
1!

Integração de SQL com outras
linguagens de programação!

■  Tópicos:"
✸  JDBC "
✸ Embedded e Dynamic SQL"
✸  Linguagens proprietárias"

■  Bibliografia:"
✸ Secções 5.1 e 5.2 do livro recomendado"

2!

Embedded SQL!
■  JDBC é demasiado dinâmico, erros não podem ser detetados

pelo compilador"
■  O SQL embutido permite acesso a bases de dados, via outra

linguagens de programação."
✸  Toda a parte de acesso e manipulação da base de dados é feito

através de código embutido. Todo o processamento associado é
feito pelo sistema de bases de dados. A linguagem host recebe os
resultados e manipula-os."

✸  O código tem que ser pré-processado. A parte SQL é transformada
em código da linguagem host, mais chamadas a run-time do
servidor."

■  A expressão EXEC SQL é usado para identificar código SQL
embutido"
" "EXEC SQL <embedded SQL statement > END-EXEC"
"Nota: Este formato varia de linguagem para linguagem. E.g. em
C usa-se ‘;’ em vez do END-EXEC. "
"Em Java usa-se # SQL { …. } ; "

3!

SQLJ!
■  SQLJ: SQL embutido em Java"

✸  #sql iterator deptInfoIter (String dept name, int avgSal);"
"deptInfoIter iter = null;"
"#sql iter = { select dept_name, avg(salary) from instructor"
" " " group by dept name };"
"while (iter.next()) {"
" " String deptName = iter.dept_name();"
" int avgSal = iter.avgSal();"
" System.out.println(deptName + " " + avgSal);"
"}"
"iter.close();"

4!

Cursores!
■  Para executar um comando SQL numa linguagem host é

necessário começar por declarar um cursor para esse comando."
■  O comando pode conter variáveis da linguagem host,

precedidas de :!
■  E.g. Encontrar os nome e cidades de clientes cujo saldo seja

superior a amount"
EXEC SQL"
"declare c cursor for  
select customer-name, customer-city 
from account natural inner join depositor!
! ! ! natural inner join customer 
where account.balance > :amount!

END-EXEC"

5!

Embedded SQL (Cont.)!
■  O comando open inicia a avaliação da consulta no cursor"
" "EXEC SQL open c END-EXEC"

■  O comando fetch coloca o valor de um tuplo em variáveis da
linguagem host."
" "EXEC SQL fetch c into :cn, :cc END-EXEC"

■  Chamadas sucessivas a fetch obtêm tuplos sucessivos"
■  Uma variável chamada SQLSTATE na SQL communication area

(SQLCA) toma o valor ‘02000’ quando não há mais dados."
■  O comando close apaga a relação temporária, criada pelo

open, que contem os resultados da avaliação do SQL."
" "EXEC SQL close c END-EXEC"

6!

Modificações com Cursores!
■  Como não devolvem resultado, o tratamento de modificações

dentro doutras linguagens é mais fácil."
■  Basta chamar qualquer comando válido SQL de insert, delete,

ou update entre EXEC SQL e END SQL"

■  Em geral, as váriaveis da linguagem host só podem ser usadas
em locais onde se poderiam colocar variáveis SQL."

■  Não é possível construir comandos (ou parte deles)
manipulando strings da linguagem host"

7!

Dynamic SQL!
■  Permite construir e (mandar) executar comandos SQL, em run-

time."
■  E.g. (chamando dynamic SQL, dentro de um programa em C) 

 
char * sqlprog = “update account  
 set balance = balance * 1.05 

! where account-number = ?”; 
EXEC SQL prepare dynprog from :sqlprog; 
char account [10] = “A-101”; 
EXEC SQL execute dynprog using :account;!

■  A string contém um ?, que indica o local onde colocar o valor a
ser passado no momento da chamada para execução."

8!

ODBC!
■  Standard Open DataBase Connectivity(ODBC)"

✸  Standard para comunicação entre programas e servidores de bases
de dados"

✸  application program interface (API) para "
❖  Abrir uma ligação a uma base de dados"
❖  Enviar consultas e pedidos de modificações"
❖  Obter os resultados"

■  Aplicações diversas (e.g. GUI, spreadsheets, etc) podem usar
ODBC"

9!

ODBC (Cont.)!
■  Um sistema de bases de dados que suporte ODBC tem uma

“driver library” que tem que ser ligada com o programa cliente."
■  Quando o cliente faz uma chamada à API ODBC, o código da

library comunica com o servidor, que por sua vez executa a
chamada e devolve os resultados."

■  Um programa ODBC começa por alocar um ambiente SQL, e
um connection handle."

■  Para abrir uma ligação a uma BD, usa-se SQLConnect(). Os
parâmetros são:"
✸  connection handle,"
✸  servidor onde ligar"
✸  username, "
✸  password "

10!

Exemplo de código ODBC 2.0!
■  int ODBCexample()"
"{"

 RETCODE error;"
 HENV env; /* environment */ "
 HDBC conn; /* database connection */ "
 SQLAllocEnv(&env);"
 SQLAllocConnect(env, &conn);"
 SQLConnect(conn, "aura.bell-labs.com", SQL_NTS, "avi", SQL_NTS,

"avipasswd", SQL_NTS); "
 { …. Manipulação propriamente dita … }"
"
 SQLDisconnect(conn); "
 SQLFreeConnect(conn); "
 SQLFreeEnv(env); "

 }"

11!

ODBC (Cont.)!
■  Os programas enviam comandos SQL à base de dados usando

SQLExecDirect"
■  Os tuplos resultado são obtidos via SQLFetch()"
■  SQLBindCol() liga variáveis da linguagem a atributos do

resultado do SQL"
✸  Quando um tuplo é obtido com um fetch, os valores dos seus

atributos são automaticamente guardados nas ditas variáveis."

"

12!

Exemplo de código ODBC!
"char branchname[80]; 
float balance; 
int lenOut1, lenOut2; 
HSTMT stmt; "
 SQLAllocStmt(conn, &stmt); 

char * sqlquery = "select branch_name, sum (balance)  
 from account 
 group by branch_name";"

 error = SQLExecDirect(stmt, sqlquery, SQL_NTS);"
 if (error == SQL_SUCCESS) { 

 SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80, &lenOut1); 
 SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0 , &lenOut2);"

 while (SQLFetch(stmt) >= SQL_SUCCESS) { 
 printf (" %s %g\n", branchname, balance); 
 } 
} 
SQLFreeStmt(stmt, SQL_DROP); "

13!

Linguagens proprietárias!
■  A maior parte dos sistemas comerciais incluem linguagens

proprietárias que, para além do embedded SQL, têm primitivas
próprias para (entre outras) criar interfaces no ecrã (forms) e
para formatar dados para apresentação de relatórios (reports)."

■  Algumas destas linguagens têm ainda construtores de mais alto
nível, para trabalhar sobre cursores."

■  Tipicamente os programas nestas linguagens, compilam para
outras linguagens (e.g. C) embedded SQL."

■  Os sistemas comerciais costumam ainda ter aplicações de
geração fácil de programas na linguagem proprietária"

■  No Oracle a linguagem proprietária é o PLSQL. O Forms, o
Reports e o APEX são aplicações que geram PLSQL."

14!

PL/SQL!
■  Extensão procedimental ao SQL, do Oracle."
■  Suporta:"

✸  Variáveis (mesmos tipos do Oracle)"
✸  Condições (IF-THEN-ELSE e CASE)"
✸  Ciclos (LOOP, FOR)"
✸  Exceções (para tratamento de erros)"

■  Unidades de programas em PL/SQL podem ser compilados na
base de dados Oracle."

15!

Construtores procedimentais!
■  O standard SQL suporta uma grande variedade de construtores

procedimentais"
✸ O Oracle suporta aqueles que existem no PL/SQL"

■  Expressões com whiles e repeats!
! !declare n integer default 0;!
! !while n < 10 do!

! ! set n = n+1;!
! !end while; 
!
! !repeat!

 set n = n – 1;"
! !until n = 0;"
! !end repeat!

■  Em Oracle, em vez de set var =… usa-se var :=…!

16!

Construtores procedimentais (Cont.)!
■  Ciclos"

✸  Iterações sobre o resultado de perguntas"
✸ E.g. soma de todos os saldos da agência Perryridge  
 
 declare n integer default 0;  
 for r as  
 select balance from account 
 where branch-name = ‘Perryridge’ 
 do 
! set n = n + r.balance;  

 end for"
■  Claro que isto não se deve fazer assim!"

✸ O que se deve fazer para obter isto é: 
 
 " "select sum(balance) from account 
 ! !where branch-name = ‘Perryridge’"

17!

Construtores procedimentais (cont.)!
■  Expressões condicionais (if-then-else) 

E.g. Soma dos saldos por categorias de contas (com saldo <1000, entre
1000 e 5000, > 5000)"
! !if r.balance < 1000  

" then set l = l + r.balance  
!elseif r.balance =< 5000  
" then set m = m + r.balance  
!else set h = h + r.balance  
!end if !

■  Assinalar condições de exceção e erros, e declaração de tratamento de
exceções"
! !declare out_of_stock condition; 

!declare exit handler for out_of_stock ;  
!begin 
!… 

 .. signal out-of-stock;  
"end!

✸  Neste exemplo o tratamento da excepção é exit – sai do bloco begin…end"
■  No Oracle em vez de signal usa-se raise!

18!

Funções e Procedimentos!
■  O standard SQL suporta funções e procedimentos"

✸  As funções e procedimentos podem ser escritas diretamente em
SQL, ou em linguagens de programação externas (e.g. PL/SQL)."

✸  Alguns sistemas de bases de dados (entre eles o Oracle) permitem
definir funções que devolvem tabelas"

✸  As funções e procedimentos são armazenados na própria base de
dados"
❖  Definem funcionalidades disponíveis a vários utilizadores"

■  Grande parte dos sistemas de bases de dados têm linguagens
proprietárias onde se podem definir funções e procedimentos, e
que diferem bastante do standard SQL"

■  No Oracle podem-se criar funções e procedimentos através da
linguagem PL/SQL, ou diretamente na base de dados."

19!

Funções SQL!
■  Definir uma função que, dado o nome de um cliente, devolva o número

de contas de que ele é titular."
 create function account_count (customer_name varchar(20)) 

 returns integer  
 begin 
 declare a_count integer; 
 select count (*) into a_count 
 from depositor 
 where depositor.customer_name = customer_name  
 return a_count; 
 end!

■  Encontrar o nome e morada dos clientes com mais do que uma conta."
" "select customer_name, customer_street, customer_city 

!from customer 
!where account_count (customer_name) > 1!

20!

Funções que retornam Tabelas!
■  O standard SQL também inclui funções que devolvem uma relação

como resultado. "
■  Examplo: Devolver todas as contas de um dado cliente"
"create function accounts_of (customer_name char(20)"
" "returns table ("account_number char(10), 

" " "branch_name char(15) 
" " "balance numeric(12,2)))"

"return table  
"(select account_number, branch_name, balance 
" from account A 
" where exists ( 
" select * 
" from depositor D 
" where D.customer_name = accounts_of.customer_name 
" and D.account_number = A.account_number))"

■  Utilização"
" "select *  

!from table (accounts_of (‘Smith’))"

21!

Funções e procedimentos SQL!
■  A função account_count pode ser escrita como procedimento:"
!create procedure account_count_proc (in customer_name varchar(20),  
 out a_count integer) 
begin!
! select count(*) into a_count 
 from depositor 
 where depositor.customer_name = account_count_proc.customer_name!

 end!
■  Os procedimentos podem ser chamados dentro de outros procedimentos

SQL, ou de linguagens SQL embedded ou proprietárias."
✸  E.g. num procedimento SQL"

! !declare a_count integer; 
"call account_count_proc(‘Smith’, a_count);"

✸  O standard SQL permite que haja mais que uma função ou procedimento com o
mesmo nome, desde que o número de argumentos (ou, pelo menos, os seus
tipos) sejam diferentes"

22!

Funções e procedimentos externos!
■  O standard SQL permita o uso de funções e procedimentos

escritos noutras linguagens (e.g. C ou C++) "
■  A declaração de funções e procedimentos externos faz-se da

seguinte forma:"
"create procedure account_count_proc(in customer_name
varchar(20),out count integer) 
language C  
external name ’ /usr/avi/bin/account_count_proc’ 
 
create function account_count(customer_name varchar(20)) 
returns integer 
language C  
external name ‘/usr/avi/bin/author_count’"

23!

Funções e procedimentos externos (Cont.)!

■  Vantagens: "
✸ Mais eficiente para muitas operações"
✸ Mais poder expressivo"

■  Desvantagens"
✸ O código que implementa as rotinas externas pode ter que ser

carregado no sistema de bases de dados e executado no
espaço de endereços deste"
❖  risco de corromper acidentalmente a estrutura da base de

dados"
❖  risco de segurança dos dados"

✸  Há alternativas que garante segurança (à custa, por vezes, da
deterioração da performance)"

✸  A execução direta no sistema de bases de dados só é feita se a
eficiência for bem mais importante que a segurança"

24!

Segurança para rotinas externas!
■  Para lidar com estes problemas de segurança"

✸ Usar técnicas de sandbox"
❖  i.e. usar linguagem segura como o Java, que não permite

o acesso a outras parte do código da base de dados"
✸ Ou executar rotinas externas em processo separado, sem

acesso à memória usada por outros processos do sistema
de bases de dados"
❖ Os parâmetro e resultados são passados via

comunicação entre processos"
■  Ambas as alternativas têm custos de performance"
"

25!

Integridade de Bases de Dados em SQL!

■  Tópicos:"
✸ Restrições ao domínio e chaves"
✸ Asserções"
✸ Triggers"

■  Bibliografia:"
✸ Secções 4.4 e 5.3 do livro recomendado"

26!

Restrições ao domínio!

■  Já vimos que a DDL do SQL permite definir restrições ao
domínio: ""
✸  not null elimina o valor null do domínio de atributos"
✸  check (Cond) restringe o domínio apenas aos valores que tornam a

condição Cond verdadeira"
❖  As condições têm que poder ser verificadas tuplo a tuplo, e só

podem referir atributos da tabela em causa"
■  Por exemplo:"
!create table products ("

product_no integer not null,"
name varchar2(50) not null,!
price number check (price > 0),"
discounted_price number check (discounted_price > 0),"
check (price > discounted_price)"
);"

27!

Chaves primárias e candidatas!
■  Também vimos na DDL que se pode usar:"

✸  primary key denotando que o(s) atributo(s) são chave primária"
❖  Só pode haver uma declaração de primary key por tabela"
❖  Nos atributos da primary key não são permitidos valores null"

✸  unique(A1, ..., An) impondo que o conjunto de atributos A1, ..., An é
chave candidata"
❖  I.e. não podem haver 2 tuplos com os mesmos valores em todos

os atributos A1, ..., An!
■  Ao contrário da primary key"

✸  podem haver vários unique numa tabela"
✸  os atributos em unique podem ter valores null!

❖  Nestes casos, os null são assumidos como todos diferentes uns
dos outros"

❖  I.e. pode haver 2 tuplos com null num atributo de uma chave
candidata – não podem é haver 2 tuplos com um mesmo valor
diferente de null num atributo de uma chave candidata "

28!

Chaves estrangeiras!
■  A DDL também permite definir chaves estrangeiras em tabela R"

✸  foreign key (A1,...,An) references S(B1,...,Bn) !
✸  Impõe que ∏A1,...,An(R) ⊆ ∏B1,...,Bn(S)"
✸  Pode-se omitir os atributos B1,...,Bn; nesse caso assume-se que

esses atributos são os que formam a chave primária de S"

■  Nas chaves estrangeiras, os valor null são ignorados"
✸  I.e. a restrição acima só é imposta se os atributos tiverem valores

diferentes de null!
✸  Dito de outra forma, a chave estrangeira acima impõe que, para

cada tuplo de R"
❖  ou os valores nos atributos A1,...,An são null "
❖  ou então tem que existir algum tuplo em S com esses valores

nos atributos nos atributos B1,...,Bn"

29!

Integridade Referencial em SQL – Exemplo!

create table R2(e1 number(3) not null, "
 " "e2 number(3) not null,"
 " "e3 number(3) not null,"
 " "primary key (e1, e2, e3),"
 " "foreign key (e1,e2) references R1,"
 " "foreign key (e3) references E3);"

R1! E2!E1!

E3!

R2!

e2!

e3!

e1!

create table E1(e1 number(3) not null primary key);"
create table E2(e2 number(3) not null primary key);"
create table E3(e3 number(3) not null primary key);"

create table R1(e1 number(3) not null, "
 " "e2 number(3) not null,"
 " "primary key (e1, e2),"
 " "foreign key (e1) references E1,"
 " "foreign key (e2) references E2);"

30!

Acções em Cascata em SQL!
create table account!
! !. . . 
!foreign key(branch_name) !references branch  
! !on delete cascade  
! !on update cascade  
!. . .)!

■  Com as cláusulas on delete cascade, se a remoção de um
tuplo na relação branch resulta na violação da restrição da
integridade referencial, a remoção propaga-se em “cascata” para
a relação account, removendo o tuplo que referia a agência que
tinha sido eliminada."

■  Actualizações em cascata são semelhantes. Não estão
implementadas pelo Oracle!"

31!

Acções em cascata em SQL (cont.)!
■  Se existe uma cadeia de dependências de chaves externas

através de várias relações, com um on delete cascade
especificado em cada dependência, uma remoção ou
actualização num dos extremos pode-se propagar através de
toda a cadeia."

■  Se uma remoção ou actualização em cascata origina uma
violação de uma restrição que não pode ser tratada por uma
outra operação em cascata, o sistema aborta a transacção.
Como resultado, todas as alterações provocadas pela
transacção e respectivas acções em cascata serão anuladas."

■  Alternativas às operações em cascata:"
✸  on delete set null!
✸  on delete set default!

"

32!

Asserções!
■  O SQL permite ainda impor restrições de integridade mais

gerais:"
✸  Uma asserção é um predicado que exprime uma condição que

gostaríamos de ver sempre satisfeita na base de dados."
■  Em SQL as asserções têm a forma:"
" "create assertion <nome> check <predicado>"

■  Quando se define uma asserção, o sistema testa-a, e volta a
testá-la, sempre que há modificações na base de dados (que a
possam violar)"
✸  Estes testes podem introduzir um overhead significativo; logo as

asserções são para usar com cuidado e de forma comedida."
✸  Por isso, embora o standard SQL preveja a existência de

asserções, a maior parte dos sistemas não o implementa."
❖  O Oracle não permite definir asserções!"

33!

Exemplo de Asserção!
■  Em cada balcão, a soma dos montantes de todos os seus

empréstimos tem que ser sempre inferior à soma de todos os seus
depósitos.!
!create assertion sum_constraint check  
 (not exists (select * from branch  
! where!

! ! ! ! !(select sum(amount) from loan  
! ! where loan.branch_name =  

 branch.branch_name!
! ! ! ! !)  
! >= some!

! ! ! ! !(select sum(balance) from account 
! ! where account.branch_name =  

 branch.branch_name!
! ! ! ! !)!
! ! ! !)!
! !)!

34!

Outro Exemplo!
■  Todo o empréstimo tem que estar sempre ligado a pelo menos um

cliente de uma conta (de depósito) cujo saldo é não inferior a
metade do valor do empréstimo"

!create assertion balance_constraint check  
 (not exists ( 
 select * from loan  
! where not exists ( 
 select *  
! ! from borrower natural inner join depositor!
! ! ! ! ! ! ! natural inner join account 
! ! where loan.loan_number = borrower.loan_number 
! ! ! and account.balance >= 0,5 * loan.ammount!
" " " " " " ")!
! ! ! ! ! !)!
! ! !)!

35!

Exemplo de Asserção!

■  Uma especialização duma entidade geral E (com chave key) em E1 e E2 é
disjunta."

create assertion disjE1E2 check  
 (not exists ((select key from E1) intersect (select key from E2)))!

key!

E2!E1!

E!

ISA! disjoint"

36!

Triggers!
■  Um trigger é um “comando” que é executado automaticamente

pelo sistema, como side-effect duma modificação à base de
dados dum determinado tipo pré-definido."

■  Para definir um trigger, há que:"
✸  Especificar que evento faz disparar o trigger"
✸  Especificar em que condições o trigger deve ser executado. "
✸  Especificar que ação fazer quando o trigger é executado."

■  São conhecidos como event-condition-action rules"
■  Os triggers são armazenados na base de dados, e executados

para todos as interações com esta."
■  Triggers foram introduzidos no standard SQL:1999, mas eram

suportados anteriormente por sintaxe não standard, logo:"
✸  O Oracle suporta triggers, embora com uma sintaxe ligeiramente

diferente da do SQL."
✸  Em geral, cada sistema tem a sua sintaxe e pecularidades "

" ""

37!

Exemplo de Trigger!
■  Imagine uma situação em que o banco aceita que haja saldos

negativos e, nesses casos: "
✸  coloca o saldo a 0"
✸  cria um empréstimo com o valor em dívida"
✸  Atribui a este empréstimo um número idêntico ao da conta de

depósito"

■  O trigger deve ser executado sempre que há uma atualização na
relação account que faz com que o saldo passe a negativo."

38!

Codificação do Exemplo em SQL!
!create trigger overdraft_trigger after update on account  
referencing new row as nrow!

 for each row 
when nrow.balance < 0  
begin atomic  

!insert into borrower  
! !(select customer_name, account_number 

 ! ! from depositor 
 ! ! where nrow.account_number =  
 depositor.account_number); 
 insert into loan values 

" "(nrow.account_number, nrow.branch_name,  
 – nrow.balance); 
 update account set balance = 0  

!where account.account_number = nrow.account_number 
end !!

39!

Eventos e Acções de Triggers em SQL!
■  Os eventos que podem fazer disparar um trigger são insert, delete ou

update!
■  No Oracle, também podem disparar triggers eventos de servererror,

logon, logoff, startup e shutdown."
■  Triggers sobre update podem-se restringuir só a alguns atributos"

✸  E.g. create trigger overdraft_trigger after update of balance on account!
■  Pode-se referenciar o valor dos atributos antes e depois da modificação"

✸  referencing old row as : para deletes e updates"
✸  referencing new row as : para inserts e updates!

■  Pode-se fazer disparar um trigger antes do evento, para codificar
restrições. E.g. converter espaços em null."
! !create trigger setnull_trigger before update on r 

!referencing new row as nrow  
!for each row 
! when nrow.phone_number = ‘ ‘  
! set nrow.phone_number = null!

■  Para além do before e do after no Oracle existe também o instead of."
"
!

40!

Ações Externas!
■  Por vezes podemos querer que um dado evento faça disparar uma ação

para o exterior."
✸  Por exemplo, numa base de dados de uma armazém, sempre que a

quantidade de um produto desce abaixo (devido a um update) de um
determinado valor podemos querer encomendar esse produto, ou disparar
algum alarme."

■  Os triggers não podem ser usados para implementar ações sobre o
exterior, mas..."
✸  podem ser usados para guardar numa tabela separada ações-a-levar-a-cabo.

Podem depois haver procedimentos que, periodicamente verificam essa tabela
separada."

■  E.g. Uma base de um armazém com as tabelas"
✸  inventario(item, quant): Que quantidade há de cada produto!
✸  quantMin(item, quant) : Qual a quantidade mínima de cada produto!
✸  reposicoes(item, quant): Quanto encomendar sempre que está em falta!
✸  aencomendar(item, quant) : Coisas a encomendar (lido por procedimento)!

41!

Exemplo de Ações Externas!
create trigger aenc_trigger after update of quant on inventario!
referencing old row as orow, new row as nrow!
for each row!
 when nrow.quant < = some (select quant!
! ! ! from quantMin!
! ! ! where quantMin.item = orow.item)"

 and orow.quant > some (select quant!
! ! ! from quantMin!
! ! where quantMin.item = orow.item)"

 begin!
! !insert into aencomendar!
! ! (select item, quant!
" " from reposicoes!
" " where reposicoes.item = orow.item)"

 end!

42!

Sintaxe de Triggers em Oracle!
create [or replace] trigger <nome_trigger>"
"{before | after | instead of} <evento>!
![referencing old as <nome_antes>]"
"[referencing new as <nome_depois>]"
!for each row!
!when <condição>!
!begin!
!<Sequencia de comandos, terminados por ;>!
!end;!
!/!

■  Evento pode ser:"
✸  delete on <tabela ou view>!
✸  insert on <tabela ou view>!
✸  update on <tabela ou view>!
✸  update of <atributos separados por ,> on <tabela ou view>!
✸  servererror, logon, logoff, startup ou shutdown!

■  Os comandos são PL/SQL o que inclui os comandos SQL, mais
WHILEs, IFs, etc (ver manuais)"

■  Dentro da condição os nome_antes e nome_depois podem ser usados
sem mais. Mas nos comandos têm que ter o símbolo ‘:’ antes!!!"

43!

Statement Triggers!
■  São executados após (antes, ou em vez de) uma instrução

completa vs. os anteriores que são executadas após alterações
em cada linha"

■  Sintaxe:"
!create [or replace] trigger <nome_trigger>"
" "{before | after | instead of} <evento>!
! !begin!
! ! !<Sequencia de comandos, terminados por ;>!
! !end;!

"
■  Para ser usado quando as condições são para testar

globalmente e não linha a linha. "

44!

Uso de triggers!
■  Os triggers permitem uma grande generalidade na imposição de

restrições e, também por isso mesmo, devem ser usados com
grande cuidado."

■  Podem se usar para implementar assertions, fazendo
raise_application_error quando as condições não se verificam."

■  Não usar triggers:"
✸  Quando as restrições podem ser impostas doutra forma (com a

exceção das asserções)!!"
❖  Os triggers são mais difíceis de manter e são menos eficientes."

✸  Quando se querem manter sumários"
❖  Para tal usem-se views e se eficiência for importante usem-se

materialized views"
✸  Replicar a base de dados"

❖  Os sistemas modernos têm mecanismos muito eficientes e de
baixo nível para replicação das bases de dados"

45!

Outros problemas com triggers (Cont.)!

■  Podem ser executados quando não se pretende:"
✸  Ler dados de uma cópia de backup"
✸ Replicar atualizações num site remoto"
✸ A execução dos triggers pode ser desligada antes

de executar as acções anteriores"
■  Outros riscos com triggers:"

✸ Erros podem levar à falha de transações críticas
que disparam o trigger"

✸ Execução em cascata"
✸ Tabelas em mutação"

46!

Triggers para actualização de vistas!
■  Podemos utilizar triggers para efectuar modificações através de

vistas. "
■  Para tal, criamos triggers para todas as operações permitidas,

como por exemplo: "
✸  para a insercão (do tipo instead of insert on), "
✸  para a remoção (do tipo instead of delete on)"
✸  para a actualização (do tipo instead of update on)."

■  Consideremos a vista:"
! !create view info_empréstimos as ! ! !

! !select loan_number, customer_name, amount 
! !from borrower natural inner join loan!

47!

Triggers para actualização de vistas!
■  Se quisermos permitir a remoção de empréstimos através da

vista, criamos o trigger:"

create trigger remove_empréstimos ! ! !
!instead of delete on info_empréstimos ! !!
!referencing old row as orow ! ! ! !!

! !for each row"
begin 

 !delete from loan !
! ! !where loan_number = orow. loan_number ; !

!delete from borrower !
! ! !where loan_number = orow. loan_number ;"

end!

48!

Triggers para actualização de vistas!
■  Se quisermos permitir a inserção de empréstimos através da

vista, criamos o trigger:"

create trigger insere_empréstimos ! ! !
!instead of insert on info_empréstimos ! !!
!referencing new row as nrow ! ! ! !
!for each row"

begin 
 !insert into loan !
! ! !values "(nrow.loan_number, NULL, amount); "

"insert into borrower !
! ! !values "(nrow.customer_name, nrow.loan_number)"

end!

49!

Triggers para actualização de vistas!
■  Se quisermos permitir a actualização do valor do empréstimo

através da vista, criamos o trigger:"

create trigger actualiza_empréstimos ! ! !
!instead of update of amount on info_empréstimos!
!referencing new row as nrow ! ! !!
"referencing old row as orow!

! !for each row"
begin!
 ! !update loan ! ! ! ! ! !

!set amount = nrow. amount !
! ! !where loan_number = orow. loan_number ;"

end!

50!

Triggers para inserção de chaves!
■  Se quisermos preencher automaticamente a chave de um tuplo,

quando da sua inserção, recorrendo a uma sequência:"

" "create trigger chave_aluno"
" "before insert on alunos"
" "for each row!
" "declare!
" " "aluno_id number;"
" "begin!
" " "select seq_aluno.nextval into aluno_id"
" " "from dual;"
" " ":new.num_aluno := aluno_id;"
" "end"
""

