

SISTEMAS DIGITAIS (SD)

MEEC

Acetatos das Aulas Teóricas

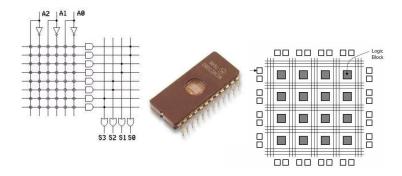
Versão 4.0 - Português

Aula Nº 25:

Título: Lógica Programável

Sumário: Lógica programável (ROM, PLA, PAL e FPGA); Linguagens de descrição de

hardware (VHDL).


2015/2016

Nuno.Roma@tecnico.ulisboa.pt

Sistemas Digitais (SD)

Lógica Programável

Aula Anterior

Na aula anterior:

- ▶ Circuitos de controlo, transferência e processamento de dados
- ▶ Exemplo de uma arquitectura simples de um processador

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
14/Set a 19/Set	Introdução	Sistemas de Numeração e Códigos	
21/Set a 26/Set	Álgebra de Boole	Elementos de Tecnologia	P0
28/Set a 3/Out	Funções Lógicas	Minimização de Funções Booleanas (I)	LO
5/Out a 10/Out	Minimização de Funções Booleanas (II)	Def. Circuito Combinatório; Análise Temporal	P1
12/Out a 17/Out	Circuitos Combinatórios (I) – Codif., MUXs, etc.	Circuitos Combinatórios (II) - Som., Comp., etc.	L1
19/Out a 24/Out	Circuitos Combinatórios (III) - ALUs	Linguagens de Descrição e Simulação de Circuitos Digitais	P2
26/Out a 31/Out	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	L2
2/Nov a 7/Nov	Caracterização Temporal	Registos	P3
9/Nov a 14/Nov	Revisões Teste 1	Contadores	L3
16/Nov a 21/Nov	Síntese de Circuitos Sequenciais: Definições	Síntese de Circuitos Sequenciais: Minimização do número de estados	P4
23/Nov a 28/Nov	Síntese de Circuitos Sequenciais: Síntese com Contadores	Memórias	L4
30/Nov a 5/Dez	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Endereçamento Explícito/Implícito	P5
7/Dez a 12/Dez	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	L5
14/Dez a 18/Dez	P6	P6	L6

Prof. Nuno Roma

Sistemas Digitais 2015/16

3

Sumário

■ Tema da aula de hoje:

- ► Lógica programável:
 - ROM
 - PLA
 - PAL
 - FPGA
- ▶ Linguagens de descrição de hardware
 - VHDL

□ Bibliografia:

 G. Arroz, C. Sêrro, "Sistemas Digitais: Apontamentos das Aulas Teóricas", IST, 2005: Capítulo 18 (disponível no Fenix)

Programmable Logic Device

■ PLD: Programmable Logic Device

- Vários dispositivos disponíveis com a possibilidade de programação da função lógica implementada:
 - ROM: Read-Only Memory (ROM, PROM, EPROM, EEPROM, etc...)
 - PLA: Programmable Logic Array
 - PAL: Programmable Array Logic
 - FPGA: Field Programmable Gate Array
- ► Função: implementação, num só circuito integrado, de circuitos com lógica combinatória (e/ou sequencial) de média complexidade, que de outra forma seriam implementados com vários circuitos integrados.

Prof. Nuno Roma

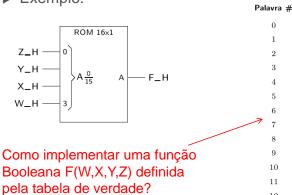
Sistemas Digitais 2015/16

5

Read Only Memory (ROM)

ROM: Read-Only Memory

- ▶ Diferentes famílias disponíveis:
 - ROM mask programmable ROM
 - PROM field Programmable ROM
 - EPROM Erasable Programmable ROM
 - EEPROM Electrically Erasable Programmable ROM



Prof. Nuno Roma Sistemas Digitais 2015/16

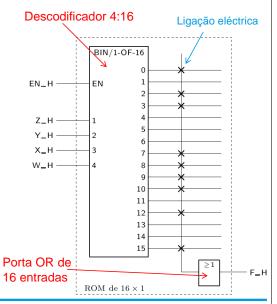
■ ROM: Read-Only Memory

'_H : A3	X_H A2	Y_H A1	Z_H A0	Dados
L	L	L	L	Н
L	L	L	H	L
L	L	H	L	Н
L	L	H	H	Н
L	Н	L	L	L
L	Н	L	H	L
L	H	H	L	L
L	H	Н	H	Н
Н	L	L	L	Н
H	L	L	H	Н
H	L	H	L	Н
H	L	Н	H	L
H	Н	L	L	Н
H	Н	L	H	L
Н	H	H	L	L
H	H	H	H	Н

Prof. Nuno Roma

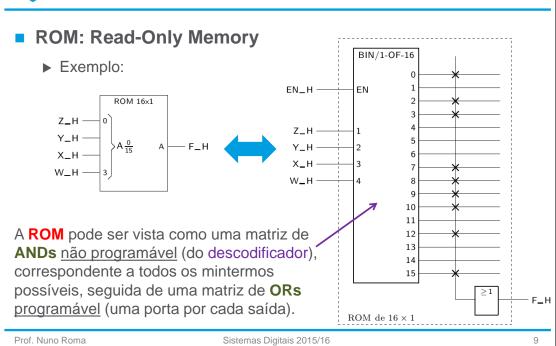
Sistemas Digitais 2015/16

12


1415

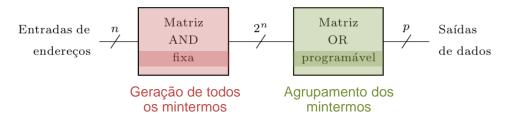
Read Only Memory (ROM)

■ ROM: Read-Only Memory


					T
Palavra #	W_H A3	X_H A2	Y_H A1	Z_H A0	Dados
0	L	L	L	L	Н
1	L	$_{\rm L}$	L	$_{\mathrm{H}}$	L
2	L	L	Н	L	Н
3	L	L	Н	H	Н
4	L	Н	L	L	L
5	L	Н	L	$_{\mathrm{H}}$	L
6	L	H	H	L	L
7	L	Н	H	H	Н
8	Н	L	L	L	Н
9	Н	L	L	H	Н
10	Н	L	Н	L	Н
11	Н	L	Н	H	L
12	Н	H	L	L	Н
13	Н	H	$_{\rm L}$	H	L
14	Н	Н	Н	L	L
15	Н	Н	Н	H	Н

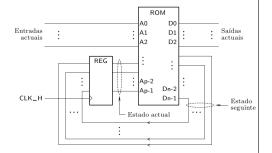
Prof. Nuno Roma

Sistemas Digitais 2015/16



Read Only Memory (ROM)

■ ROM: Read-Only Memory


- ▶ Ao contrário de outros dispositivos (ver a seguir), a ROM não impõe restrições no número de mintermos gerados (2ⁿ) e agrupados.
- ▶ Exemplo:
 - uma ROM de 8k x 8 bits pode implementar, no máximo, 8 funções booleanas simples (uma por cada saída) de 13 variáveis Booleanas (porque 8k = 2¹³).

Prof. Nuno Roma

ROM: Read-Only Memory

- ▶ Exemplos de aplicação:
 - Implementação de funções Booleanas combinatórias (genéricas);
 - Implementação de sistemas sequenciais micro-programados;
 - Armazenamento, em memória não volátil, de programas executados por processadores;
 - Exemplo: configuração do sistema de interface de entradas e saídas (BIOS) de um computador.

Prof. Nuno Roma

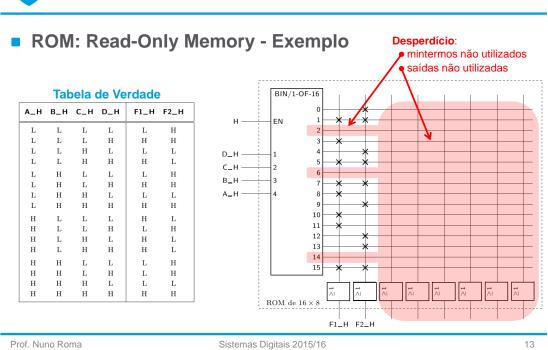
Sistemas Digitais 2015/16

11

Read Only Memory (ROM)

■ ROM: Read-Only Memory

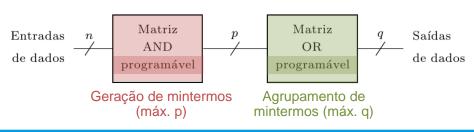
▶ Vantagens:


- Facilidade e rapidez de definição do seu conteúdo a partir da tabela de verdade da função;
- Existe software para programação automática;
- Pouco dispendiosas.

▶ Desvantagens:

- Uma vez que gera todos os mintermos para o conjunto de variáveis de entrada, conduz a desperdício de recursos, caso esses mintermos não seja utilizados pela função;
- Quando o número de entradas é muito elevado, pode tornar-se impraticável a utilização de ROMs, devido à limitação do número de entradas:
- Mais <u>lenta</u> e consome mais <u>energia</u> do que circuitos dedicados.

Prof. Nuno Roma Sistemas Digitais 2015/16 12



Programmable Logic Array (PLA)

■ PLA: Programmable Logic Array

- ▶ Para ultrapassar os inconvenientes da utilização de ROMs, os fabricantes de circuitos integrados conceberam dispositivos programáveis (PLDs), com restrições ao nível de:
 - Nº de entradas (n)
 - Nº de portas AND (p)
 - Nº de portas OR (q)

Prof. Nuno Roma

Sistemas Digitais 2015/16

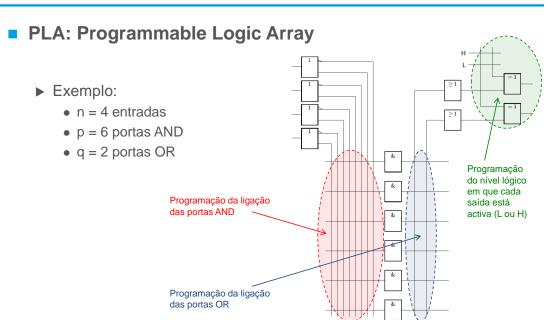
■ PLA: Programmable Logic Array

- Para ultrapassar os inconvenientes da utilização de ROMs, os fabricantes de circuitos integrados conceberam dispositivos programáveis (PLDs), com restrições ao nível de:
 - Nº de entradas (n)
 - Nº de portas AND (p)
 - Nº de portas OR (q)

► Consequências:

- Cada uma das q funções tem de ser expressa numa soma de produtos;
- O número total de <u>implicantes disponíveis</u> não pode ultrapassar p.

► Estas restrições não existem nas ROMs, pois todos os mintermos estão disponíveis nas saídas do descodificador interno da ROM.


Prof. Nuno Roma

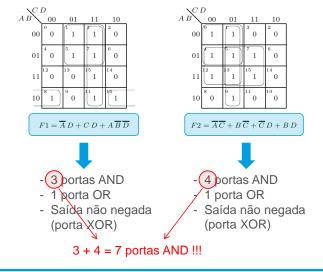
Sistemas Digitais 2015/16

15

Programmable Logic Array (PLA)

Prof. Nuno Roma

Sistemas Digitais 2015/16


■ PLA: Programmable Logic Array – Exemplo

▶ Exemplo:

- n = 4 entradas
- p = 6 portas AND
- q = 2 portas OR

Tabela de Verdade

A_H	B_H	C_H	D_H	F1_H	F2_H
L	L	L	L	L	Н
L	L	L	H	Н	H
L	L	H	L	L	L
L	L	H	H	Н	L
L	H	L	L	L	H
L	H	L	H	Н	H
L	H	H	L	L	L
L	H	H	H	Н	H
H	L	L	L	Н	L
H	L	L	H	L	H
H	L	H	L	Н	L
H	L	H	H	Н	L
H	H	L	L	L	H
H	H	L	H	L	H
H	H	H	L	L	L
H	H	H	H	H	H

Prof. Nuno Roma

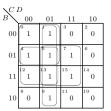
Sistemas Digitais 2015/16

17

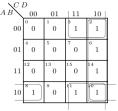
Programmable Logic Array (PLA)

■ PLA: Programmable Logic

▶ Observação:


 Se agruparmos os maxtermos, em vez dos mintermos, obteremos uma expressão mais simples

Problema:

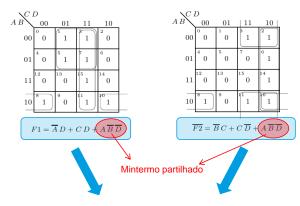

 A PLA n\u00e3o tem estrutura que facilite o uso de produtos de somas

▶ Alternativa:

- Obter a expressão na negação de F2: F2
- Depois nega-se esta negação: F2 = F2

$$F2 = \overline{A}\,\overline{C} + B\,\overline{C} + \overline{C}\,D + B\,D$$

 $\overline{F2} = \overline{B}\,C + C\,\overline{D} + A\,\overline{B}\,\overline{D}$



■ PLA: Programmable Logic Array – Exemplo

- ▶ Exemplo:
 - n = 4 entradas
 - p = 6 portas AND
 - q = 2 portas OR

Tabela de Verdade

A_H	в_н	C_H	D_H	F1_H	F2_H
L	L	L	L	L	Н
L	L	L	H	Н	H
L	L	H	L	L	L
L	L	H	H	Н	L
L	H	L	L	L	H
L	H	L	H	Н	H
L	H	H	L	L	L
L	H	H	H	Н	H
Н	L	L	L	Н	L
Н	L	L	H	L	H
H	L	H	L	Н	L
H	L	H	H	Н	L
Н	H	L	L	L	H
Н	H	L	H	L	H
H	H	H	L	L	L
H	H	H	H	Н	H

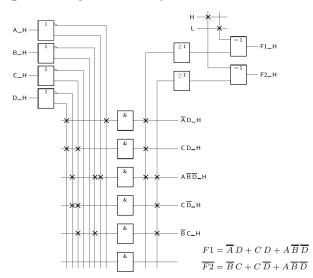
- 5 portas AND
- 2 porta OR
- 1 saída não negada (F1)
- 1 saída negada (F2)

Prof. Nuno Roma

Sistemas Digitais 2015/16

19

OK!


Programmable Logic Array (PLA)

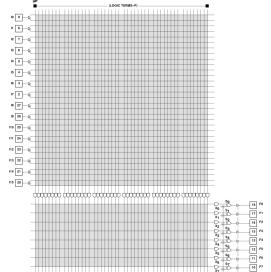
■ PLA: Programmable Logic Array – Exemplo

- ▶ Exemplo:
 - n = 4 entradas
 - p = 6 portas AND
 - q = 2 portas OR

Tabela de Verdade

100000000000000000000000000000000000000						
A_H	в_н	C_H	D_H	F1_H	F2_H	
L	L	L	L	L	Н	
L	L	L	H	Н	H	
L	L	H	L	L	L	
L	L	H	H	Н	L	
L	H	L	L	L	H	
L	H	L	H	Н	H	
L	H	H	L	L	L	
L	H	H	H	Н	H	
Н	L	L	L	Н	L	
H	L	L	H	L	H	
H	L	H	L	Н	L	
H	L	H	H	Н	L	
н	H	L	L	L	Н	
Н	H	L	H	L	H	
H	H	H	L	L	L	
Н	H	H	H	Н	H	

Prof. Nuno Roma Sistemas Digitais 2015/16

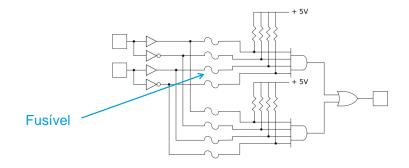


■ PLA: Programmable Logic Array

- ► Exemplo: PLS100 (Philips)
 - 16 entradas
 - p = 48 portas AND
 - q = 8 portas OR

Prof. Nuno Roma

Sistemas Digitais 2015/16

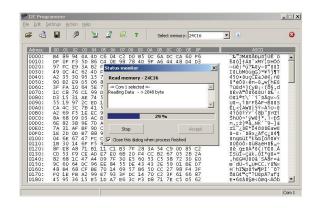

21

Programmable Logic Array (PLA)

Programação

- ► One-Time-Programming (OTP) podem ser programados apenas uma única vez
 - Aquando da programação, existem fusíveis que são "queimados" e que irão definir os operandos de cada **mintermo**.

Prof. Nuno Roma

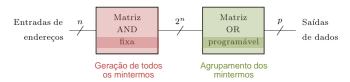

Sistemas Digitais 2015/16

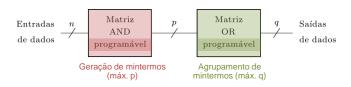
Programação

▶ O programador está ligado a um computador (PC), que lê um ficheiro com a tabela de verdade pretendida para o circuito

Prof. Nuno Roma

Sistemas Digitais 2015/16


23

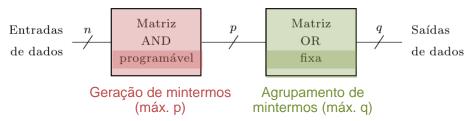

ROMs vs PLAs

ROMs vs PLAs

No caso das ROMs, as ligações das portas AND estão <u>fixas</u> e é possível <u>programar</u> as ligações das portas OR:

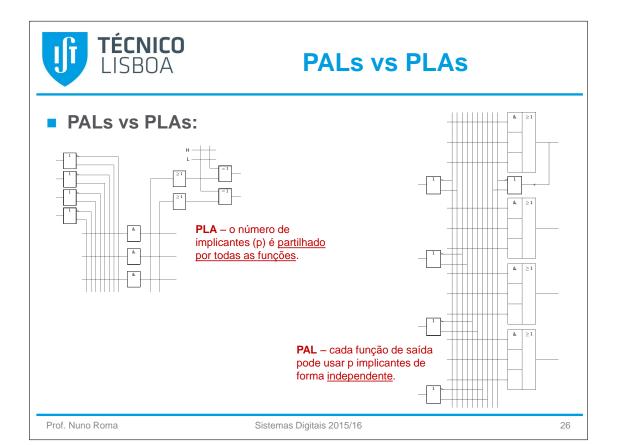
No caso das PLAs, tanto as ligações das portas AND como as ligações das portas OR são <u>programáveis</u>:

Prof. Nuno Roma


Sistemas Digitais 2015/16

Programmable Array Logic (PAL)

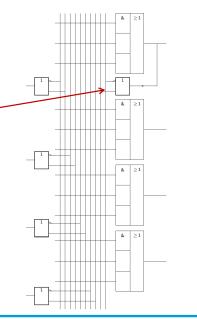
■ PAL: Programmable Array Logic


No caso das PALs, as ligações entre as portas AND e as portas OR estão <u>fixas</u>, e apenas é possível programar as ligações das portas AND às entradas:

▶ Restrições:

- Cada uma das q funções tem de ter a forma de uma soma de produtos;
- O número de implicantes da soma não pode exceder p <u>por função</u> (numa PLA, o número de implicantes (p) é <u>partilhado por todas as funções</u>).

Prof. Nuno Roma Sistemas Digitais 2015/16 25



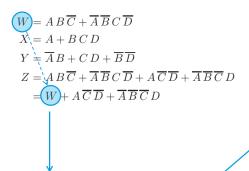
Programmable Array Logic (PAL)

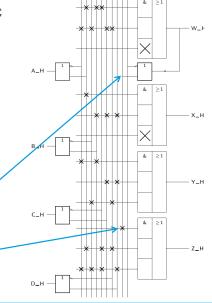
■ PAL: Programmable Array Logic

- Uma das linhas de saída pode ser realimentada para o interior da PAL, para permitir construir funções que necessitem de um maior número de portas AND.
- Algumas PALs incluem também flipflops nas saídas, de modo a permitir realizar circuitos sequenciais.

Prof. Nuno Roma

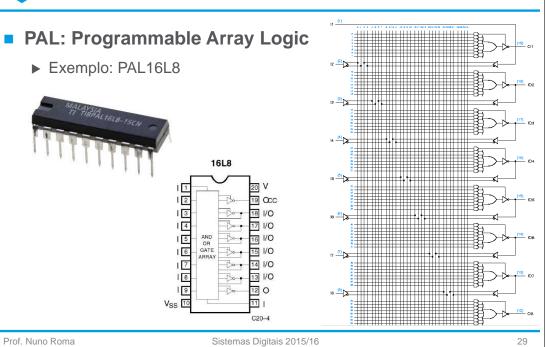
Sistemas Digitais 2015/16


27


Programmable Array Logic (PAL)

► Exemplo:

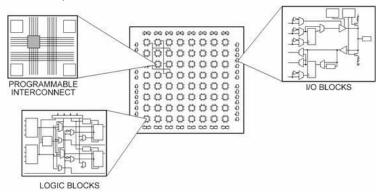
Realimentação da saída da função W (que corresponde, também, a mintermos da função Z), a fim de alargar o número de operandos da porta AND.



Prof. Nuno Roma

Sistemas Digitais 2015/16

Programmable Array Logic (PAL)

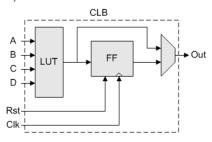


Field-Programmable Gate Array (FPGA)

■ FPGA: Field-Programmable Gate Array

Dispositivo constituído por uma grelha com milhares de blocos lógicos programáveis interligados entre si (CLB: Configurable Logic Blocks), em que cada bloco implementa uma função booleana simples:

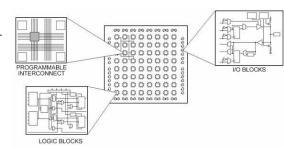
Prof. Nuno Roma


Sistemas Digitais 2015/16

Field-Programmable Gate Array (FPGA)

Configurable Logic Block (CLB)

- ► Pode ser constituído por:
 - **Look-Up Table (LUT)**, semelhante a uma ROM, que permite definir uma qualquer **função combinatória** arbitrária de *n* entradas
 - Elemento de memória (ex: **Flip-Flop**), ligado à saída da LUT, que permite a realização de **circuitos sequenciais**.
- ► Exemplo (simples):


Prof. Nuno Roma Sistemas Digitais 2015/16

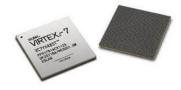
Field-Programmable Gate Array (FPGA)

■ FPGA: Field-Programmable Gate Array

- ▶ A programação/configuração é feita aquando do ciclo de inicialização, em que a FPGA lê um ficheiro de configuração (.bit) a partir de uma ROM externa, a fim de <u>configurar</u>:
 - LUTs de todos os CLBs;
 - MUXs de saída de todos os CLBs:
 - Interligações entre CLBs;
 - Memórias internas;
 - Interface com o exterior (I/O).
- Pode ser configurada múltiplas vezes!

Prof. Nuno Roma

Sistemas Digitais 2015/16


32

Field-Programmable Gate Array (FPGA)

■ FPGA: Field-Programmable Gate Array

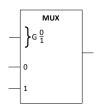
- ▶ O grande número de CLBs (>10⁶) actualmente disponibilizados por FPGAs de última geração permite a integração e implementação, num único chip, de:
 - Vários processadores (sistemas multi-core)
 - Processadores Digitais de Sinal (DSP)
 - Micro-controladores
 - Memórias, etc.

► Programação:

- Dada a elevada complexidade dos circuitos envolvidos, estes dispositivos são geralmente programados através de linguagens de descrição de circuitos (*Hardware Description Languages – HDL*):
 - o VHDL
 - o Verilog

Prof. Nuno Roma

Sistemas Digitais 2015/16


33

VHDL

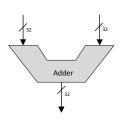
VHDL (VHSIC Hardware Description Language)

► Exemplo 1: multiplexer 2:1


```
entity MUX is
  port (
    A : in std_logic;
    B : in std_logic;
    Sel : in std_logic;
    Out : out std_logic;
    Out entity MUX;

architecture RTL of MUX is
begin
    Out <= A when Sel = '1' else B;
end architecture RTL;</pre>
```

Prof. Nuno Roma


Sistemas Digitais 2015/16

VHDL

VHDL (VHSIC Hardware Description Language)

► Exemplo 2: somador binário


```
entity ADDER is
  generic (
    WIDTH: in natural := 32);
port (
    OP1 : in std_logic_vector(WIDTH-1 downto 0);
    OP2 : in std_logic_vector(WIDTH-1 downto 0);
    SUM : out std_logic_vector(WIDTH-1 downto 0));
end entity ADDER;

architecture RTL of ADDER is
begin
    SUM <= OP1 + OP2;
end architectore RTL;</pre>
```

NOTA: esta descrição (comportamental) não é permitida para a realização dos trabalhos de laboratório de "Sistemas Digitais"

Prof. Nuno Roma

Sistemas Digitais 2015/16

35

VHDL

VHDL (VHSIC Hardware Description Language)

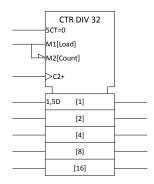
► Exemplo 3: flip-flop tipo D


```
entity FLIP_FLOP is
  port (
    RST : in std_logic;
    CLK : in std_logic;
    D : in std_logic;
    Q : out std_logic;
end entity FLIP_FLOP;

architecture RTL of FLIP_FLOP is
begin
  process(RST, CLK)
begin
  if RST = '1' then
    Q <= '0';
  elsif rising_edge(CLK) then
    Q <= D;
  end if;
  end process;
end architecture RTL;</pre>
```

Prof. Nuno Roma

Sistemas Digitais 2015/16



VHDL

VHDL (VHSIC Hardware Description Language)

► Exemplo 4:

Contador binário


```
entity COUNTER is
  generic (
    WIDTH : in natural := 5);
  port (
    RST : in std_logic;
    CLK : in std_logic;
    LOAD : in std_logic;
    DATA : in std_logic_vector(WIDTH-1 downto 0);
    Q : out std_logic_vector(WIDTH-1 downto 0));
end entity COUNTER;

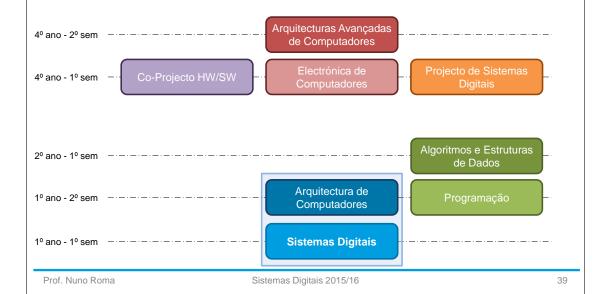
architecture RTL of COUNTER is
  signal CNT : unsigned(WIDTH-1 downto 0);
begin
  process(RST, CLK) is
  begin
  if RST = '1' then
    CNT <= (others => '0');
  elsif rising_edge(CLK) then
    if LOAD = '1' then
    CNT <= unsigned(DATA);
  else
    CNT <= CNT + 1;
  end if;
  end if;
  end process;

Q <= std_logic_vector(CNT);</pre>
```

Prof. Nuno Roma

Sistemas Digitais 2015/16

37



FIM ???

Enquadramento no Curso (MEEC)

Enquadramento da Disciplina no Curso (MEEC)

Próxima Aula

Tema da Próxima Aula:

▶ Série de Problemas P6 – 1ª parte

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás

Prof. Nuno Roma

Sistemas Digitais 2015/16