Streams Processing

Supervised learning

Supervised learning

Regression and classification
Regression and classification for streams

Regression

 Given a numeric class attribute, a regression algorithm
builds a model that accurately predicts for every
unlabelled instance attribute x a numeric value.

e Examples
e Stock-market price prediction

e Airplane delays

What is regression?

Given a large, noisy dataset A = [X y]

1 = [ry to find a simple model M(X)

2. Such that the data closely follows the model M(QL‘Z) ~ UY;
The model allows to predict y from x

Q: Why not use PCA?

A: We want more than being close to all data: given an x we want to predict y

Evaluation

1. Error estimation: Hold-out or Prequential
2. Evaluation performance measures: MSE or MAE
3. Statistical significance validation: Nemenyi test

How t0O measure
performance?

Regression mean measures

» Mean square error:

MSE = (f(x;) — ¥i)?/N

» Root mean square error:

RMSE = VMSE = \/ > (f(x;) — y))2/N

Forgetting mechanism for estimating measures
Sliding window of size w with the most recent observations

How t0O measure
performance?

Regression absolute measures

» Mean absolute error:

MAE = (If(x;) — yil)/N

» Relative absolute error:

RAE = (If(x)) — yil)/ >_(I7i — yil)

Linear regression

M(x) =ax+b

Minimizing the residual

We want to use the explanatory variable x to predict the dependent variable y

M(z) =y
Residual: A
Ty = \yz — yz\
= |y; — M (x;)]

n

M ing fit 9
e S -)
1=1

In 2D

n

minimize g (a’x; —b—y;)°
a,b
i=1

a = |b; al

X =[1 X,]

Q: Is the residual the distance to the line?

A: No, it is the error of the value of the model evaluated at x and the true y

Closed form solution

a = [ag; ;.. . 5 0]

minimize || Xo — yl?
87

o=|(X'X)"1Xx*

Matrices too largel!

Classification

Given k different classes, a classifier algorithm builds a model that
accurately predicts for every unlabelled instance x the class C to which
the instance belongs.

Examples:
Spam filter

Twitter sentiment analysis

What is classification?

Given a large, noisy dataset A = [X y]

Where y takes values in a finite, unordered set of labels

1 = [ry to find a simple model M(X)

2. Such that the data closely reproduces the model M(IZ) ~ Yi

The model allows to predict y from x

Q: Why not use regression?

A: We do not wish to follow ordered continuous values

Classification for streams

1. Process an example at a time,
and inspect it only once (at

m O St) training
. . examples
2. Use a limited amount of P
memory 3
3. Work in a limited amount of S e .3

/

time
4. Be ready to predict at any \
point

@ model

requirement 4

7

\
\
N

predictions

test
examples

Logistic regression

Training the logistic regression classifier is finding a solution to

N
miniamize Z log(1 + exp(y, X2 a))

n=1

Fitting a model to data

We are minimizing a loss over the model parameters

L(a, X,
mlglerﬁlze (o, X,)

Mz

L(a, X,y) = Lo, xp, Yn)

1

n

In river: optim class

Gradient descent

L, alk+1) < alk) -k VL(a(k), X, y)

+ + £ Learning rate (step size)
determines convergence speed

— Repeat

N passes over the data just to compute one GD iteration!

(Gradient descent
convergence

Strong assumptions:
Convex loss, for which the infimum can be attained

With Lipschitz continuous gradient Lipschitz constant

IVL(@) - VL(B)| 4 DIy —

Va, f € dom(V L)

1
Largest possible fy(k) — E

Accelerated gradient method

k— 2
kE+1

» B=alk—1) - (a(k —1) — alk — 2))
a(k) =B —~y(k)VL(S, X, y)

++k

— Repeat

Extrapolated point

k— 2

B=alk—1)- P

(a(k = 1) —a(k = 2))

a(k) =6 —~(k)VL(S)

a(k — 2) alk —1)

Incremental batch gradient
method

N
Approximate VL(CM, X, y) — Z VL(Oz, Xn, yn)
n=1
By a noisy gradient @BL(()&,X, y) — Z VL(a,Xn,yn)
neB

Where B is a batch of data, in sequence. Allows for learning data streams.

Incremental batch gradient
method

—> Collect B
alk+1) «+ alk) — v(k)@BL(a(k), X, y)
++ k

—— Repeat

Why should it work?

In the iteration perspective, the minimized function is always changing!

Main assumption:

The data is produced by the same underlying process

The model loss will behave similarly for all data points

Assumption valid on learning problems,
not extensible to general optimization problems with the form:

flx) = Zfz'(%')

Stochastic gradient method

—> Sample iNU{l,--- ,N}

a(k +1) a(k) = y(k)ViL(a(k), Xi, y;)

ok

— Repeat

Choice of step-size: ZW('ZQ — 50 Z(/y(k))z < 60
k=0 k=0

Acceleration

Used in training of Big Data models
and other specific fields like NLP, CV, etc

No guarantees

Decision trees

A very popular classifier technique
Tree models are very easy to interpret and visualize

In a decision tree, each internal node corresponds to an attribute that
splits into a branch for each attribute value, and leaves correspond to
classification predictors

Requires little data preparation. Other techniques often require data
normalization, dummy variables need to be created and blank values to
be removed.

Can be unstable. Small variations in the data might result in a completely
different tree being generated. This problem is mitigated by using
decision trees within an ensemble.

Example: iris dataset

petal length (cm) < 2.45
gini = 0.6667
samples = 150
value =[50, 50, 50]
class = setosa

False

petal width (cm) < 1.75
gini=0.5
samples = 100
value = [0, 50, 50]
class = versicolor

petal length (cm) < 4.95
gini =0.168
samples = 54
value = [0, 49, 5]
class = versicolor

e

petal width (cm) < 1.65 petal width (cm) < 1.55 sepal length (cm) <5.95
gini = 0.0408 gini = 0.4444 gini = 0.4444
samples = 48 samples = 6 samples =3
value = [0, 47, 1] value = [0, 2, 4] value = [0, 1, 2]
class = versicolor class = virginica class = virginica

/ \ B\ l
gini = 0.0 sepal I?r:;g_tho(fm M 6.8 e (C gini=0.0
samples = 47 % am_ les = 3 samples =1
value = [0, 47, 0] s 0,2 1] value = [0, 1, 0]
class = versicolor B ='v Sl class = versicolor

/

gini = 0.0
samples = 2
value = [0, 2, 0]
class = versicolor

Example from Scikit-Learn documentation

Hoeffding trees: decision
trees for streams

e Pedro Domingos and Geoff Hulten (VFDT)

 Only sees a training data point once

e With high probability, constructs an identical model that a
traditional (greedy) method would learn

 Has theoretical guarantees on the error rate
* Remember Hoeffding inequality? (Lecture 1 of the module)

* In river: https://riverml.xyz/latest/api/tree/
HoeffdingTreeClassifier/

Gini index

 Popularized by the CART (classification and regression
tree) algorithm for classification trees

* A measure of how often a randomly chosen element from
the set would be incorrectly labeled it it was randomly
labeled according to the distribution of labels in the
subset

J

e For J classes it can be computed as (7 — ij(1 —p;)
where pj is the fraction of items labeled
as class |

7=1

VFDT main algorithm

HT(Stream, ¢)

1 > Let HT be a tree with a single leaf(root)
2 > Init counts nj at root

3 for each example (x, y) in Stream

4 do HTGROW((x, y), HT,)

VEDT grow tree

HTGROW((x, y), HT,)

> Sort (x, y) to leaf [using HT

> Update counts njy at leaf /

If examples seen so far at / are not all of the same class
then > Compute G for each attribute

1
>
3
4
5 if G(Best Attr.)— G(2nd best) > / F-n1/2
6
7
8

then > Split leaf on best attribute
for each branch
do > Start new leaf and initiliatize counts

Dealing with drift: Hoeftding
Adaptive Tree

Hoeffding Adaptive Tree:

» replace frequency statistics counters by estimators
» don’'t need a window to store examples, due to the fact that
we maintain the statistics data needed with estimators
» change the way of checking the substitution of alternate
subtrees, using a change detector with theoretical
guarantees (ADWIN)

In river: https://riverml.xyz/latest/api/tree/HoeffdingAdaptive TreeClassifier/

Perceptron (Neural Network)

Attribute 1 — Wy

Attribute 2 — sz

Attribute 3 —— W3 (— Output hz (X))

Attribute 4 —— W47

Attribute 5 — W5

» Data stream: (X, y;)

» Classical perceptron: h;(X;) = sgn(w Tﬁ/)

» Minimize Mean-square error 1 i
N

Perceptron (Neural Network)

* As the sign is not differentiable, we use the Sigmoid

function
| hv_l? p— O'(V_VT)_())

o(x) =1/(1 + &)

Learning the Perceptron:
minimize MSE J(w)

» Stochastic Gradient Descent: w = w — nVJX;
» Gradient of the error function:

VJ = = S (i — hg(%)Vhy(%)

i
Vhy(Xi) = hg(X)(1 — hg (X))
» Weight update rule

W=w+nY (vi—hg(X))hg(X)(1 — hg(X))X;

Perceptron for streams

» Stochastic Gradient Descent: w = w — nVJX;
» Gradient of the error function:

Vd == (vi — ha(5))Vhy(%)

i
Vhy(X;) = hg(X)(1 — hz (X))
» Weight update rule

w=w+ nZ(yi — hg(X:))hg(Xi)(1 — hg (X)X

