
3Concurrent Objects

The behavior of concurrent objects is best described through their safety and
liveness properties, often referred to as correctness and progress. In this chapter
we examine various ways of specifying correctness and progress.

While all notions of correctness for concurrent objects are based on some
notion of equivalence with sequential behavior, different notions are appropriate
for different systems. We examine three correctness conditions. Quiescent consis-
tency is appropriate for applications that require high performance at the cost of
placing relatively weak constraints on object behavior. Sequential consistency is
a stronger condition, often useful for describing low-level systems such as hard-
ware memory interfaces. Linearizability, even stronger, is useful for describing
higher-level systems composed from linearizable components.

Along a different dimension, different method implementations provide dif-
ferent progress guarantees. Some are blocking, where the delay of any one thread
can delay others, and some are nonblocking, where the delay of a thread cannot
delay the others.

3.1 Concurrency and Correctness

What does it mean for a concurrent object to be correct? Fig. 3.1 shows a simple
lock-based concurrent FIFO queue. The enq() and deq() methods synchronize
by a mutual exclusion lock of the kind studied in Chapter 2. It is easy to see that
this implementation is a correct concurrent FIFO queue. Because each method
accesses and updates fields while holding an exclusive lock, the method calls take
effect sequentially.

This idea is illustrated in Fig. 3.2, which shows an execution in which A enq-
ueues a, B enqueues b, and C dequeues twice, first throwing EmptyException,
and second returning b. Overlapping intervals indicate concurrent method calls.
All three method calls overlap in time. In this figure, as in others, time moves
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1 class LockBasedQueue<T> {
2 int head, tail;
3 T[] items;
4 Lock lock;
5 public LockBasedQueue(int capacity) {
6 head = 0; tail = 0;
7 lock = new ReentrantLock();
8 items = (T[])new Object[capacity];
9 }
10 public void enq(T x) throws FullException {
11 lock.lock();
12 try {
13 if (tail - head == items.length)
14 throw new FullException();
15 items[tail % items.length] = x;
16 tail++;
17 } finally {
18 lock.unlock();
19 }
20 }
21 public T deq() throws EmptyException {
22 lock.lock();
23 try {
24 if (tail == head)
25 throw new EmptyException();
26 T x = items[head % items.length];
27 head++;
28 return x;
29 } finally {
30 lock.unlock();
31 }
32 }
33 }

Figure 3.1 A lock-based FIFO queue. The queue’s items are kept in an array items, where
head is the index of the next item to dequeue, and tail is the index of the first open array
slot (modulo the capacity). The lock field is a lock that ensures that methods are mutually
exclusive. Initially head and tail are zero, and the queue is empty. If enq() finds the queue
is full, i.e., head and tail differ by the queue size, then it throws an exception. Otherwise,
there is room, so enq() stores the item at array entry tail, and then increments tail. The
deq() method works in a symmetric way.

from left to right, and dark lines indicate intervals. The intervals for a single
thread are displayed along a single horizontal line. When convenient, the thread
name appears on the left. A bar represents an interval with a fixed start and stop
time. A bar with dotted lines on the right represents an interval with a fixed
start-time and an unknown stop-time. The label “q.enq(x)” means that a thread
enqueues item x at object q, while “q.deq(x)” means that the thread dequeues
item x from object q.

The timeline shows which thread holds the lock. Here, C acquires the lock,
observes the queue to be empty, releases the lock, and throws an exception. It
does not modify the queue. B acquires the lock, inserts b, and releases the lock. A
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Figure 3.2 Locking queue execution. Here, C acquires the lock, observes the queue to be empty, releases
the lock, and throws an exception. B acquires the lock, inserts b, and releases the lock. A acquires the lock,
inserts a, and releases the lock. C re-acquires the lock, dequeues b, releases the lock, and returns.

acquires the lock, inserts a, and releases the lock. C reacquires the lock, dequeues
b, releases the lock, and returns. Each of these calls takes effect sequentially, and
we can easily verify that dequeuing b before a is consistent with our understand-
ing of sequential FIFO queue behavior.

Let us consider, however, the alternative concurrent queue implementation in
Fig. 3.3. (This queue is correct only if it is shared by a single enqueuer and a single
dequeuer.) It has almost the same internal representation as the lock-based queue
of Fig. 3.1. The only difference is the absence of a lock. We claim this is a correct
implementation of a single-enqueuer/single-dequeuer FIFO queue, although it is
no longer easy to explain why. It may not even be clear what it means for a queue
to be FIFO when enqueues and dequeues are concurrent.

Unfortunately, it follows from Amdahl’s Law (Chapter 1) that concurrent
objects whose methods hold exclusive locks, and therefore effectively execute one
after the other, are less desirable than ones with finer-grained locking or no locks
at all. We therefore need a way to specify the behavior of concurrent objects, and
to reason about their implementations, without relying on method-level lock-
ing. Nevertheless, the lock-based queue example illustrates a useful principle: it
is easier to reason about concurrent objects if we can somehow map their con-
current executions to sequential ones, and limit our reasoning to these sequential
executions. This principle is the key to the correctness properties introduced in
this chapter.
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1 class WaitFreeQueue<T> {
2 volatile int head = 0, tail = 0;
3 T[] items;
4 public WaitFreeQueue(int capacity) {
5 items = (T[]) new Object[capacity];
6 }
7 public void enq(T x) throws FullException {
8 if (tail - head == items.length)
9 throw new FullException();
10 items[tail % items.length] = x;
11 tail++;
12 }
13 public T deq() throws EmptyException {
14 if (tail - head == 0)
15 throw new EmptyException();
16 T x = items[head % items.length];
17 head++;
18 return x;
19 }
20 }

Figure 3.3 A single-enqueuer/single-dequeuer FIFO queue. The structure is identical to that
of the lock-based FIFO queue, except that there is no need for the lock to coordinate access.

3.2 Sequential Objects

An object in languages such as Java and C++ is a container for data. Each object
provides a set of methods which are the only way to manipulate that object. Each
object has a class, which defines the object’s methods and how they behave. An
object has a well-defined state (for example, the FIFO queue’s current sequence of
items). There are many ways to describe how an object’s methods behave, ranging
from formal specifications to plain English. The application program interface
(API) documentation that we use every day lies somewhere in between.

The API documentation typically says something like the following: if the
object is in such-and-such a state before you call the method, then the object
will be in some other state when the method returns, and the call will return a
particular value, or throw a particular exception. This kind of description divides
naturally into a precondition (describing the object’s state before invoking the
method) and a postcondition, describing, once the method returns, the object’s
state and return value. A change to an object’s state is sometimes called a side
effect. For example, consider how one might specify a first-in-first-out (FIFO)
queue class. The class provides two methods: enq() and deq(). The queue state
is just a sequence of items, possibly empty. If the queue state is a sequence
q (precondition), then a call to enq(z) leaves the queue in state q · z, where
“·” denotes concatenation. If the queue object is nonempty (precondition), say
a · q, then the deq() method removes and returns the sequence’s first element a
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(postcondition), leaving the queue in state q (side effect). If, instead, the queue
object is empty (precondition), the method throws EmptyException and leaves
the queue state unchanged (postcondition).

This style of documentation, called a sequential specification, is so familiar that
it is easy to overlook how elegant and powerful it is. The length of the object’s
documentation is linear in the number of methods, because each method can be
described in isolation. There are a vast number of potential interactions among
methods, and all such interactions are characterized succinctly by the methods’
side effects on the object state. The object’s documentation describes the object
state before and after each call, and we can safely ignore any intermediate states
that the object may assume while the method call is in progress.

Defining objects in terms of preconditions and postconditions makes perfect
sense in a sequential model of computation where a single thread manipulates a
collection of objects. Unfortunately, for objects shared by multiple threads, this
successful and familiar style of documentation falls apart. If an object’s meth-
ods can be invoked by concurrent threads, then the method calls can overlap in
time, and it no longer makes sense to talk about their order. What does it mean,
in a multithreaded program, if x and y are enqueued on a FIFO queue during
overlapping intervals? Which will be dequeued first? Can we continue to describe
methods in isolation, via preconditions and postconditions, or must we provide
explicit descriptions of every possible interaction among every possible collection
of concurrent method calls?

Even the notion of an object’s state becomes confusing. In single-threaded
programs, an object must assume a meaningful state only between method calls.1

For concurrent objects, however, overlapping method calls may be in progress at
every instant, so the object may never be between method calls. Any method call
must be prepared to encounter an object state that reflects the incomplete effects
of other concurrent method calls, a problem that simply does not arise in single-
threaded programs.

3.3 Quiescent Consistency

One way to develop an intuition about how concurrent objects should behave is
to review examples of concurrent computations involving simple objects, and to
decide, in each case, whether the behavior agrees with our intuition about how a
concurrent object should behave.

Method calls take time. A method call is the interval that starts with an
invocation event and ends with a response event. Method calls by concurrent
threads may overlap, while method calls by a single thread are always sequential

1 There is an exception: care must be taken if one method partially changes an object’s state and
then calls another method of that same object.
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r.write(7)

r.write(23) r.read(27)

Thread A

Thread B

Figure 3.4 Why each method call should appear to take effect instantaneously. Two threads
concurrently write �3 and 7 to a shared register r. Later, one thread reads r and returns the
value �7. We expect to find either 7 or �3 in the register, not a mixture of both.

(non-overlapping, one-after-the-other). We say a method call is pending if its call
event has occurred, but not its response event.

For historical reasons, the object version of a read–write memory location is
called a register (see Chapter 4). In Fig. 3.4, two threads concurrently write �3
and 7 to a shared register r (as before, “r.read(x)” means that a thread reads value
x from register object r, and similarly for “r.write(x).”). Later, one thread reads
r and returns the value �7. This behavior is clearly not acceptable. We expect to
find either 7 or �3 in the register, not a mixture of both. This example suggests
the following principle:

Principle 3.3.1. Method calls should appear to happen in a one-at-a-time,
sequential order.

By itself, this principle is usually too weak to be useful. For example, it
permits reads always to return the object’s initial state, even in sequential
executions.

Here is a slightly stronger condition. An object is quiescent if it has no pending
method calls.

Principle 3.3.2. Method calls separated by a period of quiescence should appear
to take effect in their real-time order.

For example, suppose A and B concurrently enqueue x and y in a FIFO queue.
The queue becomes quiescent, and then C enqueues z. We may not be able to
predict the relative order of x and y in the queue, but we know they are ahead
of z.

Together, Principles 3.3.1 and 3.3.2 define a correctness property called qui-
escent consistency. Informally, it says that any time an object becomes quies-
cent, then the execution so far is equivalent to some sequential execution of the
completed calls.

As an example of a quiescently consistent object, consider the shared counter
from Chapter 1. A quiescently-consistent shared counter would return numbers,
not necessarily in the order of the getAndIncrement() requests, but always
without duplicating or omitting a number. The execution of a quiescently
consistent object is somewhat like a musical-chairs game: at any point, the
music might stop, that is, the state could become quiescent. At that point, each
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pending method call must return an index so that all the indexes together meet
the specification of a sequential counter, implying no duplicated or omitted
numbers. In other words, a quiescently consistent counter is an index distribu-
tion mechanism, useful as a “loop counter” in programs that do not care about
the order in which indexes are issued.

3.3.1 Remarks

How much does quiescent consistency limit concurrency? Specifically, under
what circumstances does quiescent consistency require one method call to block
waiting for another to complete? Surprisingly, the answer is (essentially), never.
A method is total if it is defined for every object state; otherwise it is partial. For
example, let us consider the following alternative specification for an unbounded
sequential FIFO queue. One can always enqueue another item, but one can
dequeue only from a nonempty queue. In the sequential specification of a FIFO
queue, enq() is total, since its effects are defined in every queue state, but deq()
is partial, since its effects are defined only for nonempty queues.

In any concurrent execution, for any pending invocation of a total method,
there exists a quiescently consistent response. This observation does not mean
that it is easy (or even always possible) to figure out what that response is, but only
that the correctness condition itself does not stand in the way. We say that qui-
escent consistency is a nonblocking correctness condition. We make this notion
more clear in Section 3.6.

A correctness property P is compositional if, whenever each object in the sys-
tem satisfies P , the system as a whole satisfies P . Compositionality is impor-
tant in large systems. Any sufficiently complex system must be designed and
implemented in a modular fashion. Components are designed, implemented,
and proved correct independently. Each component makes a clear distinction
between its implementation, which is hidden, and its interface, which precisely
characterizes the guarantees it makes to the other components. For example, if a
concurrent object’s interface states that it is a sequentially consistent FIFO queue,
then users of the queue need to know nothing about how the queue is imple-
mented. The result of composing individually correct components that rely only
on one anothers’ interfaces should itself be a correct system. Can we, in fact, com-
pose a collection of independently implemented quiescently consistent objects
to construct a quiescently consistent system? The answer is, yes: quiescent con-
sistency is compositional, so quiescently consistent objects can be composed to
construct more complex quiescently consistent objects.

3.4 Sequential Consistency

In Fig. 3.5, a single thread writes 7 and then �3 to a shared register r. Later, it
reads r and returns 7. For some applications, this behavior might not be accept-
able because the value the thread read is not the last value it wrote. The order
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r.write(7) r.write(23) r.read(7)

Figure 3.5 Why method calls should appear to take effect in program order. This behavior is
not acceptable because the value the thread read is not the last value it wrote.

q.enq(x) q.deq(y)

q.enq(y) q.deq(x)

Figure 3.6 There are two possible sequential orders that can justify this execution. Both
orders are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

in which a single thread issues method calls is called its program order. (Method
calls by different threads are unrelated by program order.)

In this example, we were surprised that operation calls did not take effect in
program order. This example suggests an alternative principle:

Principle 3.4.1. Method calls should appear to take effect in program order.

This principle ensures that purely sequential computations behave the way we
would expect.

Together, Principles 3.3.1 and 3.4.1 define a correctness property called
sequential consistency, which is widely used in the literature on multiprocessor
synchronization.

Sequential consistency requires that method calls act as if they occurred in a
sequential order consistent with program order. That is, in any concurrent exe-
cution, there is a way to order the method calls sequentially so that they (1) are
consistent with program order, and (2) meet the object’s sequential specification.
There may be more than one order satisfying this condition. In Fig. 3.6, thread
A enqueues x while B enqueues y, and then A dequeues y while B dequeues
x. There are two possible sequential orders that can explain these results: (1)
A enqueues x, B enqueues y, B dequeues x, then A dequeues y, or (2) B
enqueues y, A enqueues x, A dequeues y, then B dequeues x. Both these orders
are consistent with the method calls’ program order, and either one is enough to
show the execution is sequentially consistent.

3.4.1 Remarks

It is worth noting that sequential consistency and quiescent consistency are
incomparable: there exist sequentially consistent executions that are not qui-
escently consistent, and vice versa. Quiescent consistency does not necessarily
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preserve program order, and sequential consistency is unaffected by quiescent
periods.

In most modern multiprocessor architectures, memory reads and writes are
not sequentially consistent: they can be typically reordered in complex ways. Most
of the time no one can tell, because the vast majority of reads–writes are not used
for synchronization. In those specific cases where programmers need sequen-
tial consistency, they must ask for it explicitly. The architectures provide special
instructions (usually called memory barriers or fences) that instruct the processor
to propagate updates to and from memory as needed, to ensure that reads and
writes interact correctly. In the end, the architectures do implement sequential
consistency, but only on demand. We discuss further issues related to sequential
consistency and the Java programming language in detail in Section 3.8.

In Fig. 3.7, thread A enqueues x, and later B enqueues y, and finally A
dequeues y. This execution may violate our intuitive notion of how a FIFO queue
should behave: the call enqueuing x finishes before the call dequeuing y starts, so
although y is enqueued after x, it is dequeued before. Nevertheless, this execution
is sequentially consistent. Even though the call that enqueues x happens before
the call that enqueues y, these calls are unrelated by program order, so sequential
consistency is free to reorder them.

One could argue whether it is acceptable to reorder method calls whose inter-
vals do not overlap, even if they occur in different threads. For example, we might
be unhappy if we deposit our paycheck on Monday, but the bank bounces our rent
check the following Friday because it reordered our deposit after your withdrawal.

Sequential consistency, like quiescent consistency, is nonblocking: any pend-
ing call to a total method can always be completed.

Is sequential consistency compositional? That is, is the result of compos-
ing multiple sequentially consistent objects itself sequentially consistent? Here,
unfortunately, the answer is no. In Fig. 3.8, two threads, A and B, call enqueue
and dequeue methods for two queue objects, p and q. It is not hard to see that
p and q are each sequentially consistent: the sequence of method calls for p is
the same as in the sequentially consistent execution shown in Fig. 3.7, and the
behavior of q is symmetric. Nevertheless, the execution as a whole is not sequen-
tially consistent.

q.enq(x) q.deq(y)

q.enq(y)

Figure 3.7 Sequential consistency versus real-time order. Thread A enqueues x, and later
thread B enqueues y, and finally A dequeues y. This execution may violate our intuitive notion
of how a FIFO queue should behave because the method call enqueuing x finishes before
the method call dequeuing y starts, so although y is enqueued after x, it is dequeued before.
Nevertheless, this execution is sequentially consistent.
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q.enq(x) p.deq(y)

p.enq(y) q.deq(x)

p.enq(x)

q.enq(y)

A

B

Figure 3.8 Sequential consistency is not compositional. Two threads, A and B, call enqueue
and dequeue methods on two queue objects, p and q. It is not hard to see that p and q are
each sequentially consistent, yet the execution as a whole is not sequentially consistent.

Let us check that there is no correct sequential execution in which these
method calls can be ordered in a way consistent with their program order. Let
us assume, by way of contradiction, that these method calls can be reordered to
form a correct FIFO queue execution, where the order of the method calls is con-
sistent with the program order. We use the following shorthand: hp.enq(x) Ai !
hp.deq(x) Bi means that any sequential execution must order A’s enqueue of x
at p before B’s dequeue of x at p, and so on. Because p is FIFO and A dequeues
y from p, y must have been enqueued before x:

hp.enq(y) Bi ! hp.enq(x) Ai

Likewise,

hq.enq(x) Ai ! hq.enq(y) Bi.

But program order implies that

hp.enq(x) Ai ! hq.enq(x) Ai and hq.enq(y) Bi ! hp.enq(y) Bi.

Together, these orderings form a cycle.

3.5 Linearizability

We have seen that the principal drawback of sequential consistency is that it is not
compositional: the result of composing sequentially consistent components is not
itself necessarily sequentially consistent. We propose the following way out of this
dilemma. Let us replace the requirement that method calls appear to happen in
program order with the following stronger restriction:

Principle 3.5.1. Each method call should appear to take effect instantaneously at
some moment between its invocation and response.

This principle states that the real-time behavior of method calls must be pre-
served. We call this correctness property linearizability. Every linearizable execu-
tion is sequentially consistent, but not vice versa.
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3.5.1 Linearization Points

The usual way to show that a concurrent object implementation is linearizable is
to identify for each method a linearization point where the method takes effect.
For lock-based implementations, each method’s critical section can serve as its
linearization point. For implementations that do not use locking, the lineariza-
tion point is typically a single step where the effects of the method call become
visible to other method calls.

For example, let us recall the single-enqueuer/single-dequeuer queue of
Fig. 3.3. This implementation has no critical sections, and yet we can identify
its linearization points. Here, the linearization points depend on the execution.
If it returns an item, the deq() method has a linearization point when the head
field is updated (Line 17). If the queue is empty, the deq() method has a lin-
earization point when it throws EmptyException (Line 15). The enq() method is
similar.

3.5.2 Remarks

Sequential consistency is a good way to describe standalone systems, such as
hardware memories, where composition is not an issue. Linearizability, by con-
trast, is a good way to describe components of large systems, where components
must be implemented and verified independently. Moreover, the techniques we
use to implement concurrent objects, are all linearizable. Because we are inter-
ested in systems that preserve program order and compose, most (but not all)
data structures considered in this book are linearizable.

How much does linearizability limit concurrency? Linearizability, like sequen-
tial consistency, is nonblocking. Moreover, like quiescent consistency, but unlike
sequential consistency, linearizability is compositional; the result of composing
linearizable objects is linearizable.

3.6 Formal Definitions

We now consider more precise definitions. Here, we focus on the formal prop-
erties of linearizability, since it is the property most often used in this book. We
leave it as an exercise to provide the same kinds of definitions for quiescent con-
sistency and sequential consistency.

Informally, we know that a concurrent object is linearizable if each method call
appears to take effect instantaneously at some moment between that method’s
invocation and return events. This statement is probably enough for most infor-
mal reasoning, but a more precise formulation is needed to take care of some
tricky cases (such as method calls that have not returned), and for more rigorous
styles of argument.
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An execution of a concurrent system is modeled by a history, a finite sequence
of method invocation and response events. A subhistory of a history H is a subse-
quence of the events of H . We write a method invocation as hx.m(a⇤) Ai, where
x is an object, m a method name, a⇤ a sequence of arguments, and A a thread.
We write a method response as hx : t(r⇤) Ai where t is either Ok or an excep-
tion name, and r⇤ is a sequence of result values. Sometimes we refer to an event
labeled with thread A as a step of A.

A response matches an invocation if they have the same object and thread. We
have been using the term “method call” informally, but here is a more formal
definition: a method call in a history H is a pair consisting of an invocation and
the next matching response in H . We need to distinguish calls that have returned
from those that have not: An invocation is pending in H if no matching response
follows the invocation. An extension of H is a history constructed by append-
ing responses to zero or more pending invocations of H . Sometimes, we ignore
all pending invocations: complete(H) is the subsequence of H consisting of all
matching invocations and responses.

In some histories, method calls do not overlap: A history H is sequential if the
first event of H is an invocation, and each invocation, except possibly the last, is
immediately followed by a matching response.

Sometimes we focus on a single thread or object: a thread subhistory, H |A
(“H at A”), of a history H is the subsequence of all events in H whose thread
names are A. An object subhistory H |x is similarly defined for an object x. In
the end, all that matters is how each thread views what happened: two histories
H and H 0 are equivalent if for every thread A, H |A = H 0|A. Finally, we need to
rule out histories that make no sense: A history H is well formed if each thread
subhistory is sequential. All histories we consider here are well-formed. Notice
that thread subhistories of a well-formed history are always sequential, but object
subhistories need not be.

How can we tell whether an object is really a FIFO queue? We simply assume
that we have some effective way of recognizing whether any sequential object
history is or is not a legal history for that object’s class. A sequential specification
for an object is just a set of sequential histories for the object. A sequential history
H is legal if each object subhistory is legal for that object.

Recall from Chapter 2 that a partial order ! on a set X is a relation that is
irreflexive and transitive. That is, it is never true that x! x, and whenever x! y
and y! z, then x! z. Note that it is possible that there are distinct x and y such
that neither x! y nor y ! x. A total order < on X is a partial order such that
for all distinct x and y in X, either x < y or y < x.

Any partial order can be extended to a total order:

Fact 3.6.1. If ! is a partial order on X, then there exists a total order “<” on X
such that if x! y, then x < y.

We say that a method call m0 precedes a method call m1 in history H if m0 fin-
ished before m1 started: that is, m0’s response event occurs before m1’s invocation
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event. This notion is important enough to introduce some shorthand notation.
Given a history H containing method calls m0 and m1, we say that m0 !H m1 if
m0 precedes m1 in H . We leave it as an exercise to show that !H is a partial order.
Notice that if H is sequential, then !H is a total order. Given a history H and an
object x, such that H |x contains method calls m0 and m1, we say that m0 !x m1

if m0 precedes m1 in H |x.

3.6.1 Linearizability

The basic idea behind linearizability is that every concurrent history is equiva-
lent, in the following sense, to some sequential history. The basic rule is that if
one method call precedes another, then the earlier call must have taken effect
before the later call. By contrast, if two method calls overlap, then their order is
ambiguous, and we are free to order them in any convenient way.

More formally,

Definition 3.6.1. A history H is linearizable if it has an extension H 0 and there
is a legal sequential history S such that

L1 complete(H 0) is equivalent to S, and
L2 if method call m0 precedes method call m1 in H , then the same is true in S.

We refer to S as a linearization of H . (H may have multiple linearizations.)
Informally, extending H to H 0 captures the idea that some pending invo-

cations may have taken effect, even though their responses have not yet been
returned to the caller. Fig. 3.9 illustrates the notion: we must complete the pend-
ing enq(x) method call to justify the deq() call that returns x. The second con-
dition says that if one method call precedes another in the original history, then
that ordering must be preserved in the linearization.

3.6.2 Compositional Linearizability

Linearizability is compositional:

Theorem 3.6.1. H is linearizable if, and only if, for each object x, H |x is lin-
earizable.

q.enq(x)

q.deq(x)

Figure 3.9 The pending enq(x) method call must take effect early to justify the deq() call
that returns x.
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Proof: The “only if” part is left as an exercise.
For each object x, pick a linearization of H |x. Let Rx be the set of responses

appended to H |x to construct that linearization, and let !x be the corresponding
linearization order. Let H 0 be the history constructed by appending to H each
response in Rx.

We argue by induction on the number of method calls in H 0. For the base case,
if H 0 contains only one method call, we are done. Otherwise, assume the claim
for every H containing fewer than k > 1 method calls. For each object x, consider
the last method call in H 0|x. One of these calls m must be maximal with respect
to !H : that is, there is no m0 such that m!H m0. Let G0 be the history defined
by removing m from H 0. Because m is maximal, H 0 is equivalent to G0 ·m. By the
induction hypothesis, G0 is linearizable to a sequential history S 0, and both H 0

and H are linearizable to S 0 ·m. 2

Compositionality is important because it allows concurrent systems to be
designed and constructed in a modular fashion; linearizable objects can be imple-
mented, verified, and executed independently. A concurrent system based on a
noncompositional correctness property must either rely on a centralized sched-
uler for all objects, or else satisfy additional constraints placed on objects to
ensure that they follow compatible scheduling protocols.

3.6.3 The Nonblocking Property

Linearizability is a nonblocking property: a pending invocation of a total method
is never required to wait for another pending invocation to complete.

Theorem 3.6.2. Let inv(m) be an invocation of a total method. If hx inv P i is
a pending invocation in a linearizable history H , then there exists a response
hx res P i such that H · hx res P i is linearizable.

Proof: Let S be any linearization of H . If S includes a response hx res P i to
hx inv P i, we are done, since S is also a linearization of H · hx res P i. Oth-
erwise, hx inv P i does not appear in S either, since linearizations, by defini-
tion, include no pending invocations. Because the method is total, there exists
a response hx res P i such that

S 0 = S · hx inv P i · hx res P i

is legal. S 0, however, is a linearization of H · hx res P i, and hence is also a lin-
earization of H . 2

This theorem implies that linearizability by itself never forces a thread with
a pending invocation of a total method to block. Of course, blocking (or even
deadlock) may occur as artifacts of particular implementations of linearizability,
but it is not inherent to the correctness property itself. This theorem suggests that
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linearizability is an appropriate correctness condition for systems where concur-
rency and real-time response are important.

The nonblocking property does not rule out blocking in situations where it
is explicitly intended. For example, it may be sensible for a thread attempting to
dequeue from an empty queue to block, waiting until another thread enqueues
an item. A queue specification would capture this intention by making the deq()
method’s specification partial, leaving its effect undefined when applied to an
empty queue. The most natural concurrent interpretation of a partial sequential
specification is simply to wait until the object reaches a state in which the method
is defined.

3.7 Progress Conditions

Linearizability’s nonblocking property states that any pending invocation has a
correct response, but does not talk about how to compute such a response. For
example, let us consider the scenario for the lock-based queue shown in Fig. 3.1.
Suppose the queue is initially empty. A halts half-way through enqueuing x, and
B then invokes deq(). The nonblocking property guarantees that B’s call to deq()
has a response: it could either throw an exception or return x. In this implemen-
tation, however, B is unable to acquire the lock, and will be delayed as long as A
is delayed.

Such an implementation is called blocking, because an unexpected delay by one
thread can prevent others from making progress. Unexpected thread delays are
common in multiprocessors. A cache miss might delay a processor for a hundred
cycles, a page fault for a few million cycles, preemption by the operating system
for hundreds of millions of cycles. These delays depend on the specifics of the
machine and the operating system.

A method is wait-free if it guarantees that every call finishes its execution
in a finite number of steps. It is bounded wait-free if there is a bound on the
number of steps a method call can take. This bound may depend on the num-
ber of threads. For example, the Bakery algorithm’s doorway section studied in
Chapter 2 is bounded wait-free, where the bound is the number of threads. A
wait-free method whose performance does not depend on the number of active
threads is called population-oblivious. We say that an object is wait-free if its
methods are wait-free, and in an object oriented language, we say that a class is
wait-free if all instances of its objects are wait-free. Being wait-free is an example
of a nonblocking progress condition, meaning that an arbitrary and unexpected
delay by one thread (say, the one holding a lock) does not necessarily prevent the
others from making progress.

The queue shown in Fig. 3.3 is wait-free. For example, in the scenario where A
halts half-way through enqueuing x, and B then invokes deq(), then B will either
throw EmptyException (if A halted before storing the item in the array) or it
will return x (if A halted afterward). The lock-based queue is not nonblocking
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because B will take an unbounded number of steps unsuccessfully trying to
acquire the lock.

The wait-free property is attractive because it guarantees that every thread that
takes steps makes progress. However, wait-free algorithms can be inefficient, and
sometimes we are willing to settle for a weaker nonblocking property.

A method is lock-free if it guarantees that infinitely often some method call fin-
ishes in a finite number of steps. Clearly, any wait-free method implementation
is also lock-free, but not vice versa. Lock-free algorithms admit the possibility
that some threads could starve. As a practical matter, there are many situations
in which starvation, while possible, is extremely unlikely, so a fast lock-free algo-
rithm may be more attractive than a slower wait-free algorithm.

3.7.1 Dependent Progress Conditions

The wait-free and lock-free nonblocking progress conditions guarantee that the
computation as a whole makes progress, independently of how the system sched-
ules threads.

In Chapter 2 we encountered two progress conditions for blocking imple-
mentations: the deadlock-free and starvation-free properties. These properties
are dependent progress conditions: progress occurs only if the underlying plat-
form (i.e., the operating system) provides certain guarantees. In principle, the
deadlock-free and starvation-free properties are useful when the operating sys-
tem guarantees that every thread eventually leaves every critical section. In prac-
tice, these properties are useful when the operating system guarantees that every
thread eventually leaves every critical section in a timely manner.

Classes whose methods rely on lock-based synchronization can guarantee, at
best, dependent progress properties. Does this observation mean that lock-based
algorithms should be avoided? Not necessarily. If preemption in the middle of a
critical section is sufficiently rare, then dependent blocking progress conditions
are effectively indistinguishable from their nonblocking counterparts. If preemp-
tion is common enough to cause concern, or if the cost of preemption-based
delay is sufficiently high, then it is sensible to consider nonblocking progress con-
ditions.

There is also a dependent nonblocking progress condition: the obstruction-free
property. We say that a method call executes in isolation if no other threads take
steps.

Definition 3.7.1. A method is obstruction-free if, from any point after which it
executes in isolation, it finishes in a finite number of steps.

Like the other nonblocking progress conditions, the obstruction-free condi-
tion ensures that not all threads can be blocked by a sudden delay of one or more
other threads. A lock-free algorithm is obstruction-free, but not vice versa.

The obstruction-free algorithm rules out the use of locks but does not guar-
antee progress when multiple threads execute concurrently. It seems to defy the
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fair approach of most operating system schedulers by guaranteeing progress only
when one thread is unfairly scheduled ahead of the others.

In practice, however, there is no problem. The obstruction-free condition does
not require pausing all threads, only those threads that conflict, meaning that they
call the same shared object’s methods. The simplest way to exploit an obstruction-
free algorithm is to introduce a back-off mechanism: a thread that detects a con-
flict pauses to give an earlier thread time to finish. Choosing when to back off,
and for how long, is a complicated subject discussed in detail in Chapter 7.

Picking a progress condition for a concurrent object implementation depends
on both the needs of the application and the characteristics of the underlying
platform. The absolute wait-free and lock-free progress properties have good
theoretical properties, they work on just about any platform, and they provide
real-time guarantees useful to applications such as music, electronic games, and
other interactive applications. The dependent obstruction-free, deadlock-free,
and starvation-free properties rely on guarantees provided by the underlying
platform. Given those guarantees, however, the dependent properties often admit
simpler and more efficient implementations.

3.8 The Java Memory Model

The Java programming language does not guarantee linearizability, or even
sequential consistency, when reading or writing fields of shared objects. Why
not? The principal reason is that strict adherence to sequential consistency would
outlaw widely used compiler optimizations, such as register allocation, common
subexpression elimination, and redundant read elimination, all of which work
by reordering memory reads–writes. In a single-threaded computation, such
reorderings are invisible to the optimized program, but in a multithreaded com-
putation, one thread can spy on another and observe out-of-order executions.

The Java memory model satisfies the Fundamental Property of relaxed mem-
ory models: if a program’s sequentially consistent executions follow certain rules,
then every execution of that program in the relaxed model will still be sequen-
tially consistent. In this section, we describe rules that guarantee that the Java
programs are sequentially consistent. We will not try to cover the complete set of
rules, which is rather large and complex. Instead, we focus on a set of straightfor-
ward rules that should be enough for most purposes.

Fig. 3.10 shows double-checked locking, a once-common programming idiom
that falls victim to Java’s lack of sequential consistency. Here, the Singleton
class manages a single instance of a Singleton object, accessible through the
getInstance() method. This method creates the instance the first time it is
called. This method must be synchronized to ensure that only one instance is
created, even if several threads observe instance to be null. Once the instance
has been created, however, no further synchronization should be necessary. As an
optimization, the code in Fig. 3.10 enters the synchronized block only when
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1 public static Singleton getInstance() {
2 if (instance == null) {
3 synchronized(Singleton.class) {
4 if (instance == null)
5 instance = new Singleton();
6 }
7 }
8 return instance;
9 }

Figure 3.10 Double-checked locking.

it observes an instance to be null. Once it has entered, it double-checks that
instance is still null before creating the instance.

This pattern, once common, is incorrect. At Line 5, the constructor call
appears to take place before the instance field is assigned, but the Java mem-
ory model allows these steps to occur out of order, effectively making a partially
initialized Singleton object visible to other programs.

In the Java memory model, objects reside in a shared memory and each thread
has a private working memory that contains cached copies of fields it has read or
written. In the absence of explicit synchronization (explained later), a thread that
writes to a field might not propagate that update to memory right away, and a
thread that reads a field might not update its working memory if the field’s copy
in memory changes value. Naturally, a Java virtual machine is free to keep such
cached copies consistent, and in practice they often do, but they are not required
to do so. At this point, we can guarantee only that a thread’s own reads–writes
appear to that thread to happen in order, and that any field value read by a thread
was written to that field (i.e., values do not appear out of thin air).

Certain statements are synchronization events. Usually, the term “synchroniza-
tion” implies some form of atomicity or mutual exclusion. In Java, however, it
also implies reconciling a thread’s working memory with the shared memory.
Some synchronization events cause a thread to write cached changes back to
shared memory, making those changes visible to other threads. Other synchro-
nization events cause the thread to invalidate its cached values, forcing it to reread
field values from memory, making other threads’ changes visible. Synchroniza-
tion events are linearizable: they are totally ordered, and all threads agree on that
ordering. We now look at different kinds of synchronization events.

3.8.1 Locks and Synchronized Blocks

A thread can achieve mutual exclusion either by entering a synchronized block
or method, which acquires an implicit lock, or by acquiring an explicit lock
(such as the ReentrantLock from the java.util.concurrent.locks package). Both
approaches have the same implications for memory behavior.

If all accesses to a particular field are protected by the same lock, then
reads–writes to that field are linearizable. Specifically, when a thread releases a
lock, modified fields in working memory are written back to shared memory,
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performing modifications while holding the lock accessible to other threads.
When a thread acquires the lock, it invalidates its working memory to ensure
fields are reread from shared memory. Together, these conditions ensure that
reads–writes to the fields of any object protected by a single lock are linearizable.

3.8.2 Volatile Fields

Volatile fields are linearizable. Reading a volatile field is like acquiring a lock:
the working memory is invalidated and the volatile field’s current value is reread
from memory. Writing a volatile field is like releasing a lock: the volatile field is
immediately written back to memory.

Although reading and writing a volatile field has the same effect on mem-
ory consistency as acquiring and releasing a lock, multiple reads–writes are not
atomic. For example, if x is a volatile variable, the expression x++ will not neces-
sarily increment x if concurrent threads can modify x. Some form of mutual
exclusion is needed as well. One common usage pattern for volatile variables
occurs when a field is read by multiple threads, but only written by one.

The java.util.concurrent.atomic package includes classes that provide lineariz-
able memory such as AtomicReference<T> or AtomicInteger. The
compareAndSet() and set() methods act like volatile writes, and get() acts
like a volatile read.

3.8.3 Final Fields

Recall that a field declared to be final cannot be modified once it has been ini-
tialized. An object’s final fields are initialized in its constructor. If the constructor
follows certain simple rules, described in the following paragraphs, then the cor-
rect value of any final fields will be visible to other threads without synchroniza-
tion. For example, in the code shown in Fig. 3.11, a thread that calls reader() is

1 class FinalFieldExample {
2 final int x; int y;
3 static FinalFieldExample f;
4 public FinalFieldExample() {
5 x = 3;
6 y = 4;
7 }
8 static void writer() {
9 f = new FinalFieldExample();
10 }
11 static void reader() {
12 if (f != null) {
13 int i = f.x; int j = f.y;
14 }
15 }
16 }

Figure 3.11 Constructor with final field.
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1 public class EventListener {
2 final int x;
3 public EventListener(EventSource eventSource) {
4 eventSource.registerListener(this); // register with event source ...
5 }
6 public onEvent(Event e) {
7 ... // handle the event
8 }
9 }

Figure 3.12 Incorrect EventListener class.

guaranteed to see x equal to 3, because the x field is final. There is no guarantee
that y will be equal to 4, because y is not final.

If a constructor is synchronized incorrectly, however, then final fields may be
observed to change value. The rule is simple: the this reference must not be
released from the constructor before the constructor returns.

Fig. 3.12 shows an example of an incorrect constructor in an event-driven
system. Here, an EventListener class registers itself with an EventSource class,
making a reference to the listener object accessible to other threads. This code
may appear safe, since registration is the last step in the constructor, but it is
incorrect, because if another thread calls the event listener’s onEvent() method
before the constructor finishes, then the onEvent() method is not guaranteed to
see a correct value for x.

In summary, reads–writes to fields are linearizable if either the field is volatile,
or the field is protected by a unique lock which is acquired by all readers and
writers.

3.9 Remarks

What progress condition is right for one’s application? Obviously, it depends on
the needs of the application and the nature of the system it is intended to run on.
However, this is actually a “trick question” since different methods, even ones
applied to the same object, can have different progress conditions. A frequently
called time-critical method such as a table lookup in a firewall program, should
be wait-free, while an infrequent call to update a table entry can be implemented
using mutual exclusion. As we will see, it is quite natural to write applications
whose methods differ in their progress guarantees.

Which correctness condition is right for one’s application? Well, it depends
on the needs of the application. A lightly loaded printer server that uses a queue
to hold, say print jobs, might be satisfied with a quiescently-consistent queue,
since the order in which documents are printed is of little importance. A banking
server should execute customer requests in program order (transfer $100 from
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savings to checking, write a check for $50), so it should use a sequentially consis-
tent queue. A stock-trading server is required to be fair, so orders from different
customers must be executed in the order they arrive, so it would require a lin-
earizable queue.

The following joke circulated in Italy in the 1920s. According to Mussolini, the
ideal citizen is intelligent, honest, and Fascist. Unfortunately, no one is perfect,
which explains why everyone you meet is either intelligent and Fascist but not
honest, honest and Fascist but not intelligent, or honest and intelligent but not
Fascist.

As programmers, it would be ideal to have linearizable hardware, linearizable
data structures, and good performance. Unfortunately, technology is imperfect,
and for the time being, hardware that performs well is not even sequentially con-
sistent. As the joke goes, that leaves open the possibility that data structures might
still be linearizable while performing well. Nevertheless, there are many chal-
lenges to make this vision work, and the remainder of this book is a road map
showing how to attain this goal.

3.10 Chapter Notes

The notion of quiescent consistency was introduced implicitly by James Aspnes,
Maurice Herlihy, and Nir Shavit [16] and more explicitly by Nir Shavit and Asaph
Zemach [143]. Leslie Lamport [90] introduced the notion of sequential consis-
tency, while Christos Papadimitriou [123] formulated the canonical formal char-
acterization of serializability. William Weihl [149] was the first to point out the
importance of compositionality (which he called locality). Maurice Herlihy and
Jeannette Wing [69] introduced the notion of linearizability in 1990. Leslie Lam-
port [93, 94] introduced the notion of an atomic register in 1986.

To the best of our knowledge, the notion of wait-freedom first appeared
implicitly in Leslie Lamport’s Bakery algorithm [88]. Lock-freedom has had sev-
eral historical meanings and only in recent years has it converged to its cur-
rent definition. Obstruction-freedom was introduced by Maurice Herlihy, Victor
Luchangco, and Mark Moir [61]. The notion of dependent progress was intro-
duced by Maurice Herlihy and Nir Shavit [63].

Programming languages such as C or C++ were not defined with concurrency
in mind, so they do not define a memory model. The actual behavior of a con-
current C or C++ program is the result of a complex combination of the underly-
ing hardware, the compiler, and concurrency library. See Hans Boehm [21] for a
more detailed discussion of these issues. The Java memory model proposed here
is the second memory model proposed for Java. Jeremy Manson, Bill Pugh, and
Sarita Adve [111] give a more complete description of the current Java memory.

The 2-thread queue is considered folklore, yet as far as we are aware, it first
appeared in print in a paper by Leslie Lamport [91].
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3.11 Exercises

Exercise 21. Explain why quiescent consistency is compositional.

Exercise 22. Consider a memory object that encompasses two register compo-
nents. We know that if both registers are quiescently consistent, then so is the
memory. Does the converse hold? If the memory is quiescently consistent, are
the individual registers quiescently consistent? Outline a proof, or give a coun-
terexample.

Exercise 23. Give an example of an execution that is quiescently consistent but
not sequentially consistent, and another that is sequentially consistent but not
quiescently consistent.

Exercise 24. For each of the histories shown in Figs. 3.13 and 3.14, are they qui-
escently consistent? Sequentially consistent? Linearizable? Justify your answer.

Exercise 25. If we drop condition L2 from the linearizability definition, is the
resulting property the same as sequential consistency? Explain.

r.read(1)

r.write(1)

r.write(2)

A

B

C

r.read(2)

Figure 3.13 First history for Exercise 24.

r.read(1)

r.write(1)

r.write(2)

A

B

C

r.read(1)

Figure 3.14 Second history for Exercise 24.
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Exercise 26. Prove the “only if” part of Theorem 3.6.1

Exercise 27. The AtomicInteger class (in the java.util.concurrent.atomic pack-
age) is a container for an integer value. One of its methods is

boolean compareAndSet(int expect, int update).

This method compares the object’s current value to expect. If the values are
equal, then it atomically replaces the object’s value with update and returns true.
Otherwise, it leaves the object’s value unchanged, and returns false. This class also
provides

int get()

which returns the object’s actual value.
Consider the FIFO queue implementation shown in Fig. 3.15. It stores its

items in an array items, which, for simplicity, we will assume has unbounded
size. It has two AtomicInteger fields: head is the index of the next slot from
which to remove an item, and tail is the index of the next slot in which to place
an item. Give an example showing that this implementation is not linearizable.

Exercise 28. Consider the class shown in Fig. 3.16. According to what you have
been told about the Java memory model, will the reader method ever divide by
zero?

1 class IQueue<T> {
2 AtomicInteger head = new AtomicInteger(0);
3 AtomicInteger tail = new AtomicInteger(0);
4 T[] items = (T[]) new Object[Integer.MAX_VALUE];
5 public void enq(T x) {
6 int slot;
7 do {
8 slot = tail.get();
9 } while (! tail.compareAndSet(slot, slot+1));
10 items[slot] = x;
11 }
12 public T deq() throws EmptyException {
13 T value;
14 int slot;
15 do {
16 slot = head.get();
17 value = items[slot];
18 if (value == null)
19 throw new EmptyException();
20 } while (! head.compareAndSet(slot, slot+1));
21 return value;
22 }
23 }

Figure 3.15 IQueue implementation.
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1 class VolatileExample {
2 int x = 0;
3 volatile boolean v = false;
4 public void writer() {
5 x = 42;
6 v = true;
7 }
8 public void reader() {
9 if (v == true) {
10 int y = 100/x;
11 }
12 }
13 }

Figure 3.16 Volatile field example from Exercise 28.

Exercise 29. Is the following property equivalent to saying that object x is wait-
free?

For every infinite history H of x, every thread that takes an infinite number of
steps in H completes an infinite number of method calls.

Exercise 30. Is the following property equivalent to saying that object x is lock-
free?

For every infinite history H of x, an infinite number of method calls are com-
pleted.

Exercise 31. Consider the following rather unusual implementation of a method
m. In every history, the ith time a thread calls m, the call returns after 2i steps. Is
this method wait-free, bounded wait-free, or neither?

Exercise 32. This exercise examines a queue implementation (Fig. 3.17) whose
enq() method does not have a linearization point.

The queue stores its items in an items array, which for simplicity we will
assume is unbounded. The tail field is an AtomicInteger, initially zero. The
enq() method reserves a slot by incrementing tail, and then stores the item at
that location. Note that these two steps are not atomic: there is an interval after
tail has been incremented but before the item has been stored in the array.

The deq() method reads the value of tail, and then traverses the array in
ascending order from slot zero to the tail. For each slot, it swaps null with the
current contents, returning the first non-null item it finds. If all slots are null, the
procedure is restarted.

Give an example execution showing that the linearization point for enq() can-
not occur at Line 15.

Hint: give an execution where two enq() calls are not linearized in the order
they execute Line 15.
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1 public class HWQueue<T> {
2 AtomicReference<T>[] items;
3 AtomicInteger tail;
4 static final int CAPACITY = 1024;
5
6 public HWQueue() {
7 items =(AtomicReference<T>[])Array.newInstance(AtomicReference.class,
8 CAPACITY);
9 for (int i = 0; i < items.length; i++) {
10 items[i] = new AtomicReference<T>(null);
11 }
12 tail = new AtomicInteger(0);
13 }
14 public void enq(T x) {
15 int i = tail.getAndIncrement();
16 items[i].set(x);
17 }
18 public T deq() {
19 while (true) {
20 int range = tail.get();
21 for (int i = 0; i < range; i++) {
22 T value = items[i].getAndSet(null);
23 if (value != null) {
24 return value;
25 }
26 }
27 }
28 }
29 }

Figure 3.17 Herlihy/Wing queue.

Give another example execution showing that the linearization point for enq()
cannot occur at Line 16.

Since these are the only two memory accesses in enq(), we must conclude that
enq() has no single linearization point. Does this mean enq() is not linearizable?

Exercise 33. Prove that sequential consistency is nonblocking.
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