
15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 1/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Chapter 18. Concurrent Programming withChapter 18. Concurrent Programming with
AsyncAsync
The logic of building programs that interact with the outside world is often dominated by waiting:

waiting for the click of a mouse, or for data to be fetched from disk, or for space to be available on

an outgoing network bu�er. Even mildly sophisticated interactive applications are typically

concurrent: needing to wait for multiple di�erent events at the same time, responding

immediately to whatever event happens �rst.

One approach to concurrency is to use preemptive system threads, which is the dominant

approach in languages like Java or C#. In this model, each task that may require simultaneous

waiting is given an operating system thread of its own so it can block without stopping the entire

program.

Another approach is to have a single-threaded program, where that single thread runs an event

loop whose job is to react to external events like timeouts or mouse clicks by invoking a callback

function that has been registered for that purpose. This approach shows up in languages like

JavaScript that have single-threaded runtimes, as well as in many GUI toolkits.

Each of these mechanisms has its own trade-o�s. System threads require signi�cant memory

and other resources per thread. Also, the operating system can arbitrarily interleave the

execution of system threads, requiring the programmer to carefully protect shared resources

with locks and condition variables, which is exceedingly error-prone.

Single-threaded event-driven systems, on the other hand, execute a single task at a time and do

not require the same kind of complex synchronization that preemptive threads do. However, the

inverted control structure of an event-driven program often means that your own control �ow

has to be threaded awkwardly through the system's event loop, leading to a maze of event

callbacks.

This chapter covers the Async library, which o�ers a hybrid model that aims to provide the best

of both worlds, avoiding the performance compromises and synchronization woes of preemptive

threads without the confusing inversion of control that usually comes with event-driven systems.

ASYNC BASICSASYNC BASICS

Recall how I/O is typically done in Core. Here's a simple example:

In_channel.read_all;;
- : string -> string = <fun>
Out_channel.write_all "test.txt" ~data:"This is only a test.";;
- : unit = ()
In_channel.read_all "test.txt";;
- : string = "This is only a test."

OCaml Utop ∗ async/main.topscript , continued (part 1) ∗ all code

From the type of In_channel.read_all, you can see that it must be a blocking operation. In

particular, the fact that it returns a concrete string means it can't return until the read has

completed. The blocking nature of the call means that no progress can be made on anything else

until the read is completed.

In Async, well-behaved functions never block. Instead, they return a value of type Deferred.t

that acts as a placeholder that will eventually be �lled in with the result. As an example, consider

the signature of the Async equivalent of In_channel.read_all:

#require "async";;

open Async.Std;;

Reader.file_contents;;
- : string -> string Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 3) ∗ all code

We �rst load the Async package in the toplevel using #require, and then open Async.Std, which

adds a number of new identi�ers and modules into our environment that make using Async

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 2/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

more convenient. Opening Async.Std is standard practice for writing programs using Async,

much like opening Core.Std is for using Core.

A deferred is essentially a handle to a value that may be computed in the future. As such, if we

call Reader.file_contents, the resulting deferred will initially be empty, as you can see by

calling Deferred.peek on the resulting deferred:

let contents = Reader.file_contents "test.txt";;
val contents : string Deferred.t = <abstr>
Deferred.peek contents;;
- : string option = None

OCaml Utop ∗ async/main.topscript , continued (part 4) ∗ all code

The value in contents isn't yet determined partly because nothing running could do the

necessary I/O. When using Async, processing of I/O and other events is handled by the Async

scheduler. When writing a standalone program, you need to start the scheduler explicitly, but

utoputop knows about Async and can start the scheduler automatically. More than that, utoputop knows

about deferred values, and when you type in an expression of type Deferred.t, it will make sure

the scheduler is running and block until the deferred is determined. Thus, we can write:

contents;;
- : string = "This is only a test."

OCaml Utop ∗ async/main.topscript , continued (part 5) ∗ all code

If we peek again, we'll see that the value of contents has been determined:

Deferred.peek contents;;
- : string option = Some "This is only a test."

OCaml Utop ∗ async/main.topscript , continued (part 6) ∗ all code

In order to do real work with deferreds, we need a way of waiting for a deferred computation to

�nish, which we do using Deferred.bind. First, let's consider the type-signature of bind:

Deferred.bind ;;
- : 'a Deferred.t -> ('a -> 'b Deferred.t) -> 'b Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 7) ∗ all code

Deferred.bind d f takes a deferred value d and a function f that is to be run with the value of d

once it's determined. You can think of Deferred.bind as a kind of sequencing operator, and

what we're doing is essentially taking an asynchronous computation d and tacking on another

stage comprised by the actions of the function f.

At a more concrete level, the call to Deferred.bind returns a new deferred that becomes

determined when the deferred returned by f is determined. It also implicitly registers with the

scheduler an Async job that is responsible for running f once d is determined.

Here's a simple use of bind for a function that replaces a �le with an uppercase version of its

contents:

let uppercase_file filename =
 Deferred.bind (Reader.file_contents filename)
 (fun text ->
 Writer.save filename ~contents:(String.uppercase text))
 ;;
val uppercase_file : string -> unit Deferred.t = <fun>
uppercase_file "test.txt";;
- : unit = ()
Reader.file_contents "test.txt";;
- : string = "THIS IS ONLY A TEST."

OCaml Utop ∗ async/main.topscript , continued (part 8) ∗ all code

Writing out Deferred.bind explicitly can be rather verbose, and so Async.Std includes an in�x

operator for it: >>=. Using this operator, we can rewrite uppercase_file as follows:

let uppercase_file filename =
 Reader.file_contents filename
 >>= fun text ->
 Writer.save filename ~contents:(String.uppercase text)
 ;;

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 3/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

val uppercase_file : string -> unit Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 9) ∗ all code

In the preceding code, we've dropped the parentheses around the function on the righthand side

of the bind, and we didn't add a level of indentation for the contents of that function. This is

standard practice for using the bind operator.

Now let's look at another potential use of bind. In this case, we'll write a function that counts the

number of lines in a �le:

let count_lines filename =
 Reader.file_contents filename
 >>= fun text ->
 List.length (String.split text ~on:'\n')
 ;;
Characters 85-125:
Error: This expression has type int but an expression was expected of type
 'a Deferred.t

OCaml Utop ∗ async/main.topscript , continued (part 10) ∗ all code

This looks reasonable enough, but as you can see, the compiler is unhappy. The issue here is that

bind expects a function that returns a deferred, but we've provided it a function that returns the

nondeferred result directly. To make these signatures match, we need a function for taking an

ordinary value and wrapping it in a deferred. This function is a standard part of Async and is

called return:

return;;
- : 'a -> 'a Deferred.t = <fun>
let three = return 3;;
val three : int Deferred.t = <abstr>
three;;
- : int = 3

OCaml Utop ∗ async/main.topscript , continued (part 11) ∗ all code

Using return, we can make count_lines compile:

let count_lines filename =
 Reader.file_contents filename
 >>= fun text ->
 return (List.length (String.split text ~on:'\n'))
 ;;
val count_lines : string -> int Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 12) ∗ all code

Together, bind and return form a design pattern in functional programming known as a monad.

You'll run across this signature in many applications beyond just threads. Indeed, we already ran

across monads in the section called “bind and Other Error Handling Idioms”.

Calling bind and return together is a fairly common pattern, and as such there is a standard

shortcut for it called Deferred.map, which has the following signature:

Deferred.map;;
- : 'a Deferred.t -> f:('a -> 'b) -> 'b Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 13) ∗ all code

and comes with its own in�x equivalent, >>|. Using it, we can rewrite count_lines again a bit

more succinctly:

let count_lines filename =
 Reader.file_contents filename
 >>| fun text ->
 List.length (String.split text ~on:'\n')
 ;;
val count_lines : string -> int Deferred.t = <fun>
count_lines "/etc/hosts";;
- : int = 11

OCaml Utop ∗ async/main.topscript , continued (part 14) ∗ all code

Note that count_lines returns a deferred, but utoputop waits for that deferred to become

determined, and shows us the contents of the deferred instead.

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html#bind-and-other-error-handling-idioms
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 4/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Ivars and UponIvars and Upon

Deferreds are usually built using combinations of bind, map and return, but sometimes you

want to construct a deferred that you can determine explicitly with usercode. This is done using

an ivar. (The term ivar dates back to a language called Concurrent ML that was developed by

John Reppy in the early '90s. The "i" in ivar stands for incremental.)

There are three fundamental operations for working with an ivar: you can create one, using

Ivar.create; you can read o� the deferred that corresponds to the ivar in question, using

Ivar.read; and you can �ll an ivar, thus causing the corresponding deferred to become

determined, using Ivar.fill. These operations are illustrated below:

let ivar = Ivar.create ();;
val ivar : '_a Ivar.t = <abstr>
let def = Ivar.read ivar;;
val def : '_a Deferred.t = <abstr>
Deferred.peek def;;
- : '_a option = None
Ivar.fill ivar "Hello";;
- : unit = ()
Deferred.peek def;;
- : string option = Some "Hello"

OCaml Utop ∗ async/main.topscript , continued (part 15) ∗ all code

Ivars are something of a low-level feature; operators like map, bind and return are typically

easier to use and think about. But ivars can be useful when you want to build a synchronization

pattern that isn't already well supported.

As an example, imagine we wanted a way of scheduling a sequence of actions that would run

after a �xed delay. In addition, we'd like to guarantee that these delayed actions are executed in

the same order they were scheduled in. Here's a reasonable signature that captures this idea:

module type Delayer_intf = sig
 type t
 val create : Time.Span.t -> t
 val schedule : t -> (unit -> 'a Deferred.t) -> 'a Deferred.t
 end;;
module type Delayer_intf =
 sig
 type t
 val create : Core.Span.t -> t
 val schedule : t -> (unit -> 'a Deferred.t) -> 'a Deferred.t
 end

OCaml Utop ∗ async/main.topscript , continued (part 16) ∗ all code

An action is handed to schedule in the form of a deferred-returning thunk (a thunk is a function

whose argument is of type unit). A deferred is handed back to the caller of schedule that will

eventually be �lled with the contents of the deferred value returned by the thunk. To implement

this, we'll use an operator called upon, which has the following signature:

upon;;
- : 'a Deferred.t -> ('a -> unit) -> unit = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 17) ∗ all code

Like bind and return, upon schedules a callback to be executed when the deferred it is passed is

determined; but unlike those calls, it doesn't create a new deferred for this callback to �ll.

Our delayer implementation is organized around a queue of thunks, where every call to

schedule adds a thunk to the queue and also schedules a job in the future to grab a thunk o� the

queue and run it. The waiting will be done using the function after, which takes a time span and

returns a deferred which becomes determined after that time span elapses:

module Delayer : Delayer_intf = struct
 type t = { delay: Time.Span.t;
 jobs: (unit -> unit) Queue.t;
 }

 let create delay =
 { delay; jobs = Queue.create () }

 let schedule t thunk =
 let ivar = Ivar.create () in

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 5/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 Queue.enqueue t.jobs (fun () ->
 upon (thunk ()) (fun x -> Ivar.fill ivar x));
 upon (after t.delay) (fun () ->
 let job = Queue.dequeue_exn t.jobs in
 job ());
 Ivar.read ivar
 end;;
module Delayer : Delayer_intf

OCaml Utop ∗ async/main.topscript , continued (part 18) ∗ all code

This code isn't particularly long, but it is subtle. In particular, note how the queue of thunks is

used to ensure that the enqueued actions are run in order, even if the thunks scheduled by upon

are run out of order. This kind of subtlety is typical of code that involves ivars and upon, and

because of this, you should stick to the simpler map/bind/return style of working with deferreds

when you can.

EXAMPLES: AN ECHO SERVEREXAMPLES: AN ECHO SERVER

Now that we have the basics of Async under our belt, let's look at a small standalone Async

program. In particular, we'll write an echo server, i.e., a program that accepts connections from

clients and spits back whatever is sent to it.

The �rst step is to create a function that can copy data from an input to an output. Here, we'll use

Async's Reader and Writer modules, which provide a convenient abstraction for working with

input and output channels:

open Core.Std
open Async.Std

(* Copy data from the reader to the writer, using the provided buffer
 as scratch space *)
let rec copy_blocks buffer r w =
 Reader.read r buffer
 >>= function
 | `Eof -> return ()
 | `Ok bytes_read ->
 Writer.write w buffer ~len:bytes_read;
 Writer.flushed w
 >>= fun () ->
 copy_blocks buffer r w

OCaml ∗ async/echo.ml ∗ all code

Bind is used in the code to sequence the operations: �rst, we call Reader.read to get a block of

input. Then, when that's complete and if a new block was returned, we write that block to the

writer. Finally, we wait until the writer's bu�ers are �ushed, waiting on the deferred returned by

Writer.flushed, at which point we recurse. If we hit an end-of-�le condition, the loop is ended.

The deferred returned by a call to copy_blocks becomes determined only once the end-of-�le

condition is hit.

One important aspect of how this is written is that it uses pushback, which is to say that if the

writer can't make progress writing, the reader will stop reading. If you don't implement pushback

in your servers, then a stopped client can cause your program to leak memory, since you'll need

to allocate space for the data that's been read in but not yet written out.

You might also be concerned that the chain of deferreds that is built up as you go through the

loop would lead to a memory leak. After all, this code constructs an ever-growing chain of binds,

each of which creates a deferred. In this case, however, all of the deferreds should become

determined precisely when the �nal deferred in the chain is determined, in this case, when the

Eof condition is hit. Because of this, we could safely replace all of these deferreds with a single

deferred. Async has logic to do just this, and so there's no memory leak after all. This is

essentially a form of tail-call optimization, lifted to the Async monad.

copy_blocks provides the logic for handling a client connection, but we still need to set up a

server to receive such connections and dispatch to copy_blocks. For this, we'll use Async's Tcp

module, which has a collection of utilities for creating TCP clients and servers:

(** Starts a TCP server, which listens on the specified port, invoking
 copy_blocks every time a client connects. *)
let run () =
 let host_and_port =
 Tcp.Server.create
 ~on_handler_error:`Raise
 (Tcp.on_port 8765)

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/echo.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 6/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 (fun _addr r w ->
 let buffer = String.create (16 * 1024) in
 copy_blocks buffer r w)
 in
 ignore (host_and_port : (Socket.Address.Inet.t, int) Tcp.Server.t Deferred.t)

OCaml ∗ async/echo.ml , continued (part 1) ∗ all code

The result of calling Tcp.Server.create is a Tcp.Server.t, which is a handle to the server that

lets you shut the server down. We don't use that functionality here, so we explicitly ignore

server to suppress the unused-variables error. We put in a type annotation around the ignored

value to make the nature of the value we're ignoring explicit.

The most important argument to Tcp.Server.create is the �nal one, which is the client

connection handler. Notably, the preceding code does nothing explicit to close down the client

connections when the communication is done. That's because the server will automatically shut

down the connection once the deferred returned by the handler becomes determined.

Finally, we need to initiate the server and start the Async scheduler:

(* Call [run], and then start the scheduler *)
let () =
 run ();
 never_returns (Scheduler.go ())

OCaml ∗ async/echo.ml , continued (part 2) ∗ all code

One of the most common newbie errors with Async is to forget to run the scheduler. It can be a

bewildering mistake, because without the scheduler, your program won't do anything at all; even

calls to printf won't reach the terminal.

It's worth noting that even though we didn't spend much explicit e�ort on thinking about multiple

clients, this server is able to handle many concurrent clients without further modi�cation.

Now that we have the echo server, we can connect to the echo server using the netcat tool, which

is invoked as nc:

$./echo.native &
$ nc 127.0.0.1 8765
This is an echo server
This is an echo server
It repeats whatever I write.
It repeats whatever I write.

Terminal ∗ async/run_echo.out ∗ all code

Functions that Never ReturnFunctions that Never Return

You might wonder what's going on with the call to never_returns. never_returns is an idiom

that comes from Core that is used to mark functions that don't return. Typically, a function that

doesn't return is inferred as having return type 'a:

let rec loop_forever () = loop_forever ();;
val loop_forever : unit -> 'a = <fun>
let always_fail () = assert false;;
val always_fail : unit -> 'a = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 19) ∗ all code

This can be surprising when you call a function like this expecting it to return unit. The type-

checker won't necessarily complain in such a case:

let do_stuff n =
 let x = 3 in
 if n > 0 then loop_forever ();
 x + n
 ;;
val do_stuff : int -> int = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 20) ∗ all code

With a name like loop_forever, the meaning is clear enough. But with something like

Scheduler.go, the fact that it never returns is less clear, and so we use the type system to make

it more explicit by giving it a return type of never_returns. Let's do the same trick with

loop_forever:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/echo.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/echo.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/run_echo.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 7/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

let rec loop_forever () : never_returns = loop_forever ();;
val loop_forever : unit -> never_returns = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 21) ∗ all code

The type never_returns is uninhabited, so a function can't return a value of type

never_returns, which means only a function that never returns can have never_returns as its

return type! Now, if we rewrite our do_stuff function, we'll get a helpful type error:

let do_stuff n =
 let x = 3 in
 if n > 0 then loop_forever ();
 x + n
 ;;
Characters 38-67:
Error: This expression has type unit but an expression was expected of type
 never_returns

OCaml Utop ∗ async/main.topscript , continued (part 22) ∗ all code

We can resolve the error by calling the function never_returns:

never_returns;;
- : never_returns -> 'a = <fun>
let do_stuff n =
 let x = 3 in
 if n > 0 then never_returns (loop_forever ());
 x + n
 ;;
val do_stuff : int -> int = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 23) ∗ all code

Thus, we got the compilation to go through by explicitly marking in the source that the call to

loop_forever never returns.

Improving the Echo ServerImproving the Echo Server

Let's try to go a little bit farther with our echo server by walking through a few improvements. In

particular, we will:

Add a proper command-line interface with Command

Add a �ag to specify the port to listen on and a �ag to make the server echo back the

capitalized version of whatever was sent to it

Simplify the code using Async's Pipe interface

The following code does all of this:

open Core.Std
open Async.Std

let run ~uppercase ~port =
 let host_and_port =
 Tcp.Server.create
 ~on_handler_error:`Raise
 (Tcp.on_port port)
 (fun _addr r w ->
 Pipe.transfer (Reader.pipe r) (Writer.pipe w)
 ~f:(if uppercase then String.uppercase else Fn.id))
 in
 ignore (host_and_port : (Socket.Address.Inet.t, int) Tcp.Server.t Deferred.t);
 Deferred.never ()

let () =
 Command.async_basic
 ~summary:"Start an echo server"
 Command.Spec.(
 empty
 +> flag "-uppercase" no_arg
 ~doc:" Convert to uppercase before echoing back"
 +> flag "-port" (optional_with_default 8765 int)
 ~doc:" Port to listen on (default 8765)"
)
 (fun uppercase port () -> run ~uppercase ~port)
 |> Command.run

OCaml ∗ async/better_echo.ml ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/better_echo.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 8/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Note the use of Deferred.never in the run function. As you might guess from the name,

Deferred.never returns a deferred that is never determined. In this case, that indicates that the

echo server doesn't ever shut down.

The biggest change in the preceding code is the use of Async's Pipe. A Pipe is an asynchronous

communication channel that's used for connecting di�erent parts of your program. You can think

of it as a consumer/producer queue that uses deferreds for communicating when the pipe is

ready to be read from or written to. Our use of pipes is fairly minimal here, but they are an

important part of Async, so it's worth discussing them in some detail.

Pipes are created in connected read/write pairs:

let (r,w) = Pipe.create ();;
val r : '_a Pipe.Reader.t = <abstr>
val w : '_a Pipe.Writer.t = <abstr>

OCaml Utop ∗ async/main.topscript , continued (part 24) ∗ all code

r and w are really just read and write handles to the same underlying object. Note that r and w

have weakly polymorphic types, as discussed in the section called “Imperative Programming”,

and so can only contain values of a single, yet-to-be-determined type.

If we just try and write to the writer, we'll see that we block inde�nitely in utoputop. You can break out

of the wait by hitting Control-C:

Pipe.write w "Hello World!";;
Interrupted.

OCaml Utop ∗ async/pipe_write_break.rawscript ∗ all code

The deferred returned by write completes on its own once the value written into the pipe has

been read out:

let (r,w) = Pipe.create ();;
val r : '_a Pipe.Reader.t = <abstr>
val w : '_a Pipe.Writer.t = <abstr>
let write_complete = Pipe.write w "Hello World!";;
val write_complete : unit Deferred.t = <abstr>
Pipe.read r;;
- : [`Eof | `Ok of string] = `Ok "Hello World!"
write_complete;;
- : unit = ()

OCaml Utop ∗ async/main.topscript , continued (part 25) ∗ all code

In the function run, we're taking advantage of one of the many utility functions provided for

pipes in the Pipe module. In particular, we're using Pipe.transfer to set up a process that takes

data from a reader-pipe and moves it to a writer-pipe. Here's the type of Pipe.transfer:

Pipe.transfer;;
- : 'a Pipe.Reader.t -> 'b Pipe.Writer.t -> f:('a -> 'b) -> unit Deferred.t =
<fun>

OCaml Utop ∗ async/main.topscript , continued (part 26) ∗ all code

The two pipes being connected are generated by the Reader.pipe and Writer.pipe call

respectively. Note that pushback is preserved throughout the process, so that if the writer gets

blocked, the writer's pipe will stop pulling data from the reader's pipe, which will prevent the

reader from reading in more data.

Importantly, the deferred returned by Pipe.transfer becomes determined once the reader has

been closed and the last element is transferred from the reader to the writer. Once that deferred

becomes determined, the server will shut down that client connection. So, when a client

disconnects, the rest of the shutdown happens transparently.

The command-line parsing for this program is based on the Command library that we introduced

in Chapter 14, Command-Line Parsing. Opening Async.Std, shadows the Command module with

an extended version that contains the async_basic call:

Command.async_basic;;
- : summary:string ->
 ?readme:(unit -> string) ->

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/a-guided-tour.html#imperative-programming
http://github.com/realworldocaml/examples/blob/master/code/async/pipe_write_break.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 9/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 ('a, unit -> unit Deferred.t) Command.Spec.t -> 'a -> Command.t
= <fun>

OCaml Utop ∗ async/main.topscript , continued (part 27) ∗ all code

This di�ers from the ordinary Command.basic call in that the main function must return a

Deferred.t, and that the running of the command (using Command.run) automatically starts the

Async scheduler, without requiring an explicit call to Scheduler.go.

EXAMPLE: SEARCHING DEFINITIONS WITH DUCKDUCKGOEXAMPLE: SEARCHING DEFINITIONS WITH DUCKDUCKGO

DuckDuckGo is a search engine with a freely available search interface. In this section, we'll use

Async to write a small command-line utility for querying DuckDuckGo to extract de�nitions for a

collection of terms.

Our code is going to rely on a number of other libraries, all of which can be installed using OPAM.

Refer to this Real World OCaml page if you need help on the installation. Here's the list of libraries

we'll need:

textwrap

A library for wrapping long lines. We'll use this for printing out our results.

uri

A library for handling URIs, or "Uniform Resource Identi�ers," of which HTTP URLs are an

example.

yojson

A JSON parsing library that was described in Chapter 15, Handling JSON Data.

cohttp

A library for creating HTTP clients and servers. We need Async support, which comes with the

cohttp.async package.

Now let's dive into the implementation.

URI HandlingURI Handling

HTTP URLs, which identify endpoints across the Web, are actually part of a more general family

known as Uniform Resource Identi�ers (URIs). The full URI speci�cation is de�ned in RFC3986

and is rather complicated. Luckily, the uri library provides a strongly typed interface that takes

care of much of the hassle.

We'll need a function for generating the URIs that we're going to use to query the DuckDuckGo

servers:

open Core.Std
open Async.Std

(* Generate a DuckDuckGo search URI from a query string *)
let query_uri query =
 let base_uri = Uri.of_string "http://api.duckduckgo.com/?format=json" in
 Uri.add_query_param base_uri ("q", [query])

OCaml ∗ async/search.ml ∗ all code

A Uri.t is constructed from the Uri.of_string function, and a query parameter q is added with

the desired search query. The library takes care of encoding the URI correctly when outputting it

in the network protocol.

Parsing JSON StringsParsing JSON Strings

The HTTP response from DuckDuckGo is in JSON, a common (and thankfully simple) format that

is speci�ed in RFC4627. We'll parse the JSON data using the Yojson library, which was introduced

in Chapter 15, Handling JSON Data.

We expect the response from DuckDuckGo to come across as a JSON record, which is

represented by the Assoc tag in Yojson's JSON variant. We expect the de�nition itself to come

across under either the key "Abstract" or "De�nition," and so the following code looks under both

keys, returning the �rst one for which a nonempty value is de�ned:

(* Extract the "Definition" or "Abstract" field from the DuckDuckGo results *)
let get_definition_from_json json =
 match Yojson.Safe.from_string json with
 | `Assoc kv_list ->

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://realworldocaml.org/install
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
http://tools.ietf.org/html/rfc3986
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/
http://www.ietf.org/rfc/rfc4627.txt
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 10/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 let find key =
 begin match List.Assoc.find kv_list key with
 | None | Some (`String "") -> None
 | Some s -> Some (Yojson.Safe.to_string s)
 end
 in
 begin match find "Abstract" with
 | Some _ as x -> x
 | None -> find "Definition"
 end
 | _ -> None

OCaml ∗ async/search.ml , continued (part 1) ∗ all code

Executing an HTTP Client QueryExecuting an HTTP Client Query

Now let's look at the code for dispatching the search queries over HTTP, using the Cohttp library:

(* Execute the DuckDuckGo search *)
let get_definition word =
 Cohttp_async.Client.get (query_uri word)
 >>= fun (_, body) ->
 Pipe.to_list body
 >>| fun strings ->
 (word, get_definition_from_json (String.concat strings))

OCaml ∗ async/search.ml , continued (part 2) ∗ all code

To better understand what's going on, it's useful to look at the type for

Cohttp_async.Client.get, which we can do in utoputop:

#require "cohttp.async";;

Cohttp_async.Client.get;;
- : ?interrupt:unit Deferred.t ->
 ?headers:Cohttp.Header.t ->
 Uri.t -> (Cohttp.Response.t * string Pipe.Reader.t) Deferred.t
= <fun>

OCaml Utop ∗ async/main.topscript , continued (part 28) ∗ all code

The get call takes as a required argument a URI and returns a deferred value containing a

Cohttp.Response.t (which we ignore) and a pipe reader to which the body of the request will

be written.

In this case, the HTTP body probably isn't very large, so we call Pipe.to_list to collect the

strings from the pipe as a single deferred list of strings. We then join those strings using

String.concat and pass the result through our parsing function.

Running a single search isn't that interesting from a concurrency perspective, so let's write code

for dispatching multiple searches in parallel. First, we need code for formatting and printing out

the search result:

(* Print out a word/definition pair *)
let print_result (word,definition) =
 printf "%s\n%s\n\n%s\n\n"
 word
 (String.init (String.length word) ~f:(fun _ -> '-'))
 (match definition with
 | None -> "No definition found"
 | Some def ->
 String.concat ~sep:"\n"
 (Wrapper.wrap (Wrapper.make 70) def))

OCaml ∗ async/search.ml , continued (part 3) ∗ all code

We use the Wrapper module from the textwrap package to do the line wrapping. It may not be

obvious that this routine is using Async, but it does: the version of printf that's called here is

actually Async's specialized printf that goes through the Async scheduler rather than printing

directly. The original de�nition of printf is shadowed by this new one when you open

Async.Std. An important side e�ect of this is that if you write an Async program and forget to

start the scheduler, calls like printf won't actually generate any output!

The next function dispatches the searches in parallel, waits for the results, and then prints:

(* Run many searches in parallel, printing out the results after they're all
 done. *)
let search_and_print words =

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 11/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

 Deferred.all (List.map words ~f:get_definition)
 >>| fun results ->
 List.iter results ~f:print_result

OCaml ∗ async/search.ml , continued (part 4) ∗ all code

We used List.map to call get_definition on each word, and Deferred.all to wait for all the

results. Here's the type of Deferred.all:

Deferred.all;;
- : 'a Deferred.t list -> 'a list Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 29) ∗ all code

Note that the list returned by Deferred.all re�ects the order of the deferreds passed to it. As

such, the de�nitions will be printed out in the same order that the search words are passed in, no

matter what order the queries return in. We could rewrite this code to print out the results as

they're received (and thus potentially out of order) as follows:

(* Run many searches in parallel, printing out the results as you go *)
let search_and_print words =
 Deferred.all_unit (List.map words ~f:(fun word ->
 get_definition word >>| print_result))

OCaml ∗ async/search_out_of_order.ml , continued (part 1) ∗ all code

The di�erence is that we both dispatch the query and print out the result in the closure passed to

map, rather than wait for all of the results to get back and then print them out together. We use

Deferred.all_unit, which takes a list of unit deferreds and returns a single unit deferred that

becomes determined when every deferred on the input list is determined. We can see the type of

this function in utoputop:

Deferred.all_unit;;
- : unit Deferred.t list -> unit Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 30) ∗ all code

Finally, we create a command-line interface using Command.async_basic:

let () =
 Command.async_basic
 ~summary:"Retrieve definitions from duckduckgo search engine"
 Command.Spec.(
 empty
 +> anon (sequence ("word" %: string))
)
 (fun words () -> search_and_print words)
 |> Command.run

OCaml ∗ async/search.ml , continued (part 5) ∗ all code

And that's all we need for a simple but usable de�nition searcher:

$ corebuild -pkg cohttp.async,yojson,textwrap search.native
$./search.native "Concurrent Programming" "OCaml"
Concurrent Programming

"Concurrent computing is a form of computing in which programs are
designed as collections of interacting computational processes that
may be executed in parallel."

OCaml

"OCaml, originally known as Objective Caml, is the main implementation
of the Caml programming language, created by Xavier Leroy, Jérôme
Vouillon, Damien Doligez, Didier Rémy and others in 1996."

Terminal ∗ async/run_search.out ∗ all code

EXCEPTION HANDLINGEXCEPTION HANDLING

When programming with external resources, errors are everywhere: everything from a �aky

server to a network outage to exhausting of local resources can lead to a runtime error. When

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_out_of_order.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/run_search.out
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 12/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

programming in OCaml, some of these errors will show up explicitly in a function's return type,

and some of them will show up as exceptions. We covered exception handling in OCaml in the

section called “Exceptions”, but as we'll see, exception handling in a concurrent program

presents some new challenges.

Let's get a better sense of how exceptions work in Async by creating an asynchronous

computation that (sometimes) fails with an exception. The function maybe_raise blocks for half

a second, and then either throws an exception or returns unit, alternating between the two

behaviors on subsequent calls:

let maybe_raise =
 let should_fail = ref false in
 fun () ->
 let will_fail = !should_fail in
 should_fail := not will_fail;
 after (Time.Span.of_sec 0.5)
 >>= fun () ->
 if will_fail then raise Exit else return ()
 ;;
val maybe_raise : unit -> unit Deferred.t = <fun>
maybe_raise ();;
- : unit = ()
maybe_raise ();;
Exception:
(lib/monitor.ml.Error_
 ((exn Exit) (backtrace (""))
 (monitor
 (((name block_on_async) (here ()) (id 55) (has_seen_error true)
 (someone_is_listening true) (kill_index 0))
 ((name main) (here ()) (id 1) (has_seen_error false)
 (someone_is_listening false) (kill_index 0)))))).

OCaml Utop ∗ async/main.topscript , continued (part 31) ∗ all code

In utoputop, the exception thrown by maybe_raise () terminates the evaluation of just that

expression, but in a standalone program, an uncaught exception would bring down the entire

process.

So, how could we capture and handle such an exception? You might try to do this using OCaml's

built-in try/with statement, but as you can see that doesn't quite do the trick:

let handle_error () =
 try
 maybe_raise ()
 >>| fun () -> "success"
 with _ -> return "failure"
 ;;
val handle_error : unit -> string Deferred.t = <fun>
handle_error ();;
- : string = "success"
handle_error ();;
Exception:
(lib/monitor.ml.Error_
 ((exn Exit) (backtrace (""))
 (monitor
 (((name block_on_async) (here ()) (id 58) (has_seen_error true)
 (someone_is_listening true) (kill_index 0))
 ((name main) (here ()) (id 1) (has_seen_error false)
 (someone_is_listening false) (kill_index 0)))))).

OCaml Utop ∗ async/main.topscript , continued (part 32) ∗ all code

This didn't work because try/with only captures exceptions that are thrown in the code directly

executed within it, while maybe_raise schedules an Async job to run in the future, and it's that

job that throws an exception.

We can capture this kind of asynchronous error using the try_with function provided by Async:

let handle_error () =
 try_with (fun () -> maybe_raise ())
 >>| function
 | Ok () -> "success"
 | Error _ -> "failure"
 ;;
val handle_error : unit -> string Deferred.t = <fun>
handle_error ();;
- : string = "success"

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
https://v1.realworldocaml.org/v1/en/html/error-handling.html#exceptions
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 13/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

handle_error ();;
- : string = "failure"

OCaml Utop ∗ async/main.topscript , continued (part 33) ∗ all code

try_with f takes as its argument a deferred-returning thunk f and returns a deferred that

becomes determined either as Ok of whatever f returned, or Error exn if f threw an exception

before its return value became determined.

MonitorsMonitors

try_with is a great way of handling exceptions in Async, but it's not the whole story. All of

Async's exception-handling mechanisms, try_with included, are built on top of Async's system

of monitors, which are inspired by the error-handling mechanism in Erlang of the same name.

Monitors are fairly low-level and are only occasionally used directly, but it's nonetheless worth

understanding how they work.

In Async, a monitor is a context that determines what to do when there is an unhandled

exception. Every Async job runs within the context of some monitor, which, when the job is

running, is referred to as the current monitor. When a new Async job is scheduled, say, using

bind or map, it inherits the current monitor of the job that spawned it.

Monitors are arranged in a tree—when a new monitor is created (say, using Monitor.create), it

is a child of the current monitor. You can explicitly run jobs within a monitor using within,

which takes a thunk that returns a nondeferred value, or within', which takes a thunk that

returns a deferred. Here's an example:

let blow_up () =
 let monitor = Monitor.create ~name:"blow up monitor" () in
 within' ~monitor maybe_raise
 ;;
val blow_up : unit -> unit Deferred.t = <fun>
blow_up ();;
- : unit = ()
blow_up ();;
Exception:
(lib/monitor.ml.Error_
 ((exn Exit) (backtrace (""))
 (monitor
 (((name "blow up monitor") (here ()) (id 69) (has_seen_error true)
 (someone_is_listening false) (kill_index 0))
 ((name block_on_async) (here ()) (id 68) (has_seen_error false)
 (someone_is_listening true) (kill_index 0))
 ((name main) (here ()) (id 1) (has_seen_error false)
 (someone_is_listening false) (kill_index 0)))))).

OCaml Utop ∗ async/main.topscript , continued (part 34) ∗ all code

In addition to the ordinary stack-trace, the exception displays the trace of monitors through

which the exception traveled, starting at the one we created, called "blow up monitor." The other

monitors you see come from utoputop's special handling of deferreds.

Monitors can do more than just augment the error-trace of an exception. You can also use a

monitor to explicitly handle errors delivered to that monitor. The Monitor.errors call is a

particularly important one. It detaches the monitor from its parent, handing back the stream of

errors that would otherwise have been delivered to the parent monitor. This allows one to do

custom handling of errors, which may include reraising errors to the parent. Here is a very

simple example of a function that captures and ignores errors in the processes it spawns:

let swallow_error () =
 let monitor = Monitor.create () in
 Stream.iter (Monitor.errors monitor) ~f:(fun _exn ->
 printf "an error happened\n");
 within' ~monitor (fun () ->
 after (Time.Span.of_sec 0.5) >>= fun () -> failwith "Kaboom!")
 ;;
val swallow_error : unit -> 'a Deferred.t = <fun>
swallow_error ();;
an error happened

OCaml Utop ∗ async/main-35.rawscript ∗ all code

The message "an error happened" is printed out, but the deferred returned by swallow_error is

never determined. This makes sense, since the calculation never actually completes, so there's no

value to return. You can break out of this in utoputop by hitting Control+C .

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-35.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 14/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Here's an example of a monitor that passes some exceptions through to the parent and handles

others. Exceptions are sent to the parent using Monitor.send_exn, with Monitor.current

being called to �nd the current monitor, which is the parent of the newly created monitor:

exception Ignore_me;;
exception Ignore_me
let swallow_some_errors exn_to_raise =
 let child_monitor = Monitor.create () in
 let parent_monitor = Monitor.current () in
 Stream.iter (Monitor.errors child_monitor) ~f:(fun error ->
 match Monitor.extract_exn error with
 | Ignore_me -> printf "ignoring exn\n"
 | _ -> Monitor.send_exn parent_monitor error);
 within' ~monitor:child_monitor (fun () ->
 after (Time.Span.of_sec 0.5)
 >>= fun () -> raise exn_to_raise)
 ;;
val swallow_some_errors : exn -> 'a Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 36) ∗ all code

Note that we use Monitor.extract_exn to grab the underlying exception that was thrown.

Async wraps exceptions it catches with extra information, including the monitor trace, so you

need to grab the underlying exception to match on it.

If we pass in an exception other than Ignore_me, like, say, the built-in exception Not_found, then

the exception will be passed to the parent monitor and delivered as usual:

swallow_some_errors Not_found;;
Exception:
(lib/monitor.ml.Error_
 ((exn Not_found) (backtrace (""))
 (monitor
 (((name (id 72)) (here ()) (id 72) (has_seen_error true)
 (someone_is_listening true) (kill_index 0))
 ((name block_on_async) (here ()) (id 71) (has_seen_error true)
 (someone_is_listening true) (kill_index 0))
 ((name main) (here ()) (id 1) (has_seen_error false)
 (someone_is_listening false) (kill_index 0)))))).

OCaml Utop ∗ async/main.topscript , continued (part 37) ∗ all code

If instead we use Ignore_me, the exception will be ignorred, and the deferred never becomes

determined:

swallow_some_errors Ignore_me;;
ignoring exn

OCaml Utop ∗ async/main-38.rawscript ∗ all code

In practice, you should rarely use monitors directly, and instead use functions like try_with and

Monitor.protect that are built on top of monitors. One example of a library that uses monitors

directly is Tcp.Server.create, which tracks both exceptions thrown by the logic that handles

the network connection and by the callback for responding to an individual request, in either

case responding to an exception by closing the connection. It is for building this kind of custom

error handling that monitors can be helpful.

Example: Handling Exceptions with DuckDuckGoExample: Handling Exceptions with DuckDuckGo

Let's now go back and improve the exception handling of our DuckDuckGo client. In particular,

we'll change it so that any query that fails is reported without preventing other queries from

completing.

The search code as it is fails rarely, so let's make a change that allows us to trigger failures more

predictably. We'll do this by making it possible to distribute the requests over multiple servers.

Then, we'll handle the errors that occur when one of those servers is misspeci�ed.

First we'll need to change query_uri to take an argument specifying the server to connect to:

(* Generate a DuckDuckGo search URI from a query string *)
let query_uri ~server query =
 let base_uri =
 Uri.of_string (String.concat ["http://";server;"/?format=json"])
 in
 Uri.add_query_param base_uri ("q", [query])

OCaml ∗ async/search_with_configurable_server.ml , continued (part 1) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-38.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_configurable_server.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 15/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

In addition, we'll make the necessary changes to get the list of servers on the command-line, and

to distribute the search qeuries round-robin across the list of servers. Now, let's see what

happens if we rebuild the application and run it giving it a list of servers, some of which won't

respond to the query:

Terminal ∗ async/run_search_with_configurable_server.out ∗ all code

As you can see, we got a "Connection refused" failure, which ends the entire program, even

though one of the two queries would have gone through successfully on its own. We can handle

the failures of individual connections separately by using the try_with function within each call

to get_definition, as follows:

(* Execute the DuckDuckGo search *)
let get_definition ~server word =
 try_with (fun () ->
 Cohttp_async.Client.get (query_uri ~server word)
 >>= fun (_, body) ->
 Pipe.to_list body
 >>| fun strings ->
 (word, get_definition_from_json (String.concat strings)))
 >>| function
 | Ok (word,result) -> (word, Ok result)
 | Error _ -> (word, Error "Unexpected failure")

OCaml ∗ async/search_with_error_handling.ml , continued (part 1) ∗ all code

Here, we �rst use try_with to capture the exception, and then use map (the >>| operator) to

convert the error into the form we want: a pair whose �rst element is the word being searched

for, and the second element is the (possibly erroneous) result.

Now we just need to change the code for print_result so that it can handle the new type:

(* Print out a word/definition pair *)
let print_result (word,definition) =
 printf "%s\n%s\n\n%s\n\n"
 word
 (String.init (String.length word) ~f:(fun _ -> '-'))
 (match definition with
 | Error s -> "DuckDuckGo query failed: " ^ s
 | Ok None -> "No definition found"
 | Ok (Some def) ->
 String.concat ~sep:"\n"
 (Wrapper.wrap (Wrapper.make 70) def))

OCaml ∗ async/search_with_error_handling.ml , continued (part 2) ∗ all code

Now, if we run that same query, we'll get individualized handling of the connection failures:

$ corebuild -pkg cohttp.async,yojson,textwrap \
 search_with_error_handling.native
$./search_with_error_handling.native \
 -servers localhost,api.duckduckgo.com \
 "Concurrent Programming" OCaml

$ corebuild -pkg cohttp.async,yojson,textwrap \
 search_with_configurable_server.native
$./search_with_configurable_server.native \
 -servers localhost,api.duckduckgo.com \
 "Concurrent Programming" OCaml
("unhandled exception"
 ((lib/monitor.ml.Error_
 ((exn (Unix.Unix_error "Connection refused" connect 127.0.0.1:80))
 (backtrace
 ("Raised by primitive operation at file \"lib/unix_syscalls.ml\", line 797, cha
 "Called from file \"lib/deferred.ml\", line 20, characters 62-65"
 "Called from file \"lib/scheduler.ml\", line 125, characters 6-17"
 "Called from file \"lib/jobs.ml\", line 65, characters 8-13" ""))
 (monitor
 (((name Tcp.close_sock_on_error) (here ()) (id 5) (has_seen_error true)
 (someone_is_listening true) (kill_index 0))
 ((name main) (here ()) (id 1) (has_seen_error true)
 (someone_is_listening false) (kill_index 0))))))
 (Pid 15971)))

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/run_search_with_configurable_server.out
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_error_handling.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_error_handling.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 16/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Concurrent Programming

DuckDuckGo query failed: Unexpected failure

OCaml

"OCaml, originally known as Objective Caml, is the main implementation
of the Caml programming language, created by Xavier Leroy, Jérôme
Vouillon, Damien Doligez, Didier Rémy and others in 1996."

Terminal ∗ async/run_search_with_error_handling.out ∗ all code

Now, only the query that went to localhost failed.

Note that in this code, we're relying on the fact that Cohttp_async.Client.get will clean up

after itself after an exception, in particular by closing its �le descriptors. If you need to implement

such functionality directly, you may want to use the Monitor.protect call, which is analogous

to the protect call described in the section called “Cleaning Up in the Presence of Exceptions”.

TIMEOUTS, CANCELLATION, AND CHOICESTIMEOUTS, CANCELLATION, AND CHOICES

In a concurrent program, one often needs to combine results from multiple, distinct concurrent

subcomputations going on in the same program. We already saw this in our DuckDuckGo

example, where we used Deferred.all and Deferred.all_unit to wait for a list of deferreds to

become determined. Another useful primitive is Deferred.both, which lets you wait until two

deferreds of di�erent types have returned, returning both values as a tuple. Here, we use the

function sec, which is shorthand for creating a time-span equal to a given number of seconds:

let string_and_float = Deferred.both
 (after (sec 0.5) >>| fun () -> "A")
 (after (sec 0.25) >>| fun () -> 32.33);;
val string_and_float : (string * float) Deferred.t = <abstr>
string_and_float;;
- : string * float = ("A", 32.33)

OCaml Utop ∗ async/main.topscript , continued (part 39) ∗ all code

Sometimes, however, we want to wait only for the �rst of multiple events to occur. This happens

particularly when dealing with timeouts. In that case, we can use the call Deferred.any, which,

given a list of deferreds, returns a single deferred that will become determined once any of the

values on the list is determined:

Deferred.any [(after (sec 0.5) >>| fun () -> "half a second")
 ; (after (sec 10.) >>| fun () -> "ten seconds")] ;;
- : string = "half a second"

OCaml Utop ∗ async/main.topscript , continued (part 40) ∗ all code

Let's use this to add timeouts to our DuckDuckGo searches. The following code is a wrapper for

get_definition that takes a timeout (in the form of a Time.Span.t) and returns either the

de�nition, or, if that takes too long, an error:

let get_definition_with_timeout ~server ~timeout word =
 Deferred.any
 [(after timeout >>| fun () -> (word,Error "Timed out"))
 ; (get_definition ~server word
 >>| fun (word,result) ->
 let result' = match result with
 | Ok _ as x -> x
 | Error _ -> Error "Unexpected failure"
 in
 (word,result')
)
]

OCaml ∗ async/search_with_timeout.ml , continued (part 1) ∗ all code

We use >>| above to transform the deferred values we're waiting for so that Deferred.any can

choose between values of the same type.

A problem with this code is that the HTTP query kicked o� by get_definition is not actually

shut down when the timeout �res. As such, get_definition_with_timeout can leak an open

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/run_search_with_error_handling.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/error-handling.html#cleaning-up-in-the-presence-of-exceptions
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_timeout.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 17/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

connection. Happily, Cohttp does provide a way of shutting down a client. You can pass a deferred

under the label interrupt to Cohttp_async.Client.get. Once interrupt is determined, the

client connection will be shut down.

The following code shows how you can change get_definition and

get_definition_with_timeout to cancel the get call if the timeout expires:

(* Execute the DuckDuckGo search *)
let get_definition ~server ~interrupt word =
 try_with (fun () ->
 Cohttp_async.Client.get ~interrupt (query_uri ~server word)
 >>= fun (_, body) ->
 Pipe.to_list body
 >>| fun strings ->
 (word, get_definition_from_json (String.concat strings)))
 >>| function
 | Ok (word,result) -> (word, Ok result)
 | Error exn -> (word, Error exn)

OCaml ∗ async/search_with_timeout_no_leak_simple.ml , continued (part 1) ∗ all code

Next, we'll modify get_definition_with_timeout to create a deferred to pass in to

get_definition, which will become determined when our timeout expires:

let get_definition_with_timeout ~server ~timeout word =
 get_definition ~server ~interrupt:(after timeout) word
 >>| fun (word,result) ->
 let result' = match result with
 | Ok _ as x -> x
 | Error _ -> Error "Unexpected failure"
 in
 (word,result')

OCaml ∗ async/search_with_timeout_no_leak_simple.ml , continued (part 2) ∗ all code

This will work and will cause the connection to shutdown cleanly when we time out; but our

code no longer explicitly knows whether or not the timeout has kicked in. In particular, the error

message on a timeout will now be "Unexpected failure" rather than "Timed out", which it

was in our previous implementation.

We can get more precise handling of timeouts using Async's choose function. choose lets you

pick among a collection of di�erent deferreds, reacting to exactly one of them. Each deferred is

paired, using the function choice, with a function that is called if and only if that deferred is

chosen. Here's the type signature of choice and choose:

choice;;
- : 'a Deferred.t -> ('a -> 'b) -> 'b Deferred.choice = <fun>
choose;;
- : 'a Deferred.choice list -> 'a Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 41) ∗ all code

Note that there's no guarantee that the winning deferred will be the one that becomes determined

�rst. But choose does guarantee that only one choice will be chosen, and only the chosen

choice will execute the attached function.

In the following example, we use choose to ensure that the interrupt deferred becomes

determined if and only if the timeout deferred is chosen. Here's the code:

let get_definition_with_timeout ~server ~timeout word =
 let interrupt = Ivar.create () in
 choose
 [choice (after timeout) (fun () ->
 Ivar.fill interrupt ();
 (word,Error "Timed out"))
 ; choice (get_definition ~server ~interrupt:(Ivar.read interrupt) word)
 (fun (word,result) ->
 let result' = match result with
 | Ok _ as x -> x
 | Error _ -> Error "Unexpected failure"
 in
 (word,result')
)
]

OCaml ∗ async/search_with_timeout_no_leak.ml , continued (part 2) ∗ all code

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_timeout_no_leak_simple.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_timeout_no_leak_simple.ml
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/search_with_timeout_no_leak.ml
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 18/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

Now, if we run this with a suitably small timeout, we'll see that one query succeeds and the other

fails reporting a timeout:

$ corebuild -pkg cohttp.async,yojson,textwrap \
 search_with_timeout_no_leak.native
$./search_with_timeout_no_leak.native \
 "concurrent programming" ocaml -timeout 0.2s
concurrent programming

DuckDuckGo query failed: Timed out

ocaml

"OCaml or Objective Caml, is the main implementation of the Caml
programming language, created by Xavier Leroy, Jérôme Vouillon,
Damien Doligez, Didier Rémy and others in 1996."

Terminal ∗ async/run_search_with_timeout_no_leak.out ∗ all code

WORKING WITH SYSTEM THREADSWORKING WITH SYSTEM THREADS

Although we haven't worked with them yet, OCaml does have built-in support for true system

threads, i.e., kernel-level threads whose interleaving is controlled by the operating system. We

discussed in the beginning of the chapter why Async is generally a better choice than system

threads, but even if you mostly use Async, OCaml's system threads are sometimes necessary, and

it's worth understanding them.

The most surprising aspect of OCaml's system threads is that they don't a�ord you any access to

physical parallelism. That's because OCaml's runtime has a single runtime lock that at most one

thread can be holding at a time.

Given that threads don't provide physical parallelism, why are they useful at all?

The most common reason for using system threads is that there are some operating system calls

that have no nonblocking alternative, which means that you can't run them directly in a system

like Async without blocking your entire program. For this reason, Async maintains a thread pool

for running such calls. Most of the time, as a user of Async you don't need to think about this, but

it is happening under the covers.

Another reason to have multiple threads is to deal with non-OCaml libraries that have their own

event loop or for another reason need their own threads. In that case, it's sometimes useful to run

some OCaml code on the foreign thread as part of the communication to your main program.

OCaml's foreign function interface is discussed in more detail in Chapter 19, Foreign Function

Interface.

Another occasional use for system threads is to better interoperate with compute-intensive

OCaml code. In Async, if you have a long-running computation that never calls bind or map, then

that computation will block out the Async runtime until it completes.

One way of dealing with this is to explicitly break up the calculation into smaller pieces that are

separated by binds. But sometimes this explicit yielding is impractical, since it may involve

intrusive changes to an existing codebase. Another solution is to run the code in question in a

separate thread. Async's In_thread module provides multiple facilities for doing just this,

In_thread.run being the simplest. We can simply write:

let def = In_thread.run (fun () -> List.range 1 10);;
val def : int list Deferred.t = <abstr>
def;;
- : int list = [1; 2; 3; 4; 5; 6; 7; 8; 9]

OCaml Utop ∗ async/main.topscript , continued (part 42) ∗ all code

to cause List.range 1 10 to be run on one of Async's worker threads. When the computation is

complete, the result is placed in the deferred, where it can be used in the ordinary way from

Async.

Interoperability between Async and system threads can be quite tricky. Consider the following

function for testing how responsive Async is. The function takes a deferred-returning thunk, and

it �rst runs that thunk, and then uses Clock.every to wake up every 100 milliseconds and print

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/run_search_with_timeout_no_leak.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/foreign-function-interface.html
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 19/20

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

out a timestamp, until the returned deferred becomes determined, at which point it prints out

one last timestamp:

let log_delays thunk =
 let start = Time.now () in
 let print_time () =
 let diff = Time.diff (Time.now ()) start in
 printf "%s, " (Time.Span.to_string diff)
 in
 let d = thunk () in
 Clock.every (sec 0.1) ~stop:d print_time;
 d >>| fun () -> print_time (); printf "\n"
 ;;
val log_delays : (unit -> unit Deferred.t) -> unit Deferred.t = <fun>

OCaml Utop ∗ async/main.topscript , continued (part 43) ∗ all code

If we feed this function a simple timeout deferred, it works as you might expect, waking up

roughly every 100 milliseconds:

log_delays (fun () -> after (sec 0.5));;
0.154972ms, 102.126ms, 203.658ms, 305.73ms, 407.903ms, 501.563ms,
- : unit = ()

OCaml Utop ∗ async/main-44.rawscript ∗ all code

Now see what happens if, instead of waiting on a clock event, we wait for a busy loop to �nish

running:

let busy_loop n =
 let x = ref None in
 for i = 1 to 100_000_000 do x := Some i done
 ;;
val busy_loop : 'a -> unit = <fun>
log_delays (fun () -> return (busy_loop ()));;
19.2185s,
- : unit = ()

OCaml Utop ∗ async/main-45.rawscript ∗ all code

As you can see, instead of waking up 10 times a second, log_delays is blocked out entirely while

busy_loop churns away.

If, on the other hand, we use In_thread.run to o�oad this to a di�erent system thread, the

behavior will be di�erent:

log_delays (fun () -> In_thread.run busy_loop);;
0.332117ms, 16.6319s, 18.8722s,
- : unit = ()

OCaml Utop ∗ async/main-46.rawscript ∗ all code

Now log_delays does get a chance to run, but not nearly as often as every 100 milliseconds. The

reason is that now that we're using system threads, we are at the mercy of the operating system

to decide when each thread gets scheduled. The behavior of threads is very much dependent on

the operating system and how it is con�gured.

Another tricky aspect of dealing with OCaml threads has to do with allocation. When compiling to

native code, OCaml's threads only get a chance to give up the runtime lock when they interact

with the allocator, so if there's a piece of code that doesn't allocate at all, then it will never allow

another OCaml thread to run. Bytecode doesn't have this behavior, so if we run a nonallocating

loop in bytecode, our timer process will get to run:

let noalloc_busy_loop () =
 for i = 0 to 100_000_000 do () done
;;
val noalloc_busy_loop : unit -> unit = <fun>
log_delays (fun () -> In_thread.run noalloc_busy_loop);;
0.169039ms, 4.58345s, 4.77866s, 4.87957s, 12.4723s, 15.0134s,
- : unit = ()

OCaml Utop ∗ async/main-47.rawscript ∗ all code

But if we compile this to a native-code executable, then the nonallocating busy loop will block

anything else from running:

https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/main.topscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-44.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-45.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-46.rawscript
http://github.com/realworldocaml/examples/
http://github.com/realworldocaml/examples/blob/master/code/async/main-47.rawscript
http://github.com/realworldocaml/examples/

15/01/2019 Chapter 18. Concurrent Programming with Async / Real World OCaml

https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html 20/20

Copyright 2012-2013, Jason Hickey, Anil Madhavapeddy and Yaron Minsky. Licensed under CC BY-NC-ND 3.0 US.

Table of Contents

Prologue
I. Language Concepts
II. Tools and Techniques

13. Maps and Hash Tables
14. Command-Line Parsing
15. Handling JSON Data
16. Parsing with OCamllex and
Menhir
17. Data Serialization with S-
Expressions
18. Concurrent Programming
with Async

III. The Runtime System
Index

Login with GitHub to viewLogin with GitHub to viewLogin with GitHub to view
and add commentsand add commentsand add comments

Buy in print and eBook.

$ corebuild -pkg async native_code_log_delays.native
$./native_code_log_delays.native
15.5686s,
$

Terminal ∗ async/run_native_code_log_delays.out ∗ all code

The takeaway from these examples is that predicting thread interleavings is a subtle business.

Staying within the bounds of Async has its limitations, but it leads to more predictable behavior.

Thread-Safety and LockingThread-Safety and Locking

Once you start working with system threads, you'll need to be careful about mutable data

structures. Most mutable OCaml data structures do not have well-de�ned semantics when

accessed concurrently by multiple threads. The issues you can run into range from runtime

exceptions to corrupted data structures to, in some rare cases, segfaults. That means you should

always use mutexes when sharing mutable data between di�erent systems threads. Even data

structures that seem like they should be safe but are mutable under the covers, like lazy values,

can have unde�ned behavior when accessed from multiple threads.

There are two commonly available mutex packages for OCaml: the Mutex module that's part of

the standard library, which is just a wrapper over OS-level mutexes and Nano_mutex, a more

e�cient alternative that takes advantage of some of the locking done by the OCaml runtime to

avoid needing to create an OS-level mutex much of the time. As a result, creating a Nano_mutex.t

is 20 times faster than creating a Mutex.t, and acquiring the mutex is about 40 percent faster.

Overall, combining Async and threads is quite tricky, but it can be done safely if the following

hold:

There is no shared mutable state between the various threads involved.

The computations executed by In_thread.run do not make any calls to the Async library.

It is possible to safely use threads in ways that violate these constraints. In particular, foreign

threads can acquire the Async lock using calls from the Thread_safe module in Async, and

thereby run Async computations safely. This is a very �exible way of connecting threads to the

Async world, but it's a complex use case that is beyond the scope of this chapter.

< Previous< Previous Next >Next >

http://creativecommons.org/licenses/by-nc-nd/3.0/us/
https://v1.realworldocaml.org/v1/en/html/prologue.html
https://v1.realworldocaml.org/v1/en/html/pt01.html
https://v1.realworldocaml.org/v1/en/html/pt02.html
https://v1.realworldocaml.org/v1/en/html/maps-and-hash-tables.html
https://v1.realworldocaml.org/v1/en/html/command-line-parsing.html
https://v1.realworldocaml.org/v1/en/html/handling-json-data.html
https://v1.realworldocaml.org/v1/en/html/parsing-with-ocamllex-and-menhir.html
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/concurrent-programming-with-async.html
https://v1.realworldocaml.org/v1/en/html/pt03.html
https://v1.realworldocaml.org/v1/en/html/ix01.html
https://github.com/login/oauth/authorize?scope=public_repo&client_id=a4258e1e0c14531eb4e5&redirect_uri=https%3A%2F%2Fv1.realworldocaml.org%2Fv1%2Fen%2Fhtml%2Fconcurrent-programming-with-async.html
http://oreil.ly/realworldOCaml
http://www.amazon.com/Real-World-OCaml-Functional-programming/dp/144932391X/
http://oreil.ly/realworldOCaml
http://github.com/realworldocaml/examples/blob/master/code/async/run_native_code_log_delays.out
http://github.com/realworldocaml/examples/
https://v1.realworldocaml.org/v1/en/html/data-serialization-with-s-expressions.html
https://v1.realworldocaml.org/v1/en/html/pt03.html

