
Internet Applications Design and Implementation

(Lecture 4 - MVC & Persistence : JPA & Hibernate)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Outline

• Server-side MVC Architecture

• Data Sources in MVC

• Object Relational Mapping

• Spring & Data Abstraction

147

Internet Applications Design and Implementation

2020 - 2021

(Lecture 4 - Part 1 - Server-side MVC Architecture)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Web architectures, patterns and styles

• Web applications usually follow a MVC architectural pattern.

• Model layer - isolate the representation of persistent data and its operations, validations and conditions

• Controller - contains the core application logic implementing the application interface (e.g. ad-hoc URL
mapping, REST convention)

• View - defines the way in which responses are formed (e.g. HTML, JSON)

149

RECAP

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Summary - Web Frameworks

• Web Frameworks are “languages” that carry libraries and abstractions that get
compiled to run on the “web virtual machine”.

150

RECAP

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

The classic MVC design pattern

• The Model-View-Controller (Reenskaug’79, JOT’88)

• designed to develop GUI

• popular in web applications’ context

• Variants of the MVC Architecture 
(Separation of Concerns)

• MVP, PM (Fowler), MVVM (Microsoft)

151

https://manojjaggavarapu.wordpress.com/2012/05/02/presentation-patterns-mvc-mvp-pm-mvvm/

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

User
Interface Layer

Presentation
Layer

Application
Layer

Internet Applications are Data-Centric

152

https://dzone.com/articles/layered-architecture-is-good

Service
Layer

Domain

Layer

Data

Layer

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Frameworks help to implement and maintain architectures.

• Rails (2005):

• conventions on folder,  
file, and class names

• A flexible OO prog language 
(Ruby) supports data sharing 
between model, controller,  
and view objects. 

153

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Frameworks help to implement and maintain architectures.

• Django (2005):

• views are controllers

• templates are views

• models are models

154

https://betterexplained.com/articles/intermediate-rails-understanding-models-views-and-controllers/

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a component-based programming framework  
(based on configuration).

• It does the “plumbing," and lets components implement the “logic” of
applications.

• How spring implements the MVC pattern

• Dependency Injection (inversion of control)

• Aspect-Oriented Programming including Spring's declarative transaction management

• Spring MVC web application and RESTful web service framework

• Foundational support for JDBC, JPA, JMS

• …

155

https://spring.io/guides/

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Inversion of Control

• Design pattern where user-defined code fragment receives the flow of control
from a generic framework.

• Context: object-oriented programming

• Found in: Frameworks, Event handlers, Callbacks

• Dependency Injection

• An instance of inversion of control to build object networks

• Centralised broker that maps types to implementations

• Java Spring: Pool of beans/components, auto-wiring of object networks

156

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Without inversion of Control

• Explicit initialisation of references

157

@RestController

@RequestMapping("/")

class EmpController(val employees:EmployeeService) {

 @GetMapping("/api/departments/{id}/employees")

 fun employeesOfDepartment(

 @PathVariable id:String,

 @RequestParam search:String?

)

 = listOf(

 Employee("John Oliver",40,"New York"),

 Employee("John Gleese", 60, "London")

)

 @GetMapping("/api/projects/{id}/team")

 fun teamMembersOfProject(

 @PathVariable id:String

)

 = employees.teamMembersOfProject(id)

}

@Service

class EmployeeService(val employees:EmployeeRepository) {

 fun teamMembersOfProject(id:String) = employees.findAll()

}

interface EmployeeRepository : CrudRepository<Employee, Long>

fun someMethod() {

 EmpController(

 EmployeeService(

 EmployeeRepositoryImp(

 DBConnection("...")

)

)

)

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Without inversion of Control
• Explicit initialisation of references

package pt.unl.fct.demo.controllers;

import org.springframework.web.bind.annotation.*;

import pt.unl.fct.demo.model.Company;

import pt.unl.fct.demo.services.CompaniesService;

@RestController

@RequestMapping(value="/companies")

public class CompaniesController {

 CompaniesService companies;

 public CompaniesController(CompaniesService companies) {

 this.companies = companies;

 }

 @GetMapping("")

 Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {

 // Do some extra checking on the request, and then...

 return companies.getAllCompanies(search);

 }

 @PostMapping("")

 void addNewCompany(@RequestBody Company company) {

 // Do some extra checking on the request, and then...

 companies.addCompany(company);

 }

}

158

Spring uses annotations to indicate the
kind of class, and where to plug it in

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Without inversion of Control
• Explicit initialisation of references

package pt.unl.fct.demo.controllers;

import org.springframework.web.bind.annotation.*;

import pt.unl.fct.demo.model.Company;

import pt.unl.fct.demo.services.CompaniesService;

@RestController

@RequestMapping(value="/companies")

public class CompaniesController {

 CompaniesService companies;

 public CompaniesController(CompaniesService companies) {

 this.companies = companies;

 }

 @GetMapping("")

 Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {

 // Do some extra checking on the request, and then...

 return companies.getAllCompanies(search);

 }

 @PostMapping("")

 void addNewCompany(@RequestBody Company company) {

 // Do some extra checking on the request, and then...

 companies.addCompany(company);

 }

}

159

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;

public class DemoServ extends HttpServlet{
 public void doGet(HttpServletRequest req,

 HttpServletResponse res)
 throws ServletException,IOException
 {
 res.setContentType("text/html");
 PrintWriter pw=res.getWriter();

 String name=req.getParameter("name");
 pw.println("Welcome "+name);

 pw.close();
 }

}

Instead of doing it explicitly ->>

from: https://www.javatpoint.com/servletrequest

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Without inversion of Control
• Explicit initialisation of references

package pt.unl.fct.demo.controllers;

import org.springframework.web.bind.annotation.*;

import pt.unl.fct.demo.model.Company;

import pt.unl.fct.demo.services.CompaniesService;

@RestController

@RequestMapping(value="/companies")

public class CompaniesController {

 CompaniesService companies;

 public CompaniesController(CompaniesService companies) {

 this.companies = companies;

 }

 @GetMapping("")

 Iterable<Company> getAllCompanies(@RequestParam(required=false) String search) {

 // Do some extra checking on the request, and then...

 return companies.getAllCompanies(search);

 }

 @PostMapping("")

 void addNewCompany(@RequestBody Company company) {

 // Do some extra checking on the request, and then...

 companies.addCompany(company);

 }

}

160

resources in ruby’nrails

a whole DSL to define >>

routes

https://guides.rubyonrails.org/routing.html

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Using Dependency Injection

• Explicitly tell what things are, let spring do the wiring

161

@RestController

@RequestMapping("/")

class EmpController() {

 @Autowired

 lateinit var employees:EmployeeService

 @GetMapping("/api/departments/{id}/employees")

 fun employeesOfDepartment(

 @PathVariable id:String,

 @RequestParam search:String?

)

Declare dependencies explicitly

to be initialised by Spring

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Using Dependency Injection

• Explicitly tell what things are, let spring do the wiring

162

@RestController

@RequestMapping("/")

class EmpController(val employees:EmployeeService) {

 @GetMapping("/api/departments/{id}/employees")

 fun employeesOfDepartment(

 @PathVariable id:String,

 @RequestParam search:String?

)

Declare constructor dependencies

and let Spring initialise correctly

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a component-based programming framework (based on
configuration).

• It does the “plumbing," and lets components implement the “logic” of
applications.

• How spring implements the MVC:

163

@SpringBootApplication

class McqApplication

fun main(args: Array<String>) {

 runApplication<McqApplication>(*args)

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a configuration and programming framework.

• It does the “plumbing”, and lets the components implement the “logic” of

applications.

• How spring implements the MVC: (in Java)

164

@Configuration

Annotation specifies that
the class has Bean
definition methods

@Configuration

@EnableAutoConfiguration

@EnableWebMvc

@ComponentScan
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a configuration and programming framework.

• It does the “plumbing”, and lets the components implement the “logic” of

applications.

• How spring implements the MVC

165

@Configuration

@EnableAutoConfiguration

@EnableWebMvc

@ComponentScan
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

@EnableAutoConfiguration

Attempts to guess and
configure beans that you are
likely to need (doc.spring.io)

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a configuration and programming framework.

• It does the “plumbing”, and lets the components implement the “logic” of

applications.

• How spring implements the MVC

166

@Configuration

@EnableAutoConfiguration

@EnableWebMvc

@ComponentScan
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }
}

@ComponentScan

Configures component
scanning.If specific packages
are not defined, scanning will
occur from the package of the
class that declares this
annotation.

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a configuration and programming framework.

• It does the “plumbing”, and lets the components implement the “logic” of

applications.

• How spring implements the MVC (Here the view is an HTML (thymeleaf)

template)

167

@Controller
public class GreetingController {

 private static final String template = "Hello, %s! %d”;
 private final AtomicLong counter = new AtomicLong();

 @RequestMapping("/greeting")
 public String greeting(@RequestParam(value="name", defaultValue="World") String name,

 Model model) {

 long c = counter.incrementAndGet();

 model.addAttribute(“message”, String.format(template, name, c));

 return “greeting”;
 }
}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Frameworks and MVC Architecture

• Java Spring is a configuration and programming framework.

• It does the “plumbing”, and lets the components implement the “logic” of

applications.

• How spring implements the MVC (Here the view is a JSON object formatter)

168

@RestController
public class GreetingController {

 private static final String template = "Hello, %s!";
 private final AtomicLong counter = new AtomicLong();

 @RequestMapping("/greeting")
 public Greeting greeting(@RequestParam(value="name", defaultValue="World") String name) {
 return new Greeting(counter.incrementAndGet(),
 String.format(template, name));
 }
}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Add-ons to the MVC Framework

• Resource control:  
DB connection & 
transactions

169

@Component
public class BookingService {

 private final static Logger logger = LoggerFactory.getLogger(BookingService.class);

 private final JdbcTemplate jdbcTemplate;

 public BookingService(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }

 @Transactional
 public void book(String... persons) {
 for (String person : persons) {
 logger.info("Booking " + person + " in a seat...");
 jdbcTemplate.update("insert into BOOKINGS(FIRST_NAME) values (?)", person);
 }
 }

 public List<String> findAllBookings() {
 return jdbcTemplate.query("select FIRST_NAME from BOOKINGS",
 (rs, rowNum) -> rs.getString("FIRST_NAME"));
 }

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Add-ons to the MVC Framework

• Across application  
concerns: security

170

@Configuration
@EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http

 .authorizeRequests()
 .antMatchers("/", "/home").permitAll()
 .anyRequest().authenticated()
 .and()
 .formLogin()
 .loginPage("/login")
 .permitAll()
 .and()
 .logout()
 .permitAll();
 }

 @Autowired
 public void configureGlobal(AuthenticationManagerBuilder auth) throws Exception {
 auth

 .inMemoryAuthentication()
 .withUser("user").password("password").roles("USER");
 }
}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Example of an Architecture built with Spring

171

HTTP Server

Tomcat

Controller

ServiceZ

RepositoryZ

• Spring is a component framework

• Resolves component dependencies by dependency injection

• Uses annotations to configure components

@RestController

@RequestMapping("/")

class EmpController(val employees:EmployeeService) {

 // http GET :8080/api/projects/2/team

 @GetMapping("/api/projects/{id}/team")

 fun teamMembersOfProject(

 @PathVariable id:String

)

 = employees.teamMembersOfProject(id)

}

@Service

class EmployeeService(val employees:EmployeeRepository) {

 fun teamMembersOfProject(id:String) = employees.findAll()

}

interface EmployeeRepository : CrudRepository<Employee, Long>

RECAP

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Architecture to the rescue of testers

• Unit tests should test
components in isolation

• Defining the context for a
component (correctly) is
laborious and error prone

• Difficult to do with persistent
data (must prepare tests)

• Impossible to do in tightly
coupled structures

• Component frameworks
allow mocking of
dependencies

172

@RunWith(SpringRunner::class)

@SpringBootTest

@AutoConfigureMockMvc

open class RESTApplicationTests() {

 @Autowired lateinit var mvc: MockMvc

 @MockBean lateinit var questions:QuestionRepository

 @Test

 fun `basic REST test`() {

 Mockito.`when`(questions.findAll()).thenReturn(l)

 mvc.perform(get(questionsURL))

 .andExpect(status().isOk)

 }

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Architecture to the rescue of testers

173

@RunWith(SpringRunner::class)

@SpringBootTest

@AutoConfigureMockMvc

open class RESTApplicationTests() {

 @Autowired lateinit var mvc: MockMvc

 @MockBean lateinit var questions:QuestionRepository

 @Test

 fun `basic REST test`() {

 Mockito.`when`(questions.findAll()).thenReturn(l)

 mvc.perform(get(questionsURL))

 .andExpect(status().isOk)

 }

Replaces web server

Replaces component  
with Mock object

Replaces call results

with expected values

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Architecture to the rescue of testers

174

HTTP Server

Tomcat

Controller

ServiceZ

RepositoryZ

Controller

Mock Service

Controller 
Tester

Service
Tester

ServiceZ

Mock

Repository

• Unit tests should test
components in isolation

• Unit tests simulate inputs
and compare outputs

• Mock components create a
controlled context for each
test or set of tests.

Questions?

Internet Applications Design and Implementation

2020 - 2021

(Lecture 4 - Part 2 - Data Sources in MVC)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Data Abstraction: The M in MVC

• An application layer that abstracts how information is stored, related, and
protected.

• Examples of database languages, libraries and frameworks

• JDBC

• LINQ (in MVC ASP.NET)

• ORMs (ActiveRecord in Rails, Hibernate in Java*)

• NoSQL: MongoDB

• External Web-services

177

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC

178

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC

• Basic API for Java defining an access to a database

• Does not know the database schema

• Programmer needs to “manually” translate between data formats

179

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

LINQ .NET

• Language based (integrated)

• Works in memory, xml, databases, etc

• Based on the notion of Provider, it is extensible

• Programmers need to explicitly build objects that matches the database schema

180

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

LINQ .NET

• Language based (integrated)

• Works in memory, xml, databases, etc

• Based on the notion of Provider, it is extensible

• Programmers need to explicitly build objects that matches the database schema

181

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

LINQ .NET

• Language based (integrated)

• Allows navigation using associations

182

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

ActiveRecord in Rails

• Follows the active record pattern to implement an ORM. AR objects link to
persistent data and define behaviour.

• Well integrated with the Model in the Rails MVC pattern

• Completely abstracts the database management by:

• Object-mappings

• Inheritance

• Associations

• Validations

• Migrations (w/ Rails)

183

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

NoSQL databases

• Not only SQL.

• Document-based, Chave-Valor, Graph-based

• Desenhadas para escalonamento horizontal (replicação)

• Compromisso na consistência dos dados

• Limited transactional support (real concurrency control)… use of chards

• Very good for querying, harder to get right on “writes”, indexes, etc.

• Queries are written in JavaScript, Java, SPARK, Map reduce algorithms…

184

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Data abstraction in Internet and Web Apps

• Abstraction over the actual data model

• Hides the actual database engine running beneath

• Integrates smoothly with the programming model (objects instead of string-based results).

• Independent configuration modes

• Allows different execution modes with the same code 

(e.g. in-memory, transactional, replicated, etc.)

• Does not really cover all data models smoothly:

• SQL model (e.g. Hibernate, ActiveRecord (Rn’R))

• NoSQL model (e.g. google app engine framework)

185

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Abstraction levels

• Connectivity (e.g. JDBC)

• abstracts the connectivity and execution of queries.

• you have to build queries, and parse and translate results

• Data translation (e.g. JPA, ActiveRecord, LINQ)

• Translates data formats between program and database.

• Integrates the language values typefully.

• Implementation and execution modes

• Example: Google Cloud Datastore is a NoSQL document based storage that allows

different implementations (cassandra, mongodb)

186

https://cloud.google.com/appengine/docs/java/datastore/

ORM

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-relational impedance mismatch

• Most databases are based on relational algebra

• Applications define object oriented representations (object graphs)

188

https://db-engines.com/en/ranking

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-relational impedance mismatch

• Most databases are based on relational algebra

• Applications define object oriented representations (object graphs)

189

https://db-engines.com/en/ranking

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch

• What’s the difference?

• Encapsulation

• Interface, class, polymorphism

• Mapping relational concepts

• Data type differences

• Structural and integrity differences

• Transactional differences

190

http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
https://dev.to/alagrede/why-i-dont-want-use-jpa-anymore-f

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch
• Identity

• Object: a == b and a.equals(b)

• Relational: primary key based

• Inheritance

• Object: natural relation

• Relational: does not exist, idioms are necessary

• Accessing data

• Object: through the object interface

• Relational: select queries (with joins)

• Associations/Navigation

• Object: unidirectional references through objects’ interface

• Relational: through foreign keys

• Granularity

• In some cases there may be a difference in the granularity level

191

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch

• Identity based on Primary Keys,

• We must define method 
equals (or utils like Lombok).

192

@Entity

public class Person {

 @Id

 @GeneratedValue

 private long id;

 private String name;

 public Person() {}

 public long getId() {

 return id;

 }

 public void setId(long id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch

• Inheritance: optional support for inheritance  
is provided by some frameworks

193

@Entity

@Inheritance(strategy= InheritanceType.JOINED)

@JsonSubTypes({

 @JsonSubTypes.Type(value = Professor.class, name = "PROFESSOR"),

 @JsonSubTypes.Type(value = Staff.class, name = "STAFF"),

 @JsonSubTypes.Type(value = Student.class, name = "STUDENT")

})

public class User {

 @Id

 @GeneratedValue

 private Long id_login;

 private String name;

…

}

@Entity

public class Student extends User {

 @Column

 private int number;

 public Student() {

 super();

 }

 public Student(String login,

 String password,

 String name,

 String tel,

 String email,

 String address,

 String type,

 int number) {

 super(login,

 password,

 name,

 tel,

 email,

 address,

 type);

 this.number = number;

 }

 public int getNumber() {

 return number;

 }

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch

• Inheritance: optional support for inheritance  
is provided by some frameworks

194

@Entity

@Inheritance(strategy= InheritanceType.JOINED)

@JsonSubTypes({

 @JsonSubTypes.Type(value = Professor.class, name = "PROFESSOR"),

 @JsonSubTypes.Type(value = Staff.class, name = "STAFF"),

 @JsonSubTypes.Type(value = Student.class, name = "STUDENT")

})

public class User {

 @Id

 @GeneratedValue

 private Long id_login;

 private String name;

…

}

@Entity

public class Student extends User {

 @Column

 private int number;

 public Student() {

 super();

 }

 public Student(String login,

 String password,

 String name,

 String tel,

 String email,

 String address,

 String type,

 int number) {

 super(login,

 password,

 name,

 tel,

 email,

 address,

 type);

 this.number = number;

 }

 public int getNumber() {

 return number;

 }

}

• MappedSuperclass – the parent classes, can't be entities

• Single Table – the entities from different classes with a common ancestor are placed in a single table

• Joined Table – each class has its table and querying a subclass entity requires joining the tables

• Table-Per-Class – all the properties of a class, are in its table, so no join is required https://www.baeldung.com/hibernate-inheritance

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch

• Access to data by object navigation

• All fields are retrieved to memory 

instead of explicitly selected

• May result in navigation queries

195

Organization o = organizationRepository.findById(id).get();

System.out.println(o.getName() + o.getContactInfo());

@Entity

public class Organization {

 @Id

 @GeneratedValue

 private Long id_entity;

 @Column

 private String name;

 @OneToOne(cascade = CascadeType.ALL)

 @JoinColumn(name = "contact_id")

 private ContactInfo contactInfo;

 public Organization(){ }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public ContactInfo getContactInfo() {

 return contactInfo;

 }

 public void setContactInfo(ContactInfo contactInfo) {

 this.contactInfo = contactInfo;

 }

 …

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

ActiveRecord Example

196

class Album < ActiveRecord::Base

 has_many :tracks
end

class Track < ActiveRecord::Base

 belongs_to :album
end

album = Album.create(:title => 'Black and Blue’, :performer => 'The Rolling Stones')
album.tracks.create(:track_number => 1, :title => 'Hot Stuff')

album.tracks.create(:track_number => 2, :title => 'Hand Of Fate')

album.tracks.create(:track_number => 3, :title => 'Cherry Oh Baby ')

album.tracks.create(:track_number => 4, :title => 'Memory Motel ')

album.tracks.create(:track_number => 5, :title => 'Hey Negrita')

album.tracks.create(:track_number => 6, :title => 'Fool To Cry')

album.tracks.create(:track_number => 7, :title => 'Crazy Mama')

album.tracks.create(:track_number => 8, :title => 'Melody (Inspiration By Billy
Preston)')

album = Album.create(:title => 'Sticky Fingers',:performer => 'The Rolling Stones')
album.tracks.create(:track_number => 1, :title => 'Brown Sugar')

album.tracks.create(:track_number => 2, :title => 'Sway')

album.tracks.create(:track_number => 3, :title => 'Wild Horses')

album.tracks.create(:track_number => 4,:title => 'Can\'t You Hear Me Knocking')

album.tracks.create(:track_number => 5, :title => 'You Gotta Move')

album.tracks.create(:track_number => 6, :title => 'Bitch')

album.tracks.create(:track_number => 7, :title => 'I Got The Blues')

album.tracks.create(:track_number => 8, :title => 'Sister Morphine')

album.tracks.create(:track_number => 9, :title => 'Dead Flowers')

album.tracks.create(:track_number => 10, :title => 'Moonlight Mile')

https://dzone.com/articles/simple-ruby-activerecord

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Mapping

• In Java you navigate the object network.

• Not efficient to retrieve data from a RDBMS.

• Minimize the number of SQL queries by using JOINs and selecting the

targeted entities from the start (pre-fetching).

197

from Cat as cat

 inner join cat.mate as mate

 left outer join cat.kittens as kitten

https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html#queryhql-joins

JPA

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Java Persistance API (JPA)
JPA provides a POJO persistence model for ORM

199

@Entity

public class Customer {

 private int id;

 private String name;

 private Collection<Order> orders;

// no-args constructor necessary

 public Costumer () {}

 // primary key required

 @Id // property access is used
 public int getId() {

 return id;

 }

// gets and sets required

 public void setId(int id) {

 this.id = id;

 }

…

 …

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

// also OneToOne, ManyToOne, and ManyToMany
 @OneToMany(cascade=ALL,

 mappedBy="customer")

 public Collection<Order>

 getOrders() {

 return orders;

 }

 public void setOrders(

Collection<Order> newValue) {

 this.orders = newValue;

 }

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Java Persistance API (JPA)

200

@Entity

@Table(name="ORDER_TABLE")
public class Order {

 private int id;

 private String address;

 private Customer customer;

 @Id

 @Column(name="ORDER_ID")
 public int getId() {

 return id;

 }

 public void setId(int id){

 this.id = id;

 }

…

…

 @Column(name="SHIPPING_ADDRESS")
 public String getAddress() {

 return address;

 }

 public void setAddress(

 String address) {

 this.address = address;

 }

 @ManyToOne()

// foreign key: column used for join

 @JoinColumn(name="CUSTOMER_ID")

 public Customer getCustomer() {

 return customer;

 }

 public void setCustomer(

 Customer customer) {

 this.customer = customer;

 }

}

JDBC

Internet Applications Design and Implementation

2020 - 2021

(Lecture 4 - Part 3 - Object Relational Mapping)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Mapping

• Manages persistence of data in the OO realm

• Abstracts the use of SQL in connection to RDBMSs

• Covers most injection attacks on queries  

(except with APIs that allow creation with string)

• Specified by a common and standard API (JPA)

• Implementations differ by JPA providers

202

public List<AccountDTO> unsafeJpaFindAccountsByCustomerId(String customerId) {

 String jql = "from Account where customerId = '" + customerId + "'";

 TypedQuery<Account> q = em.createQuery(jql, Account.class);

 return q.getResultList()

 .stream()

 .map(this::toAccountDTO)

 .collect(Collectors.toList());

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Object-Relational Impedance Mismatch
• Identity

• Object: a == b and a.equals(b)

• Relational: primary key based

• Inheritance

• Object: natural relation

• Relational: does not exist, idioms are necessary

• Accessing data

• Object: through the object interface

• Relational: select queries (with joins)

• Associations/Navigation

• Object: unidirectional references through objects’ interface

• Relational: through foreign keys

• Granularity

• In some cases there may be a difference in the granularity level

203

RECAP

http://hibernate.org/orm/what-is-an-orm/

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JPA - Java Persistence API

• Java Persistence API (Jakarta Persistence since Set 2019)

• Provides a OO interface to a relational database

• Defines JPQL (Java Persistence Query Language)

• The reference implementation is EclipseLink.

• Hibernate is a JPA provider (extended API and query language HQL)

204

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Data Abstraction layers

• Advantages

• Hides the complexity of a particular query language

• Allows the portability of database engines (not really models)

• Prevents attacks such as SQL injection, or XSS

• Avoids runtime errors in the construction of queries

• May isolate efficient implementations (previously, with prepared and compiled parameterised SQL queries)

• Allows scalability via customised runtime configurations (distribution, transactional behaviour, indexing, …)

• Avoids early optimization pitfalls, develop first, configure later.

• Pitfalls

• Lack of access to proprietary features of providers

• May lead to inefficient data transmissions: more queries (N+1 queries), more data than needed.

205

Internet Applications Design and Implementation

2020 - 2021

(Lecture 4 - Part 4 - Spring & Data Abstraction)

MIEI - Integrated Master in Computer Science and Informatics

Specialization block

João Costa Seco (joao.seco@fct.unl.pt)

(with previous participations of Jácome Cunha (jacome@fct.unl.pt) and João Leitão (jc.leitao@fct.unl.pt))

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC & Spring

• SpringBoot provides direct support for JDBC

• As in any JDBC setting, it is necessary to define a DataSource  

(DB, CSV file, etc.)

• SpringBoot offers the JdbcTemplate class to assist programmers

• Spring easily integrates JPA support (later)

207

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC & Spring & In-memory DBs

•JdbcTemplate handles the setup and connection to the DataSource based on
the POM dependencies (when possible)

•For instance, for H2 in-memory database (Spring also supports HSQL and
Derby):  

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 </dependency>

•This handles the connection and exceptions

208

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC & Spring

• It also supports “regular” relational databases adding the necessary
properties to the application.properties file, e.g.:

spring.datasource.url=jdbc:mysql://localhost/test

spring.datasource.username=dbuser

spring.datasource.password=dbpass

209

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JDBC & Spring

210

@Component
public class Hotels {

private JdbcTemplate jdbc;

@Autowired
public Hotels(JdbcTemplate jdbc) {

this.jdbc = jdbc;

createTable();

}

public Hotels(){}

public void createTable() {

jdbc.execute("drop table tablea if exists");

jdbc.execute("create table tablea(id SERIAL, attributea VARCHAR(16))");

}

public List<Map<String,Object>> select() {

return jdbc.query("select * from tablea", new ColumnMapRowMapper());

}

public int save(String att) {

return jdbc.update("insert into tablea(attributea) values (?)", att);

}

}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

JPA & Spring

• Spring-boot-starter-data-jpa provides the necessary dependencies:

• Hibernate — One of the most popular JPA implementations

• Spring Data JPA — Makes it easy to implement JPA-based repositories

• Spring ORMs — Core ORM support from the Spring Framework

211

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Declare an Entity (in Java)

212

@Entity
public class Customer {
 @Id
 @GeneratedValue(strategy=GenerationType.AUTO)
 private Long id;
 private String firstName;
 private String lastName;

 protected Customer() {}

 public Customer(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }
 @Override
 public String toString() {
 return String.format(
 "Customer[id=%d, firstName='%s', lastName='%s']",
 id, firstName, lastName);
 }
}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Declare a Repository and plug it in… (in Java)

213

public interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findByLastName(String lastName);
}

@Controller

public class CustomerController

{

 @Autowired
 CustomerRepository customers;

 … findByLastName(“Smith”);…
}

Internet Applications Design and Implementation, FCTUNL, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Declare an Entity and a Repository and plug it in…

214

@Entity

data class PetDAO(

 @Id @GeneratedValue val id:Long,

 var name: String,

 var species: String

)

interface PetRepository : CrudRepository<PetDAO, Long> {

 fun findByName(name:String): MutableIterable<PetDAO>

}

@Autowired

lateinit var repo:PetRepository

fun someFunction() {

…repo.findByName(“pantufas”)…

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

interface CrudRepository<T , ID extends Serializable>

215

http://docs.spring.io/spring-data/commons/docs/current/api/org/springframework/data/repository/CrudRepository.html

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

An Example
@Entity

@NamedQuery(name = "User.findByTheUsersName",

 query = "from User u where u.username = ?1")

class User(

 @Column(unique = true)

 val username:String,

 val firstname:String,

 val lastname:String

)

216

interface SimpleUserRepository : CrudRepository<User, Long> {

 fun findByTheUsersName(username:String):User

 fun findByLastname(lastname:String):List<User>

 @Query("select u from User u where u.firstname = ?")

 fun findByFirstname(firstname:String):List<User>

 @Query("select u from User u where u.firstname = :name or u.lastname = :name")

 fun findByFirstnameOrLastname(@Param("name") name:String):List<User>

}

Keyword Sample JPQL snippet

And findByLastnameAndFirstname … where x.lastname = ?1 and x.firstname
= ?2

Or findByLastnameOrFirstname … where x.lastname = ?1 or x.firstname =
?2

Is,Equals findByFirstname,findByFirstnameIs,findByFirstnameEquals … where x.firstname = 1?

Between findByStartDateBetween … where x.startDate between 1? and ?2

LessThan findByAgeLessThan … where x.age < ?1

LessThanEqual findByAgeLessThanEqual … where x.age ⇐ ?1

GreaterThan findByAgeGreaterThan … where x.age > ?1

GreaterThanEqual findByAgeGreaterThanEqual … where x.age >= ?1

After findByStartDateAfter … where x.startDate > ?1

Before findByStartDateBefore … where x.startDate < ?1

IsNull findByAgeIsNull … where x.age is null

IsNotNull,NotNull findByAge(Is)NotNull … where x.age not null

Like findByFirstnameLike … where x.firstname like ?1

NotLike findByFirstnameNotLike … where x.firstname not like ?1

StartingWith findByFirstnameStartingWith … where x.firstname like ?1 (parameter
bound with appended %)

EndingWith findByFirstnameEndingWith … where x.firstname like ?1 (parameter
bound with prepended %)

Containing findByFirstnameContaining … where x.firstname like ?1 (parameter
bound wrapped in %)

OrderBy findByAgeOrderByLastnameDesc … where x.age = ?1 order by x.lastname
desc

Not findByLastnameNot … where x.lastname <> ?1

In findByAgeIn(Collection<Age> ages) … where x.age in ?1

NotIn findByAgeNotIn(Collection<Age> age) … where x.age not in ?1

TRUE findByActiveTrue() … where x.active = true

FALSE findByActiveFalse() … where x.active = false

IgnoreCase findByFirstnameIgnoreCase … where UPPER(x.firstame) = UPPER(?
1)

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Data (and other ORM Implementations)

• Simple declaration of generic queries

• Specific declaration of custom queries (JPQL)

• Richer Behaviour from Repositories (e.g. paged)

• Dependency Injection and component assembly

218

public interface StudentRepository extends PagingAndSortingRepository<Student, Long> {

 List<Student> findByName(String name);

 @Query("select s from Student s where s.name like CONCAT(?,'%')")

 List<Student> search(String name);

 Page<Student> findByName(String name, Pageable pageable);

}

public class StudentController {

@Autowired
StudentRepository students;

SUMMARY

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Data (and other ORM Implementations)

• Simple declaration of generic queries

• Specific declaration of custom queries (JPQL)

• Richer Behaviour from Repositories (e.g. paged)

• Dependency Injection and component assembly

219

public interface StudentRepository extends PagingAndSortingRepository<Student, Long> {

 List<Student> findByName(String name);

 @Query("select s from Student s where s.name like CONCAT(?,'%')")

 List<Student> search(String name);

 Page<Student> findByName(String name, Pageable pageable);

}

public class StudentController {

@Autowired
StudentRepository students;

SUMMARY

@RequestMapping(value= "/page")

public @ResponseBody Page<Student> getStudentsPaged(

@RequestParam(required=false, defaultValue = "0") Integer page,

@RequestParam(required=false, defaultValue = "3") Integer size) {

return students.findAll(new PageRequest(page, size));

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Data (and other ORM Implementations)

• Simple declaration of generic queries

• Specific declaration of custom queries (JPQL)

• Richer Behaviour from Repositories (e.g. paged)

• Dependency Injection and component assembly

220

public interface StudentRepository extends PagingAndSortingRepository<Student, Long> {

 List<Student> findByName(String name);

 @Query("select s from Student s where s.name like CONCAT(?,'%')")

 List<Student> search(String name);

 Page<Student> findByName(String name, Pageable pageable);

}

public class StudentController {

@Autowired
StudentRepository students;

SUMMARY

@RequestMapping(value= "/page")

public @ResponseBody Page<Student> getStudentsPaged(

@RequestParam(required=false, defaultValue = "0") Integer page,

@RequestParam(required=false, defaultValue = "3") Integer size) {

return students.findAll(new PageRequest(page, size));

}

 "content": [

 {

 "id": 1,

 "name": "Ingrid Daubechies",

 "age": 19

 },

 {

 "id": 2,

 "name": "Jacqueline K. Barton",

 "age": 18

 },

 {

 "id": 3,

 "name": "Jane Goodall",

 "age": 20

 }

],

 "last": false,

 "totalElements": 6,

 "totalPages": 2,

 "size": 3,

 "number": 0,

 "sort": null,

 "first": true,

 "numberOfElements": 3

}

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Data - Features

• Powerful repository and custom object-mapping abstractions

• Dynamic query derivation from repository method names

• Implementation domain base classes providing basic properties

• Support for transparent auditing (created, last changed)

• Possibility to integrate custom repository code

• Easy Spring integration via JavaConfig and custom XML namespaces

• Advanced integration with Spring MVC controllers

• Experimental support for cross-store persistence

221

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Spring Data

•	 Spring Data Commons - Core Spring concepts underpinning every Spring Data project.

•	 Spring Data JPA - Makes it easy to implement JPA-based repositories.

•	 Spring Data MongoDB - Spring based, object-document support and repositories for MongoDB.

•	 Spring Data Redis - Provides easy configuration and access to Redis from Spring applications.

•	 Spring Data Solr - Spring Data module for Apache Solr.

•	 Spring Data Gemfire - Provides easy configuration and access to GemFire from Spring applications.

•	 Spring Data REST - Exports Spring Data repositories as hypermedia-driven RESTful resources.

Community Modules

•	 Spring Data Cassandra - Spring Data module for Apache Cassandra.

•	 Spring Data Couchbase - Spring Data module for Couchbase.

•	 Spring Data DynamoDB - Spring Data module for DynamoDB.

•	 Spring Data Elasticsearch - Spring Data module for Elasticsearch.

•	 Spring Data Neo4j - Spring based, object-graph support and repositories for Neo4j.

222

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

MongoDB Example

public class MongoApp {

 private static final Log log = LogFactory.getLog(MongoApp.class);

 public static void main(String[] args) throws Exception {

 MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
 mongoOps.insert(new Person("Joe", 34));

 log.info(mongoOps.findOne(new Query(where("name").is("Joe")), Person.class));

 mongoOps.dropCollection("person");
 }
}

223

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Other database representations

• Objectify: gives easy and full access to the Google Cloud Datastore

• Dynamic / Reflexion based

• Alternative to JPA interface

224

https://github.com/objectify/objectify

@Entity

class Car {

 @Id String vin; // Can be Long, long, or String

 String color;

}

ofy().save().entity(new Car("123123", "red")).now();

Car c = ofy().load().type(Car.class).id("123123").now();

ofy().delete().entity(c);

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão

Other database representations

• Objectify: gives easy and full access to the Google Cloud Datastore

• Dynamic / Reflexion based

• Alternative to JPA interface

225

https://github.com/objectify/objectify

• Objectify surfaces all native datastore features, including batch operations, queries, transactions,
asynchronous operations, and partial indexes.

• Objectify provides type-safe key and query classes using Java generics.

• Objectify provides a human-friendly query interface.

• Objectify can automatically cache your data in memcache for improved read performance.

• Objectify can store polymorphic entities and perform true polymorphic queries.

• Objectify provides a simple, easy-to-understand transaction model.

• Objectify provides built-in facilities to help migrate schema changes forward.

• Objectify provides thorough documentation of concepts as well as use cases.

• Objectify has an extensive test suite to prevent regressions.

Internet Applications Design and Implementation, NOVA SST, © 2015, João Costa Seco, Jácome Cunha, João Leitão 226

https://www.jooq.org/

