
08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 1/4

Linguagens e Ambientes de Programação
(2018/2019)

Teórica 05 (20/mar/2019)

Tipos produto (tuplos e registos).
 Tratamento de exceções.

 Funções parciais.

Tipos produto (tuplos e registos)
A maioria das linguagens de programação incluem nos seus sistemas de tipos uma construção específica que
permite representar agrupamentos de dados heterogéneos. O nome genérico dessa construção, independente
da linguagem particular, é tipo produto.

Numa linguagem com tipos produto é possível definir, por exemplo, um tipo de dados pessoa constituído por
um nome (de tipo string), um ano de nascimento (de tipo int), uma morada (de tipo string), etc.

Os tipos produto do Pascal são os registos.
 Os tipos produto do C são as estruturas.

 Os tipos produto do Java, Smalltalk e C++ são as classes.
 No Fortran, os tipos produto apareceram na versão Fortran 90 com o nome de tipos derivados.

Como é em OCaml?

Tipos produto em OCaml

Em OCaml há duas variedades de tipos produto: tipos produto não etiquetados e tipos produto
etiquetados.

Tipos produto não etiquetados (tuplos)

Os produtos cartesianos do OCaml são exemplos de tipos produto, neste caso ditos não-etiquetados, e
também conhecidos por tuplos. Por exemplo, para representar pessoas, pode usar-se em OCaml o seguinte
tipos produto não etiquetado:

string * int * string

Literais: Para exemplificar, eis um valor do tipo anterior:

("João ", 1970, "Lisboa")

Construção: Para exemplificar vejamos uma função que muda a morada duma pessoa, criando um tuplo
novo:

let moveTo (x,y,_) city = (x, y, city) ;;

Processamento: Como se processam tuplos? De duas formas:

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 2/4

Usando emparelhamento de padrões:

let getName p =
 match p with
 (x, _, _) -> x
;;

Ou usando as operações de acesso fst e snd predefinidas, se o registo tiver duas componentes:

não aplicável ao nosso exemplo

Tipos produto etiquetados (registos)

Mas o OCaml, também suporta tipos produto etiquetados, também conhecidos como registos, os quais
requerem definição explícita. Eis um exemplo de tipo produto etiquetado:

type pessoa = { nome:string ; anoNasc:int ; morada:string } ;;

Literais: Eis um literal deste tipo:

{ nome = "João" ; anoNasc = 1970 ; morada = "Lisboa" }

Construção: Para exemplificar vejamos uma função que muda a morada duma pessoa, criando um registo
novo:

let moveTo p city =
 { nome = p.nome ; anoNasc = p.anoNasc ; morada = city }
;;

Processamento: Como se processam registos? De duas formas:

Usando emparelhamento de padrões:

let getNome p =
 match p with
 { nome = x ; anoNasc = _ ; morada = _ } -> x
;;

Ou usando a operação de acesso "." e que funciona em OCaml exatamente como em Pascal ou C:

let getNome p = p.nome ;;

Tratamento de exceções em OCaml
Durante a execução de um programa, por vezes verificam-se determinadas condições (geralmente anómalas,
mas nem sempre) às quais é necessário reagir alterando o fluxo de execução normal. Tais condições
chamam-se exceções.

As exceções podem ser geradas:

Ao nível do hardware. Por exemplo, em virtude duma divisão por zero.

Ao nível do sistema operativo. Por exemplo, devido à impossibilidade de abrir um ficheiro inexistente,
ou devido à tentativa de continuar a ler dum ficheiro que já chegou ao fim.

Deliberadamente pelos próprios programas, usando a construção raise, ou usando a função failwith,
que também gera uma exceção, mas duma forma mais prática de escrever. Por exemplo, para lidar
explicitamente com argumentos proibidos:

http://en.wikipedia.org/wiki/Exception_handling

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 3/4

let rec fact x =
 if x = 0 then 1
 else if x>0 then x * fact(x-1)
 else raise (Arg.Bad "fact")
;;

let rec fact x =
 if x = 0 then 1
 else if x>0 then x * fact(x-1)
 else failwith "fact"
;;

Captura e tratamento de exceções

Quando uma exceção é gerada, o controlo da execução do programa é transferido para o tratador de
exceções (exception handler) mais recentemente cativado. É abortada a avaliação de todas as funções
chamadas depois da ativação desse tratador de exceções.

Em OCaml, um tratador de exceções escreve-se usando uma expressão try-with, como se exemplifica de
seguida. A expressão exp, no seu interior, diz-se uma expressão protegida.

try
 exp
with Sys_error _ -> exp1
 | Division_by_zero -> exp2
 | End_of_file -> exp3
 ...
;;

Como é avaliada uma expressão try-with?

Começa-se por avaliar a expressão protegida exp.
Caso nenhuma exceção seja gerada por exp, então o try-with não tem qualquer efeito e a expressão
global try-with tem o mesmo valor da expressão exp.
Mas se for gerada alguma exceção por exp, então o try-with recebe o controlo da execução e usa
emparelhamento de padrões para descobrir qual das expressões exp1, exp2, exp3, etc., deve ser avaliada
em substituição de exp.
Finalmente, se o emparelhamento de padrões anterior falhar, então a exceção é propagada para o try-
with cronologicamente anterior.

Existe um tratador de exceções de sistema que apanha as exceções não tratadas e aborta a execução do
programa com uma mensagem de erro apropriada a cada caso. Exemplos:

4/0;;
Exception: Division_by_zero.

open_in "fdsg" ;;
Exception: Sys_error "fdsg: No such file or directory".

Definição de novas exceções

A lista de exceções predefinidas na linguagem encontra-se aqui: Index of exceptions.

O programador pode definir novas exceções. A sintaxe da definição duma nova exceção é igual à sintaxe da
definição duma variante dum tipos soma.

Exemplos. O primeiro exemplo define uma exceção com argumento; o segundo define uma exceção sem
argumento.

exception Stack_overflow of string * int ;;
exception I_m_so_out_of_here ;;

http://caml.inria.fr/pub/docs/manual-ocaml-312/libref/index_exceptions.html

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 4/4

Funções parciais
Uma função parcial é uma função que só está definida em parte do seu domínio. (Não confundir com
aplicação parcial, que é outra coisa.)

Por exemplo, a função fact é parcial porque só está definida para valores não-negativos:

 let rec fact n = (* pre: n >= 0 *)
 if n = 0 then 1
 else n * fact (n-1)
 ;;

Outro exemplo: A função maxList é parcial porque só está definida para listas não-vazias:

 let rec maxList l = (* pre: l <> [] *)
 match l with
 [x] -> x
 | x::xs -> max x (maxList xs)
 ;;

Quando se escreve uma função parcial, espera-se que essa função seja sempre aplicada a argumentos válidos.
Mas os programas podem ter erros e é importante que os programas não disfarcem esses erros - é muito
melhor a execução dum programar abortar do que terminar produzindo resultados errados. Por isso, convém
garantir que a função não produz qualquer resultado quando aplicada a argumentos inválidos (por outras
palavras, temos de obrigar o resultado a ser realmente indefinido).

A melhor forma de impedir uma função de produzir resultado, ao mesmo tempo gerando uma mensagem de
erro clara, é gerar uma exceção. Assim:

let rec fact n = (* pre: n >= 0 *)
 if n = 0 then 1
 else if n > 0 then n * fact (n-1)
 else failwith "fact: negative argument"
;;

let rec maxList l = (* pre: l <> [] *)
 match l with
 [] -> failwith "maxList: empty list"
 | [x] -> x
 | x::xs -> max x (maxList xs)
;;

Mas, repare, mesmo sem lançar exceções explícitas, as versões originais destas duas funções já garantem a
não produção de resultados: a primeira aborta com "Stack overflow" e a segunda gera a exceção
Match_failure.

#120

http://en.wikipedia.org/wiki/Partial_function

