

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

Versão 4.0 - Português

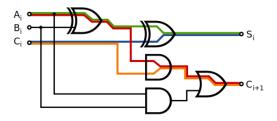
Aula Nº 08:

Título: Definição de Circuito Combinatório; Tempo de Propagação de um Circuito

Sumário: Noção de circuito combinatório; Tempo de propagação num circuito; Dispos-

itivos lógicos especiais: buffer de três estados (tri-state) e portas de passagem

(transmission gates).


2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Definição de Circuito Combinatório Tempo de Propagação de um Circuito

Aula Anterior

Na aula anterior:

- ▶ Minimização de Karnaugh:
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - o Implicantes e implicados;
 - o Implicantes e implicados primos;
 - o Implicantes e implicados primos essenciais.
 - Método de minimização de Karnaugh:
 - o Algoritmo de minimização;
 - o Forma normal/mínima disjuntiva;
 - o Forma normal/mínima conjuntiva;
 - o Funções incompletamente especificadas.

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos	
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	LO
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) – Som., Comp., etc.	L1
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Circuitos Sequenciais: Latches	P2
26/Out a 31/Out	Circuitos Sequenciais: Flip-Flops	Ling. de Descrição e Simulação de HW (ferramentas disponíveis no laboratório)	L2
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5
14/Dez a 18/Dez	P6	P6	L6

Prof. Nuno Roma Sistemas Digitais 2015/16

Sumário

■ Tema da aula de hoje:

- ▶ Noção de circuito combinatório;
- ▶ Tempo de propagação num circuito;
- ▶ Dispositivos lógicos especiais:
 - Buffer de três estados (tri-state);
 - Portas de passagem (transmission gates).

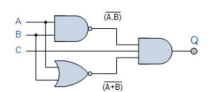
■ Bibliografia:

- M. Mano, C. Kime: Secções 3.1.4, 3.4 e 3.1.6
- G. Arroz, J. Monteiro, A. Oliveira: Secção 6.2 e 2.10

NOÇÃO DE CIRCUITO COMBINATÓRIO

Prof. Nuno Roma

Sistemas Digitais 2015/16


5

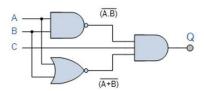
Noção de Circuito Combinatório

Circuito Combinatório:

- ▶ A saída é uma função que depende <u>apenas</u> da entrada actual;
- ► Definido através de:
 - Função Booleana Ex: $Q = (\overline{A.B}).(\overline{A+B}).C$
 - Diagrama lógico
 - Tabela de verdade

С	В	Α	Q
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Prof. Nuno Roma


Sistemas Digitais 2015/16

Noção de Circuito Combinatório

Circuito Combinatório:

▶ A saída é uma função que depende **apenas** da entrada actual;

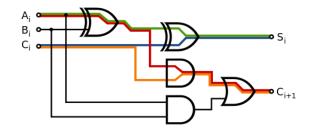
▶ Definido em contraste com a noção de circuito sequencial, em que a saída depende não só da entrada actual, mas também do valores anteriores dessa entrada...

i.e., circuitos sequenciais têm "efeito de memória", enquanto que um circuito combinatório não.

Veremos daqui a algumas semanas...

Prof. Nuno Roma

Sistemas Digitais 2015/16


7

Noção de Circuito Combinatório

Circuito Combinatório:

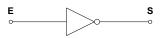
- ▶ Até ao momento, tem-se assumido um modelo **ideal** dos circuitos lógicos, em que a saída muda *instantaneamente* face aos valores na entrada do circuito.
- Na realidade, todos os circuitos caracterizam-se por um certo tempo de propagação, entre as entradas e as saídas, e que depende no número e complexidade das portas lógicas envolvidas:

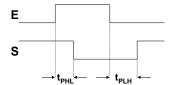
Prof. Nuno Roma

Sistemas Digitais 2015/16

Tempo de Propagação num Circuito Lógico

Prof. Nuno Roma


Sistemas Digitais 2015/16


a

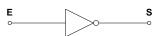
Tempos de Propagação

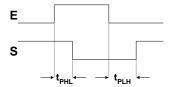
- Tempo de Propagação:
 - corresponde ao intervalo de tempo necessário para que uma alteração na entrada se propague até à saída de uma determinada porta lógica ou circuito combinatório.
 - ▶ t_{PHL} Tempo de propagação de H para L na saída, desde a variação da entrada.
 - ▶ t_{PLH} Tempo de propagação de L para H na saída, desde a variação da entrada.

Prof. Nuno Roma

Sistemas Digitais 2015/16

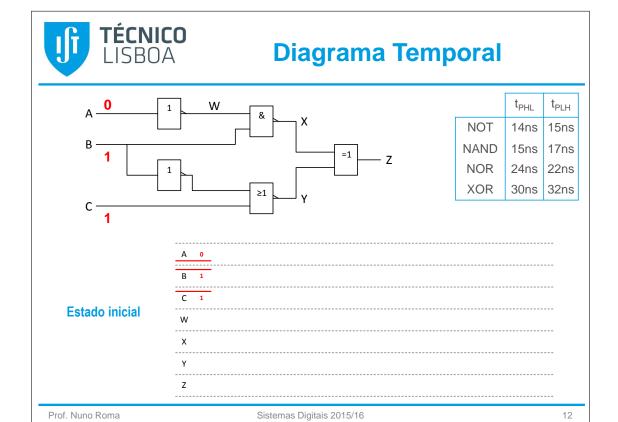
Tempos de Propagação

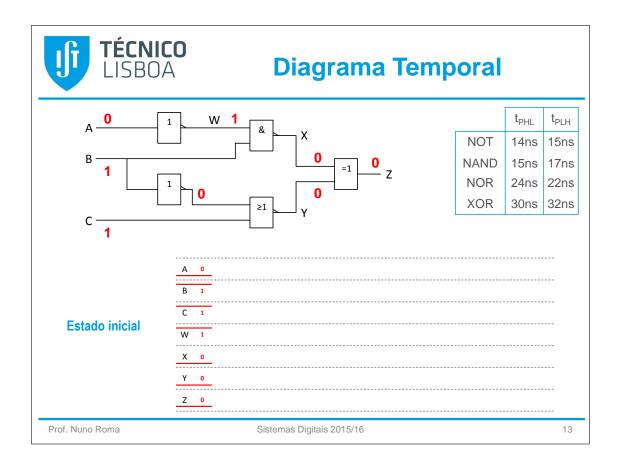

■ Exemplo (para TTL LS):

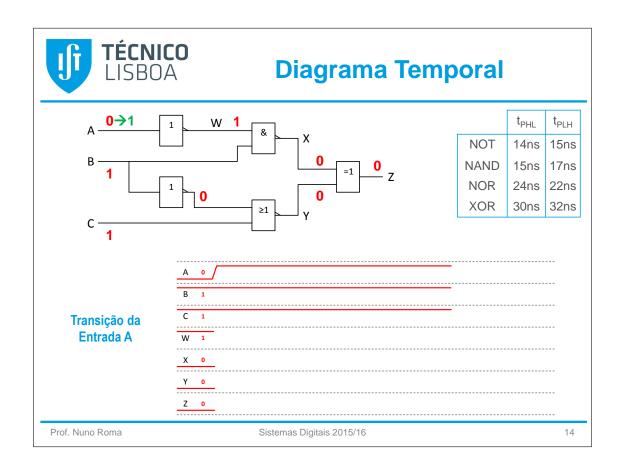

▶ Valores Típicos: 8 a 10 ns

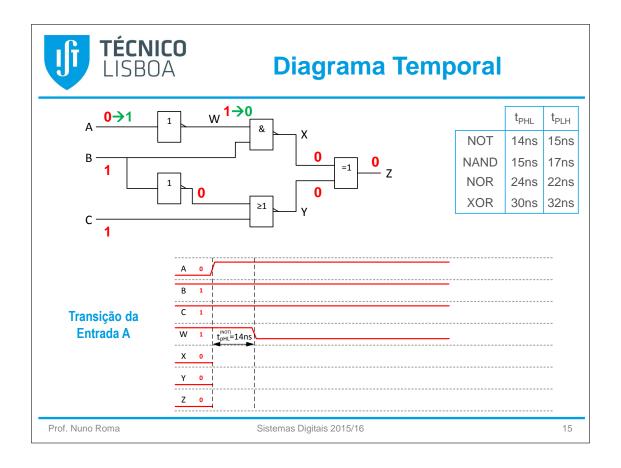
▶ Valores Máximos: 15 a 20 ns

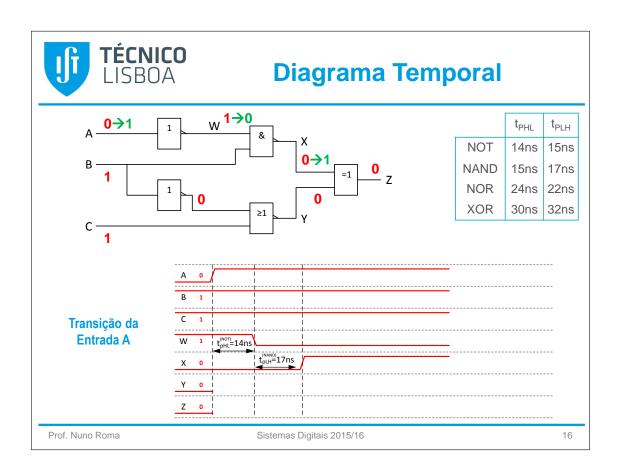
■ ATENÇÃO: Em geral, os tempos de propagação aumentam com o número de entradas ligadas à saída da porta lógica (fan-out).

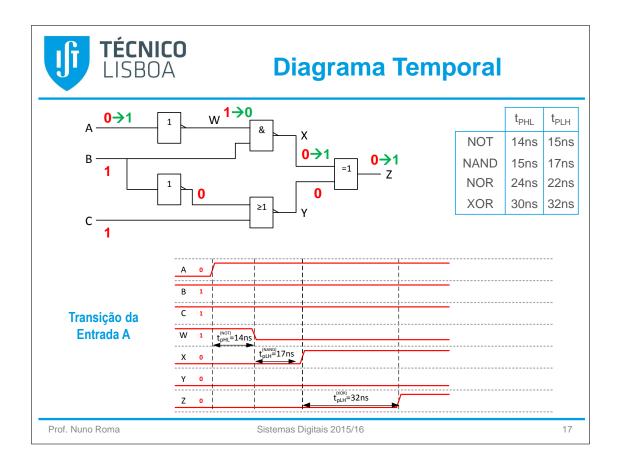

Na determinação do atraso máximo na propagação de um sinal através de um circuito combinatório consideram-se, sempre, os valores máximos.

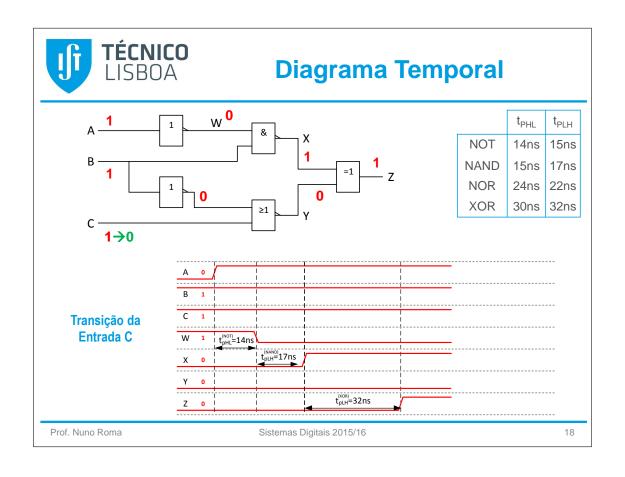


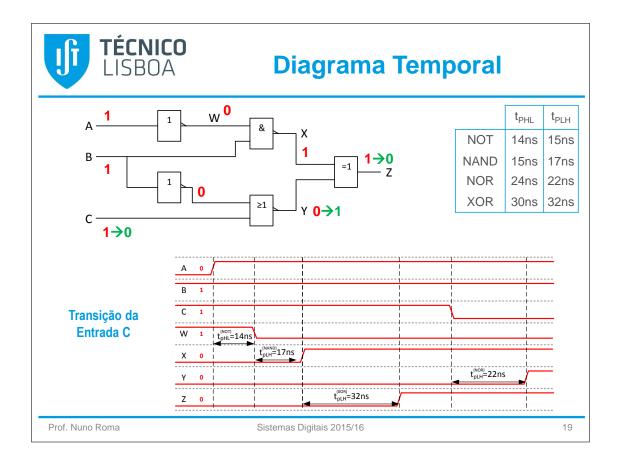


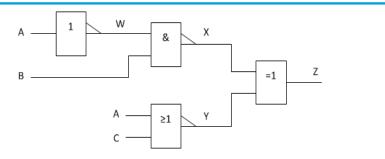

Prof. Nuno Roma


Sistemas Digitais 2015/16



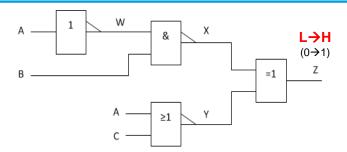






	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

O atraso máximo de um dado circuito é calculado como:


$$t_p = \max\{ t_{pLH} ; t_{pHL} \}$$

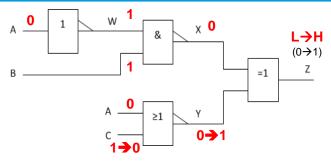
em que:

 $\mathbf{t_{pLH}}\,$ - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de Low para High

t_{pHL} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de High para Low

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - 1. X=0
- , $Y=0 \rightarrow 1$
- 2. $X=0 \rightarrow 1$
- . Y=0
- 3. X=1
- , Y=1 \rightarrow 0
- 4. $X=1 \to 0$, Y=1


Prof. Nuno Roma

Sistemas Digitais 2015/16

21

Cálculo do Atraso Máximo

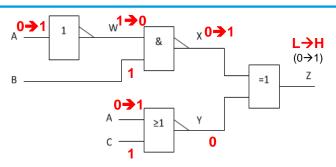
	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - X=0

3. X=1

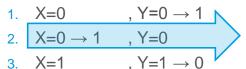
 $, Y=0 \rightarrow 1$

, $Y=1 \rightarrow 0$


- 2. $X=0 \rightarrow 1$
- , Y=1 4. $X=1 \to 0$
- $X=0 \rightarrow B=1, W=1, A=0$
- Logo C transita $1 \rightarrow 0$

 $t_{pLH} = t_{pLH}(NOR) + t_{pLH}(XOR) = 54ns$

Prof. Nuno Roma


Sistemas Digitais 2015/16

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o <u>pior</u>:

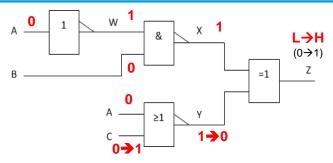
, Y=1

O pior caso corresponde à transição vir da porta NOT:

A transita $0 \rightarrow 1$

 $t_{pLH} = t_{pHL}(NOT) + t_{pLH}(NAND) + t_{pLH}(XOR)$ = 14+17+32=63ns

4. $X=1 \to 0$


Prof. Nuno Roma

Sistemas Digitais 2015/16

23

Cálculo do Atraso Máximo

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

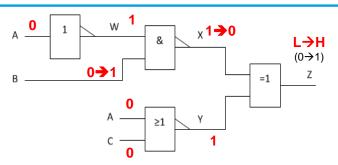
O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o <u>pior</u>:

,
$$Y=0 \rightarrow 1$$

2.
$$X=0 \rightarrow 1$$
 , $Y=$

$$, Y = 0$$

3.
$$X=1$$
 , $Y=1 \to 0$


4.
$$X=1 \to 0$$
 , $Y=1$

$$t_{pLH} = t_{pHL}(NOR) + t_{pLH}(XOR) =$$

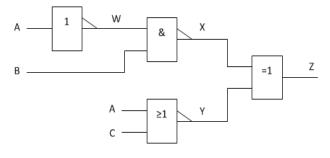
= 24+32=56ns

Prof. Nuno Roma

Sistemas Digitais 2015/16

	t_{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - X=0
- , $Y=0 \rightarrow 1$
- 2. $X=0 \rightarrow 1$
- . Y=0
- $, Y=1 \rightarrow 0$
- $t_{pLH} = t_{pHL}(NAND) + t_{pLH}(XOR) =$ = 15+32=47ns


Prof. Nuno Roma

Sistemas Digitais 2015/16

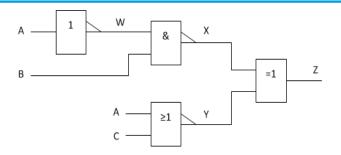
25

Cálculo do Atraso Máximo

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o pior:
 - 1. X=0
- , $Y=0 \rightarrow 1$
- \rightarrow $t_{pLH} = 54$ ns

- 2. $X=0 \to 1$
- , Y=0
- \rightarrow $t_{pLH} = 63$ ns
- 3. X=1 , $Y=1 \rightarrow 0$
- $t_{pLH} = 56$ ns
- 4. $X=1 \rightarrow 0$, Y=1
- \rightarrow $t_{pLH} = 47 ns$


Tempo de propagação

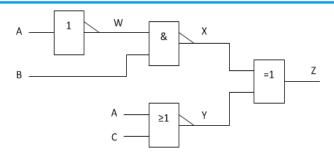
 $t_{pLH} = 63 \text{ ns}$

Prof. Nuno Roma

Sistemas Digitais 2015/16

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

- O cálculo do tempo de propagação t_{pLH} é calculado verificando todos os casos possíveis... E depois escolhendo o <u>pior</u>:
 - 1. X=0
- , $Y=0 \rightarrow 1$
- 2. $X=0 \rightarrow 1$
- , Y=0
- 3. X=1
- , Y=1 \rightarrow 0
- 4. $X=1 \to 0$
- , Y=1
- Ver todos os casos possíveis...
- verificar qual é o pior!!!


Prof. Nuno Roma

Sistemas Digitais 2015/16

27

Cálculo do Atraso Máximo

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	15ns	17ns
NOR	24ns	22ns
XOR	30ns	32ns

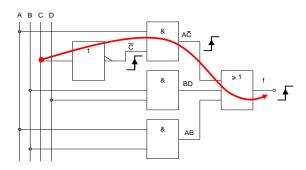
O atraso máximo de um dado circuito é calculado como:

$$t_p = max\{t_{pLH}; t_{pHL}\}$$

em que:

 $\mathbf{t_{pLH}}\,$ - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de Low para High

t_{pHL} - máximo tempo de propagação de uma qualquer entrada para a saída que leva a saída a transitar de High para Low

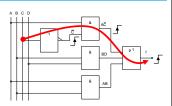

Prof. Nuno Roma

Sistemas Digitais 2015/16

Cálculo do Caminho com Atraso de Propagação Máximo

Exemplo:

O caminho de atraso máximo é activado quando C comuta e A=1, B.D=0 e A.B=0.


$$\begin{split} t_{PLHtotal} &= t_{PLHnot} + t_{PLHand} + t_{PLHor} \\ &\quad \text{ou} \\ t_{PHLtotal} &= t_{PHLnot} + t_{PHLand} + t_{PHLor} \end{split}$$

Prof. Nuno Roma Sistemas Digitais 2015/16

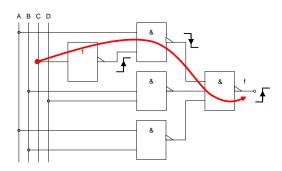
Cálculo do Caminho com Atraso de Propagação Máximo

Exemplo (cont.):

29

ABCD		
		J
	Ē.	\$1 f

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
AND	17ns	20ns
OR	24ns	22ns


$$t_{P \text{ max}} = \max (14ns + 17ns + 24ns; 15ns + 20ns + 22ns)$$

= $\max (55ns; 57ns) = 57ns$

Prof. Nuno Roma Sistemas Digitais 2015/16 30

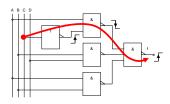
Cálculo do Caminho com Atraso de Propagação Máximo (com NANDs)

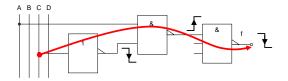
Exemplo:

O caminho de atraso máximo é activado quando C comuta e A=1, B.D=1 e A.B=1.

$$\begin{split} t_{PLHtotal} &= t_{PLHnot} + t_{PHLnand1} + t_{PLHnand2} \\ & \text{ou} \\ t_{PHLtotal} &= t_{PHLnot} + t_{PLHnand1} + t_{PHLnand2} \end{split}$$

Prof. Nuno Roma


Sistemas Digitais 2015/16


31

Cálculo do Caminho com Atraso de Propagação Máximo (com NANDs)

Exemplo (cont.)

	t _{PHL}	t _{PLH}
NOT	14ns	15ns
NAND	17ns	16ns

$$t_{P \text{ max}} = \max (14ns + 16ns + 17ns; 15ns + 17ns + 16ns)$$

= $\max (47ns; 48ns) = 48ns$

Prof. Nuno Roma

Sistemas Digitais 2015/16

DISPOSITIVOS LÓGICOS ESPECIAIS

Prof. Nuno Roma

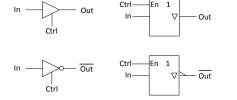
Sistemas Digitais 2015/16

33

Dispositivos Especiais

- Para além das portas básicas, existem outros dispositivos lógicos que são importantes para garantir certo tipo de funcionalidades:
 - ▶ Buffers de três estados (tri-state)
 - ▶ Portas de passagem (*transmission gates*)

Prof. Nuno Roma

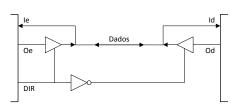

Sistemas Digitais 2015/16

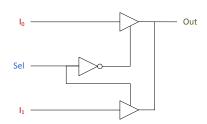
Buffers de Três Estados

■ Buffer de três estados (tri-state):

- Dispositivo que, para além de uma entrada e uma saída de dados, dispõe ainda de uma entrada de controlo que define o comportamento da saída:
 - Controlo = H → o valor da saída é igual ao valor que se apresenta na entrada de dados;
 - Controlo = L → o porto de saída fica em alta impedância, i.e., a saída fica desligada electricamente.

Ctrl	In	Out	Out
L	Χ	Desligada	Desligada
Н	L	L	Н
Н	Н	Н	L

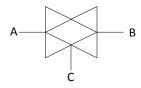

Prof. Nuno Roma Sistemas Digitais 2015/16 35


Buffers de Três Estados

■ Exemplos de aplicação:

► Linha Bidireccional:

▶ Selecção de Sinais:


Prof. Nuno Roma Sistemas Digitais 2015/16 3

Portas de Passagem

■ Portas de Passagem (*transmission-gates*):

▶ Permite, quando activada, a passagem de sinais em <u>ambos os</u> <u>sentidos</u> e em <u>toda a gama de tensão</u>, i.e., permite a passagem de sinais dentro ou fora dos níveis digitais da família lógica considerada (ex: CMOS, TTL, etc.) :

Prof. Nuno Roma

Sistemas Digitais 2015/16

37

Próxima Aula

Próxima Aula

Tema da Próxima Aula:

- ► Circuitos combinatórios típicos:
 - Descodificadores
 - Codificadores
 - Multiplexeres
 - Demultiplexeres

Prof. Nuno Roma

Sistemas Digitais 2015/16

39

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16