

Álgebra Linear e Geometria Analítica

Departamento de Matemática FCT-UNL

Primeiro Teste - 22 de Novembro de 2003

Só serão consideradas certas as respostas devidamente justificadas. Mude de folha sempre que mudar de alínea.

1. Considere as matrizes:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 0 & 4 \end{bmatrix} \in \mathcal{M}_{2\times 3}(\mathbb{R}) \quad e \quad B = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

Indique qual das afirmações seguintes é FALSA:

- $\boxed{ \textbf{A} \text{ \'e poss\'e lefectuar } AA^T B \text{ e tem-se } AA^T B = \begin{bmatrix} 5 & 5 \\ 6 & 11 \end{bmatrix} . \qquad \boxed{ \textbf{B} } \text{ B . adj } B = I_2.$
- **2.** Considere, em \mathbb{R}^3 , os subespaços vectoriais:

$$F = \{(x, y, z) \in \mathbb{R}^3 : x = 3y = z\} \text{ e } G = \langle (1, 0, 1), (0, 2, 1), (2, 2, 3) \rangle.$$

Indique qual das afirmações seguintes é FALSA:

$$\boxed{\mathbf{A}} \ F = \langle (3, 1, 3) \rangle.$$

$$B \dim G = 3.$$

$$\boxed{\mathbf{C}} \ F+G=\langle (1,0,1), (0,2,1), (2,2,3), (3,1,3)\rangle.$$

3. Considere a matriz invertível

$$M = \begin{bmatrix} x & y & z \\ t & u & v \\ w & r & s \end{bmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

Indique qual das afirmações seguintes é FALSA:

$$\boxed{ A } \left| \begin{array}{ccc} x & y & z \\ t & u & v \\ w + 3x & r + 3y & s + 3z \end{array} \right| = |M|.$$

$$\begin{bmatrix} \mathbf{B} & \begin{vmatrix} \alpha x & \beta \alpha y & \alpha z \\ t & \beta u & v \\ w & \beta r & s \end{bmatrix} = \alpha \beta |M| \quad (\alpha, \beta \in \mathbb{C}).$$

$$|4M| = 3^4 |M|.$$

$$\boxed{\mathbf{D}} \ |2M^{-1}| = \frac{2^3}{|M|}$$

4. Seja E um espaço vectorial sobre \mathbb{K} e $u_1, \ldots, u_n, v_1, \ldots, v_p, v$ vectores de E.

Indique qual das afirmações seguintes é FALSA:

- A Se (u_1, \ldots, u_n) é linearmente independente e $\alpha = 0_{\mathbb{K}}$, então $(u_1, \ldots, \alpha u_i, \ldots, u_n)$ é linearmente dependente.
- B Se (u_1, \ldots, u_n) é linearmente independente e $\alpha \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$, então $(u_1, \ldots, \alpha u_i, \ldots, u_n)$ é também linearmente independente.
- $\boxed{\mathbf{C}}$ Se (u_1,\ldots,u_n) é linearmente dependente, então o mesmo sucede a $(u_1,\ldots,u_n,v_1,\ldots,v_p)$.
- D Se (u_1, \ldots, u_n) é linearmente independente e v é combinação linear de (u_1, \ldots, u_n) , então (u_1, \ldots, u_n, v) é linearmente independente.

Continua no verso desta folha

5. Para cada $\alpha \in \mathbb{R}$ e cada $\beta \in \mathbb{R}$, considere o sistema de equações lineares, nas incógnitas $x, y \in \mathbb{R}$; sobre \mathbb{R} :

$$\begin{cases}
-\alpha x + y - \alpha z = -\beta \\
-\alpha x + (\alpha + 1)y - \alpha z = -\beta \\
-\alpha x + y + z = 0
\end{cases}$$

Indique qual das afirmações seguintes é FALSA:

A Se $\alpha \neq 0$ e $\alpha \neq -1$, então o sistema é possível e determinado.

B Se $\alpha = 0$, então o sistema é possível e indeterminado, com grau de indeterminação 1.

C Se $\alpha = -1$ e $\beta \neq 0$, então o sistema é impossível.

D Se $\alpha = -1$ e $\beta = 0$, então o sistema é possível e indeterminado, com grau de indeterminação 2.

* * * * *

[Cotação]

[2.0]

6. Considere, em $\mathcal{M}_2(\mathbb{R})$,

$$F = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}) : b = 2c \right\} \quad \text{e} \quad G = \left\langle \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix} \right\rangle.$$

[2.5] (a) Mostre que F é um subespaço vectorial de $\mathcal{M}_2(\mathbb{R})$.

[2.5] (b) Indique uma base de G e complete-a de forma a obter uma base de $\mathcal{M}_2(\mathbb{R})$.

[2.0] 7. A) Utilizando o desenvolvimento do determinante segundo linhas/colunas convenientes, indique os valores de x para os quais é invertível a matriz:

$$\begin{bmatrix} 2 & 3 & 1 & x \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & x & 1 & 0 \end{bmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

B) Seja $A \in \mathcal{M}_n(\mathbb{C})$, tal que

$$A^2 = -I_n$$
.

i. Utilizando a definição de matriz invertível, justifique que A é invertível.

[2.0] ii. Indique as possibilidades para |A|. [Sugestão: Considere, separadamente, os casos n par e n impar.]

Fim

Álgebra Linear e Geometria Analítica

Departamento de Matemática FCT-UNL

Primeiro Teste – 22 de Novembro de 2003

(Uma resolução)

- **1.** B.
- **2.** B.
- **3.** C.
- **4.** D.
- **5.** D.
- **6.** (a) Tem-se que:
 - i. $F \subseteq \mathcal{M}_2(\mathbb{R})$, por definição de F;
 - ii. $0_{\mathcal{M}_2(\mathbb{R})} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in F;$
 - iii. Sejam $\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right], \left[\begin{smallmatrix} e & f \\ g & h \end{smallmatrix} \right] \in F.$ Por definição de F,

$$b = 2c \quad e \quad f = 2g. \tag{1}$$

Como

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

e, por (1), b + f = 2c + 2g = 2(c + g), segue-se que

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \in F;$$

iv. Sejam $\left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in F$ e $\alpha \in \mathbb{R}.$ Por definição de F,

$$b = 2c. (2)$$

Como

$$\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{bmatrix}$$

e, por (2), $\alpha b = \alpha(2c) = 2(\alpha c)$, segue-se que

$$\alpha \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in F.$$

Por i., ii., iii. e iv. pode-se concluir que F é um subespaço vectorial de $\mathcal{M}_2(\mathbb{R})$.

(b) Comece-se por verificar se o sistema de geradores de G referido no enunciado, o qual será designado no que se segue por S, é linearmente independente. Admita-se então, com vista a esse efeito, que

$$\alpha \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \beta \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \gamma \begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{3}$$

com $\alpha, \beta, \gamma \in \mathbb{R}$. Então,

$$\begin{bmatrix} \alpha + 3\gamma & \beta + 2\gamma \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

e, portanto,

$$\begin{cases} \alpha + 3\gamma = 0 \\ \beta + 2\gamma = 0 \end{cases}.$$

O sistema de equações anterior é, claramente, possível e indeterminado, pois trata-se de um sistema homogéneo com mais incógnitas do que equações. Logo o sistema S de geradores de G não é linearmente independente. Além disso, tomando no sistema anterior $\gamma = 1$, obtém-se que $\alpha = -3$ e $\beta = -2$. Assim, de (3), resulta que

$$\begin{bmatrix} 3 & 2 \\ 0 & 0 \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

e, portanto, $G = \left\langle \left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right], \left[\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right] \right\rangle$.

Verifique-se agora se o sistema de geradores de G, $S_1 = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right)$, é linearmente independente. Para esse efeito, admita-se que

$$\mu \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \theta \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \tag{4}$$

 $com \mu, \theta \in \mathbb{R}$. Então,

$$\begin{bmatrix} \mu & \theta \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

e, portanto,

$$\begin{cases} \mu = 0 \\ \theta = 0 \end{cases}.$$

Logo o sistema S_1 é linearmente independente.

Em resumo, viu-se que:

– o sistema
$$S_1 = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$$
 gera o subespaço vectorial G ;

- o sistema S_1 é linearmente independente.

Logo pode-se concluir que o sistema S_1 é uma base de G.

É sabido que

$$\left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

é uma base do espaço vectorial real $\mathcal{M}_2(\mathbb{R})$ e, portanto, trata-se de um exemplo de uma base de $\mathcal{M}_2(\mathbb{R})$ que inclui a base de G determinada anteriormente.

7. A) Tem-se que:

$$\begin{vmatrix} 2 & 3 & 1 & x \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & x & 1 & 0 \end{vmatrix} = 1 \times (-1)^{2+3} \times \begin{vmatrix} 2 & 3 & x \\ 1 & 2 & 0 \\ 1 & x & 0 \end{vmatrix}$$
 (desenvolvimento segundo a 2ª linha)
$$= -x \times (-1)^{1+3} \times \begin{vmatrix} 1 & 2 \\ 1 & x \end{vmatrix}$$
 (desenvolvimento segundo a 3ª coluna)
$$= -x \begin{vmatrix} 1 & 2 \\ 1 & x \end{vmatrix}$$

$$= -x(x-2).$$

[Alternativamente,

$$\begin{vmatrix} 2 & 3 & 1 & x \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & x & 1 & 0 \end{vmatrix} = 1 \times (-1)^{2+3} \times \begin{vmatrix} 2 & 3 & x \\ 1 & 2 & 0 \\ 1 & x & 0 \end{vmatrix}$$
 (desenvolvimento segundo a 2ª linha)
$$= -\begin{vmatrix} 2 & 1 & 1 \\ 3 & 2 & x \\ x & 0 & 0 \end{vmatrix}$$

$$= -x \times (-1)^{3+1} \times \begin{vmatrix} 1 & 1 \\ 2 & x \end{vmatrix}$$
 (desenvolvimento segundo a 3ª linha)
$$= -x \begin{vmatrix} 1 & 1 \\ 2 & x \end{vmatrix}$$

$$= -x(x-2).$$

A matriz $\begin{bmatrix} 2 & 3 & 1 & x \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & x & 1 & 0 \end{bmatrix}$ é invertível se, e só se, o seu determinante for não nulo. Pelos cálculos anteriores, pode-se então afirmar que a matriz $\begin{bmatrix} 2 & 3 & 1 & x \\ 0 & 0 & 1 & 0 \\ 1 & 2 & 4 & 0 \\ 1 & x & 1 & 0 \end{bmatrix}$ é invertível se, e só se, $-x(x-2) \neq 0$. Isto é, se, e só se, $x \in \mathbb{R} \setminus \{0,2\}$.

B) i. Por definição, a matriz A é invertível se, e somente se, existir $B \in \mathcal{M}_n(\mathbb{C})$, tal que

$$AB = I_n = BA$$
.

Por hipótese, $A^2 = -I_n$. Então,

$$I_n = -A^2 = -(AA) = (-A)A$$
 e $I_n = -A^2 = -(AA) = A(-A)$.

Das igualdades anteriores conclui-se que a matriz A é invertível e que a sua inversa é a matriz -A.

ii. Tendo em conta, novamente, que por hipótese $A^2 = -I_n$ e as propriedades do determinante tem-se que:

$$A^{2} = -I_{n}$$

$$|A^{2}| = |-I_{n}|$$

$$|AA| = (-1)^{n}|I_{n}|$$

$$|A||A| = (-1)^{n} \times 1$$

$$|A|^{2} = (-1)^{n}.$$

Face ao raciocínio anterior, considere-se os seguintes dois casos:

Caso 1: Admita-se que n é par.

Neste caso, $|A|^2 = (-1)^n = 1$ e, portanto, |A| = 1 ou |A| = -1.

Caso 2: Admita-se que n é impar.

Neste caso, $|A|^2=(-1)^n=-1$ e, portanto, |A|=i ou |A|=-i (observe-se que $|A|\in\mathbb{C}$, pois $A\in\mathcal{M}_n(\mathbb{C})$, e que as raízes quadradas complexas de -1 são i e -i).