Integracao de SQL com outras
linguagens de programacao

B Topicos:
.3
¥ Embedded e Dynamic SQL
¥ Linguagens proprietarias
M Bibliografia:
* Seccoes 5.1 e 5.2 do livro recomendado

Embedded SQL

B JDBC é demasiado dinamico, erros nao podem ser detetados
pelo compilador

B O SQL embutido permite acesso a bases de dados, via outra
linguagens de programacao.

¥ Toda a parte de acesso e manipulacao da base de dados é feito
através de codigo embutido. Todo o processamento associado é

feito pelo sistema de bases de dados. A linguagem host recebe os
resultados e manipula-os.

¥ O codigo tem que ser pré-processado. A parte SQL é transformada

em codigo da linguagem host, mais chamadas a run-time do
servidor.

B A expressao EXEC SQL é usado para identificar codigo SQL
embutido

EXEC SQL <embedded SQL statement > END-EXEC

Nota: Este formato varia de linguagem para linguagem. E.g. em
C usa-se ‘;’ em vez do END-EXEC.

Em Java usa-se # SQL{ };

SQLJ

B SQLJ: SQL embutido em Java
¥ #sql iterator deptinfolter (String dept name, int avgSal);
deptinfolter iter = null;
#sql iter ={ select dept_name, avg(salary) from instructor
group by dept name };

while (iter.next()) {
String deptName = iter.dept_name();
int avgSal = iter.avgSal();
System.out.printin(deptName +" " + avgSal);

}

iter.close();

Cursores

B Para executar um comando SQL numa linguagem host é
necessario comecar por declarar um cursor para esse comando.

B O comando pode conter variaveis da linguagem host,
precedidas de :

B E.g. Encontrar os nome e cidades de clientes cujo saldo seja
superior a amount

EXEC SQL

declare c cursor for

select customer-name, customer-city

from account natural inner join depositor
natural inner join customer

where account.balance > :amount

END-EXEC

Embedded SQL (Cont.)

O comando open inicia a avaliacao da consulta no cursor
EXEC SQL open ¢ END-EXEC

O comando fetch coloca o valor de um tuplo em variaveis da
linguagem host.

EXEC SQL fetch cinto :cn, :cc END-EXEC
Chamadas sucessivas a fetch obtém tuplos sucessivos

Uma variavel chamada SQLSTATE na SQL communication area
(SQLCA) toma o valor ‘02000’ quando ndo ha mais dados.

O comando close apaga a relacao temporaria, criada pelo
open, que contem os resultados da avaliagcao do SQL.

EXEC SQL close ¢ END-EXEC

Modificacoes com Cursores

Como nao devolvem resultado, o tratamento de modificacoes
dentro doutras linguagens é mais facil.

Basta chamar qualquer comando valido SQL de insert, delete,
ou update entre EXEC SQL e END SQL

Em geral, as variaveis da linguagem host s6 podem ser usadas
em locais onde se poderiam colocar variaveis SQL.

Nao é possivel construir comandos (ou parte deles)
manipulando strings da linguagem host

Dynamic SQL

Permite construir e (mandar) executar comandos SQL, em run-
time.

E.g. (chamando dynamic SQL, dentro de um programa em C)

char * sqlprog = “‘update account
set balance = balance *1.05
where account-number = ?”,
EXEC SQL prepare dynprog from :sqglprog;
char account [10] = “A-1017;
EXEC SQL execute dynprog using :account;

A string contém um ?, que indica o local onde colocar o valor a
ser passado no momento da chamada para execucao.

ODBC

B Standard Open DataBase Connectivity(ODBC)

¥ Standard para comunicagao entre programas e servidores de bases
de dados

¥ application program interface (API) para
< Abrir uma ligacado a uma base de dados
< Enviar consultas e pedidos de modificagcOes
< Obter os resultados

B AplicacOes diversas (e.g. GUI, spreadsheets, etc) podem usar
ODBC

ODBC (Cont.)

B Um sistema de bases de dados que suporte ODBC tem uma
“driver library” que tem que ser ligada com o programa cliente.

B Quando o cliente faz uma chamada a APl ODBC, o cddigo da
library comunica com o servidor, que por sua vez executa a
chamada e devolve os resultados.

B Um programa ODBC comeca por alocar um ambiente SQL, e
um connection handle.

B Para abrir uma ligacao a uma BD, usa-se SQLConnect(). Os
parametros sao:

¥ connection handle,
¥ servidor onde ligar
¥ username,
¥ password

Exemplo de codigo ODBC 2.0

B int ODBCexample()
{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);

SQLConnect(conn, "aura.bell-labs.com", SQL_NTS, "avi", SQL_NTS,
"avipasswd", SQL_NTS);

{ Manipulagcao propriamente dita ... }
SQLDisconnect(conn);

SQLFreeConnect(conn);
SQLFreeEnv(env);

10

ODBC (Cont.)

B Os programas enviam comandos SQL a base de dados usando
SQLExecDirect

B Os tuplos resultado sao obtidos via SQLFetch()

B SQLBindCol() liga variaveis da linguagem a atributos do
resultado do SQL

¥ Quando um tuplo é obtido com um fetch, os valores dos seus
atributos sao automaticamente guardados nas ditas variaveis.

11

Exemplo de codigo ODBC

char branchname[80];
float balance;
int lenOut1, lenOut2;
HSTMT stmt;

SQLAIllocStmt(conn, &stmt);

char * sqglquery = "select branch_name, sum (balance)
from account
group by branch_name";

error = SQLExecDirect(stmt, sqlquery, SQL_NTS);

if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);

while (SQLFetch(stmt) >= SQL_SUCCESS) {
printf (" %s %g\n", branchname, balance);
}

Y
SQLFreeStmt(stmt, SQL_DROP);

12

Linguagens proprietarias

A maior parte dos sistemas comerciais incluem linguagens
proprietarias que, para além do embedded SQL, tém primitivas
proprias para (entre outras) criar interfaces no ecra (forms) e
para formatar dados para apresentacao de relatérios (reports).

Algumas destas linguagens tém ainda construtores de mais alto
nivel, para trabalhar sobre cursores.

Tipicamente os programas nestas linguagens, compilam para
outras linguagens (e.g. C) embedded SQL.

Os sistemas comerciais costumam ainda ter aplicacoes de
geracgao facil de programas na linguagem proprietaria

No Oracle a linguagem proprietaria € o PLSQL. O Forms, o
Reports e o APEX sao aplicacoes que geram PLSQL.

13

PL/SQL

B Extensao procedimental ao SQL, do Oracle.

B Suporta:
¥ Variaveis (mesmos tipos do Oracle)
%¥ Condicoes (IF-THEN-ELSE e CASE)
¥ Ciclos (LOOP, FOR)
* Excecles (para tratamento de erros)

B Unidades de programas em PL/SQL podem ser compilados na
base de dados Oracle.

14

Construtores procedimentais

B O standard SQL suporta uma grande variedade de construtores
procedimentais

¥ O Oracle suporta aqueles que existem no PL/SQL

B ExpressOes com whiles e repeats
declare ninteger default O;
while n<10 do

set n=n+1;
end while;

repeat
setn=n —1;
until n = 0;
end repeat
B Em Oracle, em vez de set var =... usa-se var :=...

15

Construtores procedimentais (Cont.)

B Ciclos
¥ IteracOes sobre o resultado de perguntas
* E.g. soma de todos os saldos da agéncia Perryridge

declare ninteger default O;

for r as

select balance from account
where branch-name = ‘Perryridge’
do
set n= n + r.balance;
end for

B Claro que isto nao se deve fazer assim!
* O que se deve fazer para obter isto é:

select sum(balance) from account
where branch-name = ‘Perryridge’

16

Construtores procedimentais (cont.)

B Expressoes condicionais (if-then-else)
E.g. Soma dos saldos por categorias de contas (com saldo <1000, entre

1000 e 5000, > 5000)

if r.balance < 1000

then set / = | + r.balance
elseif r.balance =< 5000

then set m = m + r.balance
else set h= h + r.balance
end if

B Assinalar condigoes de excegao e erros, e declaragao de tratamento de
excecoes

declare out_of _stock condition;
declare exit handler for out_of stock ;
begin

.. signal out-of-stock;
end
* Neste exemplo o tratamento da excepcao é exit — sai do bloco begin...end

B No Oracle em vez de signal usa-se raise

17

Funcoes e Procedimentos

B O standard SQL suporta funcdes e procedimentos

¥ As fungbes e procedimentos podem ser escritas diretamente em
SQL, ou em linguagens de programacao externas (e.g. PL/SQL).

* Alguns sistemas de bases de dados (entre eles o Oracle) permitem
definir fungdes que devolvem tabelas

¥ As fungOes e procedimentos sdo armazenados na propria base de
dados

< Definem funcionalidades disponiveis a varios utilizadores

B Grande parte dos sistemas de bases de dados tém linguagens
proprietarias onde se podem definir funcoes e procedimentos, e
que diferem bastante do standard SQL

B No Oracle podem-se criar fungdes e procedimentos através da
linguagem PL/SQL, ou diretamente na base de dados.

18

Funcoes SQL

B Definir uma funcéo que, dado o nome de um cliente, devolva o numero
de contas de que ele é titular.

create function account_count (customer_name varchar(20))
returns integer
begin
declare a_count integer;
select count (*) into a_count
from depositor
where depositor.customer_name = customer_name
return a_count;
end

B Encontrar o nome e morada dos clientes com mais do que uma conta.

select customer_name, customer_street, customer_city
from customer
where account_count (customer_name) > 1

19

Funcoes que retornam Tabelas

B O standard SQL também inclui funcdes que devolvem uma relagcao
como resultado.

B Examplo: Devolver todas as contas de um dado cliente
create function accounts_of (customer_name char(20)

returns table (account_number char(10),
branch_name char(15)
balance numeric(12,2)))

return table

(select account_number, branch_name, balance

from account A

where exists (
select *
from depositor D
where D.customer_name = accounts_of.customer_name

and D.account_number = A.account_number))

m Utilizacao

select *
from table (accounts_of (‘Smith’))

20

Funcoes e procedimentos SQL

B A funcao account_count pode ser escrita como procedimento:

create procedure account_count_proc (in customer_name varchar(20),
out a_count integer)
begin
select count(®) into a_count

from depositor
where depositor.customer_name = account_count_proc.customer_name

end

B Os procedimentos podem ser chamados dentro de outros procedimentos
SQL, ou de linguagens SQL embedded ou proprietarias.
% E.g. num procedimento SQL
declare a_count integer;
call account_count_proc(‘Smith’, a_count);

* O standard SQL permite que haja mais que uma funcao ou procedimento com o
mesmo nome, desde que o numero de argumentos (ou, pelo menos, 0s seus
tipos) sejam diferentes

21

FuncoOes e procedimentos externos

O standard SQL permita o uso de funcdes e procedimentos
escritos noutras linguagens (e.g. C ou C++)

A declaracao de funcoes e procedimentos externos faz-se da
seguinte forma:

create procedure account_count_proc(in customer_name
varchar(20),out count integer)

language C

external name ' /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer

language C

external name ‘/usr/avi/bin/author_count’

22

Funcoes e procedimentos externos (Cont.)

B Vantagens:
* Mais eficiente para muitas operacoes
¥ Mais poder expressivo

B Desvantagens

¥ O codigo que implementa as rotinas externas pode ter que ser
carregado no sistema de bases de dados e executado no
espaco de enderecos deste

< risco de corromper acidentalmente a estrutura da base de
dados

< risco de seguranca dos dados

¥ Ha alternativas que garante seguranca (a custa, por vezes, da
deterioracao da performance)

* A execucao direta no sistema de bases de dados so0 ¢ feita se a
eficiéncia for bem mais importante que a seguranca

23

Seguranca para rotinas externas

B Para lidar com estes problemas de seguranca
¥ Usar técnicas de sandbox

< i.e. usar linguagem segura como o Java, que nao permite
0 acesso a outras parte do codigo da base de dados

* QOu executar rotinas externas em processo separado, sem
acesso a memoria usada por outros processos do sistema
de bases de dados

< Os parametro e resultados sdo passados via
comunicagao entre processos

B Ambas as alternativas tém custos de performance

24

Integridade de Bases de Dados em SQL

M Topicos:
* Restricbes ao dominio e chaves
¥ Assercoes
* Triggers
M Bibliografia:
* Seccoes 4.4 e 5.3 do livro recomendado

25

Restricoes ao dominio

B Javimos que a DDL do SQL permite definir restricoes ao
dominio:
¥ not null elimina o valor null do dominio de atributos

¥ check (Cond) restringe o dominio apenas aos valores que tornam a
condicdao Cond verdadeira

< As condicdes tém que poder ser verificadas tuplo a tuplo, e s6
podem referir atributos da tabela em causa

B Por exemplo:
create table products (

product_no integer not null,
name varchar2(50) not null,
price number check (price > 0),
discounted_price number check (discounted_price > 0),
check (price > discounted_price)
);

26

Chaves primarias e candidatas

B Também vimos na DDL que se pode usar:
* primary key denotando que o(s) atributo(s) sao chave primaria
<+ SO pode haver uma declaracao de primary key por tabela
< Nos atributos da primary key nao sao permitidos valores null

¥ unique(AT, ..., An) impondo que o conjunto de atributos A7, ..., Ané
chave candidata

< l.e. nao podem haver 2 tuplos com os mesmos valores em todos
os atributos A7, ..., An

B Ao contrario da primary key
¥ podem haver varios unique numa tabela
¥ os atributos em unique podem ter valores null

% Nestes casos, 0s null sao assumidos como todos diferentes uns
dos outros

< l.e. pode haver 2 tuplos com null num atributo de uma chave
candidata — ndo podem & haver 2 tuplos com um mesmo valor
diferente de null num atributo de uma chave candidata

27

Chaves estrangeiras

B A DDL também permite definir chaves estrangeiras em tabela R
* foreign key (A1,...,An) references S(B1,...,Bn)

.......... Bn(S)

* Pode-se omitir os atributos B1,...,Bn; nesse caso assume-se que
esses atributos séo os que formam a chave primaria de S

B Nas chaves estrangeiras, os valor null sao ignorados

* l.e. a restricao acima so é imposta se os atributos tiverem valores
diferentes de null

* Dito de outra forma, a chave estrangeira acima impde que, para
cada tuplo de R

< Ou 0s valores nos atributos A1,...,An sao null

< 0ou entao tem que existir algum tuplo em S com esses valores
nos atributos nos atributos B1,...,Bn

28

Integridade Referencial em SQL — Exemplo

E1 R1/ E2

<pe>

E3

create table E1(e1 number(3) not null primary key);

create table E2(e2 number(3) not null primary key);
create table E3(e3 number(3) not null primary key);

create table R1(e1 number(3) not null, create table R2(e1 number(3) not null,
e2 number(3) not null, e2 number(3) not null,
primary key (el, e2), e3 number(3) not null,
foreign key (e1) references E1, primary key (e1, e2, e3),
foreign key (e2) references E2); foreign key (e1,e2) references R1,

foreign key (e3) references E3);

29

Accoes em Cascata em SQL

create table account

foreign key(branch_name) references branch
on delete cascade
on update cascade

.)

B Com as clausulas on delete cascade, se a remocao de um
tuplo na relacao branch resulta na violacao da restricao da
integridade referencial, a remocao propaga-se em “cascata” para
a relacao account, removendo o tuplo que referia a agéncia que
tinha sido eliminada.

B ActualizacOes em cascata sao semelhantes. Nao estao
implementadas pelo Oracle!

30

Accoes em cascata em SQL (cont.)

B Se existe uma cadeia de dependéncias de chaves externas
através de varias relagcoes, com um on delete cascade
especificado em cada dependéncia, uma remogao ou
actualizacao num dos extremos pode-se propagar atravées de
toda a cadeia.

B Se umaremoc¢ao ou actualizacdo em cascata origina uma
violacao de uma restricao que nao pode ser tratada por uma
outra operagcao em cascata, o sistema aborta a transaccao.
Como resultado, todas as alteracOes provocadas pela
transaccao e respectivas acgoes em cascata serao anuladas.

B Alternativas as operagdOes em cascata:
¥ on delete set null
¥ on delete set default

31

Assercoes

B O SQL permite ainda impor restricoes de integridade mais
gerais:

¥ Uma assercdo € um predicado que exprime uma condicao que
gostariamos de ver sempre satisfeita na base de dados.

B Em SQL as assercdes tém a forma:
create assertion <nome> check <predicado>

B Quando se define uma assercao, o sistema testa-a, e volta a
testa-la, sempre que ha modificacoes na base de dados (que a
possam violar)

* Estes testes podem introduzir um overhead significativo; logo as
assercoOes sao para usar com cuidado e de forma comedida.

* Por isso, embora o standard SQL preveja a existéncia de
assercoOes, a maior parte dos sistemas nao o implementa.

< O Oracle nao permite definir asserc¢des!

32

Exemplo de Assercao

B Em cada balcao, a soma dos montantes de todos os seus
empréstimos tem que ser sempre inferior a soma de todos 0s seus

depositos.

create assertion sum_constraint check
(not exists (select * from branch

where
(select sum(amount) from loan

where /loan.branch _name =
branch.branch _name
)

>=some
(select sum(balance) from account

where account.branch _name =
branch.branch _name

33

Outro Exemplo

B Todo o empréstimo tem que estar sempre ligado a pelo menos um
cliente de uma conta (de depdsito) cujo saldo é n&o inferior a
metade do valor do empréstimo

create assertion balance_constraint check
(not exists (

select * from /oan

where not exists (
select *
from borrower natural inner join depositor

natural inner join account
where loan.loan_number = borrower.loan_number
and account.balance >= 0,5 * loan.ammount

)
)

34

Exemplo de Assercao

key
E
E, E,

B Uma especializacdo duma entidade geral E (com chave key)em E, e E, é
disjunta.

create assertion disjE71E2 check
(not exists ((select key from E.) intersect (select key from E.)))

35

Triggers

Um trigger é um “comando” que é executado automaticamente
pelo sistema, como side-effect duma modificacao a base de
dados dum determinado tipo pré-definido.

Para definir um trigger, ha que:
* Especificar que evento faz disparar o trigger
¥ Especificar em que condicées o trigger deve ser executado.
¥ Especificar que acao fazer quando o trigger é executado.
Sao conhecidos como event-condition-action rules

Os triggers sao armazenados na base de dados, e executados
para todos as interacoes com esta.

Triggers foram introduzidos no standard SQL:1999, mas eram
suportados anteriormente por sintaxe nao standard, logo:

* O Oracle suporta triggers, embora com uma sintaxe ligeiramente
diferente da do SQL.

¥ Em geral, cada sistema tem a sua sintaxe e pecularidades

36

Exemplo de Trigger

B Imagine uma situagcao em que o banco aceita que haja saldos
negativos e, nesses casos:

% coloca o saldo a0

¥ cria um empréstimo com o valor em divida

¥ Atribui a este empréstimo um numero idéntico ao da conta de
depdsito

B O trigger deve ser executado sempre que ha uma atualizacao na
relacao account que faz com que o saldo passe a negativo.

37

Codificacao do Exemplo em SQL

create trigger overdraft_trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer_name, account_number
from depositor
where nrow.account_number =
depositor.account_number);
insert into /oan values
(nrow.account_number, nrow.branch_name,
— nrow.balance);
update account set balance = 0
where account.account_number = nrow.account_number
end

38

Eventos e Accoes de Triggers em SQL

Os eventos que podem fazer disparar um trigger sao insert, delete ou
update

No Oracle, também podem disparar triggers eventos de servererror,
logon, logoff, startup e shutdown.
Triggers sobre update podem-se restringuir s6 a alguns atributos

* E.g. create trigger overdraft_trigger after update of balance on account

Pode-se referenciar o valor dos atributos antes e depois da modificacao
* referencing old row as : para deletes e updates
* referencing new row as : para inserts e updates
Pode-se fazer disparar um trigger antes do evento, para codificar
restricOes. E.g. converter espacos em null.

create trigger setnull_trigger before update on r
referencing new row as nrow
for each row

when nrow.phone_number = **

set nrow.phone_number = null

Para além do before e do after no Oracle existe também o instead of.

39

Acoes Externas

B Por vezes podemos querer que um dado evento faca disparar uma agao
para o exterior.

* Por exemplo, numa base de dados de uma armazém, sempre que a
quantidade de um produto desce abaixo (devido a um update) de um
determinado valor podemos querer encomendar esse produto, ou disparar
algum alarme.

B Os triggers nao podem ser usados para implementar agcdes sobre 0
exterior, mas...

% podem ser usados para guardar numa tabela separada a¢oes-a-levar-a-cabo.
Podem depois haver procedimentos que, periodicamente verificam essa tabela
separada.

B E.g. Uma base de um armazém com as tabelas
¥ inventario(item, quant): Que quantidade ha de cada produto
¥ quantMin(item, quant) : Qual a quantidade minima de cada produto
¥ reposicoes(item, quant): Quanto encomendar sempre que esta em falta
¥ aencomendar(item, quant) : Coisas a encomendar (lido por procedimento)

40

Exemplo de Acoes Externas

create trigger aenc_trigger after update of quant on inventario
referencing old row as orow, new row as nrow
for each row
when nrow.quant < = some (select quant
from quantMin
where quantMin.item = orow.item)
and orow.quant > some (select quant
from quantMin
where quantMin.item = orow.item)
begin
insert into aencomendar
(select item, quant
from reposicoes
where reposicoes.item = orow.item)
end

41

Sintaxe de Triggers em Oracle

create [or replacel] _trig{ger <nome_trigger>
before | after [instead of} <evenio>
referencing old as <nomé_antes>]
referencing new as <nome_depois>]
or each row _
when <condigao>
bggln , _
< ct?quenaav de comandos, terminados por ;>
end;

/

B Evento pode ser:

delete on <tabela ou view>

insert on <tabela ou view>

update on <tabela ou view>

update of <atributos separados por ,>on <tabela ou view>
servererror, logon, logoff, startup ou shutdown

B Os comandos sdo PL/SQL o que inclui os comandos SQL, mais
WHILEsSs, IFs, etc (ver manuais)

B Dentro da condigao os nome_antes e nome_depois podem ser usados
sem mais. Mas nos comandos tém que ter o simbolo ;" antes!!!

¥ K K K Xk

42

Statement Triggers

Sao executados apds (antes, ou em vez de) uma instrucao
completa vs. os anteriores que sao executadas apos alteracoes
em cada linha

Sintaxe:
create [or replace] trigger <nome_trigger>
{before | after | instead of} <evento>
begin
<Sequencia de comandos, terminados por ;>
end;

Para ser usado quando as condi¢cOes sao para testar
globalmente e nao linha a linha.

43

Uso de triggers

B Os triggers permitem uma grande generalidade na imposicao de
restricoes e, também por isso mesmo, devem ser usados com
grande cuidado.

B Podem se usar para implementar assertions, fazendo
raise_application_error quando as condi¢coes nao se verificam.

B Nao usar triggers:

* Quando as restricbes podem ser impostas doutra forma (com a
excecao das assercoes)!!

< Os triggers sao mais dificeis de manter e sdo menos eficientes.
¥ Quando se querem manter sumarios

< Para tal usem-se views e se eficiéncia for importante usem-se
materialized views

% Replicar a base de dados

< Os sistemas modernos tém mecanismos muito eficientes e de
baixo nivel para replicacao das bases de dados

44

Outros problemas com triggers (Cont.)

B Podem ser executados quando nao se pretende:
* Ler dados de uma copia de backup
* Replicar atualizagdes num site remoto

% A execucao dos triggers pode ser desligada antes
de executar as acgcoes anteriores

B Outros riscos com triggers:

* Erros podem levar a falha de transacoes criticas
gue disparam o trigger

% Execucao em cascata
% Tabelas em mutacao

45

Triggers para actualizacao de vistas

B Podemos utilizar triggers para efectuar modificacOes atraves de
vistas.

B Para tal, criamos triggers para todas as operacoes permitidas,
como por exemplo:

¥ para a insercao (do tipo instead of insert on),
% para a remocao (do tipo instead of delete on)
% para a actualizacao (do tipo instead of update on).

B Consideremos a vista:

create view info_empréstimos as
select loan_number, customer_name, amount
from borrower natural inner join /oan

46

Triggers para actualizacao de vistas

B Se quisermos permitir a remoc¢ao de empréstimos através da
vista, criamos o trigger:

create trigger remove_empréstimos
instead of delete on info_empréstimos
referencing old row as orow
for each row
begin
delete from /oan
where /loan_number = orow. loan_number ;
delete from borrower
where /loan_number = orow. loan_number ;

end

47

Triggers para actualizacao de vistas

B Se quisermos permitir a insercao de empréstimos através da
vista, criamos o trigger:

create trigger insere_empréstimos
instead of insert on info_empréstimos
referencing new row as nrow
for each row
begin
insert into /oan
values (nrow.loan_number, NULL, amount);
insert into borrower
values (nrow.customer_name, nrow.loan_number)

end

48

Triggers para actualizacao de vistas

B Se quisermos permitir a actualizagao do valor do empréstimo
através da vista, criamos o trigger:

create trigger actualiza_empréstimos
instead of update of amount on info_empreéstimos
referencing new row as nrow
referencing old row as orow
for each row
begin

update /oan
set amount = nrow. amount
where loan_number = orow. loan_number ;
end

49

Triggers para insercao de chaves

B Se quisermos preencher automaticamente a chave de um tuplo,
guando da sua insercao, recorrendo a uma sequéncia:

create trigger chave_aluno
before insert on alunos
for each row
declare
aluno_id number;
begin
select seqg_aluno.nextval into aluno_id
from dual;
‘new.num_aluno := aluno_id;
end

50

