Streams Processing

Matrix Sketching



Dimensionality reduction

e Linear
* Principal Component Analysis: SVD-based, PPCA, GLRM
e Approx PCA: Matrix sketching
e Compressed sensing
 Non-linear
e Kernel PCA

* |sometric mapping



Matrix sketching

Online, interpretable PCA

We are going to see a way to “improve” PCA and the SVD



Matrix sketching: the SVD

U, S, V| =svd(A)

N



Matrix sketching: the SVD

U, S, V] =svd(A)

U = [u1 ..... un]

vI
A | = U S S = diag(oy, ..., Z)
V = [2)1 ..... vd]




Approximation of Aby SVD
truncation

Interpretability of V (Principal Components)
Columns of V are linear combinations of features
What is a linear combination of purchased books?

What is a linear combination between number of calls and being male or female?



Approximation of Aby SVD
truncation

Computational efficiency

Computing the SVD demands loading all A into memory and requires time
O(min{nd?, n*d})
What about really big data?

What about streamed data?

Data stream A: each row of the input matrix can be processed only
once and storage is severely limited

What about distributed data?



Matrix sketch

Sketch of a matrix A: Small matrix B, that approximates A well.

A E RnXm

we wantto find B & Rexm with £ <& n

such that ATA ~ BTB



Row sampling

Interpretability: choose V so that columns of V are columns of A

Different notions of importance

Example

S ={(ar1,w1),...,(An, wy)}

Define representative sample,
e.g., a sample representative of the total weight of S, in expectation



Importance sampling

. Input: A e R¥>*" 1<c<n
Output: B € R%*¢
B «+ all zeros matrix € R*¢
for : € [n] do

Compute probability p; for row A. ;

for j € [c] do

Insert (and rescale) A. ; into B. ; with probability p;

return B

SRR (S S e



Row sampling

How it works:

Foreach row a; € A
_ 2
Compute W; = HCLZH
Select t rows and form R, with probability

proportional to Wj; t rows will

stand for VkT

I = . t = (k/e)*log(1/6)

Wit Gt




Row sampling

However
Vi has orthogonal columns but R does not...

Solution: orthogonalize R, using a projection matrix

Mrp =R (RR") 'R

Projection of A

onto the AR — AHR

subspace of R




Row sampling

Remember:
W;1Q41

t = (k/e)?log(1/8) R =

Wit Aqt
Mp =R (RR")™'R

It can be proven:

P([|A = Allr|lr < ||A = Agllr +€l|Allr) 21 =19



Row sampling

We can sample columns or columns and rows

A~CUR Sampled

FrOws

Sampled
columns




Row sampling: CUR

decomposition
A~ CUR
| [ Multi ][ Sample rows
. ol ot
A columns

Q




Frequent directions

Intuition: frequent items algorithm

Goal: estimate the frequency of each item in a stream of items

There are m different items, and a stream of n items appearing

The frequency fz Is the number of times item /i appeared on the stream



Frequent items

Edo Liberty

m
But, in general, we cannot use m counters...



Frequent items

w

\_Y_l

20

Keep less than a fixed # of counters



Frequent items




Frequent items




Frequent items




Frequent items

Joe=2

l_Y_}

20

Compute the median



Frequent items

20

Decrease all items by fg



Frequent items




Frequent items

Approximated counts: f z/

fi — fi

VAN



Frequent directions

B € R2Exm with only 2/ rows (directions)

Take the first 2¢ rows from A as B
U,S, V| = svd(B)
S = diag(al, “ o ,O'Qg)

it o9p > () subtract 5 — O‘? to each squared entry in S

‘g:dmgv@%—a“veil—&m“wo)

B=SV"




Frequent directions

For any direction (unit norm) X

0 < [[Az|* — || Bz||* < [|A — Akll7/ (¢ — k)



Frequent directions

For any direction (unit norm) &

0 < [[Az|* — || Bz||* < [|A — Akll7/ (¢ — k)

Why does it work?

When some mass is deleted from one counter it is also deleted from all
counters, and none can be negative

Squared mass can be summed along orthogonal directions independently



