

Grelha de Correcção do Enunciado A

Análise Matemática I

Repetição do 1º Teste — 27 de Junho de 2017

O Teste compõe-se de 5 questões de escolha múltipla e 3 de resposta aberta. Em cada uma das questões de escolha múltipla apenas uma das alíneas é correcta. Determine-a e assinale-a no quadrado reservado para o efeito na folha de respostas.

Duração: 1H 30M.

Cotação: Nas questões de escolha múltipla, as respostas certas valem 1 valor cada e as respostas erradas descontam 0,2 cada (não se desconta caso não haja resposta). A cotação total do teste é de 20 valores.

Seja A o conjunto dos termos da sucessão $(u_n)_{n\in\mathbb{N}}$ definida por:

$$u_n = \begin{cases} -1 + \frac{1}{n} \,, & \text{se } n \text{ \'e par} \\ \\ 3 - \frac{2}{n} \,, & \text{se } n \text{ \'e \'impar} \end{cases}$$

Considere o conjunto $B = \Big(\,]0,2[\,\backslash\{1\}\Big) \cup A.$

- 1. Qual das seguintes afirmações é verdadeira?
 - (a) O conjunto dos minorantes de $B \in]-\infty, -1]$ e $\min(B) = -1$.
 - (b) O conjunto dos minorantes de $B \in [-\infty, -1]$ e B não tem mínimo.
 - (c) O conjunto dos majorantes de $B \in [3, +\infty[$ e $\sup(B)$ não existe.
 - (d) O conjunto dos majorantes de $B \in [3, +\infty[$ e $\max(B) = 3.$
- 2. Qual das seguintes afirmações é verdadeira?
 - (a) $\operatorname{int}(B) =]0, 2[$ e B não é aberto nem fechado.
 - (b) $\operatorname{int}(B) = [0, 2[$ e B é aberto.
 - (c) $int(B) =]0, 1[\cup]1, 2[e B não é fechado.$
 - (d) $int(B) = [0, 1[\cup]1, 2[e B \text{ \'e aberto}.]$
- 3. O conjunto S dos pontos isolados e o derivado de B são
 - (a) $S = A \in B' = [0, 2].$
 - (b) $S = A \in B' = [0, 2] \cup \{-1, 3\}.$
 - (c) $S = A \setminus \{1\} \in B' = [0, 2].$
 - (d) $S = A \setminus \{1\} \in B' = [0, 2] \cup \{-1, 3\}.$

4. Seja D o domínio da função real de variável real, f, definida por

$$f(x) = \frac{\log(24 - |x^2 - 25|)}{\left(\arctan(2x) + \frac{\pi}{4}\right) (e^{x^2} - e^{3x})}.$$

Qual a fronteira de D?

 $|(a)| = \{-7, -1, 1, 3, 7\}.$

(c) $\{-7, -1, 1, 3, 7, -\frac{1}{2}\}.$

(b) $\{-7, -1, 0, 1, 7, -\frac{1}{2}\}.$

- (d) $\{-7, -1, 0, 1, 3, 7\}.$
- 5. Sejam $D \subset \mathbb{R}$ um subconjunto limitado e (x_n) uma sucessão monótona de elementos de D. Qual das seguintes afirmações é verdadeira?

(c)

(a) A sucessão (x_n) não tem subsucessões monótonas.

A sucessão (x_n) não é limitada, mas tem subsucessões limitadas.

(b) O limite de (x_n) pertence a D.

(d) A sucessão (x_n) é convergente.

QUESTÕES DE RESPOSTA ABERTA

1. Calcule, se existir, o valor dos seguintes limites:

(a) [2.5 val.]
$$\lim_{n \to +\infty} \left(\frac{n^6 - 2}{n^6} \right)^{n^3 + 3}$$
;

(b) [2.5 val.]
$$\lim_{n \to +\infty} \sum_{k=4}^{2n+3} \frac{3 \arctan(n)}{\sqrt{9n^2 + 2k}}$$
.

Resposta: (a) Designando por a_n o termo geral da sucessão podemos escrever

$$a_n = \left(\frac{n^6 - 2}{n^6}\right)^{n^3 + 3} = \left(1 - \frac{2}{n^6}\right)^{n^3 + 3} = \left(1 - \frac{2}{n^6}\right)^{n^3} \cdot \left(1 - \frac{2}{n^6}\right)^3$$
$$= \left[\left(1 - \frac{2}{n^6}\right)^{n^6}\right]^{1/n^3} \cdot \left(1 - \frac{2}{n^6}\right)^3, \quad \forall n \in \mathbb{N}.$$

Como $\lim n^6 = +\infty$, sabemos que

$$\lim \left(1 - \frac{2}{n^6}\right)^{n^6} = e^{-2}$$

е

$$\lim \left(1 - \frac{2}{n^6}\right)^3 = 1,$$

portanto,

$$\lim a_n = (e^{-2})^0 = 1.$$

(b) O termo geral a_n da sucessão está definido como a soma de k=4 a k=2n+3 de $\frac{3\arctan(n)}{\sqrt{9n^2+2k}}$. A maior parcela é $\frac{3\arctan(n)}{\sqrt{9n^2+8}}$ (que corresponde a k=4) e a menor

é $\frac{3\arctan(n)}{\sqrt{9n^2+4n+6}}$ (correspondente a k=2n+3), como está demonstrado a seguir. Temos, para todo o n e $4\leq k\leq 2n+3$:

$$\sqrt{9n^2 + 8} < \sqrt{9n^2 + 2k} \le \sqrt{9n^2 + 4n + 6}$$

$$\Rightarrow \frac{1}{\sqrt{9n^2 + 4n + 6}} \le \frac{3 \arctan(n)}{\sqrt{9n^2 + 2k}} \le \frac{1}{\sqrt{9n^2 + 8}}$$

$$\Rightarrow \frac{3 \arctan(n)}{\sqrt{9n^2 + 4n + 6}} \le \frac{1}{\sqrt{9n^2 + 2k}} \le \frac{3 \arctan(n)}{\sqrt{9n^2 + 8}}$$

Como (a_n) está definida como uma soma de 2n+3-4+1=2n parcelas obtemos,

$$2n \cdot \frac{3 \operatorname{arctg}(n)}{\sqrt{9n^2 + 4n + 6}} \le \sum_{k=4}^{2n+3} \frac{3 \operatorname{arctg}(n)}{\sqrt{9n^2 + 2k}} < 2n \cdot \frac{3 \operatorname{arctg}(n)}{\sqrt{9n^2 + 8}}, \quad \forall n \in \mathbb{N}$$

$$\Leftrightarrow 6 \operatorname{arctg}(n) \frac{n}{\sqrt{9n^2 + 4n + 6}} \le \sum_{k=4}^{2n+3} \frac{3 \operatorname{arctg}(n)}{\sqrt{9n^2 + 2k}} \le 6 \operatorname{arctg}(n) \frac{n}{\sqrt{9n^2 + 8}}, \quad \forall n \in \mathbb{N}.$$

Seja $b_n=\frac{n}{\sqrt{9n^2+4n+6}}$. Dividindo o numerador e o denominador da fracção que define a sucessão por n temos:

$$\lim b_n = \lim \frac{1}{\frac{\sqrt{9n^2 + 4n + 6}}{n}} = \lim \frac{1}{\sqrt{\frac{9n^2 + 4n + 6}{n^2}}} = \lim \frac{1}{\sqrt{9 + \frac{4}{n} + \frac{6}{n^2}}} = \frac{1}{3}.$$

Seja
$$c_n = \frac{n}{\sqrt{9n^2 + 8}}$$
.

$$\lim c_n = \lim \frac{1}{\frac{\sqrt{9n^2 + 8}}{n}} = \lim \frac{1}{\sqrt{\frac{9n^2 + 8}{n^2}}} = \lim \frac{1}{\sqrt{9 + \frac{8}{n^2}}} = \frac{1}{3}.$$

Como $\lim 6 \arctan(n) = 6 \cdot \frac{\pi}{2} = 3\pi$ temos $\lim 6 \arctan(n) \cdot b_n = \pi$ e $\lim 6 \arctan(n) \cdot c_n = \pi$. Finalmente, como os dois limites são iguais, o Teorema das Sucessões Enquadradas permite-nos concluir que

$$\lim a_n = \pi.$$

2. Considere a sucessão definida por:

$$\begin{cases} a_1 = 1 \\ a_{n+1} = a_n + n + 1, & \forall \ n \ge 1. \end{cases}$$

(a) [3.0 val.] Prove, usando o Princípio de Indução Matemática, que

$$a_n = \frac{n^2 + n}{2}, \quad \forall n \in \mathbb{N}.$$

(b) [2.0 val.] Utilizando a alínea anterior, calcule o seguinte limite:

$$\lim_{n\to+\infty} \sqrt[n]{a_n}.$$

Resposta: (a) Seja p(n) a proposição $a_n=\frac{n^2+n}{2}$. Se n=1 obtemos $1=\frac{1+1}{2}$ que é uma proposição verdadeira.

Hipótese de Indução: $a_n = \frac{n^2 + n}{2}$.

Tese de Indução: $a_{n+1}=\frac{(n+1)^2+n+1}{2}$.

Demonstração: Pela definição da sucessão temos

$$a_{n+1} = a_n + n + 1.$$

Aplicando a hipótese de indução obtemos

$$a_{n+1} = a_n + n + 1 = \frac{n^2 + n}{2} + n + 1$$

$$= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 2n + 1 + n + 1}{2}$$

$$= \frac{(n+1)^2 + n + 1}{2}.$$

Pelo Princípio de Indução concluímos que

$$a_n = \frac{n^2 + n}{2}, \ \forall n \in \mathbb{N}.$$

(b) Como $a_n > 0$, $\forall n \in \mathbb{N}$, e

$$\lim \frac{a_{n+1}}{a_n} = \lim \frac{\frac{(n+1)^2 + n + 1}{2}}{\frac{n^2 + n}{2}} = \lim \frac{(n+1)^2 + n + 1}{n^2 + n}$$
$$= \lim \frac{n^2 + 3n + 2}{n^2 + n} = 1$$

podemos concluir que $\lim \sqrt[n]{a_n} = 1$.

3. Considere a função real de variável real definida por

$$f(x) = \begin{cases} \pi + \log\left(x^2 - \frac{5}{2}x + 1\right), & \text{se } x < 0\\ 2, & \text{se } x = 0\\ 2\arctan\left(\frac{1}{x}\right) + \frac{x^2}{2}, & \text{se } x > 0. \end{cases}$$

- (a) [1.5 val.] Determine o domínio de f.
- (b) [2.0 val.] Estude a continuidade de f no seu domínio.
- (c) [1.5 val.] Averigúe se x=0 é uma descontinuidade removível de f. Justifique.

Resposta: (a)

$$D = \{x \in \mathbb{R} : x^2 - \frac{5}{2}x + 1 > 0 \land x < 0\} \cup \{x \in \mathbb{R} : x \neq 0 \land x > 0\} \cup \{0\}$$
$$= \{x \in \mathbb{R} : (x < \frac{1}{2} \lor x > 2) \land x < 0\} \cup \{x \in \mathbb{R} : x > 0\} \cup \{0\} = \mathbb{R}.$$

4

(b) Seja x<0. Sejam $f_1(x)=x^2-\frac{5}{2}x+1$ e $f_2(x)=\log(x)$. Em $]-\infty,0[$ temos $f(x)=\pi+(f_2\circ f_1)(x)$. Neste conjunto f_1 é positiva e é contínua por ser uma função polinomial. A função f_2 é contínua em \mathbb{R}^+ o que implica que $f_2\circ f_1$ é contínua se x<0. Podemos concluir que f é contínua se x<0 por ser a soma de uma função contínua com uma função constante.

Seja x>0. Sejam $g_1(x)=\frac{1}{x}$, $g_2(x)=\frac{x^2}{2}$ e $g_3(x)=\arctan(x)$. Em $]0,+\infty[$ temos $f(x)=2(g_3\circ g_1)(x)+g_2(x)$. Neste conjunto g_1 é contínua por ser uma função racional cujo denominador não se anula. Como a função arco-tangente é contínua em $\mathbb R$ e a composição de funções contínuas é contínua, podemos afirmar que $2(g_3\circ g_1)$ é contínua se x>0. A função g_2 é contínua por ser uma função polinomial. Concluímos que f é contínua por ser a soma de funções contínuas.

Estudemos a continuidade em x = 0.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(2 \arctan\left(\frac{1}{x}\right) + \frac{x^2}{2} \right) = \pi;$$

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(\pi + \log\left(x^2 - \frac{5}{2}x + 1\right) \right) = \pi.$$

Como f(0) = 2, f não tem limite em x = 0 e, portanto, não é contínua neste ponto.

(c) Uma função f tem uma descontinuidade removível num ponto a se existir uma função g contínua em a e que difere de f apenas nesse ponto. Seja g a função real de variável real definida por

$$g(x) = \begin{cases} \pi + \log\left(x^2 - \frac{5}{2}x + 1\right), & \text{se } x < 0\\ \pi, & \text{se } x = 0\\ 2\arctan\left(\frac{1}{x}\right) + \frac{x^2}{2}, & \text{se } x > 0. \end{cases}$$

Como vimos na alínea anterior

$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} f(x) = \pi;$$
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} f(x) = \pi$$

e $g(0)=\pi$, portanto, g é contínua em x=0 e difere de f apenas neste ponto. Podemos concluir que x=0 é uma descontinuidade removível de f.