Sucessões em \mathbb{R}^n

Definição

Uma sucessão em \mathbb{R}^n é uma função

$$u: \mathbb{N} \to \mathbb{R}^n$$

$$m \hookrightarrow u_m = (u_1^m, \dots, u_n^m)$$

Exemplo: $u_m = \left(m^2, \frac{1}{m}\right)$

Definição

Diz-se que uma sucessão (u_m) de pontos em \mathbb{R}^n converge para $a \in \mathbb{R}^n$ e escreve-se $\lim_{n \to \infty} u_m = a$ se:

$$\forall \epsilon > 0, \exists p \in \mathbb{N}, \forall m \in \mathbb{N}, m \ge p \Rightarrow d(u_m, a) < \epsilon$$

$$\forall \epsilon > 0, \exists p \in \mathbb{N}, \forall m \in \mathbb{N}, m > p \Rightarrow ||u_m - a|| < \epsilon$$

Sucessões em \mathbb{R}^n

Teorema

É condição necessária e suficiente para que a sucessão (u_m) de pontos de \mathbb{R}^n convirja para $a \in \mathbb{R}^n$ que cada uma das suas sucessões coordenadas convirja para a correspondente coordenada de a.

Exemplo e Demonstração

Definição

Seja $A \subseteq \mathbb{R}^n$. Se $\forall m \in \mathbb{N}, u_m \in A$, então (u_m) diz-se uma sucessão de elementos de A.

$$f: \mathbb{R}^n \to \mathbb{R}$$

$$x = (x_1, \dots, x_n) \hookrightarrow f(x) = f(x_1, \dots, x_n)$$

Domínio (D): maior subconjunto de \mathbb{R}^n onde a expressão $f(x_1,\ldots,x_n)$ tem significado Cuidados:

- denominadores não nulos
- argumentos de raízes de índice par não negativos
- argumentos de logaritmos positivos
- argumentos de \arcsin e \arccos em [-1,1]

Contra-domínio (f(D)):

$$f(D) = \{ z \in \mathbb{R} : z = f(x) \land x \in D \}$$

Gráfico (G):

$$G = \{(x_1, \dots, x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, \dots, x_n) \land (x_1, \dots, x_n) \in D\}$$

Exemplos (introdução das superfícies quádricas)

Definição (Conjunto de nível)

Chama-se conjunto de nível de uma função $f: \mathbb{R}^n \to \mathbb{R}$ ao conjunto C_k solução da equação f(x)=k, onde k é uma constante pertencente ao contra-domínio de f.

$$C_k = \{ x \in \mathbb{R}^n : f(x) = k \land k \in f(D) \}$$

Nota: Em \mathbb{R}^2 designa-se por curva de nível e em \mathbb{R}^3 por superfície de nível.

Exemplos

https://faculty.math.illinois.edu/~nmd/quadrics/hyper2.html

Definição (Limite segundo Cauchy)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ e $a\in\overline{D}$. Diz-se que f tende para b quando x tende para a ou que f tem limite b em a e escreve-se $\lim_{x\to a}f(x)=b$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \cap V_{\epsilon}(a) \Rightarrow f(x) \in V_{\delta}(b)$$

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x - a|| < \epsilon \Rightarrow |f(x) - b| < \delta$$

Teorema (Limite segundo Heine)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ e $a\in\overline{D}$. Temos $\lim_{x\to a}f(x)=b$ se e só se para qualquer sucessão (x_m) de elementos de D a convergir para a, a sucessão $(f(x_m))$ converge para b.

Teorema (Propriedades de cálculo de limites)

Sejam $f,g:D\subseteq\mathbb{R}^n\to\mathbb{R}$ duas funções com limites finitos quando x tende para $a\in\overline{D}$. Então:

- $\bullet \lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- $\bullet \lim_{x \to a} (f g)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\bullet \lim_{x \to a} (f.g)(x) = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$
- $\bullet \ \ \text{Se} \ \lim_{x \to a} g(x) \neq 0 \ \ \text{então} \ \lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

Teorema (Teorema das funções enquadradas)

Sejam $f,g,h:D\subseteq\mathbb{R}^n\to\mathbb{R}$ três funções e $a\in\overline{D}$. Se $f(x)\leq h(x)\leq g(x)$ numa vizinhança de a e $\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=b$ então $\lim_{x\to a}h(x)=b$.

Definição

Uma função $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ diz-se limitada se existir L>0 tal que:

$$\forall x \in D, |f(x)| < L.$$

Corolário

Sejam $f,g:D\subseteq\mathbb{R}^n\to\mathbb{R}$ duas funções e $a\in\overline{D}$. Se f é limitada numa vizinhança de a e $\lim_{x\to a}g(x)=0$ então $\lim_{x\to a}(f.g)(x)=0$.

Definição (Limites relativos a conjuntos (Cauchy))

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ e $A\subset D$ com $a\in\overline{A}$. Diz-se que f tem limite b quando x tende para a segundo A ou que b é o limite de f relativo a A e escreve-se

$$\lim_{x \to a} f(x) = b$$
$$x \in A$$

se

$$\forall \delta > 0, \exists \epsilon > 0, x \in A \land ||x - a|| < \epsilon \Rightarrow |f(x) - b| < \delta$$

Nota: Segundo Heine,
$$\lim_{x \to a} f(x) = b$$
 se e só se para qualquer sucessão $x \to a$ $x \in A$

 (x_m) de elementos de A a convergir para a, a sucessão $(f(x_m))$ converge para b.

Teorema

Seja
$$f:D\subseteq\mathbb{R}^n o\mathbb{R}$$
 tal que $D=D_1\cup D_2\cup\ldots\cup D_p$. Se $a\in\overline{D_i}$ e
$$\lim_{\substack{x\to a\\x\in D_i}}f(x)=b, \forall i\in\{1,2,\ldots,p\}$$

então

$$\lim_{x \to a} f(x) = b.$$

Funções Vectoriais de Várias Variáveis

$$f: \mathbb{R}^n \to \mathbb{R}^p$$

$$x = (x_1, \dots, x_n) \hookrightarrow f(x) = (f_1(x_1, \dots, x_n), \dots, f_p(x_1, \dots, x_n))$$

Definição (Limite segundo Cauchy)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}$. Diz-se que f tende para b quando x tende para a ou que f tem limite b em a e escreve-se $\lim_{x\to a}f(x)=b$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \cap V_{\epsilon}(a) \Rightarrow f(x) \in V_{\delta}(b)$$
$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x - a|| < \epsilon \Rightarrow ||f(x) - b|| < \delta$$

Funções Vectoriais de Várias Variáveis

Teorema

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}.$ O limite de f quando x tende para a é $b=(b_1,\ldots,b_p)$ se e só se:

$$\lim_{x \to a} f_i(x) = b_i, \forall i \in \{1, \dots, p\}$$

Exemplo

Teorema (Limite segundo Heine)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in\overline{D}$. Temos $\lim_{x\to a}f(x)=b$ se e só se para qualquer sucessão (x_m) de elementos de D a convergir para a, a sucessão $(f(x_m))$ converge para b.

Funções Vectoriais de Várias Variáveis - Outros limites

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e suponhamos que D é tal que faz sentido considerar $\|x\|$ tão grande quanto se queira. Diz-se que $\lim_{\|x\|\to+\infty}f(x)=b$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x|| > \epsilon \Rightarrow ||f(x) - b|| < \delta$$

Definição

Seja
$$f:D\subseteq\mathbb{R}^n o\mathbb{R}^p$$
 e $a\in\overline{D}.$ Diz-se que $\lim_{x o a}f(x)=\infty$ se:

$$\forall \delta > 0, \exists \epsilon > 0, x \in D \land ||x - a|| < \epsilon \Rightarrow ||f(x)|| > \delta$$

Função Contínua

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $a\in D.$ Diz-se que f é continua em a se existir $\lim_{x\to a}f(x).$

Notas:

- Como consequência $\lim_{x\to a} f(x) = f(a)$.
- Se f não é contínua em $a \in D$ então f diz-se descontínua em a.

Definição

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $A\subseteq D.$ Diz-se que f é contínua em A se f é contínua em todos os pontos de A.

Propriedades das Função Contínuas

Teorema

Sejam $f,g:\mathbb{R}^n\to\mathbb{R}^p$ funções contínuas em $a\in D_f\cap D_g$. Então f+g,f-g e f.g também são contínuas em a e se $g(a)\neq 0$ então $\frac{f}{g}$ também é contínua em a.

Teorema

Sejam $g:D_g\subseteq\mathbb{R}^n\to\mathbb{R}^p$ e $f:D_f\subseteq\mathbb{R}^p\to\mathbb{R}^q$ contínuas em $a\in D_g$ e em $g(a)\in D_f$, respectivamente. Então $f\circ g$ é contínua em a.

Exemplos: Projecções, constantes, polinómios,...

Prolongamento por Continuidade

Definição

Sejam $f, \bar{f}: \mathbb{R}^n \to \mathbb{R}^p$ duas funções. Diz-se que \bar{f} é um prolongamento de f se:

- $D_f \subset D_{\bar{f}}$
- $\forall x \in D_f, \bar{f}(x) = f(x)$

Teorema

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^p$ e $a \in \mathbb{R}^n \setminus D$. A função f é prolongável por continuidade ao ponto a se e só se existir $\lim_{x\to a} f(x)$.

Descontinuidade Removível

Definição

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}^p$ uma função descontínua em $a \in D$. Diz-se que f tem uma descontinuidade removível no ponto a se existir uma função g, contínua em a, que apenas difere de f em a.

Teoremas Importantes para Funções Contínuas

Definição

Um conjunto $A \subset \mathbb{R}^n$ diz-se compacto se for fechado e limitado.

Teorema

A imagem de um conjunto compacto por uma função contínua é um conjunto compacto.

Teorema (Teorema de Weierstrass)

Toda a função $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ contínua num compacto tem um máximo e um mínimo nesse conjunto.

Teoremas importantes para funções contínuas

Teorema (Teorema de Bolzano)

Seja $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ uma função contínua e $a,b\in D$. Consideremos k entre f(a) e f(b). Então existe c no segmento que liga a a b tal que f(c)=k.