

Licenciatura em Eng. Informática

Disciplina de Sistemas Lógicos -repescagem de 2º teste- 21-7-2000 - 14h Duração: 1h45mn Tolerância: 15mn Sem consulta Importante: numere as folhas (ex. 1 de 4) e identifique-se em todas elas; Responda em folhas separadas aos vários grupos de questões

Q1 (3 valores)

A partir de um flip-flop D, implemente um flip-flop AB (pensado para esta prova), que possue a seguinte tabela de verdade.

A	В	Q _{n+1}
0	0	1
0	1	Qn
1	0	0
1	1	

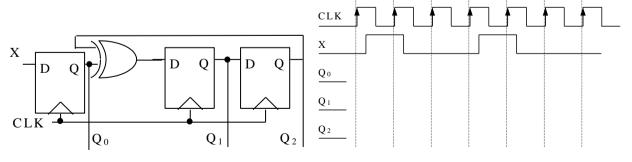
Q2 (3 + 2.5 + 1.5 valores)

Pretende-se projectar um contador síncrono crescente, com 3 bits, cujos estados de contagem sejam os números primos menores que 8. Nota: entende-se por número primo o que só é divisível por ele próprio e pela unidade.

- a) Apresente tabela de transição de estados com codificação de estados proposta.
- b) Utilizando flip-flops D, apresente as tabelas das entradas D, mapas de Karnaugh associados e expressões simplificadas (não é necessário apresentar o esquema lógico).
- c) Tendo por base a resolução da alínea anterior, diga, justificadamente, para que estado evolui o contador, quando por algum motivo (por exemplo alimentação inicial do circuito) o sistema se encontar no estado 0 (000).

Q3 (3 + 2 + 2 valores)

Pretende-se desenvolver uma máquina de estados síncrona para controlar a abertura de um trinco, possuindo dois botões de pressão de entrada X_0 e X_1 , e uma saída Z que deverá ser activada sempre que se verifique a seguinte sequência: botões soltos — botão X_0 premido — botões soltos — botão X_1 premido.


a)	A ¹	present	e o	diagrama (de esta	ados	para c) S1S	tema (de	contro	olo (descrito	١.

- b) Apresente a tabela de transição de estados associada, com os estados codificados e a saída.
- c) Considere a tabela de transição de estados ao lado. Minimize o número de estado necessários utilizando o método da partição.

Estado	Estado seguinte			В
actual	X = 0	X = 1	Α	Ь
S ₀	S ₀	S ₁	1	0
S ₁	S ₄	S ₁	0	1
S ₂	S ₂	S ₃	1	0
S ₃	S ₆	S ₃	0	0
S ₄	S ₄	S ₅	1	0
S ₅	S ₂	S ₅	0	1
S ₆	S ₆	S ₇	1	0
S ₇	S ₀	S ₇	0	0

Q4 (3 valores)

Considere o circuito apresentado na figura utilizando flip-flops sensíveis ao flanco ascendente de relógio. Complete o diagrama temporal:

