Internet Applications Design and Implementation
(Lecture 4 - MVC & Persistence : JPA & Hibernate)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

Outline

Server-side MVC Architecture

Data Sources in MVC

Object Relational Mapping

Spring & Data Abstraction

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 147

Internet Applications Design and Implementation
2020 - 2021
(Lecture 4 - Part 1 - Server-side MVC Architecture)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
. SCIENCE & TECHNOLOGY

Web architectures, patterns and styles L

* Web applications usually follow a MVC architectural pattern.
* Model layer - isolate the representation of persistent data and its operations, validations and conditions

» Controller - contains the core application logic implementing the application interface (e.g. ad-hoc URL
mapping, REST convention)

* View - defines the way in which responses are formed (e.g. HTML, JSON)

Ukt Comm’ Web
C Comm Seiw‘ Aw Dakx

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

149

summary - Web Frameworks

 Web Frameworks are “languages” that carry libraries and abstractions that get
compiled to run on the “web virtual machine”.

Chemt " Wb
Comm b M ke

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 150

The classic MVC design pattern

* The Model-View-Controller (Reenskaug’'79, JOT'88)

MODEL
» designed to develop GUI umeEs Mmams
e popular in web applications’ context 1 |
. . VIEW CONTROLLER
« Variants of the MVC Architecture . y
. Ry
(Separation of Concerns) ‘q\ /\,o:o"
 MVP, PM (Fowler), MVVM (Microsoft) USER

The MVVM classes and their interactions

Notifications

Data Binding N ViewModel
Commands

U}L i Presentation Bt:;::ss
ogic .
; (Code Beghind) vage and Data

https://manojjaggavarapu.wordpress.com/2012/05/02/presentation-patterns-mvc-mvp-pm-mvvm/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 151

Internet Applications are Data-Centric =y

User
Interface Layer

Presentation
Layer

Application
Layer
Service
Layer

Domain
Layer

Data
Layer

https://dzone.com/articles/layered-architecture-is-good

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, J&come Cunha, Jo&o Leitdo 152

Frameworks and MVC Architecture

 Frameworks help to implement and maintain architectures.

* Rails (2005): MVC

e conventions on folder,

file, and class names v\\‘ /"
« Aflexible OO prog language

Model ‘

(Ruby) supports data sharing | Controller
between model, controller, _
. . Dispatcher
and view objects. Routes
Web Server

f

[Browser J

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

153

Frameworks and MVC Architecture

 Frameworks help to implement and maintain architectures.
* Django (2005): MVC

e views are controllers

e templates are views '\\4 /

e models are models ~ Controller

Dispatcher
Routes
Web Server

f

[Browser J

Model ‘ View

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 154

Frameworks and MVC Architecture

e Java Spring is a component-based programming framework
(based on configuration).

* |t does the “plumbing,” and lets components implement the “logic” of
applications.

e How spring implements the MVC pattern

* Dependency Injection (inversion of control)

Aspect-Oriented Programming including Spring's declarative transaction management

Spring MVC web application and RESTful web service framework

Foundational support for JDBC, JPA, JMS

https://spring.io/guides/

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 155

Inversion of Control

e Design pattern where user-defined code fragment receives the flow of control
from a generic framework.

« (Context: object-oriented programming

 Found in: Frameworks, Event handlers, Callbacks
 Dependency Injection

* An instance of inversion of control to build object networks

* Centralised broker that maps types to implementations

« Java Spring: Pool of beans/components, auto-wiring of object networks

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 156

Without inversion of Control

e Explicit initialisation of references

@RestController
@RequestMapping("/™")
class EmpController(val employees:EmployeeService) {

@GetMapping("/api/departments/{id}/employees™)
fun employeesOfDepartment(
@PathVariable id:String,
@RequestParam search:String?

)
= listOf(
Employee("John Oliver",40,"New York"),

Employee("John Gleese", 60, "London")
)

@GetMapping("/api/projects/{id}/team")
fun teamMembersOfProject(
@PathVariable 1id:String

)
= employees.teamMembersOfProject(id)
Internet Applications'Desigh and Tmplementation, FCTUNL, © 2015, J640 Costa Seco, Jacome Cunha, Jodo Leitao

4

@Service

class EmployeeService(val employees:EmployeeRepository) {
fun teamMembersOfProject(id:String) = employees.findA11()

interface EmployeeRepository : CrudRepository<Employee, Long>

fun someMethod() {

EmpController(
EmployeeService(
EmployeeRepositoryImp(
DBConnection("...™)
D
)
)

157

Without inversion of Control

« Explicit initialisation of references

package pt.unl.fct.demo.controllers;

import org.springframework.web.bind.annotation.*;
import pt.unl.fct.demo.model.Company;
import pt.unl.fct.demo.services.CompaniesService;

oo Spring uses annotations to indicate the
kind of class, and where to plug it in

[@RequestMapping(value="/companies™)

CompaniesService companies;

public CompaniesController(CompaniesService companies) {
this.companies = companies;

}

@GetMapping("™)

Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search);

}

@PostMapping("")

void addNewCompany(@RequestBody Company company) {
// Do some extra checking on the request, and then...
companies.addCompany(company);

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

158

Without inversion of Control

import javax.servlet.http.?*;

« Explicit initialisation of references import javax.serviet.*;
package pt.unl.fct.demo.controllers; import java.io.*;
import org.springframework.web.bind.annotation.*; public class DemoServ extends HttpServlet({

LT s public o1 doGet (HttpSeryletRequest req

@RestController throws ServletException, IOException
S P A Instead of doing it explicitly ->> £
res.setContentType("text/html");
CompaniesService companies; PrintWriter pw=res.getWriter();
public.Companie§Contr'ol1er‘(§ompanies$er‘vice companies) { String name=req.getParameter ("name") ;
this.companies = companies; 5 " "
1 pw.println("Welcome "+name);
@GetMapping("™) pw.close();
Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) { }
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search); }
}

@PostMapping("")
void addNewCompany(@RequestBody Company company) {

// Do some extra checking on the request, and then...
companies.addCompany(company); from: https://www javatpoint.com/servletrequest

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 159

Without inversion of Control

« Explicit initialisation of references

Y .- resources :photos

package pt.unl.fct.demo.controllers;
import org.springframework.web.bind.annotation.*; creates seven different routes in your application, all mapping to the Photos controller:
import pt.unl.fct.demo.model.Company;
import pt.unl.fct.demo.services.CompaniesService;
HTTP Verb Path Controller#Action = Used for
@RestController . b ; I
@RequestMapping(value="/companies™) resources In ru y nralis GET /photos photos#index display a list of all photos
a whole DSL to define >> ,
))) GET Johotos/new hotos#new return an HTML form for creating a new
CompaniesService companies; I’OU’[eS p p ohoto
public CompaniesController(CompaniesService companies) {
this.companies = companies; POST /photos photos#create create a new photo
}
GET /photos/:id photos#show display a specific photo
@GetMapping("™)
Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) { GET /photos/:id/edit = photos#edit return an HTML form for editing a photo
// Do some extra checking on the request, and then...
return companies.getAllCompanies(search); PATCH/PUT /photos/:id photos#update update a specific photo
}
) DELETE /photos/:id photos#destroy delete a specific photo
@PostMapping("")
void addNewCompany(@RequestBody Company company) {
// Do some extra checking on the request, and then...
companies.addCompany(company); https://guides .rubyonrails.org/routing.html

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 160

Using Dependency Injection @

e Explicitly tell what things are, let spring do the wiring

@RestController
@RequestMapping("/" . o
dags Empcgﬁtriﬁerz) { Declare dependencies explicitly
to be initialised by Spring
@Autowired

lateinit var employees:EmployeeService

@GetMapping("/api/departments/{i1d}/employees™)
fun employeesOfDepartment(

@PathVariable 1d:String,

@RequestParam search:String?

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao

161

Using Dependency Injection @

e Explicitly tell what things are, let spring do the wiring

@RestController Declare constructor dependencies

@RequestMapping(" /™) and let Spring initialise correctly
class EmpControllgr(val employees:EmployeeService) {

@GetMapping("/api/departments/{1d}/employees™)
fun employeesOfDepartment(

@PathVariable 1d:String,

@RequestParam search:String?

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 162

Frameworks and MVC Architecture

e Java Spring is a component-based programming framework (based on
configuration).

* |t does the “plumbing,” and lets components implement the “logic” of
applications.

e How spring implements the MVC:

@SpringBootApplication
class McgApplication

fun mainCargs: Array<String>) {
runApplication<McgApplication>(*args)
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

163

Frameworks and MVC Architecture

e Java Spring is a configuration and programming framework.

|t does the “plumbing”, and lets the components implement the “logic” of
applications.

e How spring implements the MVC: (in Java)

@Configuration
@Configuration . N
@EnableAutoConfiguration Annotation specifies that
@EnableWebMvc the class has Bean
@ComponentScan definition methods

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

164

Frameworks and MVC Architecture

e Java Spring is a configuration and programming framework.

|t does the “plumbing”, and lets the components implement the “logic” of
applications.

* How spring implements the MVC

@EnableAutoConfiguration

ggon;{gxritéonr o Attempts to guess and

nav reAutotontiguration configure beans that you are
@EnableWebMvc likely t d (d ng.io)
s TsonaiSaa ikely to need (doc.spring.io

public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

165

Frameworks and MVC Architecture

e Java Spring is a configuration and programming framework.

|t does the “plumbing”, and lets the components implement the “logic” of

applications.

* How spring implements the MVC

@Configuration
@EnableAutoConfiguration
@EnableWebMvc
@ComponentScan

public class Application {

public static void main(String[] args) {

SpringApplication.run(Application.class, args);

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

@ComponentScan

Configures component
scanning.If specific packages
are not defined, scanning will
occur from the package of the
class that declares this
annotation.

166

Frameworks and MVC Architecture

e Java Spring is a configuration and programming framework.

|t does the “plumbing”, and lets the components implement the “logic” of
applications.

« How spring implements the MVC (Here the view is an HTML (thymeleaf)

tE}FT]F)lEitEa) @Controller

public class GreetingController {

private static final String template = "Hello, %s! %d”;
private final AtomiclLong counter = new AtomiclLong();

@RequestMapping("/greeting™)
public String greeting(@RequestParam(value="name", defaultValue="World") String name,
Model model) {
long ¢ = counter.incrementAndGet();
model .addAttribute(“message”, String.format(template, name, c));
return|“greeting”;

¥
¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 167

Frameworks and MVC Architecture

e Java Spring is a configuration and programming framework.

|t does the “plumbing”, and lets the components implement the “logic” of
applications.

e How spring implements the MVC (Here the view is a JSON object formatter)

@RestController
public class GreetingController {

private static final String template = "Hello, %s!";
private final AtomiclLong counter = new AtomiclLong();

@RequestMapping("/greeting")
public Greeting greeting(@RequestParam(value="name", defaultValue="World") String name) {
return new Greeting(counter.incrementAndGet(),

String.format(template, name));

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 168

Add-ons to the MVC Framework

 Resource control:
DB connection &
transactions

@Component
public class BookingService {

private final static Logger logger = LoggerFactory.getlLogger(BookingService.class);
private final JdbcTemplate jdbcTemplate;

public BookingService(JdbcTemplate jdbcTemplate) {
this. jdbcTemplate = jdbcTemplate;

}

@Transactional
public void book(String... persons) {
for (String person : persons) {
logger.info("Booking " + person + " in a seat...");
jdbcTemplate.update("insert into BOOKINGS(FIRST_NAME) values (?7)", person);

}

public List<String> findAll1Bookings() {
return jdbcTemplate.query("select FIRST_NAME from BOOKINGS",
(rs, rowNum) -> rs.getString("FIRST_NAME"));

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&o Costa Seco, Jacome Cunha, Jo&o Leitéo 169

Add-ons to the MVC Framework

@Configuration

° Across app“cation @EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

concerns: security @verride
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.antMatchers("/", "/home").permitAl1()
.anyRequest() .authenticated()
.and()
.formLogin()
.loginPage("/login")
.permitAl1l()
.and()
.Llogout()
.permitAlL1L(Q);
¥
@Autowired
public void configureGlobal (AuthenticationManagerBuilder auth) throws Exception {
auth

.1nMemoryAuthentication()
.withUser("user").password("password").roles("USER");

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&o Costa Seco, Jacome Cunha, Jo&o Leitéo 170

Example of an Architecture built with Spring

e Spring is a component framework
HTTP Server | o Resolves component dependencies by dependency injection
e Uses annotations to configure components

@RestController
@RequestMapping("/™")
Controller class EmpController(val employees:EmployeeService) {

// http GET :8080/api/projects/2/team
@GetMapping("/api/projects/{id}/team")
fun teamMembersOfProject(

@PathVariable id:String

)
ServiceZ = employees.teamMembersOfProject(id)

}

@Service

class EmployeeService(val employees:EmployeeRepository) {
RepositoryZ fun teamMembersOfProject(id:String) = employees.findA11()
¥

interface EmployeeRepository : CrudRepository<Employee, Long>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 171

Architecture to the rescue of testers @

e Unit tests should test
components in isolation

e Defining the context for a
component (correctly) is
laborious and error prone

 Difficult to do with persistent
data (must prepare tests)

* Impossible to do in tightly
coupled structures

« Component frameworks
allow mocking of
dependencies

@RunWith(SpringRunner: :class)
@SpringBootTest
@AutoConfigureMockMvc

open class RESTApplicationTests() {

@Autowired lateinit var mvc: MockMvc
@MockBean lateinit var questions:QuestionRepository

@Test
fun “basic REST test () {
Mockito. when (questions.findAl1()).thenReturn(l)

mvc.perform(get(questionsURL))
.andExpect(status().1s0k)

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 172

Architecture to the rescue of testers @

@RunWith(SpringRunner: :class)

@SpringBootTest Replaces web server
@AutoConfigureMockMvc

open class RESTApplicationTests() {

@Autowired lateinit var|mvc: MockMvc

@MockBean | lateinit var questions:QuestionRepository
Replaces component

@Test with Mock object
fune—basic REST -I-ng-l-‘() by

<

Mockito. when (questions.findAl1()).thenReturn(l)

mvc.perform(get(questionsURL)) ‘k\\“-\\

.andExpect(status().is0k) R?places call results
1 with expected values

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 173

Architecture to the rescue of testers

e Unit tests should test
components in isolation

e Unit tests simulate inputs
and compare outputs

 Mock components create a
controlled context for each
test or set of tests.

Controller
Tester

Controller

ServiceZ

Mock Service

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, JAcome Cunha, Jo&o Leitdo

o

Service
Tester

Mock
Repository

174

Questions?

Internet Applications Design and Implementation
2020 - 2021
(Lecture 4 - Part 2 - Data Sources in MVC)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
SCIENCE & TECHNOLOGY

Data Abstraction: The M in MVC

* An application layer that abstracts how information is stored, related, and
protected.

 Examples of database languages, libraries and frameworks
- JDBC
LINQ (in MVC ASP.NET)

ORMs (ActiveRecord in Rails, Hibernate in Java*)

NoSQL: MongoDB

External Web-services

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 177

JDBC

Connection conn = DriverManager.getConnection(
"jdbc:somejdbcvendor:other data needed by some jdbc vendor",
"myLogin",

"myPassword");

try {

/* you use the connection here */

} finally {

//It's important to close the connection when you are done with it
try { conn.close(); } catch (Throwable ignore) { /* Propagate the original exception
instead of this one that you may want just logged */ }

}

try (Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM MyTable")
) {
while (rs.next()) {
int numColumns = rs.getMetaData().getColumnCount();
for (int i = 1 ; i <= numColumns ; i++) {
// Column numbers start at 1.
// Also there are many methods on the result set to return
// the column as a particular type. Refer to the Sun documentation
// for the list of valid conversions.
System.out.println("COLUMN " + i + " = " + rs.getObject(i));

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 178

JDBC

e Basic API for Java defining an access to a database

 Does not know the database schema

e Programmer needs to “manually” translate between data formats

try (Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM MyTable")

) {
while (rs.next()) {
int numColumns = rs.getMetaData().getColumnCount();
for (int i = 1 ; i <= numColumns ; i++) {
// Column numbers start at 1.
// Also there are many methods on the result set to return
// the column as a particular type. Refer to the Sun documentation
// for the list of valid conversions.
System.out.println("COLUMN " + i + " = " + rs.getObject(i));
}
}
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

179

LINQ .NET

e Language based (integrated)

« Works in memory, xml, databases, etc

 Based on the notion of Provider, it is extensible

 Programmers need to explicitly build objects that matches the database schema

var results = from c in SomeCollection
where c.SomeProperty < 10
select new {c.SomeProperty, c.OtherProperty};

foreach (var result in results)
{

Console.WriteLine(result);

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

180

LINQ .NET

e Language based (integrated)

« Works in memory, xml, databases, etc

 Based on the notion of Provider, it is extensible

 Programmers need to explicitly build objects that matches the database schema

[Table(Name="Customers")]
public class Customer

{
[Column(IsPrimaryKey = true))]
public int CustID;
[Column]
public string CustName;
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

181

LINQ .NET

e Language based (integrated)

* Allows navigation using associations

// Query for customers who have placed orders.
var custQuery =

from cust in Customers

where cust.Orders.Any()

select cust;

foreach (var custObj in custQuery)

{
Console.WriteLine("ID={0}, Qty={1}", custObj.CustomerID,

custObj.Orders.Count);

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 182

ActiveRecord in Rails

» Follows the active record pattern to implement an ORM. AR objects link to
persistent data and define behaviour.

« Well integrated with the Model in the Rails MVC pattern

 Completely abstracts the database management by:

e Object-mappings def create
@author = Author.new(author_params)
[]
Inheritance respond_to do |format|
- if @author.save
* Associations format.html { redirect_to @author,
format.json { render action: 'show'
e Validations else

format.html { render action: 'new'
format.json { render json: @author.
end
end
end

Migrations (w/ Rails)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 183

NoSQL databases

Not only SQL.

 Document-based, Chave-Valor, Graph-based

Desenhadas para escalonamento horizontal (replicacéo)

Compromisso na consisténcia dos dados

Limited transactional support (real concurrency control)... use of chards

Very good for querying, harder to get right on “writes”, indexes, etc.

Queries are written in JavaScript, Java, SPARK, Map reduce algorithms...

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 184

Data abstraction in Internet and Web Apps

* Abstraction over the actual data model

* Hides the actual database engine running beneath

» Integrates smoothly with the programming model (objects instead of string-based results).
* Independent configuration modes

e Allows different execution modes with the same code
(e.g. in-memory, transactional, replicated, etc.)

e Does not really cover all data models smoothly:
SQL model (e.g. Hibernate, ActiveRecord (Rn’R))

NoSQL model (e.g. google app engine framework)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 185

Abstraction levels

e Connectivity (e.g. JDBC)
e abstracts the connectivity and execution of queries.

e you have to build queries, and parse and translate results

« Data translation (e.g. JPA, ActiveRecord, LINQ)
* Translates data formats between program and database.

* Integrates the language values typefully.

* Implementation and execution modes

 Example: Google Cloud Datastore is a NoSQL document based storage that allows
different implementations (cassandra, mongodb)

https://cloud.google.com/appengine/docs/java/datastore/

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 186

ORM

Object-relational impedance mismatch

 Most databases are based on relational algebra

« Applications define object oriented representations (object graphs)

346 systems in ranking, October 2018

Rank Score

Oct Sep oct DBMS Database Model Oct Sep Oct
2018 2018 2017 2018 2018 2017
1. 1. 1. Oracle 3 Relational DBMS 1319.27 +10.15 -29.54
2. 2. 2. MySQLE3 Relational DBMS 1178.12 -2.36 -120.71
3. 3. 3. Microsoft SQL Server 3 Relational DBMS 1058.33 +7.05 -151.99
4. 4. 4. PostgreSQL E3 Relational DBMS 419.39 +12.97 +46.12
5. 5. 5. MongoDB (3 Document store 363.19 +4.39 +33.79
6. 6. 6. DB2[E3 Relational DBMS 179.69 -1.38 -14.90
7. A8 A9 Redis 2 Key-value store 145.29 +4.35 +23.24
8. W¥7. A 10. Elasticsearch 3 Search engine 142.33 -0.28 +22.09
9. 9. 7. Microsoft Access Relational DBMS 136.80 +3.41 +7.35
10. 10. 8. Cassandra 2 Wide column store 123.39 +3.83 -1.40

https://db-engines.com/en/ranking

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 188

Object-relational impedance mismatch

 Most databases are based on relational algebra

« Applications define object oriented representations (object graphs)

Rank

Oct Sep
2019 2019
1. 1.
2. 2.
3. 3.
4, 4.
5. 5.
6. 6.
7. 7.
8. 8.
9. 9.
10. 10.

Oct
2018

1.

10.

o o Mw b

DBMS

Oracle 3

MySQL 2

Microsoft SQL Server [}
PostgreSQL 3
MongoDB 3

IBM Db2 3
Elasticsearch 3
Redis 3

Microsoft Access
Cassandra [}

https://db-engines.com/en/ranking

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

355 systems in ranking, October 2019
Score

Database Model

Relational, Multi-model |gj
Relational, Multi-model |gj
Relational, Multi-model g§
Relational, Multi-model gj
Document

Relational, Multi-model gj
Search engine, Multi-model |gj
Key-value, Multi-model gj
Relational

Wide column

Oct
2019

1355.88
1283.06
1094.72
483.91
412.09
170.77
150.17
142.91
131.18
123.22

Sep
2019

+9.22
+3.99
+9.66
+1.66
+2.03

-0.79
+0.90
+1.01

-1.53

-0.18

Oct
2018

+36.61
+104.94
+36.39
+64.52
+48.90
-8.91
+7.85
-2.38
-5.62
-0.17

189

Object-Relational Impedance Mismatch

 \What’s the difference?

* Encapsulation

» Interface, class, polymorphism

* Mapping relational concepts

e Data type differences

« Structural and integrity differences

* Transactional differences

http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
https://dev.to/alagrede/why-i-dont-want-use-jpa-anymore-fl

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 190

Object-Relational Impedance Mismatch

* |dentity
» Object: a == b and a.equals(b)

» Relational: primary key based

Inheritance
» Object: natural relation

» Relational: does not exist, idioms are necessary

Accessing data
» Object: through the object interface

» Relational: select queries (with joins)

Associations/Navigation
» Object: unidirectional references through objects’ interface

» Relational: through foreign keys

Granularity

* In some cases there may be a difference in the granularity level

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 191

Object-Relational Impedance Mismatch

* |dentity based on Primary Keys,

@Entity

 \WWe must define method
equals (or utils like Lombok).

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

public class Person {

@Id
@GeneratedValue
private long id;

private String name;
public Person() {}

public long getId() {
return id;

}

public void setId(long id) {
this.id = 1id;
}

public String getName() {
return name;

3

public void setName(String name) {
this.name = name;

}

192

Object-Relational Impedance Mismatch e

public class Student extends User {

@Column
private int number;

* Inheritance: optional support for inheritance blie StudentO) §
Is provided by some frameworks L T

public Student(String login,
String password,

@Entity String name,
@Inheritance(strategy= InheritanceType.JOINED) String tel,
@JsonSubTypes({ String email,
_ _on " String address,
@JsonSubTypes.Type(value = Professor.class, name = "PROFESSOR"),

String type,

@JsonSubTypes.Type(value = Staff.class, name = "STAFF"), St e T

@JsonSubTypes.Type(value = Student.class, name = "STUDENT™")

D) super(login,
public class User { password,
name,
@Id tel,
@GeneratedValue ALy
vate L id login: address,
private Long 1d_login; type);
this.number = number;
private String name; 3
1 public int getNumber() {
return number;
3
ks

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 193

Object-Relational Impedance Mismatch e

public class Student extends User {

@Column
private int number;

* Inheritance: optional support for inheritance Sublic Student() {

Is provided by some frameworks L T

public Student(String login,
String password,

@Entity String name,
@Inheritance(strategy= InheritanceType.JOINED) String tel,
@JsonSubTypes({ String email,
_ _on " String address,
@JsonSubTypes.Type(value = Professor.class, name = "PROFESSOR"),

Staff.class, name = "STAFF"), String type,

@JsonSubTypes.Type(value int number) {

@JsonSubTypes.Type(value = Student.class, name = "STUDENT™")
D) super(login,
public class User { password,
name,
@Id tel,
@GeneratedValue e

private lona id loain- qddr?ss,

® MappedSuperclass — the parent classes, can't be entities
¢ Single Table — the entities from different classes with a common ancestor are placed in a single table
* Joined Table — each class has its table and querying a subclass entity requires joining the tables

- @ Table-Per-Class — all the properties of a class, are in its table, so no join is required

private

https://www.baeldung.com/hiber

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 194

Object-Relational Impedance Mismatch

@Entity —
public class Organization {

* Access to data by object navigation erd

@GeneratedValue
private Long id_entity;

« All fields are retrieved to memory

@Column

instead of explicitly selected private String nane;
@0neToOne(cascade = CascadeType.ALL)
. . . . @JoinColumn(name = "contact_id")
* May result in navigation queries private ContactInfo contactInfo;

public Organization(Q{ }

public String getName() {

. return name;

Organization o = organizationRepository.findById(id).get(); }

System.out.println(o.getName() + o.getContactInfo()); A o] Se T i)
this.name = name;

}

public ContactInfo getContactInfo() {
return contactInfo;

}

public void setContactInfo(ContactInfo contactInfo) {
this.contactInfo = contactInfo;

}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 195

ActiveRecord Example

class Album < ActiveRecord: :Base
has many :tracks
end

class Track < ActiveRecord: :Base
belongs_to :album
end

album = Album.create(:title => 'Black and Blue’, :performer => 'The Rolling Stones')
album.tracks.create(:track number => 1, :title => 'Hot Stuff')
album.tracks.create(:track number => 2, :title => 'Hand Of Fate')

album.tracks.create(:track number => 3, :title => 'Cherry Oh Baby ')

album.tracks.create(:track number => 4, :title => 'Memory Motel ')
=> 'Hey Negrita')

album.tracks.create(:track number => 6, :title => 'Fool To Cry')

album.tracks.create(:track_number =>
album.tracks.create(:track number =>
Preston) ')

, stitle
, ttitle

> 'Crazy Mama')

1

2

3

4
album.tracks.create(:track number => 5, :title

6

7

8 'Melody (Inspiration By Billy

Il
\%

album = Album.create(:title => 'Sticky Fingers', :performer => 'The Rolling Stones')
album.tracks.create(:track number => 1, :title => 'Brown Sugar')
album.tracks.create(:track number => 2, :title => 'Sway')
album.tracks.create(:track number => 3, :title => 'Wild Horses')
album.tracks.create(:track number => 4,:title => 'Can\'t You Hear Me Knocking')
album.tracks.create(:track number => 5, :title => 'You Gotta Move')
album.tracks.create(:track number => 6, :title => 'Bitch')
7
8
9
1

album.tracks.create(:track number => 7, :title => 'I Got The Blues')
album.tracks.create(:track number => 8, :title => 'Sister Morphine')
album.tracks.create(:track number => 9, :title => 'Dead Flowers')

album.tracks.create(:track number => 10, :title => 'Moonlight Mile')

https://dzone.com/articles/simple-ruby-activerecord 196

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

Object-Relational Mapping

e |In Java you navigate the object network.
* Not efficient to retrieve data from a RDBMS.

* Minimize the number of SQL queries by using JOINs and selecting the
targeted entities from the start (pre-fetching).

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhqgl.html#queryhgl-joins

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 197

JPA

Java Persistance API (JPA)

JPA provides a POJO persistence model for ORM

@Entity
public class Customer {

private int id;
private String name;
private Collection<Order> orders;

// no-args constructor necessary
public Costumer () {}

// primary key required
@Id // property access is used
public int getId() {
return id;

}

// gets and sets required
public void setId(int id) {
this.id = id;
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

public String getName()
return name;

public void setName(String name) {
this.name = name;

}

// also OneToOne, ManyToOne, and ManyToMany
@OneToMany (cascade=ALL,
mappedBy="customer")
public Collection<Order>
getOrders() {
return orders;

}

public void setOrders(
Collection<Order> newValue) {
this.orders = newValue;

199

Java Persistance API (JPA)

@Entity
@Table(name="ORDER TABLE")
public class Order {

private int id;
private String address;
private Customer customer;

@Id

@Column(name="ORDER ID")

public int getId() {
return id;

}

public void setId(int id){
this.id = id;
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

@Column (name="SHIPPING ADDRESS")
public String getAddress() {
return address;
}
public void setAddress(
String address) {
this.address = address;

}

@ManyToOne ()

// foreign key: column used for join
@JoinColumn(name="CUSTOMER ID")
public Customer getCustomer() {

return customer;

}

public void setCustomer (
Customer customer) {
this.customer = customer;

200

JDBC

Internet Applications Design and Implementation

2020 - 2021
(Lecture 4 - Part 3 - Object Relational Mapping)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
. SCIENCE & TECHNOLOGY

Object-Relational Mapping

 Manages persistence of data in the OO realm

» Abstracts the use of SQL in connection to RDBMSs f»ﬂ%g
WITH 4

« Covers most injection attacks on queries HIBER

SECOND EDITION

(except with APIs that allow creation with string)

Specified by a common and standard API (JPA)

Implementations differ by JPA providers

public List<AccountDTO> unsafedpaFindAccountsByCustomerId(String customerId) {
String jgl = "from Account where customerId = '" + customerId + "''";
TypedQuery<Account> g = em.createQuery(jgl, Account.class);
return g.getResultList ()
.stream /()
.map (this::toAccountDTO)
.collect (Collectors.toList ());

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 202

Object-Relational Impedance Mismatch

|dentity
» Object: a == b and a.equals(b)

» Relational: primary key based

Inheritance
» Object: natural relation

» Relational: does not exist, idioms are necessary

Accessing data

» Object: through the object interface

» Relational: select queries (with joins) ‘ ‘ H I B E R

Associations/Navigation

 Object: unidirectional references through objects’ interface http://hibernate .org/orm/what-is-an-orm/

» Relational: through foreign keys

Granularity

* In some cases there may be a difference in the granularity level

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 203

JPA - Java Persistence AP|

e Java Persistence APl (Jakarta Persistence since Set 2019)

Provides a OO interface to a relational database

Defines JPQL (Java Persistence Query Language)

The reference implementation is Eclipselink.

Hibernate is a JPA provider (extended APl and query language HQL)

eclipse)link J

Java Persistence API

#,HIBER

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 204

Data Abstraction layers

* Advantages

Hides the complexity of a particular query language

Allows the portability of database engines (not really models)

Prevents attacks such as SQL injection, or XSS

Avoids runtime errors in the construction of queries

May isolate efficient implementations (previously, with prepared and compiled parameterised SQL queries)
Allows scalability via customised runtime configurations (distribution, transactional behaviour, indexing, ...)

Avoids early optimization pitfalls, develop first, configure later.

* Pitfalls

Lack of access to proprietary features of providers

May lead to inefficient data transmissions: more queries (N+1 queries), more data than needed.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 205

®)penPA DO

eclipse)link

' Microsoft*
I\J NET
Entity

Framework

Internet Applications Design and Implementation
2020 - 2021
(Lecture 4 - Part 4 - Spring & Data Abstraction)

MIEI - Integrated Master in Computer Science and Informatics
Specialization block

Joao Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jacome Cunha (jacome@fct.unl.pt) and Jodo Leitao (jc.leitao@fct.unl.pt))

NOVA SCHOOL OF
. SCIENCE & TECHNOLOGY

JDBC & Spring

e SpringBoot provides direct support for JDBC

* Asin any JDBC setting, it is necessary to define a DataSource
(DB, CSV file, etc.)

« SpringBoot offers the JdbcTemplate class to assist programmers

e Spring easily integrates JPA support (later)

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 207

JDBC & Spring & In-memory DBs

« JdbcTemplate handles the setup and connection to the DataSource based on
the POM dependencies (when possible)

e For instance, for H2 in-memory database (Spring also supports HSQL and
Derby):

<dependency>
<groupld>com.h2database</groupId>
<artifactld>hZ2</artifactId>
</dependency>

 This handles the connection and exceptions

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 208

JDBC & Spring

|t also supports “regular” relational databases adding the necessary
properties to the application.properties file, e.g.:

spring.datasource.url=jdbc:mysql://localhost/test
spring.datasource.username=dbuser
spring.datasource.password=dbpass

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 209

JDBC & Spring

@Component
public class Hotels {

private JdbcTemplate jdbc;

@Autowired

public Hotels(JdbcTemplate jdbc) {
this.jdbc = jdbc;
createTable();

ks

public Hotels(){}

public void createTable() {
jdbc.execute("drop table tablea if exists");
jdbc.execute("create table tablea(id SERIAL, attributea VARCHAR(16))");

}

public List<Map<String,0Object>> select() {
return jdbc.query("select * from tablea", new ColumnMapRowMapper());
¥

public int save(String att) {
return jdbc.update("insert into tablea(attributea) values (?)", att);
ks

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&o Costa Seco, Jacome Cunha, Jo&o Leitéo 210

JPA & Spring @

e Spring-boot-starter-data-jpa provides the necessary dependencies:
* Hibernate — One of the most popular JPA implementations
e Spring Data JPA— Makes it easy to implement JPA-based repositories
* Spring ORMs — Core ORM support from the Spring Framework

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactld>
</dependency>

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, J&come Cunha, Jo&o Leitao 211

Declare an Entity (in Java) !i,

@Entity

public class Customer {
@Id
@GeneratedValue(strategy=GenerationType.AUTO)
private Long 1id;
private String firstName;
private String lastName;

protected Customer() {}

public Customer(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

@0verride
public String toString() {
return String.format(
"Customer[id=%d, firstName='%s', lastName='%s']",
id, firstName, lastName);

}

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, J&come Cunha, Jo&o Leitdo 212

Declare a Repository and plug it in... (in Java) =

public interface CustomerRepository extends CrudRepository<Customer, Long> {

List<Customer> findByLastName(String lastName);

@Controller
public class CustomerController

{
@Autowired

CustomerRepository customers;

.. findByLastName(“Smith”);..
}

Internet Applications Design and Implementation, FCTUNL, © 2015, Jodo Costa Seco, J&come Cunha, Jo&o Leitdo 213

Declare an Entity and a Rep

ository and plug it in...

findByName (name: String)

|
|

. m| Mutablelterable<PetDAO>
@Entity m toString() String
data class PetDAO(M save(s) S

@Id @GeneratedValue val id:Long, m count() Long
var name: Str-ing, m) delete(PetDAOD) Unit
var species: Str'ing f to(that: B) for A in kotlin Pair<PetRepository, B>
) m! deleteAll () Unit
mi Aala+aA11 7 "Mytable)Iterable<PetDAO!>) Unit
.ong) Unit
' interface PetRepository : CrudRepository<PetDAO, Long> { ': Any?) Boolean
fun findByName(name:String): MutableIterable<PetDAO> .ong) Boolean
} (Mutable)Iterable<PetDAO!>
) !(Mutable)Iterable<Long!>) (Mutable)Iterable<PetDAO!>
— @AUtowired =rrHubyLU LUIg) Optional<PetDAO!> |
lateinit var repo:PetRepository ' hashCode () e |
| saveAll ((Mutable)Iterable<S!>) (Mutable)Iterable<S!>
fun someFunction() { | let {...} (block: (PetRepository) -> R) for T in kotlin R
) | javaClass for T in kotlin.jvm Class<PetRepository>
~repo.findByName(“pantufas”).. | gq1s0 {...} (block: (PetRepository) -> Unit) for T in.. PetRepository
'apply {...} (block: PetRepository.() -> Unit) for T .. PetRepository
3 'run {...} (block: PetRepository.() -> R) for T in kotlin R
— N takeIf {...} (predicate: (PetRepository) -> Boolean) PetRepository?
f takeUnless {...} (predicate: (PetRepository) -> Boo.. PetRepository?
f findByIdOrNull(id: Long) for CrudRepository<T, ID> in org... PetDAQ?

Internet Applications Design and Implementation, FCTUNL, © 2015, Jo&o Costa Seco, Jacome Cun' 4 and ™1 will move caret down and up in the editor Next Tip

214

interface CrudRepository<T

im) findByName (name: String)

ID extends Serializable>

MutableIterable<PetDAO>

m toString() String
iml save(S) S
iml count) Long
. . (m) delete(PetDAO) Unit
: CrudRepository (org.springframework.data.repg f' to(that: B) for A in kotlin Pair<PetRepository, B>
@ JpaRepository (org.springframework.data.jpa.r| @) deleteAll() Unit
@ JpaRepositoryImplementation (org.springframev (m deleteAll((Mutable)Iterable<PetDAO!>) Unit
@ PagingAndSortingRepository (org.springframewc'"“deleteiniCLong) ” Unit
. . . m equals(other: Any? Boolean

If
'z PetRepository (pt.unl.fct.di.iadi.vetclinic.n @ existsById(Long) Boolean

C QuerydstIpaReposttery (org.springframework.dc

I) ReactiveCrudRepository (org.springframework.c
I ReactiveSortingRepository (org.springframewor
@ RevisionRepository (org.springframework.data.
® RxJava2CrudRepository (org.springframework.dd g
1) RxJava2SortingRepository (org.springframework

© SimplelpaRepository (org.springframework.datd
L

m hashCode () Int

(m) saveAll ((Mutable)Iterable<S!>) (Mutable)Iterable<S!>
let {...} (block: (PetRepository) -> R) for T in kotlin R

V. javaClass for T in kotlin.jvm Class<PetRepository>

f also {...} (block: (PetRepository) -> Unit) for T in.. PetRepository |

£ apply {...} (block: PetRepository.() -> Unit) for T .. PetRepository |

f run {...} (block: PetRepository.() -> R) for T in kotlin R

f takeIf {...} (predicate: (PetRepository) -> Boolean) PetRepository?

f takeUnless {...} (predicate: (PetRepository) -> Boo.. PetRepository?

f

http://docs.spr

im findA11 ()
m findA11ById((Mutable)Iterable<Long!>)
im) findById(Long)

(Mutable)Iterable<PetDAO!>
(Mutable)Iterable<PetDAO!>
Optional<PetDAO!>

findByIdOrNull(id: Long) for CrudRepository<T, ID> in org... PetDAQ?

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&o Costa Seco, Jacome Ct. 4 and ~ 1 will move caret down and up in the editor Next Tip :

html

215

An Example

@Entity
@NamedQuery(name = "User.findByTheUsersName",

query = "from User u where u.username = 71")
class User(

@Column(unique = true)

val username:String,

val firstname:String,

val lastname:String

interface SimpleUserReposiQory : CrudRepository<User, Long> {

fun findByTheUsersName(username:String):User

fun findByLastname(lastname:String):List<User>
/@Quer'y("select u from User u where u.firstname = ?")
fun findByFirstname(firstname:String):List<User>

@Query("select u from User u where u.firstname = :name or u.lastname = :name")
fun findByFirstnameOrLastname(@Param("name") name:String):List<User>

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 216

Keyword

And

Or

Is,Equals
Between
LessThan
LessThanEqual
GreaterThan
GreaterThanEqual
After

Before

IsNull
IsNotNull,NotNull
Like

NotLike
StartingWith
EndingWith
Containing
OrderBy

Not

In

Notin

TRUE

FALSE

IgnoreCase

Sample
findByLastnameAndFirstname

findByLastnameOrFirstname

findByFirstname,findByFirstnamels,findByFirstnameEquals

findByStartDateBetween
findByAgeLessThan
findByAgelLessThanEqual
findByAgeGreaterThan
findByAgeGreaterThanEqual
findByStartDateAfter
findByStartDateBefore
findByAgelsNull
findByAge(Is)NotNull
findByFirstnameLike
findByFirsthnameNotLike
findByFirstnameStartingWith
findByFirsthameEndingWith
findByFirstnameContaining
findByAgeOrderByLastnameDesc
findByLastnameNot
findByAgeln(Collection<Age> ages)
findByAgeNotIn(Collection<Age> age)
findByActiveTrue()
findByActiveFalse()

findByFirsthamelgnoreCase

A~

JPQL snippet

where x.lasthname = ?1 and x.firstname

An

where x.lastname = ?1 or x.firstname =

where x.firstname = 1?

.. where x.startDate between 1? and ?2

.. Where x.age < 71

.. where x.age < 71

.. where x.age > 71

.. Where x.age >= 71

.. where x.startDate > ?1

.. where x.startDate < ?1

.. where x.age is null

.. Where x.age not null

.. where x.firstname like ?1

.. where x.firstname not like ?1

.. where x.firstname like ?1 (parameter

.. where x.firstname like ?1 (parameter

.. where x.firstname like ?1 (parameter

... Wwhere x.age = ?1 order by x.lastname

.. Where x.lasthame < ?1

.. Where x.age in 71

.. Where x.age not in ?1

.. where x.active = true

.. Where x.active = false

. where UPPER(x.firstame) = UPPER(?

Spring Data (and other ORM Implementations)

Simple declaration of generic queries

Specific declaration of custom queries (JPQL)

Richer Behaviour from Repositories (e.g. paged)

public interface StudentRepository extends PagingAndSortingRepository<Student, Long> {
List<Student> findByName(String name);

@Query("select s from Student s where s.name 1like CONCAT(?,'%')")
List<Student> search(String name);

Page<Student> findByName(String name, Pageable pageable);
ks

Dependency Injection and component assembly

public class StudentController {

@Autowired
StudentRepository students;

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 218

Spring Data (and other ORM Implementations)

@RequestMapping(value= "/page™)

public @ResponseBody Page<Student> getStudentsPaged(
@RequestParam(required=false, defaultValue = "0") Integer page,
@RequestParam(required=false, defaultValue = "3") Integer size) {

return students.findAll(new PageRequest(page, size));
¥

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 219

"content": [

Spring Data (and other ORM Imp

{
"id": 1,
"name": "Ingrid Daubechies",
"age": 19

¥

{
"id": 2,
"name": "Jacqueline K. Barton",
"age": 18

¥

{
"id": 3,
"name": "Jane Goodall",
"age": 20

@RequestMapping(value= "/page") }

public @ResponseBody Page<Student> ge 1,

. "last": false,
@RequestParam(required=false, de viotglElements": 6,

@RequestParam(required=false, de "totalPages": 2,

"size": 3,
return students.findAll(new PageRe¢ ' number®: 0,
1 "sort": null,

"first": true,
"numberOfElements": 3

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo

Spring Data - Features

« Powerful repository and custom object-mapping abstractions

e Dynamic query derivation from repository method names

* Implementation domain base classes providing basic properties

e Support for transparent auditing (created, last changed)

e Possibility to integrate custom repository code

e Easy Spring integration via JavaConfig and custom XML namespaces
« Advanced integration with Spring MVC controllers

* Experimental support for cross-store persistence

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 221

Spring Data

« Spring Data Commons - Core Spring concepts underpinning every Spring Data project.

« Spring Data JPA - Makes it easy to implement JPA-based repositories.

« Spring Data MongoDB - Spring based, object-document support and repositories for MongoDB.

« Spring Data Redis - Provides easy configuration and access to Redis from Spring applications.

« Spring Data Solr - Spring Data module for Apache Solr.

« Spring Data Gemfire - Provides easy configuration and access to GemFire from Spring applications.
« Spring Data REST - Exports Spring Data repositories as hypermedia-driven RESTful resources.

Community Modules

« Spring Data Cassandra - Spring Data module for Apache Cassandra.

« Spring Data Couchbase - Spring Data module for Couchbase.

« Spring Data DynamoDB - Spring Data module for DynamoDB.

+ Spring Data Elasticsearch - Spring Data module for Elasticsearch.

« Spring Data Neo4| - Spring based, object-graph support and repositories for Neo4j.

Internet Applications Design and Implementation, NOVA SST, © 2015, Jodo Costa Seco, Jacome Cunha, Jodo Leitdo 222

MongoDB Example

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
mongoOps.insert(new Person("Joe", 34));

log.info(mongoOps.findOne(new Query(where("'name").is("Joe")), Person.class));

mongoOps.dropCollection("person");

}
}

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 223

Other database representations

« Objectify: gives easy and full access to the Google Cloud Datastore

« Dynamic / Reflexion based

o Alternative to JPA interface

@Entity
class Car {
@Id String vin; // Can be Long, long, or String

String color;

}

ofy().save().entity(new Car("123123", "red")).now();
Car ¢ = ofy().load().type(Car.class).id("123123").now();

ofy().delete().entity(c);

https://github.com/objectify/objectify
224

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao

Other database representations

« Objectify: gives easy and full access to the Google Cloud Datastore
« Dynamic / Reflexion based

o Alternative to JPA interface

e Objectify surfaces all native datastore features, including batch operations, queries, transactions,
asynchronous operations, and partial indexes.

Objectify provides type-safe key and query classes using Java generics.

Objectify provides a human-friendly query interface.

Objectify can automatically cache your data in memcache for improved read performance.
Objectify can store polymorphic entities and perform true polymorphic queries.

Objectify provides a simple, easy-to-understand transaction model.

Objectify provides built-in facilities to help migrate schema changes forward.

Objectify provides thorough documentation of concepts as well as use cases.

Objectify has an extensive test suite to prevent regressions.

https://github.com/objectify/objectify

Internet Applications Design and Implementation, NOVA SST, © 2015, Jo&do Costa Seco, J&come Cunha, Jo&o Leitao 225

Internet Applications Design

— ._/’x". ; h ——

| iy
\lmﬂ

a"'

.
——

a Py

queries through its fluent API.

Start your free jO0Q trial now!

by
3\

1 P 2

JO0Q generates Java code from your li
database and lets you build type safe SQL | i,'

:J. -

!

-—

SEE Rl

Great Reasons for Using jO0OQ

Our customers spend most time on their business-logic.
Because jOOQ takes care of all their Java/SQL infrastructure problems.

https://www.jooq.org/

Database First

Tired of ORMs driving your
database model?

Whether you design a new
application or integrate with

your legacy, your database
holds your most important
asset: your data.

jOOQ is SQL-centric. Your
database comes "first".

Typesafe SQL

Fed up with detecting SQL
syntax errors in production?

SQL is a highly expressive
and type safe language with

a rich syntax. jOOQ models
SQL as an internal DSL and
uses the Java compiler to
compile your SQL syntax,
metadata and data types.

Code Generation

Bored with renaming table
and column names in your
Java code?

jOOQ generates Java classes
from your database
metadata. Your Java compiler
will tell you when your code
is out of sync with your
schema.

Active Records

Annoyed by the amount of
SQL you write for CRUD?

jO0Q lets you perform CRUD
and POJO mapping directly

on Active Records, which are
also generated from the
code generator.

226

