15/01/2019

OREILLY"

1

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Logjin with GitHulb 1o view
and add commenis

Chapter 13. Maps and Hash Tables / Real World OCaml

Chapter 13. Maps and Hash Tables

Lots of programming problems require dealing with data organized as key/value pairs. Maybe the

simplest way of representing such data in OCaml is an association list, which is simply a list of
pairs of keys and values. For example, you could represent a mapping between the 10 digits and
their English names as follows:

let digit_alist =
[o, "zero"; 1, "one"; 2, "two" ; 3, "three"; 4, "four"
; 5, "five"; 6, "six"; 7, "seven"; 8, "eight"; 9, "nine"]
55
val digit_alist : (int * string) list =
[(6, "zero"); (1, "one"); (2, "two"); (3, "three"); (4, "four");
(5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 1) * all code
We can use functions from the List .Assoc module to manipulate this data:

List.Assoc.find digit_alist 6;;

- : string option = Some "six"

List.Assoc.find digit_alist 22;;

- : string option = None

List.Assoc.add digit_alist @ "zilch";;

- : (int, string) List.Assoc.t =

[(e, "zilch"); (1, "one"); (2, "two"); (3, "three"); (4, "four");
(5, "five"); (6, "six"); (7, "seven"); (8, "eight"); (9, "nine")]

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 2) * all code

Association lists are simple and easy to use, but their performance is not ideal, since almost every

nontrivial operation on an association list requires a linear-time scan of the list.

In this chapter, we'll talk about two more efficient alternatives to association lists: maps and hash

tables. A map is an immutable tree-based data structure where most operations take time
logarithmic in the size of the map, whereas a hash table is a mutable data structure where most
operations have constant time complexity. We'll describe both of these data structures in detail
and provide some advice as to how to choose between them.

MAPS

Let's consider an example of how one might use a map in practice. In Chapter 4, Files, Modules,
and Programs, we showed a module counter for keeping frequency counts on a set of strings.
Here's the interface:

open Core.Std

(** A collection of string frequency counts *)
type t

(** The empty set of frequency counts *)
val empty : t

(** Bump the frequency count for the given string. *)
val touch : t -> string -> t

(* Converts the set of frequency counts to an association list. Every strings
in the Llist will show up at most once, and the integers will be at least
1. %)

val to_list : t -> (string * int) list

OCaml * files-modules-and-programs-freqg-fast/counter.mli * all code

The intended behavior here is straightforward. Counter.empty represents an empty collection of

frequency counts; touch increments the frequency count of the specified string by 1; and
to_list returns the list of nonzero frequencies.

Here's the implementation:

open Core.Std

type t = int String.Map.t

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html

112

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/files-modules-and-programs.html
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-fast/counter.mli
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

1

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml
let empty = String.Map.empty

let to_list t = Map.to_alist t

let touch t s =
let count =
match Map.find t s with
| None -> o
| some x -> x
in
Map.add t ~key:s ~data:(count + 1)

OCaml * files-modules-and-programs-freq-fast/counter.ml « all code

Note that in some places the preceding code refers to string.Map. t, and in others Map. t. This
has to do with the fact that maps are implemented as ordered binary trees, and as such, need a
way of comparing keys.

To deal with this, a map, once created, stores the necessary comparison function within the data
structure. Thus, operations like Map . find or Map . add that access the contents of a map or create
anew map from an existing one, do so by using the comparison function embedded within the
map.

But in order to get a map in the first place, you need to get your hands on the comparison
function somehow. For this reason, modules like st ring contain a Map submodule that has
values like String.Map.empty and String.Map.of alist thatare specialized to strings, and
thus have access to a string comparison function. Such a Map submodule is included in every
module that satisfies the Comparable. s interface from Core.

Creating Maps with Comparators

The specialized Map submodule is convenient, but it's not the only way of creating a Map. t. The
information required to compare values of a given type is wrapped up in a value called a
comparator that can be used to create maps using the Map module directly:

let digit_map = Map.of_alist_exn digit_alist
~comparator:Int.comparator;;
val digit_map : (int, string, Int.comparator) Map.t = <abstr>
Map.find digit_map 3;;
- : string option = Some "three"

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 3) * all code

The preceding code uses Map.of alist exn, which creates a map from an association list,
throwing an exception if there are duplicate keys in the list.

The comparator is only required for operations that create maps from scratch. Operations that
update an existing map simply inherit the comparator of the map they start with:

let zilch_map = Map.add digit_map ~key:0 ~data:"zilch";;
val zilch_map : (int, string, Int.comparator) Map.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 4) * all code

The type Map. t has three type parameters: one for the key, one for the value, and one to identify
the comparator. Indeed, the type 'a Int.Map.t isjusta type alias for

(int, 'a, Int.comparator) Map.t.

Including the comparator in the type is important because operations that work on multiple
maps at the same time often require that the maps share their comparison function. Consider, for
example, Map.symmetric_diff, which computes a summary of the differences between two
maps:

let left = String.Map.of_alist_exn ["foo",1; "bar",3; "snoo", 0]
let right = String.Map.of_alist_exn ["foo0",0; "snoo", 0]
let diff = Map.symmetric_diff ~data_equal:Int.equal left right
55
val left : int String.Map.t = <abstr>
val right : int String.Map.t = <abstr>
val diff :
(string * ["Left of int | “Right of int | “Unequal of int * int]) Llist =
[("foo", “Unequal (1, ©)); ("bar", "Left 3)]

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 5) * all code

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 2/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/files-modules-and-programs-freq-fast/counter.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

The type of Map . symmetric_diff, which follows, requires that the two maps it compares have
the same comparator type. Each comparator has a fresh abstract type, so the type of a
comparator identifies the comparator uniquely:

OREILLY"

; # Map.symmetric_diff;;
“‘ - : ('R, 'v, 'cmp) Map.t ->
Real World ('k, 'v, 'cmp) Map.t ->
OCaml data_equal:('v -> 'v -> bool) ->
('R * [“Left of 'v | “Right of 'v | “Unequal of 'v * 'v]) list
= <fun>

Buy in print and eBook. OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 6) * all code

M This constraint is important because the algorithm that Map. symmetric diff uses depends for

Prologue its correctness on the fact that both maps have the same comparator.

I. Language Concepts

I1. Tools and Techniques We can create a new comparator using the comparator.Make functor, which takes as its input a
13. Maps and Hash Tables module containing the type of the object to be compared, sexp converter functions, and a
14. Command-Line Parsing comparison function. The sexp converters are included in the comparator to make it possible for

15. Handling JSON Data

16. Parsing with OCamllex and
Menhir

17. Data Serialization with S- # module Reverse = Comparator.Make(struct
type t = string

let sexp_of_t = String.sexp_of_t

let t_of _sexp = String.t_of_sexp

users of the comparator to generate better error messages. Here's an example:

Expressions
18. Concurrent Programming

with Async .
I1I. The Runtime System emlj()ﬂ':.compar‘e X y = String.compare y x
Index module Reverse :
sig

oain \with GitHuib to view type t = string

and aad comments val compare : t -> t -> int

val t_of sexp : Sexp.t -> t

val sexp of t : t -> Sexp.t

type comparator

val comparator : (t, comparator) Comparator.t_
end

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 7) * all code

As you can see in the following code, both Reverse.comparator and String.comparator can
be used to create maps with a key type of string:

let alist = ["foo", @; "snoo", 3];;

val alist : (string * int) Llist = [("foo", @); ("snoo", 3)]

let ord_map = Map.of_alist_exn ~comparator:String.comparator alist;;
val ord_map : (string, int, String.comparator) Map.t = <abstr>

let rev_map = Map.of_alist_exn ~comparator:Reverse.comparator alist;;
val rev_map : (string, int, Reverse.comparator) Map.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 8) * all code

Map.min_elt returns the key and value for the smallest key in the map, which lets us see that
these two maps do indeed use different comparison functions:

Map.min_elt ord_map;;

- : (string * int) option = Some ("foo", ©)
Map.min_elt rev_map;;

- : (string * int) option = Some ("snoo", 3)

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 9) * all code

Accordingly, if we try to use Map.symmetric_diff on these two maps, we'll get a compile-time
error:

Map.symmetric_diff ord_map rev_map;;
Characters 27-34:
Error: This expression has type (string, int, Reverse.comparator) Map.t
but an expression was expected of type
(string, int, String.comparator) Map.t
Type Reverse.comparator is not compatible with type String.comparator

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 10) * all code

Trees

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 3/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

As we've discussed, maps carry within them the comparator that they were created with.
Sometimes, often for space efficiency reasons, you want a version of the map data structure that
doesn't include the comparator. You can get such a representation with Map.to_tree, which
returns just the tree underlying the map, without the comparator:

OREILLY"

“‘ # let ord_tree = Map.to_tree ord_map;;
Real World val ord_tree : (string, int, String.comparator) Map.Tree.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 11) * all code

Buy in print and eBook. Even though a Map.Tree. t doesn't physically include a comparator, it does include the

comparator in its type. This is what is known as a phantom type, because it reflects something
Table of Contents about the logic of the value in question, even though it doesn't correspond to any values directly
Prologue represented in the underlying physical structure of the value.

I. Language Concepts
I1. Tools and Techniques Since the comparator isn't included in the tree, we need to provide the comparator explicitly

13. Maps and Hash Tables when we, say, search for a key, as shown below:
14. Command-Line Parsing

15. Handling JSON Data # Map.Tree.find ~comparator:String.comparator ord_tree "snoo";;

16. Parsing with OCamllex and - : int option = Some 3

Menhir

17. Data Serialization with S- OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 12) * all code

Expressions

18. Concurrent Programming The algorithm of Map . Tree. find depends on the fact that it's using the same comparator when

with Async looking up a value as you were when you stored it. That's the invariant that the phantom type is
III. The Runtime System there to enforce. As you can see in the following example, using the wrong comparator will lead
Index to a type error:

wilth GiltHub to Wieww

Map.Tree.find ~comparator:Reverse.comparator ord_tree "snoo";;
Characters 45-53:
Error: This expression has type (string, int, String.comparator) Map.Tree.t
but an expression was expected of type
(string, int, Reverse.comparator) Map.Tree.t
Type String.comparator is not compatible with type Reverse.comparator

aind 2dd comments

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 13) * all code

The Polymorphic Comparator

We don't need to generate specialized comparators for every type we want to build a map on. We
can instead use a comparator based on OCaml's built-in polymorphic comparison function,
which was discussed in Chapter 3, Lists and Patterns. This comparator is found in the
Comparator.Poly module, allowing us to write:

Map.of_alist_exn ~comparator:Comparator.Poly.comparator digit_alist;;
- : (int, string, Comparator.Poly.comparator) Map.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 14) * all code
Or, equivalently:

Map.Poly.of_alist_exn digit_alist;;
- : (int, string) Map.Poly.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 15) * all code

Note that maps based on the polymorphic comparator are not equivalent to those based on the
type-specific comparators from the point of view of the type system. Thus, the compiler rejects
the following:

Map.symmetric_diff (Map.Poly.singleton 3 "three")
(Int.Map.singleton 3 "four") ;;
Characters 72-99:
Error: This expression has type
string Int.Map.t = (int, string, Int.comparator) Map.t
but an expression was expected of type
(int, string, Comparator.Poly.comparator) Map.t
Type Int.comparator is not compatible with type
Comparator.Poly.comparator

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 16) * all code

This is rejected for good reason: there's no guarantee that the comparator associated with a given
type will order things in the same way that polymorphic compare does.

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 4/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/lists-and-patterns.html
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

¢

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml
The Perils of Polymorphic Compare

Polymorphic compare is highly convenient, but it has serious downsides as well and should be
used with care. In particular, polymorphic compare has a fixed algorithm for comparing values of
any type, and that algorithm can sometimes yield surprising results.

To understand what's wrong with polymorphic compare, you need to understand a bit about how
it works. Polymorphic compare is structural, in that it operates directly on the runtime
representation of OCaml values, walking the structure of the values in question without regard
for their type.

This is convenient because it provides a comparison function that works for most OCaml values
and largely behaves as you would expect. For example, on ints and floats, it acts as you would
expect a numeric comparison function to act. For simple containers like strings and lists and
arrays, it operates as a lexicographic comparison. And except for functions and values from
outside of the OCaml heap, it works on almost every OCaml type.

But sometimes, a structural comparison is not what you want. Sets are a great example of this.
Consider the following two sets:

let (s1,s2) = (Int.Set.of_list [1;2],
Int.Set.of_list [2;1]);;

val s1 : Int.Set.t = <abstr>

val s2 : Int.Set.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 18) * all code

Logically, these two sets should be equal, and that's the result that you get if you call set .equal
on them:

Set.equal sl s2;;
- : bool = true

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 19) * all code

But because the elements were added in different orders, the layout of the trees underlying the
sets will be different. As such, a structural comparison function will conclude that they're
different.

Let's see what happens if we use polymorphic compare to test for equality by way of the =
operator. Comparing the maps directly will fail at runtime because the comparators stored within
the sets contain function values:

sl = s2;;
Exception: (Invalid_argument "equal: functional value").

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 20) * all code

We can, however, use the function Set.to_tree to expose the underlying tree without the
attached comparator:

Set.to_tree sl = Set.to_tree s2;;
- : bool = false

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 21) * all code

This can cause real and quite subtle bugs. If, for example, you use a map whose keys contain sets,
then the map built with the polymorphic comparator will behave incorrectly, separating out keys
that should be aggregated together. Even worse, it will work sometimes and fail others; since if
the sets are built in a consistent order, then they will work as expected, but once the order
changes, the behavior will change.

Sets

Sometimes, instead of keeping track of a set of key/value pairs, you just want a data type for
keeping track of a set of keys. You could build this on top of a map by representing a set of values
by a map whose data type is unit. But a more idiomatic (and efficient) solution is to use Core's set
type, which is similar in design and spirit to the map type, while having an API better tuned to
working with sets and a lower memory footprint. Here's a simple example:

let dedup ~comparator 1 =
List.fold 1 ~init:(Set.empty ~comparator) ~f:Set.add
|> Set.to_list

bRl

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 5/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

H

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml
val dedup :
comparator:('a, 'b) Core_kernel.Comparator.t_ -> 'a Llist -> 'a list = <fun>
dedup ~comparator:Int.comparator [8;3;2;3;7;8;10];;
- :int list = [2; 3; 7; 8; 10]

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 17) * all code

In addition to the operators you would expect to have for maps, sets support the traditional set
operations, including union, intersection, and set difference. And, as with maps, we can create
sets based on type-specific comparators or on the polymorphic comparator.

Satisfying the Comparable.S Interface

Core's Comparable.s interface includes a lot of useful functionality, including support for
working with maps and sets. In particular, Comparable.s requires the presence of the Map and
set submodules, as well as a comparator.

Comparable. S is satisfied by most of the types in Core, but the question arises of how to satisfy
the comparable interface for a new type that you design. Certainly implementing all of the
required functionality from scratch would be an absurd amount of work.

The module comparable contains a number of functors to help you automate this task. The
simplest one of these is Comparable.Make, which takes as an input any module that satisfies the
following interface:

module type Comparable = sig
type t
val sexp_of_t : t -> Sexp.t
val t_of_sexp : Sexp.t -> t
val compare : t -> t -> int
end

OCaml * maps-and-hash-tables/comparable.ml * all code

In other words, it expects a type with a comparison function, as well as functions for converting
to and from s-expressions. S-expressions are a serialization format used commonly in Core and
are required here to enable better error messages. We'll discuss s-expressions more in Chapter 17,
Data Serialization with S-Expressions, but in the meantime, we'll use the with sexp declaration
that comes from the Sexplib syntax extension. This declaration kicks off the automatic generation
of s-expression conversion functions for the marked type.

The following example shows how this all fits together, following the same basic pattern for using
functors described in the section called “Extending Modules™:

module Foo_and_bar : sig
type t = { foo: Int.Set.t; bar: string }
include Comparable.S with type t := t
end = struct
module T = struct
type t = { foo: Int.Set.t; bar: string } with sexp
let compare t1 t2 =
let ¢ = Int.Set.compare tl.foo t2.foo in
if ¢ <> 0 then c else String.compare tl.bar t2.bar

end
include T
include Comparable.Make(T)
end;;
module Foo_and_bar :
sig
type t = { foo : Int.Set.t; bar : string; }
val (>=) : t -> t -> bool

val (<=) : t -> t -> bool
val (=) : t -> t -> bool

end

OCaml Utop * maps-and-hash-tables/main-22.rawscript * all code

We don't include the full response from the toplevel because it is quite lengthy, but Foo_and bar
does satisfy Comparable.S.

In the preceding code we wrote the comparison function by hand, but this isn't strictly necessary.
Core ships with a syntax extension called comparelib, which will create a comparison function
from a type definition. Using it, we can rewrite the previous example as follows:

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html

6/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/comparable.ml
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/functors.html#extending-modules
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-22.rawscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

I

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml

module Foo_and_bar : sig
type t = { foo: Int.Set.t; bar: string }
include Comparable.S with type t := t
end = struct
module T = struct
type t = { foo: Int.Set.t; bar: string } with sexp, compare
end
include T
include Comparable.Make(T)
end;;
module Foo_and_bar :
sig
type t = { foo : Int.Set.t; bar : string; }
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t ->t -> bool

end

OCaml Utop * maps-and-hash-tables/main-23.rawscript * all code

The comparison function created by comparelib for a given type will call out to the comparison
functions for its component types. As a result, the foo field will be compared using
Int.Set.compare. This is different, and saner than the structural comparison done by
polymorphic compare.

If you want your comparison function to behave in a specific way, you should still write your own
comparison function by hand; but if all you want is a total order suitable for creating maps and
sets with, then comparelib is a good way to go.

You can also satisfy the comparable.s interface using polymorphic compare:

module Foo_and_bar : sig
type t = { foo: int; bar: string }
include Comparable.S with type t :=t
end = struct
module T = struct
type t = { foo: int; bar: string } with sexp
end
include T
include Comparable.Poly(T)
end; ;
module Foo_and_bar :
sig
type t = { foo : int; bar : string; }
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t -> t -> bool

end

OCaml Utop * maps-and-hash-tables/main-24.rawscript * all code
That said, for reasons we discussed earlier, polymorphic compare should be used sparingly.

=, ==, and phys_equal

If you come from a C/C++ background, you'll probably reflexively use == to test two values for
equality. In OCaml, the == operator tests for physical equality, while the = operator tests for
structural equality.

The physical equality test will match if two data structures have precisely the same pointer in
memory. Two data structures that have identical contents but are constructed separately will not
match using ==.

The = structural equality operator recursively inspects each field in the two values and tests them
individually for equality. Crucially, if your data structure is cyclical (that is, a value recursively
points back to another field within the same structure), the = operator will never terminate, and
your program will hang! You therefore must use the physical equality operator or write a custom
comparison function when comparing cyclic values.

It's quite easy to mix up the use of = and ==, so Core disables the == operator and provides the
more explicit phys equal function instead. You'll see a type error if you use == anywhere in code

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 7112

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-23.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-24.rawscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

¢

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml

that opens Core.Std:

open Core.Std ;;

#1==2;;

Characters -1-1:

Error: This expression has type int but an expression was expected of type
[“Consider_using_phys_equal]

phys_equal 1 2 ;;

- : bool = false

OCaml Utop * maps-and-hash-tables/core_phys_equal.topscript all code

If you feel like hanging your OCaml interpreter, you can verify what happens with recursive
values and structural equality for yourself:

type t1 = { fool:int; barl:t2 } and t2 = { foo2:int; bar2:tl1 } ;;
type t1 = { fool : int; barl : t2; }

and t2 = { foo2 : int; bar2 : ti; }
let rec vl = { fool=1; barl=v2 } and v2 = { foo2=2; bar2=vl } ;;
<lots of text>
vl == vl;;

- : bool = true
phys_equal v1 vi;;

- : bool = true
vl =vl ;;

<press ~Z and Rill the process now>

OCaml Utop * maps-and-hash-tables/phys_equal.rawscript * all code

HASH TABLES

Hash tables are the imperative cousin of maps. We walked over a basic hash table
implementation in Chapter 8, Imperative Programming, so in this section we'll mostly discuss the
pragmatics of Core's Hashtbl module. We'll cover this material more briefly than we did with
maps because many of the concepts are shared.

Hash tables differ from maps in a few key ways. First, hash tables are mutable, meaning that
adding a key/value pair to a hash table modifies the table, rather than creating a new table with
the binding added. Second, hash tables generally have better time-complexity than maps,
providing constant-time lookup and modifications, as opposed to logarithmic for maps. And
finally, just as maps depend on having a comparison function for creating the ordered binary tree
that underlies a map, hash tables depend on having a hash function, i.e., a function for converting
a key to an integer.

Time Complexity of Hash Tables

The statement that hash tables provide constant-time access hides some
complexities. First of all, any hash table implementation, OCaml's included, needs
to resize the table when it gets too full. A resize requires allocating a new backing
array for the hash table and copying over all entries, and so it is quite an expensive
operation. That means adding a new element to the table is only amortized
constant, which is to say, it's constant on average over a long sequence of
operations, but some of the individual operations can be quite expensive.

Another hidden cost of hash tables has to do with the hash function you use. If you
end up with a pathologically bad hash function that hashes all of your data to the
same number, then all of your insertions will hash to the same underlying bucket,
meaning you no longer get constant-time access at all. Core's hash table
implementation uses binary trees for the hash-buckets, so this case only leads to
logarithmic time, rather than linear for a traditional hash table.

The logarithmic behavior of Core's hash tables in the presence of hash collisions
also helps protect against some denial-of-service attacks. One well-known type of
attack is to send queries to a service with carefully chosen keys to cause many
collisions. This, in combination with the linear behavior of most hashtables, can
cause the service to become unresponsive due to high CPU load. Core's hash tables
would be much less susceptible to such an attack because the amount of
degradation would be far less.

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html

8/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/core_phys_equal.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/phys_equal.rawscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/imperative-programming-1.html

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

o@in \with GitHub t© view

2Nd 200 comments

Chapter 13. Maps and Hash Tables / Real World OCaml

When creating a hash table, we need to provide a value of type hashable, which includes among
other things the function for hashing the key type. This is analogous to the comparator used for
creating maps:

let table = Hashtbl.create ~hashable:String.hashable ();;
val table : (string, '_a) Hashtbl.t = <abstr>

Hashtbl.replace table ~key:"three" ~data:3;;
- ounit = ()

Hashtbl.find table "three";;
- : int option = Some 3

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 25) * all code

The hashable value is included as part of the Hashable. S interface, which is satisfied by most
types in Core. The Hashable.s interface also includes a Table submodule which provides more
convenient creation functions:

let table = String.Table.create ();;
val table : '_a String.Table.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 26) * all code

There is also a polymorphic hashable value, corresponding to the polymorphic hash function
provided by the OCaml runtime, for cases where you don't have a hash function for your specific
type:

let table = Hashtbl.create ~hashable:Hashtbl.Poly.hashable ();;
val table : ('_a, '_b) Hashtbl.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 27) * all code
Or, equivalently:

let table = Hashtbl.Poly.create ();;
val table : ('_a, '_b) Hashtbl.t = <abstr>

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 28) * all code

Note that, unlike the comparators used with maps and sets, hashables don't show up in the type
of a Hashtbl.t. That's because hash tables don't have operations that operate on multiple hash
tables that depend on those tables having the same hash function, in the way that
Map.symmetric diff and Set.union depend on their arguments using the same comparison
function.

Collisions with the Polymorphic Hash Function

OCaml's polymorphic hash function works by walking over the data structure it’s
given using a breadth-first traversal that is bounded in the number of nodes it’s
willing to traverse. By default, that bound is set at 10 "meaningful" nodes.

The bound on the traversal means that the hash function may ignore part of the
data structure, and this can lead to pathological cases where every value you store
has the same hash value. We'll demonstrate this below, using the function
List.range to allocate lists of integers of different length:

Caml.Hashtbl.hash (List.range © 9);;
- ! int = 209331808

Caml.Hashtbl.hash (List.range © 10);;
- : int = 182325193

Caml.Hashtbl.hash (List.range 0 11);;
- ! int = 182325193

Caml.Hashtbl.hash (List.range © 100);;
- : int = 182325193

OCaml Utop * maps-and-hash-tables/main.topscript , continued (part 29) * all code

As you can see, the hash function stops after the first 10 elements. The same can
happen with any large data structure, including records and arrays. When building
hash functions over large custom data structures, it is generally a good idea to write
one's own hash function.

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 9/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

¢

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

Chapter 13. Maps and Hash Tables / Real World OCaml
Satisfying the Hashable.S Interface

Most types in Core satisfy the Hashable. s interface, but as with the Comparable.s interface, the
question remains of how one should satisfy this interface when writing a new module. Again, the
answer is to use a functor to build the necessary functionality; in this case, Hashable .Make. Note
that we use OCaml's 1xor operator for doing the "logical" (i.e., bitwise) exclusive Or of the hashes
from the component values:

module Foo_and_bar : sig
type t = { foo: int; bar: string }
include Hashable.S with type t := t
end = struct
module T = struct
type t = { foo: int; bar: string } with sexp, compare
let hash t =
(Int.hash t.foo) lxor (String.hash t.bar)
end
include T
include Hashable.Make(T)
end;;
module Foo_and_bar :
sig
type t = { foo : int; bar : string; }
module Hashable : sig type t = t end
val hash : t -> int
val compare : t -> t -> int
val hashable : t Pooled_hashtbl.Hashable.t

end

OCaml Utop * maps-and-hash-tables/main-30.rawscript * all code

Note that in order to satisfy hashable, one also needs to provide a comparison function. That's
because Core's hash tables use an ordered binary tree data structure for the hash-buckets, so that
performance of the table degrades gracefully in the case of pathologically bad choice of hash
function.

There is currently no analogue of comparelib for autogeneration of hash functions, so you do
need to either write the hash function by hand, or use the built-in polymorphic hash function,
Hashtbl.hash.

CHOOSING BETWEEN MAPS AND HASH TABLES

Maps and hash tables overlap enough in functionality that it's not always clear when to choose
one or the other. Maps, by virtue of being immutable, are generally the default choice in OCaml.
OCaml also has good support for imperative programming, though, and when programming in an
imperative idiom, hash tables are often the more natural choice.

Programming idioms aside, there are significant performance differences between maps and
hash tables. For code that is dominated by updates and lookups, hash tables are a clear
performance win, and the win is clearer the larger the amount of data.

The best way of answering a performance question is by running a benchmark, so let's do just
that. The following benchmark uses the core_bench library, and it compares maps and hash
tables under a very simple workload. Here, we're keeping track of a set of 1,000 different integer
keys and cycling over the keys and updating the values they contain. Note that we use the
Map.change and Hashtbl.change functions to update the respective data structures:

open Core.Std
open Core_bench.Std

let map_iter ~num_keys ~iterations =

let rec loop i map =

if i <= @ then ()

else loop (i - 1)

(Map.change map (i mod num_keys) (fun current ->
Some (1 + Option.value ~default:0 current)))

in
loop iterations Int.Map.empty

let table_iter ~num_keys ~iterations =
let table = Int.Table.create ~size:num_keys () in
let rec loop i =
if i <= 0 then ()

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html

10/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/main-30.rawscript
http://github.com/realworldocaml/examples/

15/01/2019

OREILLY"

i

Real World
OCaml

Buy in print and eBook.

Table of Contents

Prologue

I. Language Concepts

I1. Tools and Techniques
13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

ITI. The Runtime System

Index

oain With GitHub 1o View

20 200 comments

Chapter 13. Maps and Hash Tables / Real World OCaml

else (
Hashtbl.change table (i mod num_keys) (fun current ->
Some (1 + Option.value ~default:0 current));
loop (i - 1)
)
in
loop iterations

let tests ~num_keys ~iterations =
let test name f = Bench.Test.create f ~name in

[test "map" (fun () -> map_iter ~num_keys ~iterations)
; test "table" (fun () -> table_iter ~num_keys ~iterations)
1

let () =

tests ~num_keys:1000 ~iterations:100 000
| > Bench.make_command
|> Command.run

OCaml * maps-and-hash-tables/map_vs_hash.ml « all code
The results show the hash table version to be around four times faster than the map version:

$ corebuild -pkg core_bench map_vs_hash.native
$./map_vs_hash.native -ascii -clear-columns name time speedup

Estimated testing time 20s (change using -quota SECS).

Name Time/Run Speedup
map 20 234 582 1.00
table 4 429 771 4.57

Terminal * maps-and-hash-tables/run_map_vs_hash.out * all code

We can make the speedup smaller or larger depending on the details of the test; for example, it
will vary with the number of distinct keys. But overall, for code that is heavy on sequences of
querying and updating a set of key/value pairs, hash tables will significantly outperform maps.

Hash tables are not always the faster choice, though. In particular, maps are often more
performant in situations where you need to keep multiple related versions of the data structure
in memory at once. That's because maps are immutable, and so operations like Map . add that
modify a map do so by creating a new map, leaving the original undisturbed. Moreover, the new
and old maps share most of their physical structure, so multiple versions can be kept around
efficiently.

Here's a benchmark that demonstrates this. In it, we create a list of maps (or hash tables) that are
built up by iteratively applying small updates, keeping these copies around. In the map case, this
is done by using Map . change to update the map. In the hash table implementation, the updates
are done using Hashtbl.change, but we also need to call Hashtbl . copy to take snapshots of the
table:

open Core.Std
open Core_bench.Std

let create_maps ~num_keys ~iterations =
let rec loop i map =
if i <= 0 then []
else
let new_map =
Map.change map (i mod num_keys) (fun current ->
Some (1 + Option.value ~default:@ current))
in
new_map :: loop (i - 1) new_map
in
loop iterations Int.Map.empty

let create_tables ~num_keys ~iterations =
let table = Int.Table.create ~size:num_keys () in
let rec loop i =
if i <= 0 then []
else (
Hashtbl.change table (i mod num_keys) (fun current ->
Some (1 + Option.value ~default:0 current));
let new_table = Hashtbl.copy table in
new_table :: loop (i - 1)
)
in
loop iterations

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 11/12

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/map_vs_hash.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/run_map_vs_hash.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 13. Maps and Hash Tables / Real World OCaml

let tests ~num_keys ~iterations =

let test name f = Bench.Test.create f ~name in
[test "map" (fun () -> ignore (create_maps ~num_keys ~iterations))
; test "table" (fun () -> ignore (create_tables ~num_keys ~iterations))
(.]
= ‘ let () =

tests ~num_keys:50 ~iterations:1000
| > Bench.make_command
|> Command.run

Real World
OCaml

OCaml * maps-and-hash-tables/map_vs_hash2.ml = all code

Buy in print and eBook.
Table of Contents Unsurprisingly, maps perform far better than hash tables on this benchmark, in this case by
Prologue more than a factor of 10:
I. Language Concepts
I1. Tools and Techniques $ corebuild -pkg core_bench map_vs_hash2.native
13. Maps and Hash Tables $./map_vs_hash2.native -ascii -clear-columns name time speedup
14. Command-Line Parsing Estimated testing time 20s (change using -quota SECS).
15. Handling JSON Data
16. Parsing with OCamllex and Name Time/Run Speedup
Menhir e e~
17. Data Serialization with S- map 147 208 11.28
Expressions _ table 1_660_635 1.00
18. Concurrent Programming
with Async
III. The Runtime System Terminal *+ maps-and-hash-tables/run_map_vs_hash2.out all code
Index
These numbers can be made more extreme by increasing the size of the tables or the length of
Logjim with GiiHuib to view the list.

z2ind adid commmenits

As you can see, the relative performance of trees and maps depends a great deal on the details of
how they're used, and so whether to choose one data structure or the other will depend on the
details of the application.

< Previous Next >

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html 12/12

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmaps-and-hash-tables.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/map_vs_hash2.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/maps-and-hash-tables/run_map_vs_hash2.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html

