08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

Linguagens e Ambientes de Programacao
(2018/2019)

Teorica 05 (20/mar/2019)

Tipos produto (tuplos e registos).
Tratamento de excegdes.
Funcdes parciais.

Tipos produto (tuplos e registos)

A maioria das linguagens de programagao incluem nos seus sistemas de tipos uma construgdo especifica que
permite representar agrupamentos de dados heterogéneos. O nome genérico dessa constru¢do, independente
da linguagem particular, ¢ tipo produto.

Numa linguagem com tipos produto € possivel definir, por exemplo, um tipo de dados pessoa constituido por
um nome (de tipo string), um ano de nascimento (de tipo int), uma morada (de tipo string), etc.

Os tipos produto do Pascal sdo os registos.

Os tipos produto do C sdo as estruturas.

Os tipos produto do Java, Smalltalk e C++ sdo as classes.

No Fortran, os tipos produto apareceram na versao Fortran 90 com o nome de tipos derivados.

Como é em OCaml?

Tipos produto em OCaml

Em OCaml ha duas variedades de tipos produto: tipos produto nao etiquetados ¢ tipos produto
etiquetados.

Tipos produto nao etiquetados (tuplos)

Os produtos cartesianos do OCaml sdo exemplos de tipos produto, neste caso ditos nao-etiquetados, ¢
também conhecidos por tuplos. Por exemplo, para representar pessoas, pode usar-se em OCaml o seguinte
tipos produto ndo etiquetado:

string * int * string
Literais: Para exemplificar, eis um valor do tipo anterior:
("Jodo ", 1970, "Lisboa")

Construcio: Para exemplificar vejamos uma fun¢do que muda a morada duma pessoa, criando um tuplo
novo:

let moveTo (x,y,_) city = (x, y, city) ;;
Processamento: Como se processam tuplos? De duas formas:

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 1/4

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

e Usando emparelhamento de padroes:

let getName p =
match p with

(x, _s _) ->x

35
e Ou usando as operacgdes de acesso fst e snd predefinidas, se o registo tiver duas componentes:

nao aplicavel ao nosso exemplo

Tipos produto etiquetados (registos)

Mas o OCaml, também suporta tipos produto etiquetados, também conhecidos como registos, os quais
requerem defini¢do explicita. Eis um exemplo de tipo produto etiquetado:

type pessoa = { nome:string ; anoNasc:int ; morada:string } ;;

Literais: Eis um literal deste tipo:

{ nome = "Jodao" ; anoNasc = 1970 ; morada = "Lisboa" }

Construcao: Para exemplificar vejamos uma fungdo que muda a morada duma pessoa, criando um registo
novo:

let moveTo p city =
{ nome = p.nome ; anoNasc = p.anoNasc ; morada = city }

55
Processamento: Como se processam registos? De duas formas:

e Usando emparelhamento de padroes:

let getNome p =
match p with
{ nome = x ; anoNasc = _ ; morada = _ } -> x

)y

nn

¢ Ou usando a operagdo de acesso "." e que funciona em OCaml exatamente como em Pascal ou C:

let getNome p = p.nome ;;

Tratamento de excecoes em OCaml

Durante a execug@o de um programa, por vezes verificam-se determinadas condi¢des (geralmente anémalas,
mas nem sempre) as quais ¢ necessario reagir alterando o fluxo de execucdo normal. Tais condi¢des
chamam-se excecoes.

As excecdes podem ser geradas:
¢ Ao nivel do hardware. Por exemplo, em virtude duma divisao por zero.

¢ Ao nivel do sistema operativo. Por exemplo, devido a impossibilidade de abrir um ficheiro inexistente,
ou devido a tentativa de continuar a ler dum ficheiro que ja chegou ao fim.

¢ Deliberadamente pelos proprios programas, usando a construgdo raise, ou usando a funcao failwith,

que também gera uma exce¢do, mas duma forma mais pratica de escrever. Por exemplo, para lidar
explicitamente com argumentos proibidos:

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 2/4

http://en.wikipedia.org/wiki/Exception_handling

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

let rec fact x =
if x = @ then 1
else if x>0 then x * fact(x-1)
else raise (Arg.Bad "fact")

55
let rec fact x =
if x = @ then 1

else if x>0 then x * fact(x-1)
else failwith "fact”

Captura e tratamento de excecoes

Quando uma exceg¢do ¢ gerada, o controlo da execugdo do programa ¢ transferido para o tratador de
excec¢oes (exception handler) mais recentemente cativado. E abortada a avaliacao de todas as fungdes
chamadas depois da ativagdo desse tratador de excecdes.

Em OCaml, um tratador de excecdes escreve-se usando uma expressao try-with, como se exemplifica de
seguida. A expressao exp, no seu interior, diz-se uma expressio protegida.

try
exp

with Sys_error _ -> expl
| Division_by zero -> exp2
| End_of file -> exp3

35
Como ¢ avaliada uma expressao try-with?

e Comega-se por avaliar a expressdo protegida exp.

e Caso nenhuma exceg¢ao seja gerada por exp, entdo o try-with ndo tem qualquer efeito ¢ a expressao
global try-with tem 0 mesmo valor da expressao exp.

e Mas se for gerada alguma excegdo por exp, entdo o try-with recebe o controlo da execugao e usa

emparelhamento de padrdes para descobrir qual das expressoes expl, exp2, exp3, etc., deve ser avaliada

em substituicao de exp.
¢ Finalmente, se o emparelhamento de padrdes anterior falhar, entdo a excecao € propagada para o try-
with cronologicamente anterior.

Existe um tratador de excecdes de sistema que apanha as exce¢des ndo tratadas e aborta a execucao do
programa com uma mensagem de erro apropriada a cada caso. Exemplos:

4/0;;
Exception: Division_by_zero.

open_in "fdsg" ;;
Exception: Sys_error "fdsg: No such file or directory".

Definicao de novas excecoes

A lista de excecdes predefinidas na linguagem encontra-se aqui: Index of exceptions.

O programador pode definir novas excegdes. A sintaxe da definicdo duma nova excecdo ¢ igual a sintaxe da
defini¢do duma variante dum tipos soma.

Exemplos. O primeiro exemplo define uma exce¢do com argumento; o segundo define uma excegdo sem
argumento.

exception Stack_overflow of string * int ;;
exception I_m_so_out_of_here ;;

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

3/4

http://caml.inria.fr/pub/docs/manual-ocaml-312/libref/index_exceptions.html

08/06/2019 ctp.di.fct.unl.pt/miei/lap/teoricas/05.html

Funcoes parciais

Uma funcio parcial ¢ uma funcio que so6 estd definida em parte do seu dominio. (Nao confundir com
aplicagdo parcial, que € outra coisa.)

Por exemplo, a fung¢do fact € parcial porque so esta definida para valores ndo-negativos:

let rec fact n = (* pre: n >= 0 *)
if n =0 then 1
else n * fact (n-1)

35
Outro exemplo: A fung@o maxList € parcial porque s6 estd definida para listas ndo-vazias:

let rec maxList 1 = (* pre: 1 <> [] *)
match 1 with
[x] -> x
| x::xs -> max x (maxList xs)
35
Quando se escreve uma fung¢do parcial, espera-se que essa fun¢do seja sempre aplicada a argumentos validos.
Mas os programas podem ter erros € € importante que os programas nao disfarcem esses erros - € muito
melhor a execu¢do dum programar abortar do que terminar produzindo resultados errados. Por isso, convém
garantir que a fun¢do ndo produz qualquer resultado quando aplicada a argumentos invalidos (por outras
palavras, temos de obrigar o resultado a ser realmente indefinido).

A melhor forma de impedir uma fung¢ao de produzir resultado, ao mesmo tempo gerando uma mensagem de
erro clara, é gerar uma excegdo. Assim:

let rec fact n = (* pre: n >= 0 *)
if n = 0 then 1
else if n > @ then n * fact (n-1)
else failwith "fact: negative argument”

let rec maxList 1 = (* pre: 1 <> [] *)
match 1 with
[-> failwith "maxList: empty list"
| [x] -> x
| x::xs -> max x (maxList xs)

..
)

Mas, repare, mesmo sem lancar excec¢des explicitas, as versdes originais destas duas fungdes ja garantem a
nao producdo de resultados: a primeira aborta com "Stack overflow" e a segunda gera a exce¢ao
Match_failure.

#120

ctp.di.fct.unl.pt/miei/lap/teoricas/05.html 4/4

http://en.wikipedia.org/wiki/Partial_function

