

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

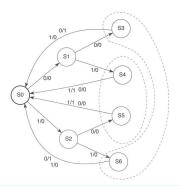
Versão 4.0 - Português

Aula Nº 19:

Título: Síntese de Circuitos Sequenciais: Minimização do Número de Estados

Sumário: Especificação e projecto de circuitos sequenciais síncronos: Minimização do

número de estados; Exemplo (Mealy).


2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Síntese de Circuitos Sequenciais: Minimização do Número de Estados

Aula Anterior

Na aula anterior:

- ▶ Definição de circuito sequencial síncrono
- ► Máquinas de Mealy e de Moore
- ► Especificação de circuitos sequenciais síncronos:
 - Diagrama de estados
- ▶ Projecto de circuitos sequenciais síncronos:
 - Codificação dos estados
 - Tabela de transição de estados
 - Determinação das funções lógicas de saída e estado seguinte

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO	
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos		
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0	
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	LO	
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1	
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) - Som., Comp., etc.	L1	
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Linguagens de Descrição e Simulação de Circuitos Digitais	P2	
26/Out a 31/Out	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	L2	
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3	
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3	
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4	
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4	
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5	
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5	
14/Dez a 18/Dez	P6	P6	L6	

Prof. Nuno Roma

Sistemas Digitais 2015/16

3

Sumário

■ Tema da aula de hoje:

- ▶ Especificação e projecto de circuitos sequenciais síncronos:
 - Minimização do número de estados
- ► Exemplo (Mealy)

Bibliografia:

- M. Mano, C. Kime: Secções 5.4 a 5.7
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.1 a 7.4

Revisão: circuito combinatório vs circuito sequencial

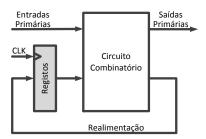
▶ Circuito Combinatório

• O valor da saída depende apenas do valor nas entradas nesse instante

► Circuito Sequencial

- O valor da saída depende do valor actual nas entradas, bem como da história anterior dos estados do circuito
 - o Como? → através de elementos de memória (ex: latches e flip-flops)
- Podem ser divididos em:
 - o Síncronos: o sinal de relógio sincroniza toda a actividade do circuito
 - Assíncronos: não usam sinal de relógio as transições de estado ocorrem sempre que há uma alteração nas entradas do circuito

Prof. Nuno Roma

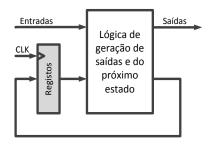

Sistemas Digitais 2015/16

5

Síntese de Circuitos Síncronos

■ Revisão: Circuito Sequencial Síncrono

▶ Duas componentes:


- Bloco de lógica puramente combinatória
 - Implementa as funções necessárias para que o circuito tenha a transição entre estados pretendida
- Elementos de memória, controlados por um sinal de relógio
 - o Mantém o estado do circuito ao longo do tempo

Prof. Nuno Roma Sistemas Digitais 2015/16

Revisão: Máquinas de Moore vs. Máquinas de Mealy

- ▶ As máquinas de estado síncronas podem ser dividias em:
 - **Máquinas de Moore**: a saída depende *apenas* das variáveis de <u>estado</u> actuais;
 - Máquinas de Mealy: a saída é função das variáveis de <u>estado</u> actuais e do valor das <u>entradas</u> presentes no circuito

Prof. Nuno Roma

Sistemas Digitais 2015/16

7

Síntese de Circuitos Síncronos

Projecto de Circuitos Sequenciais Síncronos

- **▶** Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Prof. Nuno Roma

Sistemas Digitais 2015/16

Projecto de Circuitos Sequenciais Síncronos

▶ Procedimento:

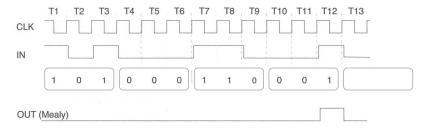
- Especificação formal:
 - Diagrama de estados
 - Fluxograma

Simplificação da especificação

- Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Prof. Nuno Roma

Sistemas Digitais 2015/16

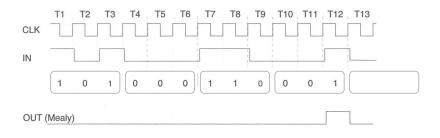

9

Simplificação da Especificação

■ Exemplo – Detector de Paridade

- ▶ Pretende-se enviar dados por uma linha, em grupos de 3 bits. A linha está sujeita a ruído, pelo que se implementou um protocolo de detecção de erros que garante que cada grupo de 3 bits tem um número par de bits a 1.
- O circuito sequencial pretendido deverá assinalar na sua saída sempre que ocorrer um erro de transmissão, identificado por um número ímpar de bits num grupo de 3 bits

Prof. Nuno Roma


Sistemas Digitais 2015/16

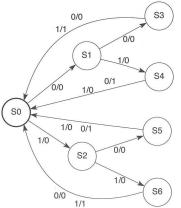
■ Exemplo – Detector de Paridade

▶ Problema:

- Como construir o diagrama de estados?
- A solução é única?
- É possível optimizar o número de estados?

Prof. Nuno Roma

Sistemas Digitais 2015/16


11

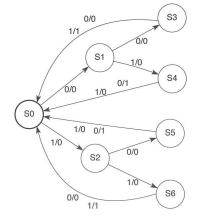
Simplificação da Especificação

Construção do Diagrama de Estados

- O diagrama de estados pode ser construído directamente a partir da definição do problema:
 - Enumerar todas as possíveis combinações de estados que podem ocorrer a partir do estado de Reset (S0), e gerar o valor 1 na saída quando o número de 1's for ímpar, retornando ao estado S0 para processar a próxima sequência de 3 bits.

Prof. Nuno Roma

Sistemas Digitais 2015/16



Construção do Diagrama de Estados

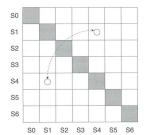
- ▶ Este diagrama de estados pode ser simplificado?
- ▶ Existem *estados equivalentes* que podem ser fundidos?

Definição:

Dois estados dizem-se <u>estados equivalentes</u> se, e só se, para cada combinação possível nas entradas, eles geram a mesma saída e transitam para o mesmo estado ou para estados que também sejam equivalentes.

Prof. Nuno Roma

Sistemas Digitais 2015/16


13

Simplificação da Especificação

■ Tabela de Implicações

- ▶ Uma linha e uma coluna por estado;
- ▶ Indica quais os pares de estados que são equivalentes;
- Uma vez que esta matriz é simétrica, apenas se considera a componente inferior à diagonal principal:
 - Exemplo: S1 \leftrightarrow S4 \Leftrightarrow S4 \leftrightarrow S1

Prof. Nuno Roma

Sistemas Digitais 2015/16

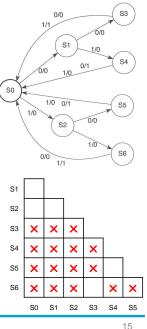


Tabela de Implicações

▶ 1º Passo: identificar os pares de estados que não podem ser equivalentes, porque geram saídas diferentes para a mesma entrada.

Exemplos:

- Os estados S0 e S6 são necessariamente não equivalentes, porque geram saídas diferentes para a entrada 1
- O estado S0, cuja saída é sempre 0, não pode ser equivalente ao estado S3, pois este gera 1 na sua saída quando a entrada é 1; Idem para os estados S4, S5 ou S6.

Prof. Nuno Roma

Sistemas Digitais 2015/16

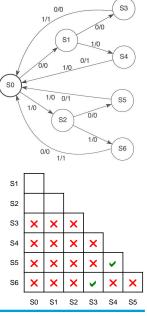

Simplificação da Especificação

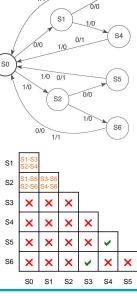
Tabela de Implicações

▶ 2º Passo: identificar os pares de estados que são equivalentes, pois não só geram as mesmas saídas, como transitam para os mesmos estados (ou equivalentes).

Exemplos:

• Os estados S4 e S5 são equivalentes, porque têm as mesmas saídas, para ambos os valores de entrada, e transitam para o estado S0, para ambos os valores de entrada; Idem para os estados S3 e S6.

■ Tabela de Implicações


▶ 3º Passo: identificar os pares de estados que poderão ser equivalentes caso outros pares também o sejam.

Exemplos:

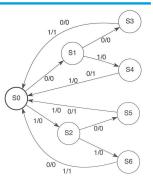
 Os estados S1 e S2 apenas poderão ser equivalentes se os estados S3 e S5 forem equivalentes e se os estados S4 e S6 forem equivalentes

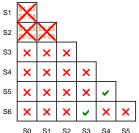
a entrada correspondente ao par (S1,S2) deve ser preenchida com os pares (S3,S5) e (S4,S6)

Prof. Nuno Roma

Sistemas Digitais 2015/16

17

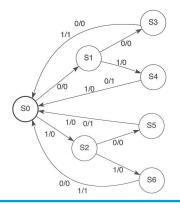

Simplificação da Especificação

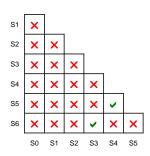

■ Tabela de Implicações

▶ 4º Passo: eliminar, através de passagens sucessivas da tabela, os elementos que não podem ser equivalentes, dado que a sua equivalência depende da equivalência de outros estados que a tabela indica como não sendo equivalentes.

Exemplos:

- O par (S0,S1) não pode ser equivalente, porque depende do par (S1,S3) que a tabela mostra como sendo não equivalente
- O par (S0,S2) não pode ser equivalente, porque depende do par (S1,S5) que a tabela mostra como sendo não equivalente
- O par (S1,S2) não pode ser equivalente, porque depende do par (S3,S5) que a tabela mostra como sendo não equivalente



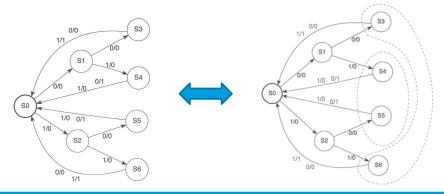


Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5

Prof. Nuno Roma

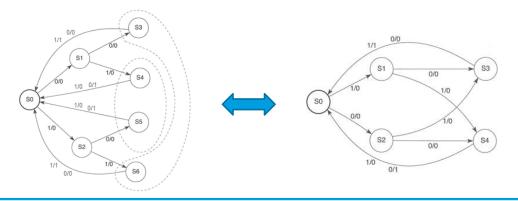
Sistemas Digitais 2015/16


19

Simplificação da Especificação

Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5


Prof. Nuno Roma

Sistemas Digitais 2015/16

Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5

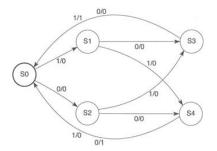
Prof. Nuno Roma Sistemas Digitais 2015/16 21

Síntese de Circuitos Síncronos

Projecto de Circuitos Sequenciais Síncronos

▶ Procedimento:

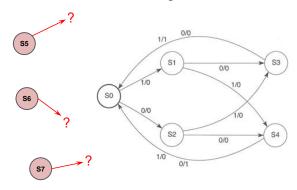
- Especificação formal:
 - Diagrama de estados
 - o Fluxograma
- Simplificação da especificação
- Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte


Prof. Nuno Roma

Sistemas Digitais 2015/16

Codificação dos Estados

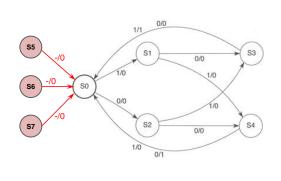
▶ Considerando a existência de 5 estados $(S_0, S_1, S_2, S_3, S_4)$, a codificação usando código binário natural irá usar k flip-flops, em que $k = \lceil \log_2(5) \rceil = \lceil 2.321 \rceil = 3$


E-t-d-	Codificação				
Estado	Q_2	Q_1	Q_0		
S_0	0	0	0		
S ₁	0	0	1		
S_2	0	1	0		
S ₂ S ₃	0	1	1		
S ₄	1	0	0		

Prof. Nuno Roma Sistemas Digitais 2015/16 23

Síntese de Circuitos Síncronos

■ Tabela de Transição de Estados


Entradas	da Tabela	Saídas da Tabela		
Entrada	Estado Presente	Estado Seguinte	Saída	
0	S ₀	S_2	0	
1	S ₀	S ₁	0	
0	S ₁	S_3	0	
1	S ₁	S_4	0	
0	S_2	S_4	0	
1	S_2	S_3	0	
0	S_3	S_0	0	
1	S_3	S ₀	1	
0	S ₄	S ₀	1	
1	S ₄	S ₀	0	

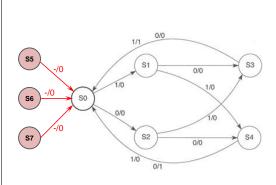
- ▶ O que acontece se a máquina transitar para um estado inválido $(S_5,S_6,S_7)? \rightarrow Lock-out!!!$
- ► **Solução**: obrigar a máquina a transitar para um estado válido (ex: S₀)

Prof. Nuno Roma Sistemas Digitais 2015/16 24

■ Tabela de Transição de Estados

	Entradas da Tabela		Saldas da Tabela		
	Entrada	Estado Presente	Estado Seguinte	Saída	
	0	S ₀	S_2	0	
	1	S ₀ S ₁	S ₁	0	
	0		S ₁ S ₃ S ₄	0	
	1	S ₁	S_4	0	
	0	S ₂ S ₂	S_4	0	
	1	S_2	S_3	0	
	0	S ₃ S ₃	S ₄ S ₃ S ₀ S ₀ S ₀ S ₀	0	
	1	S_3	S_0	1	
	0	S_4	S_0	1	
	1	S_4	S_0	0	
	X	S ₅	S_0	0	
	Х	S ₆ S ₇	S ₀ S ₀ S ₀	0	
,	Х	S ₇	S_0	0	

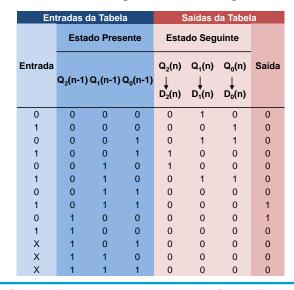
25

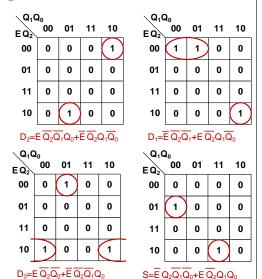

Preenchimento com os estados adicionais, para evitar situações de Lock-out

Prof. Nuno Roma Sistemas Digitais 2015/16

Síntese de Circuitos Síncronos

■ Tabela de Transição de Estados



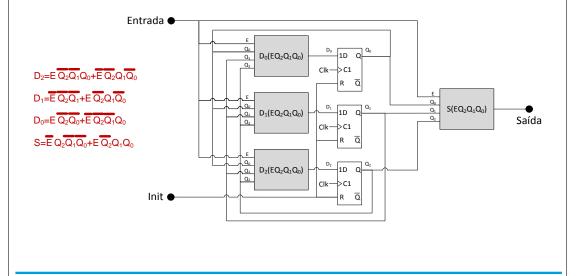

Entradas da Tabela			Saídas da Tabela					
Entrada	Estado Presente		Estado Seguinte			O-fal-		
	Q ₂ (n-1)	Q ₁ (n-1)	Q ₀ (n-1)	Q ₂ (n)	Q ₁ (n)	Q ₀ (n)	Saída	
0	0	0	0	0	1	0	0	
1	0	0	0	0	0	1	0	
0	0	0	1	0	1	1	0	
1	0	0	1	1	0	0	0	
0	0	1	0	1	0	0	0	
1	0	1	0	0	1	1	0	
0	0	1	1	0	0	0	0	
1	0	1	1	0	0	0	1	
0	1	0	0	0	0	0	1	
1	1	0	0	0	0	0	0	
X	1	0	1	0	0	0	0	
X	1	1	0	0	0	0	0	
X	1	1	1	0	0	0	0	

Prof. Nuno Roma Sistemas Digitais 2015/16

Determinação das Funções Lógicas

Prof. Nuno Roma

Prof. Nuno Roma


Sistemas Digitais 2015/16

27

28

Circuito Lógico

Sistemas Digitais 2015/16

Próxima Aula

■ Tema da Próxima Aula:

- ► Exemplo (Moore)
- ▶ Projecto de circuitos sequenciais baseados em contadores

Prof. Nuno Roma

Sistemas Digitais 2015/16

29

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16