

Análise Matemática I (B, C, D e E)

Repetição do 2º Teste — 20 de Junho de 2011

1. (6 val.) Considere, para $\alpha \in \mathbb{R}$, a sucessão definida por:

$$\begin{cases} u_1 = \frac{3}{7} \\ u_{n+1} = \alpha(u_n - u_n^2), \forall n \in \mathbb{N}. \end{cases}$$

- a) Seja $\alpha=1$. Mostre que (u_n) é monótona. Sabendo que (u_n) é uma sucessão de termos não negativos (não necessita de o provar), será (u_n) convergente? Em caso afirmativo, calcule $\lim u_n$.
- b) Considerando $\alpha = 1$, determine, caso exista, $\lim \sqrt[n]{u_n}$.
- c) Seja agora $\alpha = \frac{7}{2}$. Verifique que:

Se
$$u_n = \frac{3}{7}$$
 então $u_{n+1} = \frac{6}{7}$;

Se
$$u_n=rac{6}{7}$$
 então $u_{n+1}=rac{3}{7}$, para todo o $n\in\mathbb{N}.$

Indique, justificando, $\overline{\lim}u_n$ e $\underline{\lim}u_n$. O que pode afirmar acerca da convergência de (u_n) ?

- d) Para $\alpha = \frac{7}{2}$, indique se o conjunto dos termos da sucessão (u_n) é aberto ou fechado.
- 2. (6 val.) Considere a função real de variável real definida por

$$f(x) = \left\{ \begin{array}{ll} \frac{1 - e^{\cos(x) - 1}}{x} & \text{, se } x \neq 0 \\ \\ 0 & \text{, se } x = 0 \end{array} \right.$$

- a) Determine o domínio de f.
- b) Estude a continuidade de f.
- c) Determine os pontos onde f é diferenciável e indique nesses pontos o valor da função derivada.
- 3. (3 val.) Seja $g: \mathbb{R} \to \mathbb{R}$ uma função real de variável real, diferenciável em \mathbb{R} , tal que a equação $g(x) = e^x$ tem duas soluções distintas. Verifique que a equação $g'(x) = e^x$ tem pelo menos uma solução real.
- 4. (5 val.) Considere a função real de variável real $h(x) = \sqrt{1+x}$.
 - a) Determine uma ordem, $n \in \mathbb{N}$, para a derivada de h que verifica $\left|\frac{h^{(n)}(c)}{n!}\right| \leq 0.1$, com $c \in]0,1[$.
 - b) Utilize a alínea anterior e a Fórmula de Maclaurin para calcular um valor aproximado de $\sqrt{2}$ com erro inferior a uma décima.