

28 de Junho 2019 Duração: 1h 30m

Justifique as suas respostas e apresente os cálculos efectuados. Mude de folha quando mudar de grupo.

Grupo 1

Na folha de resposta do Grupo 1 indique, para cada item, qual a opção correcta.

Apresente os resultados na forma de uma grelha.

 $(Resposta\ correcta:\ 1,2\ valores.\ Resposta\ errada\ com\ elementos\ justificativos:\ 0\ valores.\ Resposta\ errada\ sem\ elementos\ justificativos:\ (-0,4)\ valores.)$

verdadeira?	ubconjunto	ae k	dennido	por I	> :=	(]0,1[[IQ) U	$\{\pi\}.$	Quai	aas s	seguintes	апгта	çoes e	,
(a) $int(B) =$	=]0, 1[(b)	Fr(B) =	= {0, 1	$,\pi\}$	(c) I	B' = [[0, 1]		(6	i) Ext($(B) = \mathbb{R}$	$\setminus \{\pi\}$	

- 2. Considere o sucessão $u_n = (-1)^n \cdot n \cdot \sin\left(\frac{2}{n}\right)$. Podemos afirmar que:
 - (a) $\lim \inf u_n = -2$ (b) $\lim |u_n| = 1$ (c) $\lim u_n = 2$ (d) $\lim |u_n| = +\infty$
- **3.** Considere a função definida em $\mathbb{R}\setminus\{0\}$ por $f(x)=e^{-\frac{1}{x}}$. Considere a sucessão $u_n=\frac{1}{n^2}$. Qual o limite da sucessão $f(u_n)$?
 - (a) 0 (b) 1 (c) e (d) $+\infty$
- 4. Considere a função $g: \mathbb{R} \to \mathbb{R}$ tal que $g(x) = (x \sin(x))^2$. Podemos afirmar que:
 - (a) g tem mínimo e tem máximo. (b) g não tem mínimo e não tem máximo.
 - $\underline{(\mathbf{c})}$ g tem mínimo e não tem máximo. $\underline{(\mathbf{d})}$ g não tem mínimo e tem máximo.
- **5.** Seja $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) = \ln(e^x + 1)$. Podemos afirmar que:
 - (a) h não tem inversa para a composição de funções.
 - (b) h admite inversa e o domínio de h^{-1} é \mathbb{R} .
 - (c) h admite inversa e o domínio de h^{-1} é $]0, +\infty[$.
 - (d) h admite inversa e, para todo o x pertencente ao domínio de h^{-1} , tem-se $h^{-1}(x) = h(x)$.

$$\sum_{k=1}^{2n} (-1)^k \cdot k = n \qquad \text{para todo o } n \in \mathbb{N}$$

Resposta: Verifiquemos a base de indução, isto é, que igualdade é verdadeira para n=1:

$$\sum_{k=1}^{2} ((-1)^k \cdot k) = -1 + 2 = 1$$

logo verifica-se a base de indução. Verifiquemos que a propriedade é indutiva.

Supondo que $\sum_{k=1}^{2n} ((-1)^k \cdot k) = n$, mostremos que $\sum_{k=1}^{2(n+1)} ((-1)^k \cdot k) = n+1$. Temos

$$\sum_{k=1}^{2(n+1)} (-1)^k \cdot k = \sum_{k=1}^{2n} ((-1)^k \cdot k) + (-1)^{2n+1} (n+1) + (-1)^{2n+2} (n+2) = n - (n+1) + (n+2) = n+1$$

pelo que a propriedade é indutiva. Concluímos pois que a propriedade é verdadeira para todo o $n \in \mathbb{N}$.

[2,5] **(b)** Seja $\epsilon > 0$. Determine uma ordem $p \in \mathbb{N}$ tal que, para todo o $n \in \mathbb{N}$,

$$n > p \quad \Rightarrow \quad \left| \ln \left(\frac{n+1}{n} \right) \right| < \epsilon$$

O que pode concluir quanto à sucessão $w_n = \ln(n+1) - \ln(n)$?

Resposta:

Temos que

$$\left| \ln \left(\frac{n+1}{n} \right) \right| < \epsilon$$

equivale a

$$\ln\left(\frac{n+1}{n}\right) < \epsilon$$

posto que $\ln((n+1)/n) > 0$. Resolvendo, temos

$$1 + \frac{1}{n} < e^{\epsilon}$$

ou

$$n > \frac{1}{e^{\epsilon} - 1}$$

Se tomarmos em particular p um número natural superior ao segundo membro, temos, para n > p

$$\left| \ln \left(\frac{n+1}{n} \right) \right| < \epsilon$$

Ora

$$\ln\left(\frac{n+1}{n}\right) = \ln(n+1) - \ln(n) = w_n$$

pelo que concluímos que a sucessão (w_n) verifica a condição de convergência para o limite 0.

Grupo 3 (Mude de folha)

Considere a sucessão (u_n) definida por

$$u_1 = 1$$
, $u_{n+1} = \frac{1}{2 + u_n}$ para todo o $n \in \mathbb{N}$

[1,0] (a) Mostre que $u_n > 0$ para todo o $n \in \mathbb{N}$.

Resposta: Faremos a demonstração por indução. A afirmação é verdadeira para n=1. Supomos a afirmação verdadeira para n, isto é $u_n > 0$. Temos então

$$u_{n+1} = \frac{1}{2 + u_n} > 0$$

o que prova a indutividade da afirmação e portanto, a sua veracidade para todo o natural n.

[2,0] **(b)** Verifique que

$$|u_{n+2} - u_{n+1}| \le \frac{1}{4} \cdot |u_{n+1} - u_n| \qquad \forall n \in \mathbb{N}$$

Resposta: Temos

$$|u_{n+2} - u_{n+1}| = \left| \frac{1}{2 + u_{n+1}} - \frac{1}{2 + u_n} \right| = \frac{|u_n - u_{n+1}|}{(2 + u_{n+1})(2 + u_n)} \le \frac{1}{4} \cdot |u_{n+1} - u_n|$$

A última desigualdade resulta da alínea anterior, já que a positividade dos termos da sucessão (u_n) garante que $u_n + 2 > 2$ para todo o natural n. Em particular,

$$0 < \frac{1}{(2+u_{n+1})(2+u_n)} < \frac{1}{4}$$

[2,0] (c) Justifique que (u_n) é convergente e determine o seu limite.

Resposta: Pela alínea anterior, e por um resultado visto na aula teórica, a sucessão (u_n) é de Cauchy, logo convergente para um limite l finito. Além disso, uma vez que os termos da sucessão (u_n) são positivos, sabemos que $l \ge 0$. Passando ao limite a relação de recorrência

$$u_{n+1} = \frac{1}{2 + u_n}$$

concluímos que l verifica

$$l = \frac{1}{2+l}$$

ou

$$l^2 + 2l - 1 = 0$$

Esta equação tem raízes $l_1 = (-2 + \sqrt{8})/2 = -1 + \sqrt{2} > 0$ e $l_2 - 1 - \sqrt{2} < 0$ pelo que $0 \le l = l_1$.

Grupo 4 (Mude de folha)

[1,5] (a) Recorda-se que, para $a, b \in \mathbb{R}$, define-se $\max\{a, b\} = \max\{b, a\} = a$ se e só se $a \ge b$. Por exemplo:

$$\max\{3,\pi\} = \pi$$

Sabe-se que, se (u_n) e (v_n) são sucessões convergentes tais que $\lim u_n = l_1$ e $\lim v_n = l_2$, então

$$\lim \max\{u_n, v_n\} = \max\{l_1, l_2\}$$

Utilize este facto para mostrar que, se $f, g: I \mapsto \mathbb{R}$ são funções contínuas num intervalo I, então

$$h: I \mapsto \mathbb{R}, \qquad h(x) = \max\{f(x), g(x)\}\$$

é uma função contínua.

Resposta: Seja $x_0 \in I$ e seja (x_n) uma sucessão de elementos em I convergente para x_0 . Como f e g são funções contínuas em I, temos

$$\lim f(x_n) = f(x_0)$$
 e $\lim g(x_n) = g(x_0)$

Pela propriedade referida no enunciado, teremos então

$$\lim h(x_n) = \max\{f(x_n), g(x_n)\} = \max\{f(x_0), g(x_0)\} = h(x_0)$$

(esta igualdade não depende da sucessão convergente para x_0 considerada nem do ponto x_0). Concluímos que h é contínua em I.

[2,5] (b) Mostre que a função contínua $h:]0, +\infty[\mapsto \mathbb{R}$ definida por

$$h(x) = \max \left\{ \ln \left(\frac{e \cdot x}{x+1} \right), \arctan(x-1) \right\}$$

tem pelo menos uma raíz.

(sugestão: estude os limites de h em 0^+ e em $+\infty$ e aplique o Teorema de Bolzano.)

Seja $x_n \to 0^+$. Temos

$$\lim \frac{e \cdot x_n}{x_n + 1} = 0^+ \quad \text{e} \quad \lim x_n - 1 = -1$$

logo

$$\lim \ln \left(\frac{e \cdot x_n}{x_n + 1} \right) = -\infty$$
 e $\lim \arctan(x_n - 1) = -\frac{\pi}{4}$

donde

$$\lim h(x_n) = -\frac{\pi}{4}$$

e concluímos que $\lim_{x\to 0^+} h(x) = -\frac{\pi}{4}$ Consideremos agora $z_n \to +\infty$.

$$\lim \frac{e \cdot z_n}{z_n + 1} = e \quad e \quad \lim z_n - 1 = +\infty$$

logo

$$\lim \ln \left(\frac{e \cdot z_n}{z_n + 1}\right) = 1$$
 e $\lim \arctan(z_n - 1) = \frac{\pi}{2}$

donde

$$\lim h(z_n) = \frac{\pi}{2}$$

e concluímos que $\lim_{x\to +\infty} h(x) = \frac{\pi}{2}$. Como h é contínua em $]0,+\infty[$ (gozando por isso da propriedade do valor intermediário) e $0\in]-\frac{\pi}{4},\frac{\pi}{2}[$, concluímos que h tem pelo menos uma raíz em $]0,+\infty[$.

Nota: Este item pode ser resolvido por via algébrica, identificando a raíz $x_0 = (e-1)^{-1}$ da função $\ln\left(\frac{e \cdot x}{x+1}\right)$ e justificando que $h(x_0) = 0$.

Fim