

Álgebra Linear e Geometria Analítica C

Departamento de Matemática FCT-UNL Época Normal – 29 de Janeiro de 2010

PREENCHA DE FORMA BEM LEGÍVEL

Nome Completo:	
_	
Número de caderno:	

Grelha de Respostas

	A	В	\mathbf{C}	D
1.				X
2.			X	
3.		X		
4.				X
5.				X

Atenção

Os primeiros 5 grupos desta prova são de escolha múltipla. Em cada um destes 5 grupos apenas uma das afirmações é FALSA. Determine-a e assinale-a com um X na grelha de respostas.

- Cotação: A cotação total desta prova é de 20 valores. Para cada um dos grupos de escolha múltipla a cotação atribuída é a seguinte:
 - Se não responder ou assinalar com um X mais do que uma opção: 0 valores;
 - Se responder correctamente: +1,8 valores;
 - Se responder erradamente: -0.6 valores.

A classificação da parte de escolha múltipla (Grupos 1 a 5) é dada por $\max\{0,M\}$, onde M designa a soma das classificações obtidas nos 5 grupos de escolha múltipla.

- Duração: 2 horas e 30 minutos (+ 30 minutos de tolerância).
- 1. Seja $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ uma matriz com determinante α , com $\alpha \neq 0$. Considere que

$$A \xrightarrow{3l_1} B \xrightarrow{l_1 \leftrightarrow l_3} C.$$

Apenas uma das seguintes afirmações é FALSA. Indique qual é.

$$\boxed{\mathbf{A}} \det(2A^3A^\top) = 8\alpha^4.$$

$$\boxed{ \mathbf{B} } \ C = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right] \left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] A.$$

 $oxed{C}$ As matrizes A, B e C têm a mesma característica.

$$\boxed{\mathbf{X}} \det C = -\frac{1}{3}\alpha.$$

Continua no verso desta folha

2. Um sistema de equações lineares AX = B, nas incógnitas x, y, z, w sobre \mathbb{R} , tem uma matriz ampliada equivalente por linhas à matriz

$$\begin{bmatrix} 1 & 2 & 3 & 0 & -1 \\ 0 & \alpha & 0 & 1 & 3 \\ 0 & 0 & \beta - 2 & 0 & 2 \\ 0 & 0 & 0 & 2\alpha & \beta \end{bmatrix}, \cos \alpha, \beta \in \mathbb{R}.$$

Apenas uma das seguintes afirmações é FALSA. Indique qual é.

- A Se $\alpha \neq 0$ e $\beta \neq 2$ então o sistema é possível determinado.
- B Se $\alpha = 0$ e $\beta \neq 0$ então o sistema é impossível.
- X Se $\alpha = 0$ e $\beta = 0$ então o sistema é possível indeterminado, com conjunto de soluções

$$\{(2+2b,b,-1,3): b \in \mathbb{R}\}.$$

- $\boxed{\mathrm{D}}$ Se $\beta=2$ então o sistema é impossível.
- **3.** Em \mathbb{R}^4 , considere os subespaços $F = \{(a, b, c, d) \in \mathbb{R}^4 : a = b + c \land d = 0\}$ e $G = \langle (0, 0, 0, 1), (3, 2, 1, 0) \rangle$. Apenas uma das seguintes afirmações é **FALSA**. Indique qual é.
 - $\boxed{\mathbf{A}}$ ((1,1,0,0),(1,0,1,0)) é uma base de F.
 - $X (3,2,1,-2) \not\in G.$
 - $\boxed{\mathbf{C}} \dim(F+G) = 3.$
 - $\boxed{\mathbf{D}} \dim(F \cap G) = 1 \ \mathrm{e} \ (6, 4, 2, 0) \in F \cap G.$
- **4.** Seja $B = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 5 & 0 \\ 6 & 0 & 2 \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$

Apenas uma das seguintes afirmações é FALSA. Indique qual é.

- $oxed{A}$ B tem o valor próprio 5 (com multiplicidade algébrica 2) e o valor próprio 0 (com multiplicidade algébrica 1).
- \fbox{B} B tem característica 2.

- **5.** Considere em \mathbb{R}^3 um referencial ortonormado directo. Considere os pontos $A=(2,0,1),\ B=(0,-1,3)$ e C=(0,0,1).

Apenas uma das seguintes afirmações é FALSA. Indique qual é.

- A Existe um plano contendo os pontos A, B e C e -4y-2z+2=0 é uma equação geral desse plano.
- $\boxed{\mathrm{B}}$ Os vectores \overrightarrow{AB} e \overrightarrow{AC} definem um paralelogramo cuja área é $2\sqrt{5}$.
- $\boxed{\mathbb{C}}$ A distância do ponto C à recta que passa pelos pontos A e B é $\frac{2\sqrt{5}}{3}$.
- $\boxed{\mathbf{X}}$ O ângulo entre os vectores \overrightarrow{AB} e \overrightarrow{AC} é arccos $\left(-\frac{2}{3}\right)$.

Só serão consideradas as respostas devidamente justificadas. Na resolução, mude de $\underline{\text{folha}}$ sempre que mudar de $\underline{\text{grupo}}$. [Cotação]

[1.0] **6.** (a) Seja

$$A = \left[\begin{array}{ccc} a & b & c & 0 \\ g & 0 & h & d \\ m & 0 & h & e \\ l & j & k & f \end{array} \right] \in \mathcal{M}_{4 \times 4}(\mathbb{R}).$$

Calcule o elemento da posição (4,1) da matriz adjunta de A.

- (b) Indique:
- [1.0] i. matrizes $A, B \in \mathcal{M}_{3\times 4}(\mathbb{R})$ que tenham característica 2 e que não sejam equivalentes por linhas.
- [1.5] ii. um subespaço, com dimensão 2, de $\mathcal{M}_{2\times 3}(\mathbb{R})$ e apresente uma base desse subespaço.

7. Considere a aplicação linear $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que

$$f(a, b, c) = (c, a - b, a - b + c),$$

para qualquer $(a, b, c) \in \mathbb{R}^3$. Seja $\mathcal{B} = ((2, 0, 0), (0, 0, -1), (0, 1, 0))$ uma base de \mathbb{R}^3 .

- [1.0] (a) Determine o núcleo de f.
- [1.0] (b) Mostre que a imagem de f tem dimensão 2 e apresente uma base da imagem de f.
- [0.5] (c) Indique a matriz $\mathcal{M}(f; \mathcal{B}, b.c._{\mathbb{R}^3})$, isto é, a matriz de f em relação às bases \mathcal{B} e $b.c._{\mathbb{R}^3}$ (base canónica de \mathbb{R}^3).
- [1.0] (d) Utilizando matrizes de mudança de base, relacione as matrizes $\mathcal{M}(f; \mathcal{B}, b.c._{\mathbb{R}^3})$ e $\mathcal{M}(f; \mathcal{B}, \mathcal{B})$.

- 8. Seja (u_1, \ldots, u_n) uma sequência de vectores de um espaço vectorial E sobre \mathbb{K} . Justifique as seguintes afirmações:
- [1.0] (a) Se existem $i, j \in \{1, ..., n\}, i \neq j$, tais que $u_i = u_j$ então a sequência $(u_1, ..., u_n)$ é linearmente dependente.
- [1.0] (b) Se (u_1, \ldots, u_n) é linearmente dependente então, quaisquer que sejam os vectores v_1, \ldots, v_r de E, a sequência $(u_1, \ldots, u_n, v_1, \ldots, v_r)$ é linearmente dependente.

- **9.** Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ tal que $A^2 = 4I_n$. Mostre que:
- [1.0] (a) A é invertível e indique a sua inversa.
- [1.0] (b) Se α é valor próprio de A então $\alpha \in \{-2, 2\}$.