Análise Matemática I D

Resolução da Repetição do 2º Teste — 20 de Junho de 2011

Nota: Esta é apenas uma resolução, de entre muitas outras possíveis.

1. Considere, para $\alpha \in \mathbb{R}$, a sucessão definida por:

$$\begin{cases} u_1 = \frac{3}{7} \\ u_{n+1} = \alpha(u_n - u_n^2), \forall n \in \mathbb{N}. \end{cases}$$

- a) Seja $\alpha=1$. Mostre que (u_n) é monótona. Sabendo que (u_n) é uma sucessão de termos não negativos (não necessita de o provar), será (u_n) convergente? Em caso afirmativo, calcule $\lim u_n$.
- b) Considerando $\alpha = 1$, determine, caso exista, $\lim \sqrt[n]{u_n}$.
- c) Seja agora $\alpha = \frac{7}{2}$. Verifique que:

Se
$$u_n = \frac{3}{7}$$
 então $u_{n+1} = \frac{6}{7}$;

Se
$$u_n=rac{6}{7}$$
 então $u_{n+1}=rac{3}{7}$, para todo o $n\in\mathbb{N}.$

Indique, justificando, $\overline{\lim}u_n$ e $\underline{\lim}u_n$. O que pode afirmar acerca da convergência de (u_n) ?

d) Para $\alpha = \frac{7}{2}$, indique se o conjunto dos termos da sucessão (u_n) é aberto ou fechado.

Resposta:

a) Para verificar se (u_n) é monótona, basta analisar o sinal de $u_{n+1} - u_n$.

$$u_{n+1} - u_n = (u_n - u_n^2) - u_n = -u_n^2 \le 0, \forall n \in \mathbb{N},$$

pelo que a sucessão (u_n) é monótona decrescente. Desta forma, $u_1=\frac{3}{7}$ será um majorante do conjunto dos termos da sucessão. Como a sucessão é de termos não negativos, 0 será um minorante do conjunto dos termos da sucessão. Sendo (u_n) monótona e limitada, (u_n) é convergente.

Designe-se por u o limite de (u_n) , $u=\lim u_n$. Como (u_{n+1}) é uma subsucessão da sucessão convergente (u_n) , (u_{n+1}) será também convergente e terá o mesmo limite. Como $u_{n+1}=u_n-u_n^2$, qualquer que seja $n\in\mathbb{N}$, u terá de satisfazer a equação

$$u = u - u^2,$$

que tem uma única solução u=0. Logo, $\lim u_n=0$.

b) Como (u_n) é uma sucessão de termos positivos, caso exista $\lim \frac{u_{n+1}}{u_n}$ também existe o limite pretendido, tendo o mesmo valor. Ora,

$$\lim \frac{u_{n+1}}{u_n} = \lim \frac{u_n - u_n^2}{u_n} = \lim(1 - u_n) = 1,$$

uma vez que $\lim u_n = 0$. Conclui-se, portanto, que

$$\lim \sqrt[n]{u_n} = 1.$$

c) Se $u_n = \frac{3}{7}$ então

$$u_{n+1} = \frac{7}{2} (u_n - u_n^2) = \frac{7}{2} \left(\frac{3}{7} - \left(\frac{3}{7} \right)^2 \right) = \frac{7}{2} \left(\frac{21 - 9}{49} \right) = \frac{6}{7}.$$

Se $u_n = \frac{6}{7}$ então

$$u_{n+1} = \frac{7}{2} (u_n - u_n^2) = \frac{7}{2} \left(\frac{6}{7} - \left(\frac{6}{7} \right)^2 \right) = \frac{7}{2} \left(\frac{42 - 36}{49} \right) = \frac{3}{7}.$$

Logo, a sucessão alterna entre os dois valores $\frac{3}{7}$ e $\frac{6}{7}$. Qualquer subsucessão convergente de (u_n) terá de ser constantemente igual $\frac{3}{7}$ ou a $\frac{6}{7}$, a partir de certa ordem. Assim, o conjunto dos sublimites de (u_n) é formado por dois únicos elementos: $\frac{3}{7}$ e $\frac{6}{7}$. Desta forma $\overline{\lim} u_n = \frac{6}{7}$ e $\underline{\lim} u_n = \frac{3}{7}$. A sucessão (u_n) não é convergente, pois $\overline{\lim} u_n \neq \underline{\lim} u_n$.

d) Designemos o conjunto dos termos da sucessão por S. Todos os pontos de S são fronteiros, já que qualquer vizinhança deles contém o próprio ponto e por isso intersecta S e contém pontos no complementar de S (as vizinhanças de $\frac{6}{7}$ contêm pontos superiores a $\frac{6}{7}$, que não estão em S e as vizinhanças de $\frac{3}{7}$ contêm pontos inferiores a $\frac{3}{7}$, que também não estão em S).

Como todos os pontos de S são fronteiros, $\operatorname{int}(S)=\emptyset\neq S$. Desta forma $\bar{S}=\operatorname{int}(S)\cup\operatorname{fr}(S)=S$, logo S é fechado. Como $\operatorname{int}(S)\neq S$, S não é aberto.

2. Considere a função real de variável real definida por

$$f(x) = \left\{ \begin{array}{ll} \frac{1-e^{\cos(x)-1}}{x} & \text{, se } x \neq 0 \\ \\ 0 & \text{, se } x = 0 \end{array} \right.$$

- a) Determine o domínio de f.
- b) Estude a continuidade de f.
- c) Determine os pontos onde f é diferenciável e indique nesses pontos o valor da função derivada.

Resposta:

- a) O domínio da restrição da função $\frac{1-e^{\cos(x)-1}}{x}$ a $\mathbb{R}\setminus\{0\}$ é $\mathbb{R}\setminus\{0\}$. Por outro lado, pela definição da função f temos f(0)=0. Logo o domínio de f é $\mathbb{R}\setminus\{0\}\cup\{0\}=\mathbb{R}$.
- b) Seja $x \neq 0$. Então na vizinhança de x, a função f é definida pelo quociente de duas funções contínuas (a diferença entre uma constante e a composta de funções contínuas e um polinómio), cujo denominador não se anula nessa vizinhança. Logo f é contínua para $x \neq 0$.

Analisemos agora a continuidade no ponto x = 0. Temos

$$\lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{1 - e^{\cos(x) - 1}}{x} = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{h(x) - h(0)}{x - 0} = h'(0) = 0 = f(0),$$

considerando $h(x) = 1 - e^{\cos(x) - 1}$, com $h'(x) = e^{\cos(x) - 1}\sin(x)$.

Assim, f é uma função contínua em x=0, logo é contínua em \mathbb{R} .

c) Para $x \neq 0$ a função f é diferenciável pois é definida pelo quociente de duas funções diferenciáveis (a diferença entre uma constante e a composta de funções diferenciáveis e um polinómio). Assim, a derivada f'(x) pode ser obtida como:

$$f'(x) = \left(\frac{1 - e^{\cos(x) - 1}}{x}\right)' = \frac{(\sin(x)e^{\cos(x) - 1})x - (1 - e^{\cos(x) - 1})}{x^2} = \frac{e^{\cos(x) - 1}(x\sin(x) + 1) - 1}{x^2}.$$

Para calcular a derivada em x=0 teremos de recorrer à respectiva definição:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{1 - e^{\cos(x) - 1}}{x} - 0}{x} = \lim_{x \to 0} \frac{1 - e^{\cos(x) - 1}}{x^2} \left(\frac{0}{0}\right)$$

Atendendo a que $(1-e^{\cos(x)-1})$ e x^2 são funções diferenciáveis em qualquer vizinhança de x=0 e que $(x^2)'=2x\neq 0$ para qualquer $x\neq 0$, calculemos

$$\lim_{x \to 0} \frac{\sin(x)e^{\cos(x)-1}}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin(x)}{x} e^{\cos(x)-1} = \frac{1}{2}.$$

Logo f é diferenciável em \mathbb{R}

3. Seja $g: \mathbb{R} \to \mathbb{R}$ uma função real de variável real, diferenciável em \mathbb{R} , tal que a equação $g(x) = e^x$ tem duas soluções distintas. Verifique que a equação $g'(x) = e^x$ tem pelo menos uma solução real.

Resposta:

Sejam $a,b\in\mathbb{R}$, com $a\neq b$, duas soluções de $g(x)=e^x$. Consideremos a função $h(x)=g(x)-e^x$, que sabemos ser diferenciável em \mathbb{R} , porque é a diferença de duas funções diferenciáveis em \mathbb{R} . Temos que h(a)=h(b)=0 e que h é diferenciável e contínua em [a,b], logo pelo Teorema de Rolle existe $c\in]a,b[$ tal que h'(c)=0. Mas, $h'(x)=g'(x)-e^x$, para todo o $x\in\mathbb{R}$. Assim $h'(c)=g'(c)-e^c=0$, ou seja, $g'(c)=e^c$.

- 4. Considere a função real de variável real $h(x) = \sqrt{1+x}$.
 - a) Determine uma ordem, $n\in\mathbb{N}$, para a derivada de h que verifica $\left|\frac{h^{(n)}(c)}{n!}\right|\leq 0.1$, com $c\in]0,1[$.
 - b) Utilize a alínea anterior e a Fórmula de Maclaurin para calcular um valor aproximado de $\sqrt{2}$ com erro inferior a uma décima.

Resposta:

a) Temos que $D_h=\{x\in\mathbb{R}: 1+x\geq 0\}=[-1,+\infty[$ e $h\in C^\infty(]-1,+\infty[)$. A primeira derivada de h num ponto $x\in]-1,+\infty[$ é definida por $h'(x)=\frac{1}{2}(1+x)^{-\frac{1}{2}}$. Verifiquemos se esta derivada satisfaz a inequação do enunciado. Temos que:

$$0 < c < 1 \Leftrightarrow 1 < 1 + c < 2 \Leftrightarrow \frac{1}{2} < \frac{1}{1+c} < 1 \Leftrightarrow \frac{1}{\sqrt{2}} < \frac{1}{\sqrt{1+c}} < 1 \tag{1}$$

Para n=1, $\left|\frac{h^{(n)}(c)}{n!}\right|=|h'(c)|=\frac{1}{2}\frac{1}{\sqrt{1+c}}$ e se 0< c<1 temos que, usando (1), $\frac{1}{2\sqrt{2}}<\frac{1}{2}\frac{1}{\sqrt{1+c}}<\frac{1}{2}$. Como $\frac{1}{2\sqrt{2}}>\frac{1}{10}$ concluímos que $|h'(c)|>\frac{1}{10}$ e portanto n=1 não satisfaz a inequação do enunciado.

Para n=2, $h''(x)=-\frac{1}{4}(1+x)^{-\frac{3}{2}}$, para $x\in]-1,+\infty[$. Então, se 0< c<1, $\left|\frac{h^{(n)}(c)}{n!}\right|=\left|\frac{h''(c)}{2!}\right|=\left|\frac{-\frac{1}{4}\frac{1}{(\sqrt{1+c})^3}}{2!}\right|=\frac{1}{8}\frac{1}{(\sqrt{1+c})^3}$ e usando (1) obtemos que $\frac{1}{8\cdot (\sqrt{2})^3}<\frac{1}{8}\frac{1}{(\sqrt{1+c})^3}<\frac{1}{8}$. Observamos que $\frac{1}{16\sqrt{2}}<\frac{1}{10}<\frac{1}{8}$, pelo que não temos a garantia que n=2 satisfaça a inequação do enunciado.

Para n=3, $h'''(x)=\frac{3}{8}(1+x)^{-\frac{5}{2}}$, para $x\in]-1,+\infty[$. Então se 0< c<1, $\left|\frac{h^{(n)}(c)}{n!}\right|=\left|\frac{h'''(c)}{3!}\right|=\frac{\frac{3}{8}\frac{1}{(\sqrt{1+c})^5}}{3!}=\frac{1}{16}\frac{1}{(\sqrt{1+c})^5}$ e usando (1) obtemos que $\frac{1}{16(\sqrt{2})^5}<\frac{1}{16}\frac{1}{(\sqrt{1+c})^5}<\frac{1}{16}$. Como $\frac{1}{16}<\frac{1}{10}$, podemos concluir que $\left|\frac{h'''(c)}{3!}\right|<0.1$, para 0< c<1.

Portanto uma ordem que permita à derivada de h satisfazer a inequação do enunciado será n=3.

b) Como já observámos na alínea (a), $h \in C^{\infty}(]-1,+\infty[)$. Estamos nas condições para poder aplicar o Teorema do Taylor e, então, afirmar que, para cada $x \in]-1,+\infty[$, existe c entre 0 e x tal que

$$h(x) = h(0) + h'(0)x + h''(0)\frac{x^2}{2!} + \dots + h^{(n)}(c)\frac{x^n}{n!}$$

Provámos na alínea (a) que $\left|\frac{h'''(c)}{3!}\right| < 0.1$, para 0 < c < 1, com $\frac{h'''(c)}{3!}$ o resto de Lagrange de ordem 3, para x=1. Por outro lado, $\sqrt{2}=h(1)$. Usando as derivadas calculadas na alínea (a), temos que h(1)=1, $h'(1)=\frac{1}{2}$ e $h''(1)=-\frac{1}{8}$. Substituindo no desenvolvimento em Fórmula de Taylor, obtemos

$$\sqrt{2} = 1 + \frac{1}{2} - \frac{1}{8} + h'''(c)\frac{1}{3!}.$$

Então $1+\frac{1}{2}-\frac{1}{8}=\frac{11}{8}$ é um valor aproximado de $\sqrt{2}$ com erro inferior a uma décima