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Interpretability,
I

Summary
m Motivation

m Problems with black box models.

m Explanations and methods:

 Local Interpretable Model-agnostic Explanations (LIME)
- Layer-wise Relevance Propagation (LRP)

 Testing with Concept Activation Vectors (TCAV)

« Mapping concepts to ontologies
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Interpretability

Motivation
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Motivation for Explainable Al
®m Problem 1: organize vacation photos

- Use DNN to classify photos with and without faces
« How does the network do it? Who cares...?
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Motivation for Explainable Al
®m Problem 1: organize vacation photos

- Use DNN to classify photos with and without faces
« How does the network do it? Who cares...?

m Problem 2: surgeon uses a DNN to recommend procedure

« Network processes radiological images and recommends extraction of left kidney

- Why? Without an explanation the surgeon cannot use this recommendation
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Sometimes black box is not good enough
Debugging or improving the system

Trust that the system is working correctly

Social acceptance of systems impacting our lives
Ensure that a decision was reached correctly (and fairly)
Auditing the system if something goes wrong

For regulation, such as safety standards.

For greater impact (e.g. automated recommendation)
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Motivation

Identifying problems

Horse-picture from Pascal VOC data set Artificial picture of a car

Source tag
present

:

Classified
as horse

No source
tag present

!

Mot classified
as horse

Lapuschkin et al, Unmasking clever hans predictors, 2019

m The classifier was using the copyright tag to classify horses

m |f added to a car image, it would be classified as a horse
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Trust and Accountability
® Without explanations it is easy to trust tools but not decisions

Al is not only something we use but also something that decides for us

m Transparency Is required for accountability and oversight.

« Regulation, for example
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Scientific Applications
m Deep learning has been very successful in scientific applications
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Protein folding with AlphaFold2. Image from Callaway, 'It will change everything’,2020

m But it would be great to understand how...
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Legal requirements

m EU's General Data Protection Regulation includes the right to an
explanation

m Article 22:

" The data subject shall have the right not to be subject to a decision based solely on
automated processing"

m The person deciding will need to understand the system's
recommendation
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Explanation

What is an explanation?
m Broad sense:
A narrative that links different events and entities in an intelligible way

- Describes causal relations, consequences and the system explained.

m For our purpose, in practice, usefulness depends on target
audience.

« The best explanation for the surgeon is not the best for the patient

- The developers of deep networks want explanations to help debug and optimize
models

« The end user needs reasons to trust the output of the network.

B Choose interpretation methods for the target audience and purpose
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Interpretability

LIME
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LIME
I

Local Interpretable Model-agnostic Explanations

® Some simple models are easy to interpret. E.g. linear models

Linear classification Non-linear classification
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Lapuschkin et al, Unmasking clever hans predictors, 2019
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LIME
I

Local Interpretable Model-agnostic Explanations
® Linear models are generally not powerful enough

m But can provide local approximations

—

Ribeiro et al, Why should | trust you?,2016
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LIME

Local Interpretable Model-agnostic Explanations
® Linear models are easy to interpret

- Both messages correctly classified as atheist, but with different features

Algorithm 1
Words that Al considers important: Predicted

GOD . Atheism

mean Prediction correct:
anyone J

this

Koresh
through

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Algorithm 2
Words that A2 considers important: Predicted
Posting . Atheism

Host Prediction correct:
Re J
by
in

Nntp|

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Ribeiro et al, Why should I trust you?,2016
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LIME
I

Local Interpretable Model-agnostic Explanations
® LIME does not provide a global explanation

* It provides a local explanation for a particular example

m |t is model-agnostic because it does not care about how the model
Works

It approximates the results with a linear classifier minimizing:

{(x) = argminL(f, g, m; ) + Q(g)
geqG

Where g is a linear model using any combination of features

L measures the loss between explainer and model to be explained f

(2(g) is a measure of the complexity of model
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Interpretability

LRP
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LRP

Layer-wise Relevance Propagation
m Assign to each input a relevance measure for a particular output

m Takes into account the architecture and parameters of the trained
model

m The relevance of the output neuron for a class is its activation

® Then propagate for neurons in preceding Iayers:

R; = Z a; Wk
Z a; wzk
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Layer-wise Relevance Propagation

Image from Explainable Al demos at https://Irpserver.hhi.fraunhofer.de
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Interpretability

TCAV
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TCAV

Testing with Concept Activation Vectors
B Measure sensitivity of classifications to selected concepts
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Kim et al, Interpretability beyond feature attribution, 2017

B a) Examples of a concept (striped) and random examples
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TCAV

Testing with Concept Activation Vectors
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Kim et al, Interpretability beyond feature attribution, 2017

m D) set of labelled examples of some class from the training data,
such as zebras.
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TCAV

Testing with Concept Activation Vectors
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Kim et al, Interpretability beyond feature attribution, 2017

m c) The trained classifier, includes the zebra class.
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TCAV

Testing with Concept Activation Vectors
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Kim et al, Interpretability beyond feature attribution, 2017

m d) Vector normal to the linear decision surface at layer [ (CAV)
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TCAV

Testing with Concept Activation Vectors
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Kim et al, Interpretability beyond feature attribution, 2017

m e) Sensitivity of [ to this concept, class and example is:
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TCAV

Testing with Concept Activation Vectors

Zebra Model

Zebras

Google Al
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Interpretability

Mapping concepts to ontologies
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Mind the gap

Mapping concepts to ontologies
m (Work by Manuel Ribeiro, MIEI, 2020)

® Ontology:

- Formal specification of concepts and their logical relations.

- A STOP sign is an octagon, has a red background and STOP in white

- A warning sign is a triangle with a red border

B Goal: given a trained deep neural network, map activations to
concepts

« Using examples illustrating different concepts in the ontology

- And auxiliary models, such as simple neural networks, for mapping
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Mind the gap

Mapping concepts to ontologies
m Advantage:

 After mapping we can use automated reasoning to generate justifications

« E.g. the network identified the concepts of red and octagon, which justifies
concluding it is a STOP sign
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Mind the gap

Mapping concepts to ontologies

m This also gives us insight into the manifold of the network
representations

« Relevant concepts are easier to map as network learns to represent them
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Interpretability

Risks of (partial) transparency
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Transparency is desirable but...

m [nterpretations that claim to make the model transparent create
some risks

m Conflict of interests:

- My request for credit at the bank is denied
- | ask for an explanation

- The bank can use any of several interpretation methods to justify the decision
m The result may be a way to disguise unfair decisions

B |n practice transparency must be a property of the whole process,
not just applied to the model.
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Interpretability

Summary
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Interpretabllity,
I

Summary

® Motivation:

- Transparency, trust, understanding

®m Problems with black box models

- Debugging, auditing and regulation, responsibility
® Methods (examples):

- Local Interpretable Model-agnostic Explanations (LIME)
« Layer-wise Relevance Propagation (LRP)

- Testing with Concept Activation Vectors (TCAV)

- Mapping concepts to ontologies
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