counter.mli
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 2/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let empty = String.Map.empty

let to_list t = Map.to_alist t

let touch t s =
 let count =
 match Map.find t s with
 | None -> 0
 | Some x -> x
 in
 Map.add t ~key:s ~data:(count + 1)

OCaml ∗ files-modules-and-programs-freq-fast/counter.ml ∗ all code

Note that in some places the preceding code refers to String.Map.t, and in others Map.t. This

has to do with the fact that maps are implemented as ordered binary trees, and as such, need a

way of comparing keys.

To deal with this, a map, once created, stores the necessary comparison function within the data

structure. Thus, operations like Map.find or Map.add that access the contents of a map or create

a new map from an existing one, do so by using the comparison function embedded within the

map.

But in order to get a map in the �rst place, you need to get your hands on the comparison

function somehow. For this reason, modules like String contain a Map submodule that has

values like String.Map.empty and String.Map.of_alist that are specialized to strings, and

thus have access to a string comparison function. Such a Map submodule is included in every

module that satis�es the Comparable.S interface from Core.

Creating Maps with ComparatorsCreating Maps with Comparators

The specialized Map submodule is convenient, but it's not the only way of creating a Map.t. The

information required to compare values of a given type is wrapped up in a value called a

comparator that can be used to create maps using the Map module directly:

let digit_map = Map.of_alist_exn digit_alist
 ~comparator:Int.comparator;;
val digit_map : (int, string, Int.comparator) Map.t = <abstr>
Map.find digit_map 3;;
- : string option = Some "three"

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 3) ∗ all code

The preceding code uses Map.of_alist_exn, which creates a map from an association list,

throwing an exception if there are duplicate keys in the list.

The comparator is only required for operations that create maps from scratch. Operations that

update an existing map simply inherit the comparator of the map they start with:

let zilch_map = Map.add digit_map ~key:0 ~data:"zilch";;
val zilch_map : (int, string, Int.comparator) Map.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 4) ∗ all code

The type Map.t has three type parameters: one for the key, one for the value, and one to identify

the comparator. Indeed, the type 'a Int.Map.t is just a type alias for

(int,'a,Int.comparator) Map.t.

Including the comparator in the type is important because operations that work on multiple

maps at the same time often require that the maps share their comparison function. Consider, for

example, Map.symmetric_diff, which computes a summary of the di�erences between two

maps:

let left = String.Map.of_alist_exn ["foo",1; "bar",3; "snoo", 0]
 let right = String.Map.of_alist_exn ["foo",0; "snoo", 0]
 let diff = Map.symmetric_diff ~data_equal:Int.equal left right
 ;;
val left : int String.Map.t = <abstr>
val right : int String.Map.t = <abstr>
val diff :
 (string * [`Left of int | `Right of int | `Unequal of int * int]) list =
 [("foo", `Unequal (1, 0)); ("bar", `Left 3)]

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 5) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-fast/counter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 3/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The type of Map.symmetric_diff, which follows, requires that the two maps it compares have

the same comparator type. Each comparator has a fresh abstract type, so the type of a

comparator identi�es the comparator uniquely:

Map.symmetric_diff;;
- : ('k, 'v, 'cmp) Map.t ->
 ('k, 'v, 'cmp) Map.t ->
 data_equal:('v -> 'v -> bool) ->
 ('k * [`Left of 'v | `Right of 'v | `Unequal of 'v * 'v]) list
= <fun>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 6) ∗ all code

This constraint is important because the algorithm that Map.symmetric_diff uses depends for

its correctness on the fact that both maps have the same comparator.

We can create a new comparator using the Comparator.Make functor, which takes as its input a

module containing the type of the object to be compared, sexp converter functions, and a

comparison function. The sexp converters are included in the comparator to make it possible for

users of the comparator to generate better error messages. Here's an example:

module Reverse = Comparator.Make(struct
 type t = string
 let sexp_of_t = String.sexp_of_t
 let t_of_sexp = String.t_of_sexp
 let compare x y = String.compare y x
 end);;
module Reverse :
 sig
 type t = string
 val compare : t -> t -> int
 val t_of_sexp : Sexp.t -> t
 val sexp_of_t : t -> Sexp.t
 type comparator
 val comparator : (t, comparator) Comparator.t_
 end

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 7) ∗ all code

As you can see in the following code, both Reverse.comparator and String.comparator can

be used to create maps with a key type of string:

let alist = ["foo", 0; "snoo", 3];;
val alist : (string * int) list = [("foo", 0); ("snoo", 3)]
let ord_map = Map.of_alist_exn ~comparator:String.comparator alist;;
val ord_map : (string, int, String.comparator) Map.t = <abstr>
let rev_map = Map.of_alist_exn ~comparator:Reverse.comparator alist;;
val rev_map : (string, int, Reverse.comparator) Map.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 8) ∗ all code

Map.min_elt returns the key and value for the smallest key in the map, which lets us see that

these two maps do indeed use di�erent comparison functions:

Map.min_elt ord_map;;
- : (string * int) option = Some ("foo", 0)
Map.min_elt rev_map;;
- : (string * int) option = Some ("snoo", 3)

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 9) ∗ all code

Accordingly, if we try to use Map.symmetric_diff on these two maps, we'll get a compile-time

error:

Map.symmetric_diff ord_map rev_map;;
Characters 27-34:
Error: This expression has type (string, int, Reverse.comparator) Map.t
 but an expression was expected of type
 (string, int, String.comparator) Map.t
 Type Reverse.comparator is not compatible with type String.comparator

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 10) ∗ all code

TreesTrees

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 4/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

As we've discussed, maps carry within them the comparator that they were created with.

Sometimes, often for space e�ciency reasons, you want a version of the map data structure that

doesn't include the comparator. You can get such a representation with Map.to_tree, which

returns just the tree underlying the map, without the comparator:

let ord_tree = Map.to_tree ord_map;;
val ord_tree : (string, int, String.comparator) Map.Tree.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 11) ∗ all code

Even though a Map.Tree.t doesn't physically include a comparator, it does include the

comparator in its type. This is what is known as a phantom type, because it re�ects something

about the logic of the value in question, even though it doesn't correspond to any values directly

represented in the underlying physical structure of the value.

Since the comparator isn't included in the tree, we need to provide the comparator explicitly

when we, say, search for a key, as shown below:

Map.Tree.find ~comparator:String.comparator ord_tree "snoo";;
- : int option = Some 3

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 12) ∗ all code

The algorithm of Map.Tree.find depends on the fact that it's using the same comparator when

looking up a value as you were when you stored it. That's the invariant that the phantom type is

there to enforce. As you can see in the following example, using the wrong comparator will lead

to a type error:

Map.Tree.find ~comparator:Reverse.comparator ord_tree "snoo";;
Characters 45-53:
Error: This expression has type (string, int, String.comparator) Map.Tree.t
 but an expression was expected of type
 (string, int, Reverse.comparator) Map.Tree.t
 Type String.comparator is not compatible with type Reverse.comparator

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 13) ∗ all code

The Polymorphic ComparatorThe Polymorphic Comparator

We don't need to generate specialized comparators for every type we want to build a map on. We

can instead use a comparator based on OCaml's built-in polymorphic comparison function,

which was discussed in Chapter 3, Lists and Patterns. This comparator is found in the

Comparator.Poly module, allowing us to write:

Map.of_alist_exn ~comparator:Comparator.Poly.comparator digit_alist;;
- : (int, string, Comparator.Poly.comparator) Map.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 14) ∗ all code

Or, equivalently:

Map.Poly.of_alist_exn digit_alist;;
- : (int, string) Map.Poly.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 15) ∗ all code

Note that maps based on the polymorphic comparator are not equivalent to those based on the

type-speci�c comparators from the point of view of the type system. Thus, the compiler rejects

the following:

Map.symmetric_diff (Map.Poly.singleton 3 "three")
 (Int.Map.singleton 3 "four") ;;
Characters 72-99:
Error: This expression has type
 string Int.Map.t = (int, string, Int.comparator) Map.t
 but an expression was expected of type
 (int, string, Comparator.Poly.comparator) Map.t
 Type Int.comparator is not compatible with type
 Comparator.Poly.comparator

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 16) ∗ all code

This is rejected for good reason: there's no guarantee that the comparator associated with a given

type will order things in the same way that polymorphic compare does.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 5/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The Perils of Polymorphic CompareThe Perils of Polymorphic Compare

Polymorphic compare is highly convenient, but it has serious downsides as well and should be

used with care. In particular, polymorphic compare has a �xed algorithm for comparing values of

any type, and that algorithm can sometimes yield surprising results.

To understand what's wrong with polymorphic compare, you need to understand a bit about how

it works. Polymorphic compare is structural, in that it operates directly on the runtime

representation of OCaml values, walking the structure of the values in question without regard

for their type.

This is convenient because it provides a comparison function that works for most OCaml values

and largely behaves as you would expect. For example, on ints and floats, it acts as you would

expect a numeric comparison function to act. For simple containers like strings and lists and

arrays, it operates as a lexicographic comparison. And except for functions and values from

outside of the OCaml heap, it works on almost every OCaml type.

But sometimes, a structural comparison is not what you want. Sets are a great example of this.

Consider the following two sets:

let (s1,s2) = (Int.Set.of_list [1;2],
 Int.Set.of_list [2;1]);;
val s1 : Int.Set.t = <abstr>
val s2 : Int.Set.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 18) ∗ all code

Logically, these two sets should be equal, and that's the result that you get if you call Set.equal

on them:

Set.equal s1 s2;;
- : bool = true

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 19) ∗ all code

But because the elements were added in di�erent orders, the layout of the trees underlying the

sets will be di�erent. As such, a structural comparison function will conclude that they're

di�erent.

Let's see what happens if we use polymorphic compare to test for equality by way of the =

operator. Comparing the maps directly will fail at runtime because the comparators stored within

the sets contain function values:

s1 = s2;;
Exception: (Invalid_argument "equal: functional value").

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 20) ∗ all code

We can, however, use the function Set.to_tree to expose the underlying tree without the

attached comparator:

Set.to_tree s1 = Set.to_tree s2;;
- : bool = false

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 21) ∗ all code

This can cause real and quite subtle bugs. If, for example, you use a map whose keys contain sets,

then the map built with the polymorphic comparator will behave incorrectly, separating out keys

that should be aggregated together. Even worse, it will work sometimes and fail others; since if

the sets are built in a consistent order, then they will work as expected, but once the order

changes, the behavior will change.

SetsSets

Sometimes, instead of keeping track of a set of key/value pairs, you just want a data type for

keeping track of a set of keys. You could build this on top of a map by representing a set of values

by a map whose data type is unit. But a more idiomatic (and e�cient) solution is to use Core's set

type, which is similar in design and spirit to the map type, while having an API better tuned to

working with sets and a lower memory footprint. Here's a simple example:

let dedup ~comparator l =
 List.fold l ~init:(Set.empty ~comparator) ~f:Set.add
 |> Set.to_list
 ;;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 6/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

val dedup :
 comparator:('a, 'b) Core_kernel.Comparator.t_ -> 'a list -> 'a list = <fun>
dedup ~comparator:Int.comparator [8;3;2;3;7;8;10];;
- : int list = [2; 3; 7; 8; 10]

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 17) ∗ all code

In addition to the operators you would expect to have for maps, sets support the traditional set

operations, including union, intersection, and set di�erence. And, as with maps, we can create

sets based on type-speci�c comparators or on the polymorphic comparator.

Satisfying the Comparable.S InterfaceSatisfying the Comparable.S Interface

Core's Comparable.S interface includes a lot of useful functionality, including support for

working with maps and sets. In particular, Comparable.S requires the presence of the Map and

Set submodules, as well as a comparator.

Comparable.S is satis�ed by most of the types in Core, but the question arises of how to satisfy

the comparable interface for a new type that you design. Certainly implementing all of the

required functionality from scratch would be an absurd amount of work.

The module Comparable contains a number of functors to help you automate this task. The

simplest one of these is Comparable.Make, which takes as an input any module that satis�es the

following interface:

module type Comparable = sig
 type t
 val sexp_of_t : t -> Sexp.t
 val t_of_sexp : Sexp.t -> t
 val compare : t -> t -> int
end

OCaml ∗ maps-and-hash-tables/comparable.ml ∗ all code

In other words, it expects a type with a comparison function, as well as functions for converting

to and from s-expressions. S-expressions are a serialization format used commonly in Core and

are required here to enable better error messages. We'll discuss s-expressions more in Chapter 17,

Data Serialization with S-Expressions, but in the meantime, we'll use the with sexp declaration

that comes from the Sexplib syntax extension. This declaration kicks o� the automatic generation

of s-expression conversion functions for the marked type.

The following example shows how this all �ts together, following the same basic pattern for using

functors described in the section called “Extending Modules”:

module Foo_and_bar : sig
 type t = { foo: Int.Set.t; bar: string }
 include Comparable.S with type t := t
 end = struct
 module T = struct
 type t = { foo: Int.Set.t; bar: string } with sexp
 let compare t1 t2 =
 let c = Int.Set.compare t1.foo t2.foo in
 if c <> 0 then c else String.compare t1.bar t2.bar
 end
 include T
 include Comparable.Make(T)
 end;;
module Foo_and_bar :
sig
 type t = { foo : Int.Set.t; bar : string; }
 val (>=) : t -> t -> bool
 val (<=) : t -> t -> bool
 val (=) : t -> t -> bool

 ...

end

OCaml Utop ∗ maps-and-hash-tables/main-22.rawscript ∗ all code

We don't include the full response from the toplevel because it is quite lengthy, but Foo_and_bar

does satisfy Comparable.S.

In the preceding code we wrote the comparison function by hand, but this isn't strictly necessary.

Core ships with a syntax extension called comparelib, which will create a comparison function

from a type de�nition. Using it, we can rewrite the previous example as follows:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/comparable.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/functors.html#extending-modules
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-22.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 7/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

module Foo_and_bar : sig
 type t = { foo: Int.Set.t; bar: string }
 include Comparable.S with type t := t
 end = struct
 module T = struct
 type t = { foo: Int.Set.t; bar: string } with sexp, compare
 end
 include T
 include Comparable.Make(T)
 end;;
module Foo_and_bar :
sig
 type t = { foo : Int.Set.t; bar : string; }
 val (>=) : t -> t -> bool
 val (<=) : t -> t -> bool
 val (=) : t -> t -> bool

 ...

end

OCaml Utop ∗ maps-and-hash-tables/main-23.rawscript ∗ all code

The comparison function created by comparelib for a given type will call out to the comparison

functions for its component types. As a result, the foo �eld will be compared using

Int.Set.compare. This is di�erent, and saner than the structural comparison done by

polymorphic compare.

If you want your comparison function to behave in a speci�c way, you should still write your own

comparison function by hand; but if all you want is a total order suitable for creating maps and

sets with, then comparelib is a good way to go.

You can also satisfy the Comparable.S interface using polymorphic compare:

module Foo_and_bar : sig
 type t = { foo: int; bar: string }
 include Comparable.S with type t := t
 end = struct
 module T = struct
 type t = { foo: int; bar: string } with sexp
 end
 include T
 include Comparable.Poly(T)
 end;;
module Foo_and_bar :
sig
 type t = { foo : int; bar : string; }
 val (>=) : t -> t -> bool
 val (<=) : t -> t -> bool
 val (=) : t -> t -> bool

 ...

end

OCaml Utop ∗ maps-and-hash-tables/main-24.rawscript ∗ all code

That said, for reasons we discussed earlier, polymorphic compare should be used sparingly.

=, ==, and phys_equal=, ==, and phys_equal

If you come from a C/C++ background, you'll probably re�exively use == to test two values for

equality. In OCaml, the == operator tests for physical equality, while the = operator tests for

structural equality.

The physical equality test will match if two data structures have precisely the same pointer in

memory. Two data structures that have identical contents but are constructed separately will not

match using ==.

The = structural equality operator recursively inspects each �eld in the two values and tests them

individually for equality. Crucially, if your data structure is cyclical (that is, a value recursively

points back to another �eld within the same structure), the = operator will never terminate, and

your program will hang! You therefore must use the physical equality operator or write a custom

comparison function when comparing cyclic values.

It's quite easy to mix up the use of = and ==, so Core disables the == operator and provides the

more explicit phys_equal function instead. You'll see a type error if you use == anywhere in code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-23.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-24.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 8/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

that opens Core.Std:

open Core.Std ;;

1 == 2 ;;
Characters -1-1:
Error: This expression has type int but an expression was expected of type
 [`Consider_using_phys_equal]
phys_equal 1 2 ;;
- : bool = false

OCaml Utop ∗ maps-and-hash-tables/core_phys_equal.topscript ∗ all code

If you feel like hanging your OCaml interpreter, you can verify what happens with recursive

values and structural equality for yourself:

type t1 = { foo1:int; bar1:t2 } and t2 = { foo2:int; bar2:t1 } ;;
type t1 = { foo1 : int; bar1 : t2; }
and t2 = { foo2 : int; bar2 : t1; }
let rec v1 = { foo1=1; bar1=v2 } and v2 = { foo2=2; bar2=v1 } ;;
<lots of text>
v1 == v1;;
- : bool = true
phys_equal v1 v1;;
- : bool = true
v1 = v1 ;;
<press ^Z and kill the process now>

OCaml Utop ∗ maps-and-hash-tables/phys_equal.rawscript ∗ all code

HASH TABLESHASH TABLES

Hash tables are the imperative cousin of maps. We walked over a basic hash table

implementation in Chapter 8, Imperative Programming, so in this section we'll mostly discuss the

pragmatics of Core's Hashtbl module. We'll cover this material more brie�y than we did with

maps because many of the concepts are shared.

Hash tables di�er from maps in a few key ways. First, hash tables are mutable, meaning that

adding a key/value pair to a hash table modi�es the table, rather than creating a new table with

the binding added. Second, hash tables generally have better time-complexity than maps,

providing constant-time lookup and modi�cations, as opposed to logarithmic for maps. And

�nally, just as maps depend on having a comparison function for creating the ordered binary tree

that underlies a map, hash tables depend on having a hash function, i.e., a function for converting

a key to an integer.

Time Complexity of Hash TablesTime Complexity of Hash Tables

The statement that hash tables provide constant-time access hides some

complexities. First of all, any hash table implementation, OCaml's included, needs

to resize the table when it gets too full. A resize requires allocating a new backing

array for the hash table and copying over all entries, and so it is quite an expensive

operation. That means adding a new element to the table is only amortized

constant, which is to say, it's constant on average over a long sequence of

operations, but some of the individual operations can be quite expensive.

Another hidden cost of hash tables has to do with the hash function you use. If you

end up with a pathologically bad hash function that hashes all of your data to the

same number, then all of your insertions will hash to the same underlying bucket,

meaning you no longer get constant-time access at all. Core's hash table

implementation uses binary trees for the hash-buckets, so this case only leads to

logarithmic time, rather than linear for a traditional hash table.

The logarithmic behavior of Core's hash tables in the presence of hash collisions

also helps protect against some denial-of-service attacks. One well-known type of

attack is to send queries to a service with carefully chosen keys to cause many

collisions. This, in combination with the linear behavior of most hashtables, can

cause the service to become unresponsive due to high CPU load. Core's hash tables

would be much less susceptible to such an attack because the amount of

degradation would be far less.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/core_phys_equal.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/phys_equal.rawscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 9/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

When creating a hash table, we need to provide a value of type hashable, which includes among

other things the function for hashing the key type. This is analogous to the comparator used for

creating maps:

let table = Hashtbl.create ~hashable:String.hashable ();;
val table : (string, '_a) Hashtbl.t = <abstr>
Hashtbl.replace table ~key:"three" ~data:3;;
- : unit = ()
Hashtbl.find table "three";;
- : int option = Some 3

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 25) ∗ all code

The hashable value is included as part of the Hashable.S interface, which is satis�ed by most

types in Core. The Hashable.S interface also includes a Table submodule which provides more

convenient creation functions:

let table = String.Table.create ();;
val table : '_a String.Table.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 26) ∗ all code

There is also a polymorphic hashable value, corresponding to the polymorphic hash function

provided by the OCaml runtime, for cases where you don't have a hash function for your speci�c

type:

let table = Hashtbl.create ~hashable:Hashtbl.Poly.hashable ();;
val table : ('_a, '_b) Hashtbl.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 27) ∗ all code

Or, equivalently:

let table = Hashtbl.Poly.create ();;
val table : ('_a, '_b) Hashtbl.t = <abstr>

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 28) ∗ all code

Note that, unlike the comparators used with maps and sets, hashables don't show up in the type

of a Hashtbl.t. That's because hash tables don't have operations that operate on multiple hash

tables that depend on those tables having the same hash function, in the way that

Map.symmetric_diff and Set.union depend on their arguments using the same comparison

function.

Collisions with the Polymorphic Hash FunctionCollisions with the Polymorphic Hash Function

OCaml's polymorphic hash function works by walking over the data structure it’s

given using a breadth-�rst traversal that is bounded in the number of nodes it’s

willing to traverse. By default, that bound is set at 10 "meaningful" nodes.

The bound on the traversal means that the hash function may ignore part of the

data structure, and this can lead to pathological cases where every value you store

has the same hash value. We'll demonstrate this below, using the function

List.range to allocate lists of integers of di�erent length:

Caml.Hashtbl.hash (List.range 0 9);;
- : int = 209331808
Caml.Hashtbl.hash (List.range 0 10);;
- : int = 182325193
Caml.Hashtbl.hash (List.range 0 11);;
- : int = 182325193
Caml.Hashtbl.hash (List.range 0 100);;
- : int = 182325193

OCaml Utop ∗ maps-and-hash-tables/main.topscript , continued (part 29) ∗ all code

As you can see, the hash function stops after the �rst 10 elements. The same can

happen with any large data structure, including records and arrays. When building

hash functions over large custom data structures, it is generally a good idea to write

one's own hash function.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 10/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Satisfying the Hashable.S InterfaceSatisfying the Hashable.S Interface

Most types in Core satisfy the Hashable.S interface, but as with the Comparable.S interface, the

question remains of how one should satisfy this interface when writing a new module. Again, the

answer is to use a functor to build the necessary functionality; in this case, Hashable.Make. Note

that we use OCaml's lxor operator for doing the "logical" (i.e., bitwise) exclusive Or of the hashes

from the component values:

module Foo_and_bar : sig
 type t = { foo: int; bar: string }
 include Hashable.S with type t := t
 end = struct
 module T = struct
 type t = { foo: int; bar: string } with sexp, compare
 let hash t =
 (Int.hash t.foo) lxor (String.hash t.bar)
 end
 include T
 include Hashable.Make(T)
 end;;
module Foo_and_bar :
sig
 type t = { foo : int; bar : string; }
 module Hashable : sig type t = t end
 val hash : t -> int
 val compare : t -> t -> int
 val hashable : t Pooled_hashtbl.Hashable.t

 ...

end

OCaml Utop ∗ maps-and-hash-tables/main-30.rawscript ∗ all code

Note that in order to satisfy hashable, one also needs to provide a comparison function. That's

because Core's hash tables use an ordered binary tree data structure for the hash-buckets, so that

performance of the table degrades gracefully in the case of pathologically bad choice of hash

function.

There is currently no analogue of comparelib for autogeneration of hash functions, so you do

need to either write the hash function by hand, or use the built-in polymorphic hash function,

Hashtbl.hash.

CHOOSING BETWEEN MAPS AND HASH TABLESCHOOSING BETWEEN MAPS AND HASH TABLES

Maps and hash tables overlap enough in functionality that it's not always clear when to choose

one or the other. Maps, by virtue of being immutable, are generally the default choice in OCaml.

OCaml also has good support for imperative programming, though, and when programming in an

imperative idiom, hash tables are often the more natural choice.

Programming idioms aside, there are signi�cant performance di�erences between maps and

hash tables. For code that is dominated by updates and lookups, hash tables are a clear

performance win, and the win is clearer the larger the amount of data.

The best way of answering a performance question is by running a benchmark, so let's do just

that. The following benchmark uses the core_bench library, and it compares maps and hash

tables under a very simple workload. Here, we're keeping track of a set of 1,000 di�erent integer

keys and cycling over the keys and updating the values they contain. Note that we use the

Map.change and Hashtbl.change functions to update the respective data structures:

open Core.Std
open Core_bench.Std

let map_iter ~num_keys ~iterations =
 let rec loop i map =
 if i <= 0 then ()
 else loop (i - 1)
 (Map.change map (i mod num_keys) (fun current ->
 Some (1 + Option.value ~default:0 current)))
 in
 loop iterations Int.Map.empty

let table_iter ~num_keys ~iterations =
 let table = Int.Table.create ~size:num_keys () in
 let rec loop i =
 if i <= 0 then ()

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-30.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 11/12

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 else (
 Hashtbl.change table (i mod num_keys) (fun current ->
 Some (1 + Option.value ~default:0 current));
 loop (i - 1)
)
 in
 loop iterations

let tests ~num_keys ~iterations =
 let test name f = Bench.Test.create f ~name in
 [test "map" (fun () -> map_iter ~num_keys ~iterations)
 ; test "table" (fun () -> table_iter ~num_keys ~iterations)
]

let () =
 tests ~num_keys:1000 ~iterations:100_000
 |> Bench.make_command
 |> Command.run

OCaml ∗ maps-and-hash-tables/map_vs_hash.ml ∗ all code

The results show the hash table version to be around four times faster than the map version:

$ corebuild -pkg core_bench map_vs_hash.native
$./map_vs_hash.native -ascii -clear-columns name time speedup
Estimated testing time 20s (change using -quota SECS).

 Name Time/Run Speedup
 ------- ------------ ---------
 map 20_234_582 1.00
 table 4_429_771 4.57

Terminal ∗ maps-and-hash-tables/run_map_vs_hash.out ∗ all code

We can make the speedup smaller or larger depending on the details of the test; for example, it

will vary with the number of distinct keys. But overall, for code that is heavy on sequences of

querying and updating a set of key/value pairs, hash tables will signi�cantly outperform maps.

Hash tables are not always the faster choice, though. In particular, maps are often more

performant in situations where you need to keep multiple related versions of the data structure

in memory at once. That's because maps are immutable, and so operations like Map.add that

modify a map do so by creating a new map, leaving the original undisturbed. Moreover, the new

and old maps share most of their physical structure, so multiple versions can be kept around

e�ciently.

Here's a benchmark that demonstrates this. In it, we create a list of maps (or hash tables) that are

built up by iteratively applying small updates, keeping these copies around. In the map case, this

is done by using Map.change to update the map. In the hash table implementation, the updates

are done using Hashtbl.change, but we also need to call Hashtbl.copy to take snapshots of the

table:

open Core.Std
open Core_bench.Std

let create_maps ~num_keys ~iterations =
 let rec loop i map =
 if i <= 0 then []
 else
 let new_map =
 Map.change map (i mod num_keys) (fun current ->
 Some (1 + Option.value ~default:0 current))
 in
 new_map :: loop (i - 1) new_map
 in
 loop iterations Int.Map.empty

let create_tables ~num_keys ~iterations =
 let table = Int.Table.create ~size:num_keys () in
 let rec loop i =
 if i <= 0 then []
 else (
 Hashtbl.change table (i mod num_keys) (fun current ->
 Some (1 + Option.value ~default:0 current));
 let new_table = Hashtbl.copy table in
 new_table :: loop (i - 1)
)
 in
 loop iterations

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/map_vs_hash.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/run_map_vs_hash.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 12/12

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let tests ~num_keys ~iterations =
 let test name f = Bench.Test.create f ~name in
 [test "map" (fun () -> ignore (create_maps ~num_keys ~iterations))
 ; test "table" (fun () -> ignore (create_tables ~num_keys ~iterations))
]

let () =
 tests ~num_keys:50 ~iterations:1000
 |> Bench.make_command
 |> Command.run

OCaml ∗ maps-and-hash-tables/map_vs_hash2.ml ∗ all code

Unsurprisingly, maps perform far better than hash tables on this benchmark, in this case by

more than a factor of 10:

$ corebuild -pkg core_bench map_vs_hash2.native
$./map_vs_hash2.native -ascii -clear-columns name time speedup
Estimated testing time 20s (change using -quota SECS).

 Name Time/Run Speedup
 ------- ----------- ---------
 map 147_208 11.28
 table 1_660_635 1.00

Terminal ∗ maps-and-hash-tables/run_map_vs_hash2.out ∗ all code

These numbers can be made more extreme by increasing the size of the tables or the length of

the list.

As you can see, the relative performance of trees and maps depends a great deal on the details of

how they're used, and so whether to choose one data structure or the other will depend on the

details of the application.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/map_vs_hash2.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/run_map_vs_hash2.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html

