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Object Representation

What Objects!?

Solids (sphere, cube, cone,
torus, ...)

Flat Surfaces (plane, polygon,
discs, ...)

Curved Surfaces (paraboloid,
hiperboloid, bicubic, nurbs,

)

Soft or deformable (liquids,
smoke, cloth, hair)

What Operations?

Rendering on a raster engine

Rendering on a ray tracing
engine

Compute features such as
volumes, areas, etc.

intersection, difference, union

Distinguish between inside,
outside and surface



Algebraic Representations

Example

Consider a sphere centred in C = (¢, ¢, ¢;), with radius r.

Point P = (x,y, z) can be:
* inside:

e outside

* on the surface

<
>
—=r

Vx4 (y =g+ (z—c)?
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Algebraic Representations

Example

Appropriate for:

® Ray tracing:
compute
intersections of
rays with
object’s surface
to determine
entry and exit
points
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Algebraic Representations

Example

Appropriate for:

® Boolean set
operations to
build solids from
others using
Constructive
Solid Geometry

(CSG).
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Spatial-Occupancy Enumeration Representation

An object is a list of voxels (3D
pixels).

Each voxel may be occupied
(belongs to some object) or
empty

Appropriate in CAT/MRI
visualisation applications

+ adjacency test

+ inside/outside test

+ boolean set operations
- no partial occupancy
- accuracy

- data structure size
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Spatial-Occupancy Enumeration Representation
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Octree based representations
were introduced to reduce gl
storage needed by regular | e
grids of voxels. MF% ; - - L
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Binary subdivision of a cell | - ﬁip w
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Repeated recursively until we o crucenen
get an homogeneous cell or
reach recursion limit.

Trees with internal nodes /
having 8 children. 1
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Sweep Representations

Obtained by sweeping an object
along a trajectory.

Translational and rotational
sweeps.

Object may change in size while
being swept.

- Not adequate for boolean set
operations since the result is
normally not a swept object.

+ Volume/Area calculation may
be easy

+ Appropriate for some
Computer Aided Manufacturing
applications

* from http://ayam.sourceforge.net
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Boundary Representations (B-REPS)

® Objects are described in terms of their surface
boundaries: vertices, edges and faces

® Curved surfaces are allowed, but they are mostly
approximated with polygons or with patches
(bicubic or nurbs)

® Convex polygons are the most common type of
face with B-REPs.

® Some systems reduce general polygons to triangles
by splitting the faces.

® Many b-rep systems only support 2-manifold
objects.
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Boundary Representations

2-Manifold: every point on a 2-manifold has some arbitrarily
small neighbourhood of points around it that can be considered
topologically the same as a disk in the plane.

@ 2

vi WV X

there is a continuous one-to-one correspondence between the
neighbourhood of points and the disc.
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Boundary Representations

Polyhedron: solid bounded by a set of polygons whose edges
belong to an even number of polygons (2 for 2-manifolds).

simple non simple

Polyhedra have flat faces, straight edges and sharp vertices. A simple
polyhedron can be deformed into a sphere (no holes).
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Boundary Representations

Euler's Formula for simple polyhedra: V— E + F =
A f '\\

e /
Vertices Edges Faces
V=28 V=5 V=7 V=7
E=12 E=8 E— |3 E— |4

Euler’s formula is necessary but hot sufficient for an object to be a simple polyhedron.
Other requirements:

- Each edge must connect two vertices and be shared by exactly two faces;

- At least three edges must meet at a vertex.

- Faces cannot cross each other.

Euler’s formula is also valid for curved edges and nonplanar faces (non polyhedra solids)




Boundary Representations

Generalisation of Euler’s formula for 2-manifolds with holes

V—E+F—H=2(C—G)
AR Y X

/ L \ AN

Edges | | Faces Genus
Vertices Holes across (handles)
Holes in faces

V=124

) E =36
F—=15
H=3
C=1
G=1
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Mesh Data Structures




Mesh Data Structures

® Jo describe a2 mesh we need:

® the locations of all vertices
(vertex table)

® all the edges connecting
vertices (explicitly or
implicitly defined)
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® All the faces that make up
the model (built using 2
vertices or edges) k.
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Original Stanford bunny by Greg Turk and Marc Levoy 1994
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Mesh Data Structures

Pyramid example
(explicit edges)

® Faces point to edges and edges
point to vertices. Each vertex

has two different ways to be Tobolo = G
. ges
reached, coming from the faces. pology T oz eometry
. . , Faces , Vertices
® This representation doesn'’t 2 | (29
: 1 5,8, 4 s (1,0,-1)
prevent dangling edges (edges = | 3 | @a A
. 2 | 6,15 [ 2 (-1,0,-1)
not belonging to any face). I 2| @
3 | 6,2, 7\ \\5 > 3 (-1,0,1)
® Also,isolated vertices are s | 738 S| (1,0,1)
6 (5,2) [HI —
a.”owed. 5 4,3,2,1 // R 5 (0,1,0)
7| 63 HE=
\ 6 (1,1,1)
8 | (54)
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Mesh Data Structures

Pyramid example
(implicit edges)

® Faces point to vertices. There is
no explicit edge information.

® Edges can be retrieved from = G

opology eometry

faces.

Faces Vertices

® No dangling edges are possible: ] 154 +——-bL1 | ao-
all edges are those encoded in A ;&i 2 | 1o

v
o Still, it is possible to have 4 N I )
isolated vertices. 5 | (01,0
6 (1,1,1)

edges: (1,4); (4,3); (3,2); (2,1)

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA



Mesh Data Structures

- Storing faces with an arbitrary

number of vertices is not very
Faces y Y -
computer” friendly.
1 1,5,4
2 5 2 1 - faces with more than 3 vertices can
lﬁ Vs 1; \ present problems (non planar, non
3 5,2,3
convex)
4 5,3, 4
h a2 + Every face can be subdivided into

triangles (no ambiguity for planar
faces)

=+ The triangle is the most simple
polygon (always planar)

+ Triangles are usually supported in
hardware

+ Triangles are always convex

(]
Triangle Mesh!
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