

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

Versão 4.0 - Português

Aula Nº 05:

Título: Funções Lógicas

Sumário: Funções lógicas (circuitos com portas NAND e circuitos com portas NOR

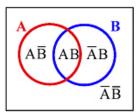
(revisão)); Representações normalizadas (soma de produtos e produto de somas, mintermos e maxtermos); Funções incompletamente especificadas.

2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Funções Lógicas



A	В	Saída	
0	0	0	
0	1	1	
1	0	0	
1	1	0	

Aula Anterior

Na aula anterior:

- ▶ Elementos de Tecnologia:
 - Circuitos integrados
 - Famílias lógicas
- ► Funções Lógicas:
 - Circuitos com portas NAND
 - Circuitos com portas NOR

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos	
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	L0
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) - Som., Comp., etc.	L1
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Circuitos Sequenciais: Latches	P2
26/Out a 31/Out	Circuitos Sequenciais: Flip-Flops	Ling. de Descrição e Simulação de HW (ferramentas disponíveis no laboratório)	L2
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5
14/Dez a 18/Dez	P6	P6	L6

Prof. Nuno Roma

Sistemas Digitais 2015/16

3

Sumário

■ Tema da aula de hoje:

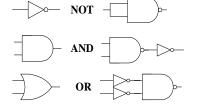
- ► Funções lógicas:
 - Circuitos com portas NAND (revisão);
 - Circuitos com portas NOR (revisão);
- ▶ Representações normalizadas:
 - Soma de produtos;
 - Mintermos;
 - Produto de somas;
 - Maxtermos;
- ▶ Funções incompletamente especificadas.

■ Bibliografia:

- M. Mano, C. Kime: Secção 2.3
- G. Arroz, J. Monteiro, A. Oliveira: Secção 2.2

Circuitos com portas NAND:

- ▶ A porta NAND é considerada uma porta universal porque qualquer circuito digital pode ser realizado apenas com portas NAND.
- Qualquer função booleana é realizável apenas com portas NAND por substituição directa das operações NOT, AND e OR.



- ▶ A operação NOT é normalmente considerada em sentido lato, como uma NAND de 1 entrada.
- Nalgumas tecnologias (p.ex. TTL) as portas NAND são as portas mais simples (portanto mais baratas), pelo que é vantajosa a realização de circuitos só com NANDs.

Prof. Nuno Roma

Sistemas Digitais 2015/16

5

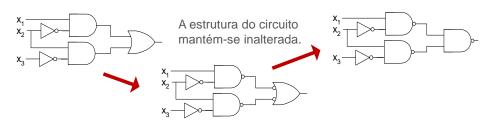
Funções Lógicas

Circuitos com portas NAND (cont.):

Uma função representada na forma de uma soma de produtos pode ser transformada numa forma directamente realizável apenas com portas NAND por simples aplicação da lei de DeMorgan.

Exemplo:

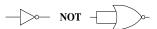
$$f = x_1 \overline{x}_2 + \overline{x}_3 x_2 = \overline{x_1 \overline{x}_2 + \overline{x}_3 x_2} = \overline{x_1 \overline{x}_2 \cdot \overline{x}_3 x_2}$$
$$= (x_1 \ nand \ \overline{x}_2) \ nand \ (\overline{x}_3 \ nand \ x_2)$$



Prof. Nuno Roma

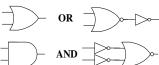
Sistemas Digitais 2015/16

Circuitos com portas NOR:



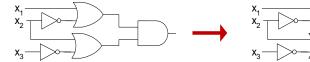
Dual:

Qualquer circuito pode ser realizado apenas com portas NOR.



No caso de a função estar representada como um produto de somas, a transformação mantém a estrutura.

$$g = (x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2) = \overline{(x_1 + \overline{x}_2) \cdot (\overline{x}_3 + x_2)} = \overline{(x_1 + \overline{x}_2) + (\overline{x}_3 + x_2)}$$
$$= (x_1 \text{ nor } \overline{x}_2) \text{ nor } (\overline{x}_3 \text{ nor } x_2)$$



Prof. Nuno Roma

Sistemas Digitais 2015/16

_

Funções Lógicas

■ REPRESENTAÇÃO NORMALIZADA: SOMA DE PRODUTOS

- ▶ Designa-se por forma normal **disjuntiva** de uma função booleana simples completamente especificada, $y=f(x_1,x_2,...,x_N)$, uma expressão lógica representativa da função com a estrutura de uma soma de produtos.
- ▶ Por esta razão, designa-se habitualmente uma forma normal disjuntiva simplesmente por **soma de produtos**.
- ▶ Se cada parcela for constituída por um produto lógico envolvendo n literais distintos, diz-se que a função se encontra representada na primeira forma canónica ou **forma canónica disjuntiva**.

Exemplos:

$$f(x_1, x_2, x_3) = x_1.x_2 + \overline{x_1}.\overline{x_2}.\overline{x_3} \qquad \leftarrow \text{forma não canónica}$$

$$f(x_1, x_2, x_3) = x_1.x_2.x_3 + x_1.x_2.\overline{x_3} + \overline{x_1}.\overline{x_2}.\overline{x_3} \qquad \leftarrow \text{forma canónica}$$

Prof. Nuno Roma

Sistemas Digitais 2015/16

MINTERMOS:

▶ Designa-se por mintermo (também produto canónico, implicante canónico ou termo minimal) um termo de produto em que todas as variáveis aparecem exactamente uma vez, complementadas ou não.

Mintermos para 3 variáveis

x ₃	\mathbf{x}_2	x ₁	mintermo	
0	0	0	$\overline{X}_3.\overline{X}_2.\overline{X}_1$	m_0
0	0	1	$\overline{X}_3.\overline{X}_2.X_1$	m ₁
0	1	0	$\overline{X}_3.X_2.\overline{X}_1$	m_2
0	1	1	$\overline{X}_3.X_2.X_1$	m_3
1	0	0	$x_3.\overline{x}_2.\overline{x}_1$	m_4
1	0	1	$x_3.\overline{x}_2.x_1$	m ₅
1	1	0	$x_3.x_2.\overline{x}_1$	m_6
1	1	1	$x_3.x_2.x_1$	m ₇

Um **mintermo** representa exactamente uma combinação das variáveis binárias na tabela de verdade da função.

Uma função de n variáveis tem 2ⁿ mintermos.

Cada mintermo é também designado por m_i em que o índice i indica o número decimal equivalente à combinação binária por ele representada.

O mintermo vale 1 para a combinação representada, e 0 para todas as outras.

Prof. Nuno Roma

Sistemas Digitais 2015/16

9

Funções Lógicas

■ REPRESENTAÇÃO NORMALIZADA: PRODUTO DE SOMAS

- ▶ Designa-se por forma normal **conjuntiva** de uma função booleana simples completamente especificada, $y=f(x_1,x_2,...,x_N)$, uma expressão lógica representativa da função com a estrutura de um produto de somas.
- ▶ Por esta razão designa-se habitualmente uma forma normal conjuntiva simplesmente por produto de somas.
- ➤ Se cada parcela for constituída por uma soma lógica envolvendo n literais distintos, diz-se que a função se encontra representada na segunda forma canónica ou forma canónica conjuntiva.

Exemplos:

$$f(x_1, x_2, x_3) = (x_1 + x_2).(\overline{x_1} + \overline{x_2} + \overline{x_3})$$
 \leftarrow forma não canónica $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3).(x_1 + x_2 + \overline{x_3}).(\overline{x_1} + \overline{x_2} + \overline{x_3})$ \leftarrow forma canónica

MAXTERMOS:

▶ Designa-se por maxtermo (também soma canónica, implicado canónico ou termo maximal) um termo de soma em que todas as variáveis aparecem exactamente uma vez, complementadas ou não.

Maxtermos para 3 variáveis

\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	maxtermo	
0	0	0	$x_3 + x_2 + x_1$	M_0
0	0	1	$x_3 + x_2 + \overline{x}_1$	M_1
0	1	0	$x_3 + \overline{x}_2 + x_1$	M_2
0	1	1	$x_3 + \overline{x}_2 + \overline{x}_1$	M_3
1	0	0	$\overline{x}_3 + x_2 + x_1$	M_4
1	0	1	$\overline{x}_3 + x_2 + \overline{x}_1$	M_5
1	1	0	$\overline{x}_3 + \overline{x}_2 + x_1$	M_6
1	1	1	$\overline{x}_3 + \overline{x}_2 + \overline{x}_1$	M_7

Um **maxtermo** representa exactamente uma combinação das variáveis binárias na tabela de verdade da função.

Uma função de n variáveis tem 2ⁿ maxtermos.

Cada maxtermo é também designado por M_i em que o índice i indica o número decimal equivalente à combinação binária por ele representada.

O maxtermo vale 0 para a combinação representada, e 1 para todas as outras.

Prof. Nuno Roma

Sistemas Digitais 2015/16

11

Funções Lógicas

MINTERMOS E MAXTERMOS:

O mintermo corresponde a uma função ≠ 0 com o número mínimo de 1's na tabela da verdade.

Exemplo:

$$f = \overline{x}_3.x_2.x_1$$

x ₃	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Prof. Nuno Roma

MINTERMOS E MAXTERMOS:

▶ O **maxtermo** corresponde a uma função ≠ 1 com o número máximo de 1's na tabela da verdade.

Exemplo:

$$f = x_3 + \overline{x}_2 + \overline{x}_1$$

x ₃	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Prof. Nuno Roma

Sistemas Digitais 2015/16

13

Funções Lógicas

■ MINTERMOS E MAXTERMOS:

▶ Um mintermo e um maxtermo com o mesmo índice são complementos um do outro:

$$m_j = \overline{M}_j$$

\mathbf{x}_3	\mathbf{x}_2	$\mathbf{x_1}$	mintermo		maxterm	0	Exemplo:
0	0	0	$\overline{x}_3.\overline{x}_2.\overline{x}_1$	m_0	$x_3 + x_2 + x_1$	\mathbf{M}_0	
0	0	1	$\overline{x}_3.\overline{x}_2.x_1$	m_1	$x_3 + x_2 + \overline{x}_1$	\mathbf{M}_1	$m_3 = \overline{x}_3.x_2.x_1$
0	1	0	$\bar{x}_3.x_2.\bar{x}_1$	m_2	$x_3 + \overline{x}_2 + x_1$	M_2	$=\frac{\overline{\overline{x_3.x_2.x_1}}}$
0	1	1	$\overline{X}_3.X_2.X_1$	m_3	$x_3 + \overline{x}_2 + \overline{x}_1$	M_3	$-x_3.x_2.x_1$
1	0	0	$X_3.\overline{X}_2.\overline{X}_1$	m_4	$\overline{x}_3 + x_2 + x_1$	M_4	$= x_3 + \overline{x}_2 + \overline{x}_1$
1	0	1	$X_3.\overline{X}_2.X_1$	m_5	$\bar{x}_3 + x_2 + \bar{x}_1$	M_5	$=\overline{M}_3$
1	1	0	$x_3.x_2.\overline{x}_1$	m_6	$\overline{x}_3 + \overline{x}_2 + x_1$	M_6	
1	1	1	$x_3.x_2.x_1$	m_7	$\overline{x}_3 + \overline{x}_2 + \overline{x}_1$	M_7	

Prof. Nuno Roma

Sistemas Digitais 2015/16

■ TABELA DA VERDADE ↔ SOMA DE PRODUTOS

- ► Uma função booleana pode ser expressa algebricamente como uma soma de produtos directamente a partir da tabela de verdade.
- ▶ A soma inclui todos os mintermos para os quais a função vale 1.

Exemplo:

$$f(x_3, x_2, x_1) = \sum m(0,1,3,5,7)$$

$$f(x_3, x_2, x_1) = \overline{x}_3.\overline{x}_2.\overline{x}_1 \leftarrow m_0$$

$$+ \overline{x}_3.\overline{x}_2.x_1 \leftarrow m_1$$

$$+ \overline{x}_3.x_2.x_1 \leftarrow m_3$$

$$+ x_3.\overline{x}_2.x_1 \leftarrow m_5$$

$$+ x_3.x_2.x_1 \leftarrow m_7$$

$$1 1 0 0$$

$$1 1 1$$

Prof. Nuno Roma Sistemas Digitais 2015/16 15

Funções Lógicas

■ SOMA DE PRODUTOS ↔ PRODUTO DE SOMAS

- ► Conversão entre formas canónicas: o produto de somas utiliza os maxtermos correspondentes aos mintermos não utilizados na soma de produtos.
- ▶ É equivalente a aplicar a lei de DeMorgan ao complemento da função.

Exemplo:

Prof. Nuno Roma

Sistemas Digitais 2015/16

■ TABELA DA VERDADE ↔ PRODUTO DE SOMAS

- ▶ Uma função booleana pode ser expressa algebricamente, como um produto de somas, directamente a partir da tabela de verdade.
- ▶ O produto inclui todos os maxtermos para os quais a função vale 0.

Exemplo:

$$f(x_3, x_2, x_1) = \prod M(2,4,6)$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_2$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_4$$

$$f(x_3, x_2, x_1) = (x_3 + \overline{x}_2 + x_1) \qquad \leftarrow M_6$$

Prof. Nuno Roma Sistemas Digitais 2015/16 17

Funções Lógicas

■ FUNÇÕES INCOMPLETAMENTE ESPECIFICADAS

Exemplo: Função que detecta se um número, no intervalo [1,6], é múltiplo de 3.

x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	X
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	X

A função toma o valor 'X' (às vezes também representado por '-') para cada uma das combinações das entradas que nunca ocorrerão.

Realidade Física: 'X' não existe, apenas existem '0' ou '1'.

X – "don't care": não nos preocupamos com o comportamento do circuito para os valores fora do intervalo, portanto podemos escolher para cada 'X' o valor mais adequado entre '0' ou '1'.

Representação:

$$f(x_3, x_2, x_1) = \sum m(3,6) + \sum m_d(0,7)$$

$$= m_3 + m_6 + m_{d0} + m_{d7}$$

$$f(x_3, x_2, x_1) = \prod M(1,2,4,5) \cdot \prod M_d(0,7)$$

$$= M_1 \cdot M_2 \cdot M_4 \cdot M_5 \cdot M_{d0} \cdot M_{d7}$$

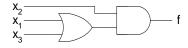
Prof. Nuno Roma

FUNÇÕES INCOMPLETAMENTE ESPECIFICADAS (cont.) Exemplo:

Estratégia: para cada 'X' escolhemos '0' ou '1' de acordo com os objectivos do projecto (habitualmente, maior simplificação).

Neste caso, a solução mais simples corresponde a substituir o primeiro 'X' por '0' e o segundo por '1'.

$$f \to g(x_3, x_2, x_1) = \sum m(3,6,7) = \prod M(0,1,2,4,5)$$
$$= x_2 x_1 + x_3 x_2$$
$$= x_2 (x_1 + x_3)$$



Prof. Nuno Roma

Sistemas Digitais 2015/16

19

PRÓXIMA AULA

Prof. Nuno Roma

Sistemas Digitais 2015/16

Próxima Aula

Tema da Próxima Aula:

- ▶ Minimização algébrica
- ▶ Minimização de Karnaugh:
 - Representação de funções de n variáveis:
 - o Quadros de 3 e 4 variáveis;
 - o Quadros de n variáveis;
 - Agrupamentos de uns e zeros:
 - o Eixos de simetria;
 - o Implicantes e implicados;
 - o Implicantes e implicados primos;
 - o Implicantes e implicados primos essenciais.

Prof. Nuno Roma

Sistemas Digitais 2015/16

21

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16