
15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 1/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 20. Memory Representation ofChapter 20. Memory Representation of
ValuesValues
The FFI interface we described in Chapter 19, Foreign Function Interface hides the precise details

of how values are exchanged across C libraries and the OCaml runtime. There is a simple reason

for this: using this interface directly is a delicate operation that requires understanding a few

di�erent moving parts before you can get it right. You �rst need to know the mapping between

OCaml types and their runtime memory representation. You also need to ensure that your code is

interfacing correctly with OCaml runtime's memory management.

However, knowledge of the OCaml internals is useful beyond just writing foreign function

interfaces. As you build and maintain more complex OCaml applications, you'll need to interface

with various external system tools that operate on compiled OCaml binaries. For example,

pro�ling tools report output based on the runtime memory layout, and debuggers execute

binaries without any knowledge of the static OCaml types. To use these tools e�ectively, you'll

need to do some translation between the OCaml and C worlds.

Luckily, the OCaml toolchain is very predictable. The compiler minimizes the amount of

optimization magic that it performs, and relies instead on its straightforward execution model for

good performance. With some experience, you can know rather precisely where a block of

performance-critical OCaml code is spending its time.

Why Do OCaml Types Disappear at Runtime?Why Do OCaml Types Disappear at Runtime?

The OCaml compiler runs through several phases during the compilation process.

The �rst phase is syntax checking, during which source �les are parsed into

abstract syntax trees (ASTs). The next stage is a type checking pass over the AST. In

a validly typed program, a function cannot be applied with an unexpected type. For

example, the print_endline function must receive a single string argument, and

an int will result in a type error.

Since OCaml veri�es these properties at compile time, it doesn't need to keep track

of as much information at runtime. Thus, later stages of the compiler can discard

and simplify the type declarations to a much more minimal subset that's actually

required to distinguish polymorphic values at runtime. This is a major performance

win versus something like a Java or .NET method call, where the runtime must look

up the concrete instance of the object and dispatch the method call. Those

languages amortize some of the cost via "Just-in-Time" dynamic patching, but

OCaml prefers runtime simplicity instead.

We'll explain this compilation pipeline in more detail in Chapter 22, The Compiler

Frontend: Parsing and Type Checking and Chapter 23, The Compiler Backend:

Bytecode and Native code.

This chapter covers the precise mapping from OCaml types to runtime values and walks you

through them via the toplevel. We'll cover how these values are managed by the runtime later on

in Chapter 21, Understanding the Garbage Collector.

OCAML BLOCKS AND VALUESOCAML BLOCKS AND VALUES

A running OCaml program uses blocks of memory (i.e., contiguous sequences of words in RAM)

to represent values such as tuples, records, closures, or arrays. An OCaml program implicitly

allocates a block of memory when such a value is created:

type t = { foo: int; bar: int } ;;
type t = { foo : int; bar : int; }
let x = { foo = 13; bar = 14 } ;;
val x : t = {foo = 13; bar = 14}

OCaml Utop ∗ memory-repr/simple_record.topscript ∗ all code

The type declaration t doesn't take up any memory at runtime, but the subsequent let binding

allocates a new block of memory with two words of available space. One word holds the foo �eld,

and the other word holds the bar �eld. The OCaml compiler translates such an expression into an

explicit allocation for the block from OCaml's runtime system.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/simple_record.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 2/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

OCaml uses a uniform memory representation in which every OCaml variable is stored as a

value. An OCaml value is a single memory word that is either an immediate integer or a pointer to

some other memory. The OCaml runtime tracks all values so that it can free them when they are

no longer needed. It thus needs to be able to distinguish between integer and pointer values,

since it scans pointers to �nd further values but doesn't follow integers that don't point to

anything meaningful beyond their immediate value.

Distinguishing Integers and Pointers at RuntimeDistinguishing Integers and Pointers at Runtime

Wrapping primitives types (such as integers) inside another data structure that records extra

metadata about the value is known as boxing. Values are boxed in order to make it easier for the

garbage collector (GC) to do its job, but at the expense of an extra level of indirection to access the

data within the boxed value.

OCaml values don't all have to be boxed at runtime. Instead, values use a single tag bit per word to

distinguish integers and pointers at runtime. The value is an integer if the lowest bit of the block

word is nonzero, and a pointer if the lowest bit of the block word is zero. Several OCaml types

map onto this integer representation, including bool, int, the empty list, unit, and variants

without constructors.

This representation means that integers are unboxed runtime values in OCaml so that they can

be stored directly without having to allocate a wrapper block. They can be passed directly to

other function calls in registers and are generally the cheapest and fastest values to use in OCaml.

A value is treated as a memory pointer if its lowest bit is zero. A pointer value can still be stored

unmodi�ed despite this, since pointers are guaranteed to be word-aligned (with the bottom bits

always being zero).

The only problem that remains with this memory representation is distinguishing between

pointers to OCaml values (which should be followed by the GC) and pointers into the system heap

to C values (which shouldn't be followed).

The mechanism for this is simple, since the runtime system keeps track of the heap blocks it has

allocated for OCaml values. If the pointer is inside a heap chunk that is marked as being managed

by the OCaml runtime, it is assumed to point to an OCaml value. If it points outside the OCaml

runtime area, it is treated as an opaque C pointer to some other system resource.

Some History About OCaml's Word-Aligned PointersSome History About OCaml's Word-Aligned Pointers

The alert reader may be wondering how OCaml can guarantee that all of its pointers

are word-aligned. In the old days, when RISC chips such as Sparc, MIPS, and Alpha

were commonplace, unaligned memory accesses were forbidden by the instruction

set architecture and would result in a CPU exception that terminated the program.

Thus, all pointers were historically rounded o� to the architecture word size

(usually 32 or 64 bits).

Modern CISC processors such as the Intel x86 do support unaligned memory

accesses, but the chip still runs faster if accesses are word-aligned. OCaml

therefore simply mandates that all pointers be word-aligned, which guarantees that

the bottom few bits of any valid pointer will be zero. Setting the bottom bit to a

nonzero value is a simple way to mark an integer, at the cost of losing that single bit

of precision.

An even more alert reader will be wondering about the performance implications

are for integer arithmetic using this tagged representation. Since the bottom bit is

set, any operation on the integer has to shift the bottom bit right to recover the

"native" value. The native code OCaml compiler generates e�cient x86 assembly

code in this case, taking advantage of modern processor instructions to hide the

extra shifts where possible. Addition is a single LEA x86 instruction, subtraction can

be two instructions, and multiplication is only a few more.

BLOCKS AND VALUESBLOCKS AND VALUES

An OCaml block is the basic unit of allocation on the heap. A block consists of a one-word header

(either 32 or 64 bits depending on the CPU architecture) followed by variable-length data that is

either opaque bytes or an array of �elds. The header has a multipurpose tag byte that de�nes

whether to interpret the subsequent data as opaque bytes or OCaml �elds.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 3/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

The GC never inspects opaque bytes. If the tag indicates an array of OCaml �elds are present,

their contents are all treated as more valid OCaml values. The GC always inspects �elds and

follows them as part of the collection process described earlier.

+------------------------+---------+----------+----------+----------+----
| size of block in words | color | tag byte | value[0] | value[1] | ...
+------------------------+---------+----------+----------+----------+----
 <-either 22 or 54 bits-> <-2 bit-> <--8 bit-->

Diagram ∗ memory-repr/block.ascii ∗ all code

The size �eld records the length of the block in memory words. This is 22 bits on 32-bit

platforms, which is the reason OCaml strings are limited to 16 MB on that architecture. If you

need bigger strings, either switch to a 64-bit host, or use the Bigarray module.

The 2-bit color �eld is used by the GC to keep track of its state during mark-and-sweep

collection. We'll come back to this �eld in Chapter 21, Understanding the Garbage Collector. This

tag isn't exposed to OCaml source code in any case.

A block's tag byte is multipurpose, and indicates whether the data array represents opaque bytes

or �elds. If a block's tag is greater than or equal to No_scan_tag (251), then the block's data are all

opaque bytes, and are not scanned by the collector. The most common such block is the string

type, which we describe in more detail later in this chapter.

The exact representation of values inside a block depends on their static OCaml type. All OCaml

types are distilled down into values, and summarized in Table 20.1, “OCaml values”.

Table 20.1. OCaml valuesTable 20.1. OCaml values

OCaml valueOCaml value RepresentationRepresentation
int or char Directly as a value, shifted left by 1 bit, with the least signi�cant bit

set to 1.
unit, [], false As OCaml int 0.
true As OCaml int 1.
Foo | Bar As ascending OCaml ints, starting from 0.
Foo | Bar of int Variants with parameters are boxed, while variants with no

parameters are unboxed.
Polymorphic variants Variable space usage depending on the number of parameters.
Floating-point
number

As a block with a single �eld containing the double-precision �oat.

String Word-aligned byte arrays with an explicit length.
[1; 2; 3] As 1::2::3::[] where [] is an int, and h::t a block with tag 0 and

two parameters.
Tuples, records, and
arrays

An array of values. Arrays can be variable size, but tuples and
records are �xed-size.

Records or arrays, all
�oat

Special tag for unboxed arrays of �oats, or records that only have
float �elds.

Integers, Characters, and Other Basic TypesIntegers, Characters, and Other Basic Types

Many basic types are e�ciently stored as unboxed integers at runtime. The native int type is the

most obvious, although it drops a single bit of precision due to the tag bit. Other atomic types

such as unit and the empty list [] value are stored as constant integers. Boolean values have a

value of 1 and 0 for true and false, respectively.

These basic types such as empty lists and unit are very e�cient to use, since integers are never

allocated on the heap. They can be passed directly in registers and not appear on the stack if you

don't have too many parameters to your functions. Modern architectures such as x86_64 have a

lot of spare registers to further improve the e�ciency of using unboxed integers.

TUPLES, RECORDS, AND ARRAYSTUPLES, RECORDS, AND ARRAYS

+---------+----------+----------- - - - -
| header | value[0] | value[1] |
+---------+----------+----------+- - - - -

Diagram ∗ memory-repr/tuple_layout.ascii ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/block.ascii
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/tuple_layout.ascii
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 4/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Tuples, records, and arrays are all represented identically at runtime as a block with tag 0. Tuples

and records have constant sizes determined at compile time, whereas arrays can be of variable

length. While arrays are restricted to containing a single type of element in the OCaml type

system, this is not required by the memory representation.

You can check the di�erence between a block and a direct integer yourself using the Obj module,

which exposes the internal representation of values to OCaml code:

Obj.is_block (Obj.repr (1,2,3)) ;;
- : bool = true
Obj.is_block (Obj.repr 1) ;;
- : bool = false

OCaml Utop ∗ memory-repr/reprs.topscript ∗ all code

The Obj.repr function retrieves the runtime representation of any OCaml value. Obj.is_block

checks the bottom bit to determine if the value is a block header or an unboxed integer.

Floating-Point Numbers and ArraysFloating-Point Numbers and Arrays

Floating-point numbers in OCaml are always stored as full, double-precision values. Individual

�oating-point values are stored as a block with a single �eld that contains the number. This block

has the Double_tag set, which signals to the collector that the �oating-point value is not to be

scanned:

Obj.tag (Obj.repr 1.0) ;;
- : int = 253
Obj.double_tag ;;
- : int = 253

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 1) ∗ all code

Since each �oating-point value is boxed in a separate memory block, it can be ine�cient to

handle large arrays of �oats in comparison to unboxed integers. OCaml therefore special-cases

records or arrays that contain only float types. These are stored in a block that contains the

�oats packed directly in the data section, with Double_array_tag set to signal to the collector

that the contents are not OCaml values.

+---------+----------+----------- - - - -
| header | float[0] | float[1] |
+---------+----------+----------+- - - - -

Diagram ∗ memory-repr/float_array_layout.ascii ∗ all code

First, let's check that �oat arrays do in fact have a di�erent tag number from normal �oating-

point values:

Obj.double_tag ;;
- : int = 253
Obj.double_array_tag ;;
- : int = 254

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 2) ∗ all code

This tells us that �oat arrays have a tag value of 254. Now let's test some sample values using the

Obj.tag function to check that the allocated block has the expected runtime tag, and also use

Obj.double_field to retrieve a �oat from within the block:

Obj.tag (Obj.repr [| 1.0; 2.0; 3.0 |]) ;;
- : int = 254
Obj.tag (Obj.repr (1.0, 2.0, 3.0)) ;;
- : int = 0
Obj.double_field (Obj.repr [| 1.1; 2.2; 3.3 |]) 1 ;;
- : float = 2.2
Obj.double_field (Obj.repr 1.234) 0 ;;
- : float = 1.234

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 3) ∗ all code

The �rst thing we tested was that a �oat array has the correct unboxed �oat array tag value (254).

However, the next line tests a tuple of �oating-point values instead, which are not optimized in

the same way and have the normal tuple tag value (0).

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/float_array_layout.ascii
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 5/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Only records and arrays can have the �oat array optimization, and for records, every single �eld

must be a �oat.

VARIANTS AND LISTSVARIANTS AND LISTS

Basic variant types with no extra parameters for any of their branches are simply stored as an

OCaml integer, starting with 0 for the �rst option and in ascending order:

type t = Apple | Orange | Pear ;;
type t = Apple | Orange | Pear
((Obj.magic (Obj.repr Apple)) : int) ;;
- : int = 0
((Obj.magic (Obj.repr Pear)) : int) ;;
- : int = 2
Obj.is_block (Obj.repr Apple) ;;
- : bool = false

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 4) ∗ all code

Obj.magic unsafely forces a type cast between any two OCaml types; in this example, the int

type hint retrieves the runtime integer value. The Obj.is_block con�rms that the value isn't a

more complex block, but just an OCaml int.

Variants that have parameters arguments are a little more complex. They are stored as blocks,

with the value tags ascending from 0 (counting from leftmost variants with parameters). The

parameters are stored as words in the block:

type t = Apple | Orange of int | Pear of string | Kiwi ;;
type t = Apple | Orange of int | Pear of string | Kiwi
Obj.is_block (Obj.repr (Orange 1234)) ;;
- : bool = true
Obj.tag (Obj.repr (Orange 1234)) ;;
- : int = 0
Obj.tag (Obj.repr (Pear "xyz")) ;;
- : int = 1
(Obj.magic (Obj.field (Obj.repr (Orange 1234)) 0) : int) ;;
- : int = 1234
(Obj.magic (Obj.field (Obj.repr (Pear "xyz")) 0) : string) ;;
- : string = "xyz"

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 5) ∗ all code

In the preceding example, the Apple and Kiwi values are still stored as normal OCaml integers

with values 0 and 1, respectively. The Orange and Pear values both have parameters and are

stored as blocks whose tags ascend from 0 (and so Pear has a tag of 1, as the use of Obj.tag

veri�es). Finally, the parameters are �elds that contain OCaml values within the block, and

Obj.field can be used to retrieve them.

Lists are stored with a representation that is exactly the same as if the list was written as a variant

type with Nil and Cons. The empty list [] is an integer 0, and subsequent blocks have tag 0 and

two parameters: a block with the current value, and a pointer to the rest of the list.

Obj Module Considered HarmfulObj Module Considered Harmful

Obj is an undocumented module that exposes the internals of the OCaml compiler

and runtime. It is very useful for examining and understanding how your code will

behave at runtime but should never be used for production code unless you

understand the implications. The module bypasses the OCaml type system, making

memory corruption and segmentation faults possible.

Some theorem provers such as Coq do output code that uses Obj internally, but the

external module signatures never expose it. Unless you too have a machine proof of

correctness to accompany your use of Obj, stay away from it except for debugging!

Due to this encoding, there is a limit around 240 variants with parameters that applies to each

type de�nition, but the only limit on the number of variants without parameters is the size of the

native integer (either 31 or 63 bits). This limit arises because of the size of the tag byte, and that

some of the high-numbered tags are reserved.

POLYMORPHIC VARIANTSPOLYMORPHIC VARIANTS

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 6/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Polymorphic variants are more �exible than normal variants when writing code but are slightly

less e�cient at runtime. This is because there isn't as much static compile-time information

available to optimize their memory layout.

A polymorphic variant without any parameters is stored as an unboxed integer and so only takes

up one word of memory, just like a normal variant. This integer value is determined by applying a

hash function to the name of the variant. The hash function isn't exposed directly by the

compiler, but the type_conv library from Core provides an alternative implementation:

Pa_type_conv.hash_variant "Foo" ;;
- : int = 3505894
(Obj.magic (Obj.repr `Foo) : int) ;;
- : int = 3505894

OCaml Utop ∗ memory-repr/reprs.topscript , continued (part 6) ∗ all code

The hash function is designed to give the same results on 32-bit and 64-bit architectures, so the

memory representation is stable across di�erent CPUs and host types.

Polymorphic variants use more memory space than normal variants when parameters are

included in the data type constructors. Normal variants use the tag byte to encode the variant

value and save the �elds for the contents, but this single byte is insu�cient to encode the hashed

value for polymorphic variants. They must allocate a new block (with tag 0) and store the value in

there instead. Polymorphic variants with constructors thus use one word of memory more than

normal variant constructors.

Another ine�ciency over normal variants is when a polymorphic variant constructor has more

than one parameter. Normal variants hold parameters as a single �at block with multiple �elds

for each entry, but polymorphic variants must adopt a more �exible uniform memory

representation, since they may be reused in a di�erent context across compilation units. They

allocate a tuple block for the parameters that is pointed to from the argument �eld of the variant.

There are thus three additional words for such variants, along with an extra memory indirection

due to the tuple.

The extra space usage is generally not signi�cant in a typical application, and polymorphic

variants o�er a great deal more �exibility than normal variants. However, if you're writing code

that demands high performance or must run within tight memory bounds, the runtime layout is

at least very predictable. The OCaml compiler never switches memory representation due to

optimization passes. This lets you predict the precise runtime layout by referring to these

guidelines and your source code.

STRING VALUESSTRING VALUES

Strings are standard OCaml blocks with the header size de�ning the size of the string in machine

words. The String_tag (252) is higher than the No_scan_tag, indicating that the contents of the

block are opaque to the collector. The block contents are the contents of the string, with padding

bytes to align the block on a word boundary.

+---------------+----------------+--------+-----------+
| header | 'a' 'b' 'c' 'd' 'e' 'f' | '\O' '\1' |
+---------------+----------------+--------+-----------+
 L data L padding

Diagram ∗ memory-repr/string_block.ascii ∗ all code

On a 32-bit machine, the padding is calculated based on the modulo of the string length and word

size to ensure the result is word-aligned. A 64-bit machine extends the potential padding up to 7

bytes instead of 3 (see Table 20.2, “String length and padding”).

Table 20.2. String length and paddingTable 20.2. String length and padding

String length mod 4String length mod 4 PaddingPadding
0 00 00 00 03

1 00 00 02

2 00 01

3 00

This string representation is a clever way to ensure that the contents are always zero-terminated

by the padding word and to still compute its length e�ciently without scanning the whole string.

The following formula is used:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/reprs.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/string_block.ascii
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 7/8

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

number_of_words_in_block * sizeof(word) - last_byte_of_block - 1

Diagram ∗ memory-repr/string_size_calc.ascii ∗ all code

The guaranteed NULL termination comes in handy when passing a string to C, but is not relied

upon to compute the length from OCaml code. OCaml strings can thus contain NULL bytes at any

point within the string.

Care should be taken that any C library functions that receive these bu�ers can also cope with

arbitrary bytes within the bu�er contents and are not expecting C strings. For instance, the C

memcopy or memmove standard library functions can operate on arbitrary data, but strlen or

strcpy both require a NULL-terminated bu�er, and neither has a mechanism for encoding a NULL

value within its contents.

CUSTOM HEAP BLOCKSCUSTOM HEAP BLOCKS

OCaml supports custom heap blocks via a Custom_tag that lets the runtime perform user-

de�ned operations over OCaml values. A custom block lives in the OCaml heap like an ordinary

block and can be of whatever size the user desires. The Custom_tag (255) is higher than

No_scan_tag and so isn't scanned by the GC.

The �rst word of the data within the custom block is a C pointer to a struct of custom

operations. The custom block cannot have pointers to OCaml blocks and is opaque to the GC:

struct custom_operations {
 char *identifier;
 void (*finalize)(value v);
 int (*compare)(value v1, value v2);
 intnat (*hash)(value v);
 void (*serialize)(value v,
 /*out*/ uintnat * wsize_32 /*size in bytes*/,
 /*out*/ uintnat * wsize_64 /*size in bytes*/);
 uintnat (*deserialize)(void * dst);
 int (*compare_ext)(value v1, value v2);
};

C ∗ memory-repr/custom_ops.c ∗ all code

The custom operations specify how the runtime should perform polymorphic comparison,

hashing and binary marshaling. They also optionally contain a �nalizer that the runtime calls just

before the block is garbage-collected. This �nalizer has nothing to do with ordinary OCaml

�nalizers (as created by Gc.finalize and explained in Chapter 21, Understanding the Garbage

Collector). They are instead used to call C cleanup functions such as free.

Managing External Memory with BigarrayManaging External Memory with Bigarray

A common use of custom blocks is to manage external system memory directly from within

OCaml. The Bigarray interface was originally intended to exchange data with Fortran code, and

maps a block of system memory as a multidimensional array that can be accessed from OCaml.

Bigarray operations work directly on the external memory without requiring it to be copied into

the OCaml heap (which is a potentially expensive operation for large arrays).

Bigarray sees a lot of use beyond just scienti�c computing, and several Core libraries use it for

general-purpose I/O:

Iobuf

The Iobuf module maps I/O bu�ers as a one-dimensional array of bytes. It provides a sliding

window interface that lets consumer processes read from the bu�er while it's being �lled by

producers. This lets OCaml use I/O bu�ers that have been externally allocated by the operating

system without any extra data copying.

Bigstring

The Bigstring module provides a String-like interface that uses Bigarray internally. The

Bigbuffer collects these into extensible string bu�ers that can operate entirely on external

system memory.

The OCaml library isn't part of Core but provides the recommended interfaces to the widely used

BLAS and LAPACK mathematical Fortran libraries. These allow developers to write high-

performance numerical code for applications that require linear algebra. It supports large vectors

and matrices, but with static typing safety of OCaml to make it easier to write safe algorithms.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/string_size_calc.ascii
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/memory-repr/custom_ops.c
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://bitbucket.org/mmottl/lacaml

15/01/2019 Chapter 20. Memory Representation of Values / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html 8/8

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques
III. The Runtime System

19. Foreign Function Interface
20. Memory Representation of
Values
21. Understanding the Garbage
Collector
22. The Compiler Frontend:
Parsing and Type Checking
23. The Compiler Backend:
Bytecode and Native code

Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/memory-representation-of-values.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-frontend-parsing-and-type-checking.html
https://v1.realworldocaml.org/v1/en/html/the-compiler-backend-byte-code-and-native-code.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fmemory-representation-of-values.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
https://v1.realworldocaml.org/v1/en/html/understanding-the-garbage-collector.html

